
 

 

 

MRI diffusion-based filtering: A note on performance characterisation 
 

Ovidiu Ghita*, Kevin Robinson, Michael Lynch and Paul F. Whelan 

 

Vision Systems Group 

School of Electronic Engineering  

Dublin City University,  

Glasnevin, Dublin 9, 

Ireland 

 

 
*Corresponding author: 

E-mail: ghitao@eeng.dcu.ie 

Phone: +353-1-7007637 

Fax: +353-1-7005508 

 

 

 

 

 

 

 

 

 

 

 

 

 



MRI diffusion-based filtering: A note on performance characterisation 
 

Ovidiu Ghita, Kevin Robinson, Michael Lynch and Paul F. Whelan 

Vision Systems Group 

School of Electronic Engineering  

Dublin City University, Ireland 

 

 

Abstract 

 

Frequently MRI data is characterised by a relatively low signal to noise ratio (SNR) or 

contrast to noise ratio (CNR). When developing automated Computer Assisted Diagnostic 

(CAD) techniques the errors introduced by the image noise are not acceptable. Thus, to limit 

these errors, a solution is to filter the data in order to increase the SNR. More importantly, the 

image filtering technique should be able to reduce the level of noise but not at the expense of 

feature preservation. In this paper we detail the implementation of a number of 3D diffusion-

based filtering techniques and we analyse their performance when they are applied to a large 

collection of MR datasets of varying type and quality.  

 

Keywords: MRI, feature preserving smoothing, anisotropic diffusion, image segmentation. 

 
 
1. Introduction 

 

In a survey on image smoothing techniques the approaches encountered may be classified 

under two broad headings, linear and non-linear [1,2].  Standard linear smoothing techniques 

based on local averaging or Gaussian weighted spatial operators reduce the level of noise but 

this is achieved at the expense of poor feature preservation. Consequently, the filtered data 

appears blurry as step intensity discontinuities such as edges are attenuated. To compensate 

for these undesirable effects, non-linear techniques have been developed in order to achieve 

better feature preservation.  Among these, the median filter is the simplest operator to remove 

impulse-like noise [2]. More complex non-linear techniques include statistical approaches 

based on nonparametric estimation [3,4]. However, while these methods do alleviate 

somewhat the shortcomings associated with linear techniques, they still perform only 



modestly when the data is affected by long tailed noise distributions. To complement these 

filtering approaches, a number of adaptive techniques have been proposed [2,3,5]. These 

methods try to achieve the best trade-offs between smoothing efficiency, feature preservation 

and the generation of artefacts.   

 

Recent developments based on non-linear diffusion [6,7,8,9] alleviate the major limitations 

associated with conventional linear and non-linear smoothing methods. Diffusion-based 

filtering was originally developed by Perona and Malik [10] in order to implement an optimal, 

feature preserving smoothing strategy. Many implementations follow their original approach 

where the main aim was to improve numerical stability [11,12]. This was advanced by 

Weikert [13] where he developed a new smoothing algorithm by permitting diffusion along 

the direction of edges. Gerig et al [6] extended this work to 3D and evaluated its usefulness 

when applied to medical 2D and 3D datasets. In this paper our aim is to further extend their 

initial work in presenting the implementation of three diffusion-based smoothing algorithms 

where a special emphasis has been placed on performance characterisation [14,15]. We have 

evaluated the algorithms on various MRI datasets and the results are presented and discussed. 

 

This paper is organised as follows. Section 2 describes the extension to 3D of the standard 

diffusion algorithm. Section 3 details the implementation of an adaptive 3D diffusion-based 

smoothing strategy. In Section 4 a 3D anisotropic Gaussian filtering technique is introduced. 

Section 5 presents an extensive performance characterisation of the smoothing strategies 

described in this paper and Section 6 presents some concluding remarks. 

 
 
2. Non-linear 3D Diffusion Filtering 

 

In this section we describe the extension to 3D of the smoothing strategy that has been 

described in Perona and Malik’s paper [10]. In their paper smoothing is formulated as a 

diffusive process where smoothing is performed at intra regions and suppressed at region 

boundaries.  

 

 

 

 



This non-linear smoothing procedure can be defined in terms of the derivative of the flux 

function: 
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where u is the input data, D represents the diffusion function, t indicates the iteration step and 

div is the divergence operator. The smoothing strategy described in Eq. 1 can be translated 

into an iterative discrete formulation for 3D data as follows: 
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where ∇ is the gradient operator than can be defined in a 6 voxel connected neighbourhood 

(see Eq. 3) and λ is a contrast parameter that takes a value in the range 0<λ<0.16 as suggested 

in [10]. For a 26 voxel connected neighbourhood the implementation is similar and we just 

have to adjust the range for the λ parameter accordingly. 
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The diffusion function D(x) should be bounded in the interval (0→1) and should have the 

highest value when the input x has the value zero. These requirements translate to minimal 

smoothing around boundaries where the gradient has high values. In practice, a large number 

of functions can be engineered to satisfy these requirements and in our implementation we 

have used two types of diffusion functions, exponential and reciprocal:  
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where k is the diffusion parameter. The parameter k controls the smoothing level, the 

smoothing being more pronounced for high values of k. The experimental data indicates that 



slightly better results are obtained when the exponential form illustrated in Eq. 4 is used in the 

expression depicted by Eq. 2.  

 
 
3. Adaptive 3D Diffusion Smoothing 

 

The adaptive smoothing algorithm implemented in this paper represents the extension to 3D 

of the algorithm proposed by Chen [16]. Chen [16] demonstrated that the standard diffusion 

algorithm might not return optimal results when applied to image data defined by a very low 

SNR. To tackle this limitation he proposed to use two discontinuity measures jointly in order 

to control the smoothing process. To this end, he used the spatial variance to measure 

contextual discontinuities and the gradient information as a measure of the local 

discontinuities.  

 

In order to measure the local discontinuities we calculate the derivatives in a 3x3x3, 13 

diagonal derivatives calculated in a 26 voxel-connected neighbourhood. 
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where Ix,y,z represent the voxel intensity at the position (x,y,z). Then, we can define the local 

discontinuity measure as: 
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As mentioned earlier the contextual discontinuities are sampled by measuring the spatial 

variance. The variance is computed in a cubic neighbourhood around the pixel of interest 

Nxyz(R) as follows: 
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where µxyz is the mean value of the voxels situated in the cubic neighbourhood Nxyz(R) and     

|Nxyz(R)| is the number of pixels.  Then the spatial variances for the whole volume are scaled 

between 0 and 1 using the simple transformation illustrated in Eq. 9. 
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The adaptive smoothing scheme is iterative and is illustrated below: 
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where,  
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In the formulation illustrated in Eq. 10 the parameters θσ and α control the extent to which the 

contextual discontinuities should be preserved while S is the diffusion parameter that controls 

the preservation of local discontinuities. It can be seen that γ implements the diffusion 

function depicted in Eq. 4.  For this implementation the parameter R=3 (for larger values 

image details such as thin lines are suppressed) and typical values for controlling parameters 

are: α=10, θσ= (0.05→0.95), S =(5→30). The algorithm is typically run for 5 to 20 iterations.  

 
 

4. Anisotropic Gaussian Smoothing 

 

An anisotropic filter based on the familiar Gaussian model has also been implemented in 

order to provide edge enhancing, directional smoothing. This approach reduces to convolution 

with a scaled Gaussian mask where the calculation of the kernel’s weights becomes the key 



issue governing the performance of this smoothing algorithm. By calculating the local 

gradient vector and favouring smoothing along the edge over smoothing across it, we can 

achieve boundary-preserving filtering where image regions are smoothed while edges are 

enhanced.  

 

The weight for a neighbour pixel q can be calculated as a function of the gradient at point p, at 

the mask origin, and the distance from the origin to the neighbour q. The relationship used in 

our approach is given in Eq. 14 where pq  is the vector from the mask centre point p to the 

neighbour q, u∇ is the gradient vector at position p, λ is the scale parameter that controls the 

smoothing strength while μ is the shape parameter controlling anisotropy. It can be observed 

that in the case when μ=0 the anisotropic term ( )2
2
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smoothing operation reduces to the non-linear isotropic form where smoothing is suppressed 

at image boundaries (as no directionality is applied).  
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The smoothing operation filters the data iteratively with the 3D kernel constructed from Eq. 

14. As the number of iterations is increased, more noise and small features are eliminated but 

even in extreme cases the strong edges in the data are well preserved in both location and 

strength.  

 

 

5. Experiments and results 

 

The filtering algorithms described in this paper have been applied to a large number of MR 

datasets including MRCP, whole body, brain and heart sequences. The aim of these 

experiments is to conduct a detailed performance characterisation for smoothing algorithms 

described in this paper in order to produce quantitative results. In our experiments we also 

included datasets where additional noise had been added to the original sequences. 

 



To evaluate the performance of the smoothing algorithms described in this paper, the first set 

of experiments were conducted on a synthetic dataset that is defined by a homogenous cubic 

object with a known greyscale value surrounded by background pixels. To test smoothing 

algorithms on this artificial dataset is advantageous as the ground truth data is known and the 

smoothing results are easy to evaluate. We tested the efficiency of the algorithms when the 

artificial dataset was corrupted with various types of 3D image noise, including Gaussian, 

Poisson and additive uniformly distributed white noise [1,17]. As quantitative values we have 

evaluated the local uniformity sampled by the 7x7x7 standard deviation at the location 

situated at the centre of the cube and the alteration of the greyscale value at the same position 

when compared with the expected known value. Some experimental results are depicted in 

Table 1.  

 

Table 1 should be placed here. 

 

In Table 1 the symbols G-15 and G-30 indicate that the synthetic dataset has been corrupted 

with Gaussian noise (standard deviation 15 and 30 greyscale values). Similarly P-15 and P-30 

denote the fact that the test dataset has been corrupted with Poisson noise (distribution 15 and 

30 greyscale values) and W-15 and W-30 indicate that the dataset has been corrupted with 

uniformly distributed white noise (mean deviation 15 and 30 greyscale values).  

In order to evaluate globally the noise removal efficiency on real datasets we need to define 

quantitative measures that indicate the overall performance of the smoothing algorithms that 

are evaluated. In this regard, we propose to evaluate jointly two quantitative measurements: 

the smoothness factor that assesses the global uniformity and the edge preservation factor that 

indicates to what extent the strong edge features are retained and enhanced. To this end, we 

employed the standard deviation as a measure to evaluate the image local homogeneity. To be 

statistically relevant [17] the standard deviation should be calculated over a large region but 

on the other hand the results will be affected by small non-uniformities such as intensity 

gradients or structural image variations [6]. This requirement is quite difficult to be 

accomplished if we want to develop an automatic performance characterisation scheme where 

user intervention is not required. One solution has been advanced by Canny [18] when he 

decided to select the threshold parameters for an edge detector based on analysis of the 

cumulative histogram of the gradients. However due to the nature of MR datasets this criteria 

to identify the gradients generated by noise proved to be inefficient. Thus, in our 

implementation we have developed an alternative strategy based on observation. In this sense, 



we computed the standard deviation for all voxels in the original dataset in a 7x7x7 

neighbourhood. These values were sorted with respect to their magnitude and from these 

values the 25% of the highest values were eliminated, as they are likely to belong to edges 

and 25% of the lowest values are also eliminated as they are calculated from areas that have 

no significant texture (such as image regions defined by air). This strategy was applied to 

select the seed points that belong to image regions defined by a low SNR. Then, the standard 

deviation for each of the filtered datasets is measured at the same voxel locations (also in a 

7x7x7 neighbourhood). To evaluate a quantitative estimation we calculate the RMS value of 

the standard deviations from the original and smoothed datasets resulting after the application 

of the smoothing strategies described in previous sections (for details refer to Table 2).   

 
Table 2 should be placed here. 

 

The edge strength is evaluated by plotting the intensity and gradient data at selected locations 

where edges are located, before and after the application of the smoothing operations. Some 

graphical results are depicted in Figs 1 to 4. The experimental data illustrated in Figs 1 to 4 

indicate that the 3D adaptive smoothing and 3D anisotropic smoothing algorithms perform 

better than the standard diffusion. The 3D adaptive smoothing algorithm returned better 

results than the 3D anisotropic when applied to heart, brain and whole body datasets. The 3D 

anisotropic algorithm performed better when applied to MRCP dataset. 

 

Figure 1 should be placed here 

Figure 2 should be placed here 

Figure 3 should be placed here 

Figure 4 should be placed here 

 
 
The graphs illustrated in Figs 1 and 4 demonstrate the edge enhancement around image data 

defined by step-like edges. It can be noticed that the edge localisation is significantly 

improved. The effect of edge strengthening is even more pronounced for weaker edges in an 

MRI brain sequence (see Fig. 3) or in image areas affected by a high level of noise, as is the 

case of the MRCP dataset illustrated in Fig. 2.   

 

The performance of the smoothing algorithms described in this paper is remarkable in 

discriminating a true edge from image noise (see Fig. 2c). Also notice the improved 



performance of the adaptive 3D smoothing algorithm as compared with the performance of 

the standard diffusion and the 3D anisotropic diffusion algorithms.  

 
In order to emphasise the effectiveness of the smoothing strategies described in this paper we 

also present the segmentation resulting after the application of a 3D clustering algorithm [19] 

to the original and smoothed data. Samples of the segmentation results are depicted in Figs 5 

to 8.  

Figure 5 should be placed here 

Figure 6 should be placed here 

Figure 7 should be placed here 

Figure 8 should be placed here 
 
 
6. Conclusions 

 

In this paper we have described the implementation of three diffusion-based smoothing 

schemes and their application to medical 3D data. Our interest has focused on MRI 

acquisition modalities as MRI datasets are characteristically defined by a low signal to noise 

ratio (SNR). Hence, our aim was to demonstrate that far superior results are achieved if the 

MRI data is initially filtered in order to reduce the level of image noise and improve the SNR. 

In this regard, we have performed a detailed performance characterisation for each smoothing 

operators evaluated in this paper on both synthetic and real data (including heart, brain, whole 

body and MRCP image sequences). We conclude that the diffusion-based smoothing 

techniques offer an efficient approach to noise reduction, and more important this advantage 

is not achieved at the expense of feature preservation. The experimental data presented and 

discussed in this paper highlights the ability of the diffusion-based smoothing schemes to 

distinguish the high gradient image features from the MRI image acquisition noise.  

 

 

The source code for the 3D smoothing schemes presented in this paper can be downloaded 

from the following web page: http://www.eeng.dcu.ie/~whelanp/vsg/vsgcode.html. 
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Fig. 1.  (a) Slice of the heart MRI dataset. Pixel (b) and  (c) gradient intensities are plotted for 

the highlighted edge illustrated in image (a). 
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Fig. 2.  (a) Slice of the MRCP dataset. Pixel (b) and gradient intensities (c) are plotted for the 

highlighted edge illustrated in image (a). 
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Fig. 3.  (a) Slice of the brain MRI dataset.  Pixel (b) and gradient intensities (c) are plotted for 

the highlighted edge in image (a).  
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Fig. 4. (a) Slice of the whole body MRI dataset. Pixel (b) and gradient intensities (c) are 

plotted for the highlighted edge illustrated in image (a). 
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Fig. 5. 3D data clustering results – heart dataset. (First row) Original dataset (slice 9).                    

and corresponding image resulted after clustering. (Second row) 3D diffusion smoothed data 

(slice 9) and corresponding image resulted after clustering. (Third row) 3D adaptive smoothed 

data (slice 9) and corresponding image resulted after clustering. (Forth row) 3D anisotropic 

smoothed data (slice 9) and corresponding image resulting after clustering. 



  
 

  
 

  
 

  
 

Fig. 6. 3D data clustering results – brain dataset. (First row) Original dataset (slice 4).                  

and corresponding image resulted after clustering. (Second row) 3D diffusion smoothed data 

(slice 4) and corresponding image resulted after clustering. (Third row) 3D adaptive smoothed 

data (slice 4) and corresponding image resulted after clustering. (Forth row) 3D anisotropic 

smoothed data (slice 4) and corresponding image resulting after clustering. 



  
 

  
 

  
 

  
 
Fig. 7. 3D data clustering results – MRCP dataset. (First row) Original dataset (slice 10).               

and corresponding image resulted after clustering. (Second row) 3D diffusion smoothed data 

(slice 10) and corresponding image resulted after clustering. (Third row) 3D adaptive 

smoothed data (slice 10) and corresponding image resulted after clustering. (Forth row) 3D 

anisotropic smoothed data (slice 10) and corresponding image resulting after clustering. 

 

 

 



 
 

   
 

   
 

  
 

  
 

Fig. 8. 3D data clustering results – whole body dataset. (First row) Original dataset (slice 6) 

and corresponding image resulted after clustering. (Second row) 3D diffusion smoothed data 

(slice 6) and corresponding image resulted after clustering. (Third row) 3D adaptive smoothed 

data (slice 6) and corresponding image resulted after clustering. (Forth row) 3D anisotropic 

smoothed data (slice 6) and corresponding image resulted after clustering. 

 

 

 

 

 



 
Noise 
type 

S.Dev. 
noise 

S.Dev. 
F1 

S.Dev. 
F2 

S.Dev. 
F3. 

Greyscale 
Expected 

Greyscale 
F1 

Greyscale 
F2 

Greyscale 
F3 

G-15 13.72 1.91 1.62 2.06 127 127 128 128 
G-30 31.93 7.64 3.03 5.57 127 128 129 133 
P-15 13.02 1.07 0.76 1.74 127 139 138 138 
P-30 26.97 9.60 7.62 3.69 127 141 141 142 
W-15 4.63 1.50 0.21 0.69 127 126 127 127 
W-30 8.56 1.71 0.60 1.14 127 125 126 127 

 
Table 1. Performance characterisation results when the algorithms have been applied to an 

artificially created dataset. F1, F2, F3 denote the standard diffusion, adaptive smoothing and 

anisotropic diffusion respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 Heart Brain Whole body MRCP 
Original data 4.95 9.21 20.46 18.80 
3D diffusion 1.88 6.28 14.47 10.96 
3D adaptive 1.73 6.16 14.05 10.83 
3D Anisotropic 2.08 6.48 16.00 9.77 

 
Table 2. The RMS of the standard deviations of the homogenous areas for the original and 

filtered MRI datasets used in our experiments. 
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