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Context

B Craniofacial geometry has been suggested as an index of early
brain dysmorphogenesis in neuropsychiatric disorders

® Down syndrome ; S
® Autism e

® Schizophrenia
® Bipolar disorder

® Fetal alcohol syndrome
® Velocardiofacial syndrome

® Cornelia de Large syndrome
® Joubert syndrome
o ..

B Patterns tend to be subtle
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Facial surface in 3D

B Larger availability of 3D imaging devices allows overcoming
limitations inherent to 2D

B Manual labelling of landmarks
©® Key points on facial features
® Limited scalability, intra- and inter-observer variability

T
Similarity maps with spin images

B Cross correlation of a template with every mesh vertex
B We start by identifying the top-candidates

Similarity maps for local landmark descriptors

High
similarity
A - Low
Nose tip Eye corners Mouth corners similarity
(inner)
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Keeping the top-scoring vertices (candidates)

#1
#100

|

Example targeting the right mouth corner

How many candidates do we:neéd to retain:

so that at least one is within a given

acceptance radius ?

Dataset statistics: Example for the mouth corners

_ threshold
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Acceptance radius [mm]
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Our approach

B Accept we will not find all landmarks (within retained candidates)

B Use statistical inference to complete missing landmarks
® This allows reducing the number of candidates to retain
® More landmarks can be found

I

Statistical priors

B Shape vector in 3D
% = (B 15210 20 Yoy Bani o5 vL.yL.2L)"

B PCA model from a training set

b =o' (x -X)
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Shape regression with incomplete

information
® We can group known or fixed coordinates and

unknown ones (the ones the guess)
f i o . s T i
X7 = (29, Y1521 2 Lg1 Ygs Zg) B - (x-’)

. ; s f
x! = (Zg415Yg+1, Bg415 5545 BL, YL+ 2L) x

B Assuming a multi-variate Gaussian distribution in shape
space we find the coordinates that maximize the model
probability:

S IPr(x) d _
(%) o o(—BTATB) ¢ -0 —(=bTA"'b)=0
Pr(x) ~ e Svo et )
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Incremental inclusion of landmarks
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Feature matching algorithm

Start from a set of candidates for each landmark

for (all 4-tuple combinations of landmarks and candi-
dates x4) do
Initialize xf = x4

Infer x9 using (11) or (16), obtaining x s ”"'T“”"JK'“’_: o
while (x fulfills the constraints in (9)) do | A% = {Il"'i:“"lf’;-' - \Ie Ve € :r- “
nille rest(f5) — 4]1°. Vi € Xy
for (all other landmarks, ¢, ¢ x¥) do '

for (all candidates ¢, for landmark ¢;) do
Add the candidate ¢ to x¥ to obtain xfest
Infer x7. ., from x{e_st to obtain Xiest
Compute the resulting cost v(cy) as in (17)
end for
Compute the landmark cost ~(k) = ming v(cg)
end for
Update x¥ adding the landmark with minimum ~ (%)
Infer %9 from the updated xf to obtain %
end while
Compute the score for x4 as #(xf) + e~ 7(k)
end for
Keep the subset that achieved the highest score

Results

Landmark n prn pe en ex ac ch

Passalis et al. | n/a | 2.89(*) | 9.19(%) 3.42 6.98(%*) n/a 5.88(%)

[14] +0.15 +0.97 +0.66 +1.35 +0.96

Segundo et al.| n/a 2.63 n/a 5.64(*) n/a 4.93(%) n/a

[4] +0.13 +0.61 +0.21

SRILF 3.08 2.43 4.52 2.26 3.67 2.45 2.69
+0.22 | 4+0.15 +0.25 +0.20 +0.18 +0.22 +0.19

B Dataset of healthy volunteers
(144 facial scans)

B 6-fold cross validation N A r B g

B || facial landmarks \;;, e,

B Mean +/- standard error [mm)] \ il

B Significantly lower errors than the \ v >
alternative methods compared 8.

The radius of the spheres equals the
average localization error
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Ad-hoc rules to locate landmarks

Segundo, M., et al. (2010). Automatic face segmentation and facial landmark detection in range images.
IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,40(5):1319-1330.

B Combining basic
features (e.g.
curvature, profile
projections) with
heuristic rules.

B Problems:

® Scalability (to
other landmarks),

® Interdependency
of rules

® Orientation-
dependant

Global seometric constraints

Passalis, G., et al. (2011). Using facial symmetry to handle pose variations in real-world 3D face recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(10):1938-1951.

B Keep the top-N candidates for each landmark and test all
possible combinations

® Use statistical constraints to validate combinations

B Problems

@ Up to billions of
combinations to
test for just 8
landmarks

@® High computational
load

@ High chance of
accepting wrong
combinations

07/10/2012



I

Comparison to Passalis et al
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The method by Passalis et
al. was unable to locate
the landmarks for all
meshes in our dataset
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Comparison to a rigid model
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Conclusions & further work

B We achieved an average accuracy of 3.2 mm targeting
I'l facial landmarks
® Results compare favourably to state of the art methods
® The use of a flexible model performed significantly better
than the rigid-model alternative

B The chin tip and outer-eye corners proved the most
difficult within the addressed group

B We found that a key limitation is the local accuracy of
spin images
® Experiments using different descriptors indicate that
localization errors may be further reduced by 10% — 20%

F.M. Sukno, J.L. Waddington and P.F. Whelan. Comparing 3D Descriptors for Local Search of Craniofacial
Landmarks. ISVC 2012, pp 92-103.
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