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1. Introduction     
 

In recent times the presence of vision and robotic systems in industry has become 
common place, but in spite of many achievements a large range of industrial tasks still 
remain unsolved due to the lack of flexibility of the vision systems when dealing with 
highly adaptive manufacturing environments. An important task found across a broad 
range of modern flexible manufacturing environments is the need to present parts to 
automated machinery from a supply bin. In order to carry out grasping and manipulation 
operations safely and efficiently we need to know the identity, location and spatial 
orientation of the objects that lie in an unstructured heap in a bin.  

Historically, the bin picking problem was tackled using mechanical vibratory feeders 
where the vision feedback was unavailable. This solution has certain problems with parts 
jamming and more important they are highly dedicated. In this regard if a change in the 
manufacturing process is required, the changeover may include an extensive re-tooling and 
a total revision of the system control strategy (Kelley et al., 1982). Due to these 
disadvantages modern bin picking systems perform grasping and manipulation operations 
using vision feedback (Yoshimi & Allen, 1994). 

Vision based robotic bin picking has been the subject of research since the introduction of 
the automated vision controlled processes in industry and a review of existing systems 
indicates that none of the proposed solutions were able to solve this classic vision problem 
in its generality.  One of the main challenges facing such a bin picking system is its ability to 
deal with overlapping objects. The object recognition in cluttered scenes is the main 
objective of these systems and early approaches attempted to perform bin picking 
operations for similar objects that are jumbled together in an unstructured heap using no 
knowledge about the pose or geometry of the parts (Birk et al., 1981). While these 
assumptions may be acceptable for a restricted number of applications, in most practical 
cases a flexible system must deal with more than one type of object with a wide scale of 
shapes.  

A flexible bin picking system has to address three difficult problems: scene interpretation, 
object recognition and pose estimation. Initial approaches to these tasks were based on 
modeling parts using the 2D surface representations. Typical 2D representations include 
invariant shape descriptors (Zisserman et al., 1994), algebraic curves (Tarel & Cooper, 2000), 
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conics (Bolles & Horaud, 1986; Forsyth et al., 1991) and appearance based models (Murase & 
Nayar, 1995; Ohba & Ikeuchi, 1997). These systems are generally better suited to planar 
object recognition and they are not able to deal with severe viewpoint distortions or objects 
with complex shapes/textures. Also the spatial orientation cannot be robustly estimated for 
objects with free-form contours. To address this limitation most bin picking systems attempt 
to recognize the scene objects and estimate their spatial orientation using the 3D information 
(Fan et al., 1989; Faugeras & Hebert, 1986). Notable approaches include the use of 3D local 
descriptors (Ansar & Daniilidis, 2003; Campbell & Flynn, 2001; Kim & Kak, 1991), polyhedra 
(Rothwell & Stern, 1996), generalized cylinders (Ponce et al., 1989; Zerroug & Nevatia, 1996), 
super-quadrics (Blane et al., 2000) and visual learning methods (Johnson & Hebert, 1999; 
Mittrapiyanuruk et al., 2004). The most difficult problem for 3D bin picking systems that are 
based on a structural description of the objects (local descriptors or 3D primitives) is the 
complex procedure required to perform the scene to model feature matching. This 
procedure is usually based on complex graph-searching techniques and is increasingly more 
difficult when dealing with object occlusions, a situation when the structural description of 
the scene objects is incomplete. Visual learning methods based on eigenimage analysis have 
been proposed as an alternative solution to address the object recognition and pose 
estimation for objects with complex appearances. In this regard, Johnson and Hebert 
(Johnson & Hebert, 1999) developed an object recognition scheme that is able to identify 
multiple 3D objects in scenes affected by clutter and occlusion. They proposed an 
eigenimage analysis approach that is applied to match surface points using the spin image 
representation. The main attraction of this approach resides in the use of spin images that 
are local surface descriptors; hence they can be easily identified in real scenes that contain 
clutter and occlusions. This approach returns accurate results but the pose estimation cannot 
be inferred, as the spin images are local descriptors and they are not robust to capture the 
object orientation. In general the pose sampling for visual learning methods is a problem 
difficult to solve as the numbers of views required to sample the full 6 degree of freedom for 
object pose is prohibitive. This issue was addressed in the paper by Edwards (Edwards, 
1996) when he applied eigenimage analysis to a one-object scene and his approach was able 
to estimate the pose only in cases where the tilt angle was limited to 30 degrees with respect 
to the optical axis of the sensor.  

In this chapter we describe the implementation of a vision sensor for robotic bin picking 
where we attempt to eliminate the main problem faced by the visual learning methods, 
namely the pose sampling problem. This paper is organized as follows. Section 2 outlines 
the overall system. Section 3 describes the implementation of the range sensor while Section 
4 details the edge-based segmentation algorithm. Section 5 presents the viewpoint correction 
algorithm that is applied to align the detected object surfaces perpendicular on the optical 
axis of the sensor. Section 6 describes the object recognition algorithm. This is followed in 
Section 7 by an outline of the pose estimation algorithm. Section 8 presents a number of 
experimental results illustrating the benefits of the approach outlined in this chapter. 

 
2. System Overview 
 

The operation of the system described in this chapter can be summarized as follows (see 
Fig. 1).  The range sensor determines the depth structure using two images captured with 
different focal settings. This is followed by the image segmentation process that decomposes 
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the input image into disjoint meaningful regions. The resulting scene regions from the 
image segmentation process are subjected to an orthographic projection that aligns them  to 
be perpendicular on the optical axis of the sensor. This operation will determine 2 degrees of 
freedom (DOF) for each object (rotations about x and y axes). The recognition framework 
consists of matching the geometrical primitives derived from the segmented regions with 
those contained in a model database. The object that gives the best approximation with 
respect to the matching criteria is then referred to the pose estimation algorithm which 
constrain the object rotation around the optical axis of the range sensor (z axis) using a 
Principal Components Analysis (PCA) approach. Once the object pose is estimated, the 
grasping coordinates of the identified object are passed to the bin picking robot. 

DFD range

Image segmentation  

Orthographic 
projection 

Model database Object recognition

3D 

2 rotational DOF 
(x and y axes) 

1 rotational 
PCA databasePose estimation

 
 

Fig. 1.  Overall system a
 
3. Range Sensor 
 

The range sensor emplo
This ranging technique
Pentland , 198
that the cts ar
objects t ced o
camera, oint
are refracted by the len
from the focal plane to
Nayar et al., 1995) that 
distance u, lens apertur

 

DOF 
Grasping co-ordinates 
of identified object 

rchitecture (Ghita & Whelan, 2003). 

yed by this application is based on active depth from defocus (DFD). 
 has been initially developed as a passive ranging strategy by 
7). The principle behind DFD range sensing extends from the fact 
e imaged in relation to their position in space. In this fashion, the 
n the focal plane are sharply imaged on the sensing element of the 
s situated on the surface of the objects shifted from the focal plane 
 (Pentland
 scene obje
hat are pla
 while the p
s into a patch whose size is in direct relationship with the distance 
 the imaged object. It has been demonstrated in (Subbarao, 1988; 
the diameter of the defocus (blur) patch is dependent on the object 
e D, sensor distance s and focal length f. While one image is not 



Name of the book (Header position 1,5) 4 

sufficient to solve the uncertainty whether the scene object is placed in front or behind the 
focal plane, the depth can be uniquely estimated by measuring the blurring differences from 
two images captured with different focal settings. In our implementation the defocused 
images are captured by changing the sensor distance s  (Ghita et al., 2005).  
      Since the level of blurriness in the image can be thought of as a convolution with a low 
pass filter (that is implemented by the point spread function (PSF)), to estimate the level of 
blurriness in the image we need to convolve the image with a focus operator that extracts 
the high frequency information derived from the scene objects (Pentland, 1987). Nonetheless 
this approach returns accurate results only if the scene objects are highly textured. When 
dealing with weakly and non-textured scene objects this approach returns imprecise depth 
estimation.  To address this issue, a solution is to project a structured light onto the scene 
that forces an artificial texture on all visible surfaces of the scene. While the artificial texture 
has a known pattern, the focus operator is designed to respond strongly to the dominant 
frequency in the image that is associated with the illumination pattern (Girod & Scherock, 
1989; Nayar et al., 1995; Ghita et al., 2005).  
 
 

  
                                                    (a)                                              (b) 

 
(c) 

 
Fig. 2. Depth estimation for a scene defined by textureless, textured and mildly specular 
objects. (a) Near focused image. (b) Far focused image. (c) Depth estimation. 
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In our implementation we used an illumination pattern defined by evenly spaced opaque 
and transparent stripes and the focus operator is implemented by a tuned Gabor filter (full 
details about the implementation of our range sensor are provided in Ghita et al. 2005). Fig. 
2 depicts the depth map obtained when the range sensor was applied to estimate the depth 
of a complex scene containing textureless, textured and specular objects. 

  
4. Scene Segmentation Process 
 

An important decision in developing robotic systems is to decide which sensorial 
information is better suited for a particular application. Henderson (Henderson, 1983) 
suggested to approach the scene segmentation using the information about the objects that 
define the scene. In this regard, if the scene objects are highly textured and depth 
discontinuities are significant best results will be achieved if range data is analysed. 
Conversely, if the scene is defined by small textureless objects better results may be obtained 
if the segmentation process is applied on intensity images (Ghita & Whelan, 2003).  
      While our application deals with the recognition of a set of textureless polyhedral objects 
we developed an edge-based segmentation scheme to identify the visible surfaces of the 
scene objects.  Edges are associated with sharp transitions in pixel intensity distribution and 
they are extracted by calculating the partial derivatives in the input data. Edge detection is 
one of the most investigated topics in computer vision and to date there is no edge detector 
that is able to adapt to problems caused by image noise and low contrast between 
meaningful regions in the input data. Thus, the edge structure returned by the edge detector 
is either incomplete, gaps are caused by the low variation in the distribution of the input 
data, or contains false edges that are caused by image noise, shadows, etc. Thus after the 
application of edge detection, additional post-processing is applied to eliminate the spurious 
edge responses and bridge the gaps in the edge structure (this operation is also referred to as 
edge linking). Approaches that have been used to bridge the gaps in the edge structure 
include morphological methods (Hajjar & Chen, 1999), Hough transform (Davies, 1992), 
probabilistic relaxation techniques (Hancock & Kittler, 1990), multi-scale edge detection 
methods (Farag & Delp, 1995) and the inclusion of additional information such as colour 
(Saber et al., 1997). From these techniques the most common are the morphological and 
multi-scale edge linking strategies.  In general, morphological edge linking techniques use 
the local information around edge terminators while multi-scale approaches attempt to 
bridge the gaps in the edge structure by aggregating the information contained in a stack of 
images with differing spatial resolutions. The main disadvantage associated with multi-scale 
approaches reside in the high computational cost required to calculate the image stack and 
in our implementation we developed a morphological edge linking scheme that evaluates 
the direction of edge terminators in identifying the optimal linking decisions.  
 
4.1 Edge Linking 
 
To extract the surfaces of the imaged scene objects we have developed a multi-step edge 
linking scheme that is used in conjunction with an edge detector that extracts the partial 
derivatives using the ISEF (Infinite Symetrical Exponential Filter) functions (Shen & Castan,  
1992). The reason to use the ISEF-based edge detector was motivated by the fact that its  
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performance in detecting true edges matches that achieved by the more ubiquitos Canny 
edge detector (Canny, 1986) but the computation of the ISEF edge detector entails a lower 
computational cost than that associated with the Canny edge detector. In our 
implementation we have set the scale parameter to 0.45 and the threshold parameters 
required by the hysteretic threshold are selected using a scheme that minimise the incidence 
of small edge segments that are usually generated by image noise.  
      As mentioned earlier, the edge structure returned by the ISEF detector will be further 
post-processed using a multi-step morphological edge linking strategy. The first step of the 
edge linking algorithm (Ghita & Whelan, 2002) involves the extraction of the edge 
terminators (endpoints). The edgepoint extraction requires a simple morphological analysis 
where the edge structure is convolved with a set of 3×3 masks (Vernon, 1991).  The second 
step of the algorithm determines the direction of the edge terminators by evaluating the 
linked edge points that generate the edge terminators. The application of the edge linking 
process for two iterations is illustrated in Fig. 3.  
 
 

 
 

Fig. 3. The edge linking process. The algorithm evaluates all linking decisions around each 
edge terminator and the optimal linking path minimises the cost function depicted in 
equation (1).  In this diagram the edge pixels are marked in black and the edge terminators 
are marked with a sqare box.  
 
 
The third  step of the edge linking scheme attempts to find the possible paths to bridge the 
gaps in the edge structure by analysing the edge pixels at the side indicated by the endpoint 
direction in an 11×11 neighbourhood. In this way, for each edge point situated in the 
endpoint’s neighbourhood a linking factor is calculated using the following cost function, 
 

dired kkepetdistkepCost ++= ),()(                                   (1) 
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where et and ep are the co-ordinates of the endpoint and the edge pixel under analysis and 
dist defines the Euclidean distance.  In equation (1) kd, kdir and ke are some pre-defined 
reward parameters (a detailed description of these parameters and a discussion in regard to 
their optimal selection is provided in Ghita & Whelan, 2002). The cost function is calculated 
for each edge pixel situated in the neighbourhood indicated by the endpoint direction  and 
the minimal value determines the optimal linking path. The gap in the edge structure 
between the edge terminator and the edge pixel that returns the minimum linking factor is 
bridged using the Bresenham algorithm (Bresenham, 1965). Fig. 4 illustrates the 
performance of the edge linking algorithm when applied to an image detailing a cluttered 
scene.  
 

 

     
                                (a)                                          (b)                                            (c) 
 

Fig. 4. The results of the scene segmentation process. (a) Input image. (b) Edge information. 
(c) Edge linking results. Note the removal of unconnected edge segments.  

 
5. Data Formatting 
 

Our application implements a vision sensor able to determine the information required by a 
bin picking robot to perform object manipulation. Since the objects of interest are 
polyhedral, a convenient representation is to describe them in terms of their surfaces that 
are identified by the scene segmentation algorithm detailed in the previous section. Thus, 
the object recognition task can be formulated in terms of matching the objects’ visible 
surfaces with those stored in a model database. Although conceptually simple, this 
approach is quite difficult to be applied in practice since the geometrical characteristics of 
the object’s surfaces are viewpoint dependent. To address this problem we need to align all 
visible surfaces resulting from the scene segmentation process to a planar that is 
perpendicular to the optical axis of the range sensor. In this fashion, we attempt to constrain 
two degrees of freedom (rotations about x and y axes) using the 3D information returned by 
the range sensor.  
      The first operation of the data formatting procedure involves the calculation of the 
normal vector for each surface resulting after the application of the scene segmentation 
procedure. Since the object surfaces are planar, the normal vector can be calculated using the 
knowledge that elevation (z co-ordinate) is functionally dependent on the x and y co-
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ordinates (i.e.  z = a1x + a2y + a3) . Then given a set of n points from range data that belong to 
the segmented surface, the normal vector can be statistically computed by a planar fitting of 
the 3D points as follows,  
 

2

1 321 )ˆˆˆ()ˆ( ∑ =
−++=

n
i iii zayaxaaErr                                         (2) 
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where are the estimated values. Equation (2) generates a simultaneous 
system where the unknown values are . The normal vector associated with the surface 
under analysis is represented in homogenous form as 
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(Ghita et al., 2007).  As mentioned previously, our aim  is to calculate the rotations about x 
and y axes. The rotation angle about x axis Ax is calculated using the following expression: 
Ax= tan2-1(ny,nz). The rotation angle about y axis is computed using the transform 
NRx=RxN=[nrx,nry,nrz,1]T, as Ay=-tan2-1(nrx,nrz), where tan2-1 is the four quadrant inverse 
tangent. Once the angles Ax and Ay are estimated, the required transformation that is applied 
to align the surface under analysis to the planar perpedicular to the axis of the range sensor 
can be formulated as follows, 
 

oxyo TRRTH 1−=                                                               (3) 

 
where T0 is the transformation that translates the 3D points that define the surface about the 
origin and Rx and Ry are the rotation matrices about x and y axes. Fig. 5 illustrates the results 
obtained after the application of the orthographic projection.  
 
 

   
                                                 (a)                                                (b) 
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                                                 (c)                                              (d) 
 

   
                                                  (e)                                        (f) 

 

   
                                                      (g)                                               (h) 
 

Fig. 5. Orthographic projection of the segmented scene regions. (a-b) Input image and scene 
regions resulting from the segmentation process (normal vectors relative to the range sensor 
position). (c-d) Orthographic projection of the first region (Ax= 26.790, Ay =-18.610).  (e-f) 
Orthographic projection of the second region (Ax= -36.190, Ay =-4.760). (g-h) Orthographic 
projection of the third region (Ax= 6.080, Ay =2.680). 
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6. Object recognition 
 

As indicated in the previous section, the recognition of scene objects is formulated as the 
recognition of their visible surfaces resulting after the application of the scene segmentation 
process using an approach that calculates features that sample the geometrical properties of 
the object surfaces.  While the geometric characteristics of the object surfaces are dependent 
on their orientation in space, in order to eliminate the viewpoint distortions the segmented 
surfaces were subjected to a 3D data formatting procedure that aligns them to a planar 
whose normal vector is aligned to the optical axis of the range sensor (z axis).  The next step 
of the algorithm deals with the extraction of geometrical primitives that are used to perform 
the scene to model recognition process. Approaches that have been used include the 
extraction of local features such as junctions, lines and partial contours (Bolles & Horaud, 
1986; Lowe, 2004) and macro features such as area, perimeter and statistical features (Ghita 
& Whelan, 2003). Local features may appear better suited when dealing with scenes affected 
by clutter and occlusions than macro features. But it is useful to note that approaches based 
on local features rely on a detailed structural description of the objects of interest and when 
dealing with complex scenes a large number of hypothesis are generated, a fact that requires 
the development of complex scene to model matching procedures. While our goal is the 
recognition of a set of polyhedral objects, macro features represent a better option since the 
segmented surfaces are planar and they can be easily indexed to describe the object 
structure. To this end, we have adopted features such as area, perimeter, shape factor and 
radii (maximum and minimum) distances calculated from the surface’s centroid to the 
surface border (Ghita & Whelan, 2003). 
      The developed object recognition algorithm consists of two main stages. The training 
stage consists of building the database by extracting the aforementioned features for each 
surface of the object. Since the features involved have different ranges, to compensate for 
this issue we have applied a feature normalisation procedure where each feature is 
normalised to zero mean and unit variance (Duda et al., 2001). The matching stage consists 
of computing the Euclidean distance between the normalised features calculated for scene 
surfaces and object surfaces contained in the model database.  
 

niforiYiXdist n
i jj ,..,1])[][(

1
2 =−= ∑ =

                      (4)     

 
where Xj is the jth pattern contained in the model database and Y defines the pattern derived 
from an input region. The input scene surface is contained in the database if the minimum 
distance that gives the best approximation is smaller than a predefined threshold value.    
      One problem with this approach is the fact that most scene surfaces are affected by 
occlusions. As the object recognition algorithm is included in the development of a robotic 
application, we focus the attentions only on the topmost objects since they can be easily 
manipulated and their surfaces are not affected by severe occlusions. The selection of the 
topmost object is achieved by eliminating the surfaces that are affected by occlusions based 
on the 3D information supplied by the range sensor. The scene to model verification 
procedure is applied only for surfaces that pass the 3D selection criteria (for additional 
details refer to Ghita & Whelan, 2003). 
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7. 3 DOF Pose Estimation 
 
The orthographic transformation illustrated in equation (3) can constrain only two degrees 
of freedom (DOF), the rotations about x and y axes. The surfaces subjected to this 
orthographic transformation are perpendicular on the axis of the range sensor and the 
estimation of the surface rotation about z axis can be carried out using Principal 
Components Analysis (PCA). This procedure involves the calculation of an eigenspace 
representation from a set of training images that are generated by rotating the object 
surfaces in small increments. To estimate the rotation about z axis, all recognized scene 
surfaces are projected onto the eigenspace and their projections are compared to those 
stored in the model database (whose rotations about the z axis are known). The minimal 
distance between the projection of the input surface and those contained in the model 
database gives the best match.  

 
8. Experiments and Results 
 

The vision sensor detailed in this chapter consists of four main components, range sensing, 
scene segmentation, object recognition and pose estimation. Our implementation employs 
an active DFD range sensor whose implementation has been outlined in Section 3. To test 
the performance of the developed range sensor we have applied it to recover the depth 
information from scenes defined by textured and textureless objects. The relative accuracy 
was estimated for successive measurements and was formulated as the maximum error 
between the real and estimated depth values. During the operation the range sensor was 
placed at a distance of 86cm above the baseline of the workspace. The relative accuracy 
attained by the developed sensor when applied to scenes containing non-specular objects 
with bright surfaces is 3.4% normalised in agreement with the distance from the sensor.  
      The developed bin picking system it has been applied to 5 different polyhedral objects 
that are used to create various cluttered scenes. The edge-based segmentation algorithm  
detailed in Section 4 is applied to identify the object surfaces. The surfaces resulting after the 
application of the scene segmentation algorithm are subjected to data formatting in order to 
constrain 2 rotational DOF (rotations about x and y axes). Since data formatting involves 3D 
analysis, the precision of this procedure is influenced by the accuracy of the depth 
estimation. The performance of the data formatting procedure is illustrated in Figs. 6 and 7.   
        The third major component of the algorithm addresses the object recognition task. The 
algorithm was able to identify the topmost objects in all situations and is able to identify 
correctly the scene objects if the occlusion cover less than 20% of the object’s total surface. 
The last component of the algorithm is applied to identify the rotation about z axis. In our 
implementation we have created a PCA model database for each object of interest and the 
object rotation has been sampled uniformly by acquiring 24 training images with the object 
lying flat on a dark worktable. This generates 24 PCA projections that are able to sample the 
object rotation with a resolution of 15 degrees. To increase the resolution of the PCA 
projections we have applied a linear interpolation procedure that generate 30 interpolated 
projections between any adjacent projections generated by the 24 images contained in the 
training set (Ghita & Whelan, 2003; Ghita et al., 2007).  The performance of the pose 
estimation is affected by the accuracy of the data formatting procedure and the experiments 
indicate that the pose is more precise for low values of the tilt angles (rotations about x and y 
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axes). This is motivated by the relative low resolution of the range sensor in sampling depth 
discontinuities. In our experiments the rotation about z axis was measured with an error of 
2.1 degree under the condition that the rotations about x and y axes are smaller than 25 
degrees.  
 
 

   
                                                    (a)                                                   (b) 
 

  
                                         (c)                                              (d) 
 
Fig. 6. Complex object scene affected by clutter and occlusions (Ghita et al., 2007). (a) Input 
image. (b) Surface segmentation. (c) Orthographic projection for best estimated surface (Ax = 
-20.940, Ay= 4.210). (d) PCA estimation. 
 

 
Fig. 7. Data formatting estimation accuracy (rotation about x axis). 
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9. Conclusions 
 

This chapter describes the development of a fully integrated vision sensor for robotic bin 
picking. The developed vision sensor is able to provide the information to a bin picking 
robot to perform scene understanding and object grasping/manipulation operations. Our 
implementation employs a range sensor based on active depth from defocus that is used in 
conjunction with a multi-stage scene understanding algorithm that is able to identify and 
estimate the 3D attitude of the scene objects. In this regard, the scene segmentation scheme 
attempts to separate the scene regions that are associated with object surfaces using an edge 
based implementation. The novel part of this scheme is the edge linking procedure that is 
able to return quality connected edge structures. The object recognition scheme performs 
scene to model verification using the global attributes extracted from the segmented scene 
surfaces. As these features are vulnerable to viewpoint distortions we have devised a data 
formatting scheme that re-format the orientation of the scene surfaces on a planar 
perpendicular on the optical axis of the sensor. This transformation eliminates the viewpoint 
distortions and allows us to apply standard PCA to sample the rotation about z axis. The 
experimental results indicate that reasonable accurate pose estimation is obtainable from 
this approach and we believe that the developed vision sensor is particularly useful when 
applied to scenes defined by polyhedral objects or objects with well-defined surfaces. 
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