EE544: Computer Vision (Incorporating Deep Learning)

Summary Syllabus¹ (Level 9²)

Section	Indicative Content
Introduction	 Introduction to Python Computer Vision Development Environment Computer vision Pipeline Traditional vs deep learning approaches to computer vision Learning Outcomes Module Protocol Assessment Requirement Support Material & Website Software Tools Case Studies
Machine Learning for Computer Vision	 Classification Feature Normalisation Evaluation of Classifier Performance Non-Parametric Classifiers / Decision Trees (DT) Support Vector Machine (SVM) SVM Multi-class Classification
Deep Learning for Computer Vision (ANN & CNN)	 Artificial Neural Networks Logistic (Linear) Classifier Gradient Descent / Stochastic Gradient Descent (SGD) Backward Propagation Regularisation Methods Supervised Deep Learning Convolution Neural Networks Transfer Learning Architectures Unsupervised Learning
Deep Learning for Computer Vision (Classification, Visualisation & Localisation)	• CNN classification • Data Augmentation • Visualising CNN filters • Localise Objects with Regression • Object Detection as Classification • Region-Based CNN (R-CNN) • Single Shot Detectors (SSD)
Deep Learning for Computer Vision (Segmentation, Detection & Advanced)	 Semantic Segmentation Fully Convolutional Networks Learnable Upsampling UNet: Biomedical Image Segmentation Instance Segmentation Mask R-CNN
Deep Learning for Computer Vision (Architectures, Generative DL)	• Deep Dream • Style Transfer Network • Unsupervised Learning • Autoencoders (AE) • Variational Autoencoders (VAE) • Adversarial Images • Generative Adversarial Networks (GAN) • Conditional Adversarial Networks • Edge Computing
Deep Learning for Computer Vision (Next Generation)	Vision Transformers (ViT)

See **<u>EE425/EE453</u>**: Image Processing & Analysis for an introductory Level 8 module in this area.

The module will develop solutions within a **Python** based development environment. Specifically we will use the open source and widely adopted **scikit-image**, **opencv** and **scikit-learn** libraries in designing advanced computer vision and machine learning solutions. Building on this we will develop our deep learning solutions within the very popular **Keras** (a high-level Python based neural networks API / **Tensorflow** (an open-source software library for Machine Intelligence) environment.

¹ Indicative content – details may vary from year to year.

² NFQ Level 9 – Master's Degree