

2-ring	patterns	
	Bin Bin Bin Bin Bin Bin Bin Bin Bin Bin	1 2 3 4 Spatial Pattern: E: $m_{1,j} = x_{i,j,k}, m_{2,j} = x_{i+1,j,k}$ $a) = \sum_{j} m_{1,j} - m_{1,j+a} + m_{2,j} - m_{2,j+a} $
Abbreviation	Sequence(s) equation	Description
D _{AR}	$m_i = x_{i \ i \ k+i}$	Azimuth-Radius diagonal
DAER	$m_i = x_{i+1, j, k+j}$	Azimuth-Elevation-Radius diagonal
A+E	$m_{1,j} = x_{i,j,k}, m_{2,j} = x_{i+1,j,k}$	Azimuth ring + Elevation neighbors
A+R	$m_{1,j} = x_{i,j,k}, m_{2,j} = x_{i,j,k+1}$	Azimuth ring + Radial neighbors
A+D _{AER}	$m_{1,j} = x_{i,j,k}, m_{2,j} = x_{i+j,j,k+j}$	Azimuth ring + Azim-Elev-Rad diagonal

Results (144 facial scans, 6-fold cross validation)										
	Imk	HSC	USC	2DSC	APSC					
	LIIIK	noc	030	5000	D _{AR}	DAER	A+E	A+R	A+D _{AER}	
	en	1.3*	1.9	1.4	15	15	1.4*	1.3	1.3*	
	(2)	(2 - 24)	(3 - 25)	(3 - 25)	(3-23)	(3 - 23)	(3 - 2+)	(3 - 25)	(3 - 25)	
	ex	4.5	nn	4.3	2.9	3.9	5.4	4.7	3.1*	
	(2)	(16 - 90)	n.p	(13 - 88)	(6 - 67)	(19 - 48)	(13 - 88)	(14 - 89)	(8 - 88)	
	n	1.8	4.6	1.5	1.6*	1.6*	2.3	2.0	1.7*	
		(3 - 200)	(5 - 12)	(3 - 200)	(4 - 200)	(4 - 64)	(4 - 200)	(3 - 200)	(4 - 200)	
1	a	1.4*	nn	1.4	2.9	nn	2.1	1.8	2.0	
	(2)	(3 - 26)	p	(4 - 27)	(6 - 12)	p	(4 - 25)	(4 - 26)	(6 - 26)	
1 n	ac	2.1*	5.8	4.7	9.0	nn	2.3	2.1	5.1	
•	(2)	(5 - 25)	(14 - 25)	(9 - 25)	(16 - 24)	P	(7 - 25)	(4 - 11)	(14 - 25)	
ex	nt	2.0	12.2	8.0	6.9	7.5	2.3	2.2	6.6	
en	(2)	(4 - 8)	(14 - 200)	(14 - 200)	(12 - 200)	(11 - 200)	(5 - 8)	(5 - 9)	(11 - 200)	
	prn	1.4	1.4	1.2	13	13*	1.3*	1.3*	1.3	
prn		(3 - 200)	(2 - 200)	(2 - 200)	(3 - 200)	(2 - 200)	(2 - 200)	(2 - 200)	(3 - 200)	
/nt 🍨	sn	1.8	n.p	1.6	1.8*	2.0	1.9	1.9	1.9	
a 🦾		(4 - 200)	r	(4 - 55)	(4 - 22)	(5 - 16)	(3 - 200)	(3 - 200)	(4 - 200)	
	ch	3.8	2.4	2.1	25	20	2.8	20	2.3*	
ac sn	(2)	(11 - 22)	(4 - 42)	(5 - 19)	(9 - 29)	(10-39)	(0 - 18)	(3 - 20)	(5 - 28)	
cob - is	cph	2.1	13.3	8.4	7.1	7.0	n.p	7.7	2.7	
cpire is	(2)	(4 - 9)	(20 - 34)	(18 - 200)	(17 - 86)	(16 - 59)	····F	(16 - 200)	(3 - 8)	
	li	5.0	2.7	2.2	4.4	3.4	4.9	4.8	3.8	
ch lie		(16 - 51)	(7 - 48)		(16 - 37)	(11 - 45)	(10 - 15)	(9 - 15)	(15 - 95)	
	ls	4.1	n.p	2.3*		2.2	5.2	5.7	5.8	
•		(6 - 14)	20	(8 - 46)	(0-13)	(0-11)	(14 - 200)	(10 - 54)	(7 - 200)	
	sto	2.7*	2.9	2.2	2.5*	6.1	4.0	4.5	3.1	
Pgo		(0 - 14)	(8 - 40)	(0 - /0)	V(/-1/)	(14 - 40)	(9 - 14)	(11 - 89)	(12 - 54)	
	sl	5.4	(10 18)	(11 27)	5.5 (13 70)	(16 20)	4./	(12, 84)	6.2	
		(10-34)	(10 - 18)	544	(13 - 79)	7 1	(11-77)	(12 - 84)	(17-02)	
	Pg	(10 - 200)	(19 - 120)	(10 - 200		5000.500,500		3.23	(10, 200)	
		(10-200)	(19-120)	(10-200)	(19-200)	(15-200)	(15 - 20)	(15 - 25)	(10 - 200)	

Computational complexity								
 Tests on triangulated meshes averaging 21K vertices and 1.5mm mesh resolution Intel Xeon E5320 @1.86 GHz Time values normalized (3DSC time = 1.0) 								
	Descriptor Computation Matching							
	HSC	11.1	$\frac{N_{SH}(N_{SH}+1)}{2N_E N_A^2}$	≈0.083				
	USC	1.23	$\frac{1}{N_A}$	≈0.083				
	$\begin{array}{c} \text{APSC }(\text{D}_{AR}) \\ \text{APSC }(\text{D}_{AER}) \end{array}$	1.05	$\frac{1}{2N_A}$	≈0.042				
	APSC (A+E) APSC (A+R) APSC (A+D _{AER})	1.09	$\frac{1}{2N_A}$	≈0.042				

Results (2) Can be computed in 1.23 times the 31								DSC	
	Lmk	HSC	USC	3DSC	D		APSC	AID	
		1.34	10		DAR	1 C.R	TL	Atk	A+D _{AER}
	en (2)	(2 - 24)	(3 - 25)	(3 - 25)				(3 - 25)	1.3* (3 - 25)
	ex	45	(0 20)	43	2.9	30	54	47	3.1*
	(2)	(16 - 90)	n.p	(13 - 88)	(6 - 67)	(19 - 48)	(13 - 88)	(14 - 89)	(8 - 88)
		1.8	4.6	1.5 🔥	1.6*	1.6*	2.3	2.0	1.7*
	п	(3 - 200)	(5 - 12)	(3 - 200)	(4 - 200)	(4 - 64)	(4 - 200)	(3 - 200)	(4 - 200)
	a (2)	1.4* (3 - 26)	n.p	1,4 (4 - 27)	2.9 (6 - 12)	n.p	2.1 (4 - 25)	1.8 (4 - 26)	2.0 (6 - 26)
n 🛛	ac	2.1*	5.8	4.7	9.0		2.3	2.1	5.1
	(2)	(5 - 25)	(14 - 25)	(9 - 25)	(16 - 24)	mp	(7 - 25)	(4 - 11)	(14 - 25)
ex	nt	2.0	12.2	8.0	6.9	7.5	2.3	2,2	6.6
en	(2)	(4 - 8)	(14 - 200)	(14 - 200)	(12 - 200)	(11 - 200)	(5 - 8)	(5-9)	(11 - 200)
/ prn	prn	1.4 (3 - 200)	1.4 (2 - 200)	1.2 (2 - 200)	13 (3-200)		1.3*	1.3*	1.3 (3 - 200)
/nt •	sn	1.8 (4 - 200)	n.p	1.6 (4 - 55)	1.8* (4 - 22)	2.0 (5 - 16)	1.9 (3 - 200)	1.9 (3 - 200)	1.9 (4 - 200)
	ch	3.8	2.4	2.1	25	2.0	2.8	20	2.3*
ac sn	(2)	(11 - 22)	(4 - 42)	(5 - 19)	(9-29)	(10 - 597	(0 * 10)	(3 - 20)	(5 - 28)
cph e is	cph (2)	2.1 (4 - 9)	13.3 (20 - 34)	8.4 (18 - 200)	7.1 (17 - 86)	7.0 (16 - 59)	n.p	7.7 (16 - 200)	2.7 (5+8)
	li	5.0 (16 - 51)	2.7 (7 - 48)	2.3 (5 - 10)	4.4 (16 - 37)	3.4 (11 - 45)	4.9 (10 - 15)	4.8 (9 - 15)	3.8 (15 - 95)
	ls	4.1 (6 - 14)	n.p		27 (8 - 13)	2.2	5.2 (14 - 200)	5.7 (10 - 54)	3.8 (7 - 200)
DE	sto	2.7* (6 - 14)	2.9 (8 - 46)	2.2 (8 - 78)	2.5*	6.1 (14 - 40)	4.0 (9 - 14)	4.5 (11 - 89)	3.1 (12 - 54)
	sl	5.4 (10 - 54)	3.0 (10 - 18)	3.2* (11 - 27)	5.5 (13 - 79)	7.4 (16 - 29)	4.7 (11 - 77)	6.0 (12 - 84)	6.2 (17 - 62)
C. C. Change	pg	7.0 (10 - 200)	11.6 (19 - 120)	5.4 (10 - 200)	7 Q (19 - 200)	71 (13 - 200)	7.6 (13 - 20)	5.6*	5.7* (10 - 200)

Craniofacial dysmorphology

- Craniofacial geometry has been suggested as an index of early brain dysmorphogenesis in neuropsychiatric disorders
 - Down syndrome
 - Autism
 - Schizophrenia
 - Bipolar disorder
 - Fetal alcohol syndrome
 - Velocardiofacial syndrome
 - Cornelia de Large syndrome
 - Brandet-Biedl syndrom
 - ...

