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Abstract

Generic camera calibration is a non-parametric calibra-
tion technique that is applicable to any type of vision sensor.
However, the standard generic calibration method was de-
veloped with the goal of generality, and it is therefore sub-
optimal for the common case of cameras with a single cen-
tre of projection (e.g. pinhole, fisheye, hyperboloidal cata-
dioptric). This paper proposes novel improvements to the
standard generic calibration method for central cameras
that reduce its complexity, and improve its accuracy and ro-
bustness. Improvements are achieved by taking advantage
of the geometric constraints resulting from a single centre
of projection. Input data for the algorithm is acquired us-
ing active grids, the performance of which is characterised.
A new linear estimation stage to the generic algorithm is
proposed incorporating classical pinhole calibration tech-
niques, and it is shown to be significantly more accurate
than the linear estimation stage of the standard method.
A linear method for pose estimation is also proposed and
evaluated against the existing polynomial method. Distor-
tion correction and motion reconstruction experiments are
conducted with real data for a hyperboloidal catadioptric
sensor for both the standard and proposed methods. Results
show the accuracy and robustness of the proposed method
to be superior to those of the standard method.

1. Introduction
There is currently a trend towards increased use of wide-

angle dioptric and catadioptric cameras within the vision
community due to the richer feature set and a greater per-
sistence of vision that these camera types provide. As a con-
sequence of this trend, a number of models and calibration
algorithms have recently been proposed for such cameras.
The most basic models extend the pinhole camera model
with one or two radial distortion terms [1, 2, 3, 4]. These
methods are less accurate for wide-angle and catadioptric

lenses as the camera incorporates more distortion. Many of
the common distortion models (polynomial, divisional, ra-
tional) can be augmented with and increasing number of pa-
rameters [5, 6] to allow wider angle lenses to be calibrated.
However, they are not suitable for fisheye or catadioptric
lenses for which the field of view exceeds 180o.
Several methods have been proposed that model wide-

angle cameras as radially symmetric imagers [7, 8], thus
simplifying the unknown parameter set. In [7], distortion
is modelled using a varying focal length instead of an im-
age displacement approach, allowing cameras with fields of
view greater than 180o to be modelled. The complete class
of single viewpoint catadioptric camera configurations was
derived in [9], and this has been the basis for the develop-
ment of parametric calibration models that are specific to a
particular camera/lens configuration, most notably types of
central catadioptric [10] and non-central catadioptric [11].
The equivalence between catadioptric projections and map-
pings of the sphere was demonstrated in [12], resulting in
a unifying model for catadioptric cameras. Nevertheless,
only a fewmethods have been proposed that can model both
dioptric (with FOV greater than 180o) and catadioptric cam-
eras, i.e. a unifying model for all central cameras [7][13].
All the above calibration techniques assume a parametric

camera model of some form, where the task is to estimate
the (usually small) set of model parameters. In contrast, a
non-parametric approach was proposed by Grossberg [14].
This general camera model consists of a mapping in which
each pixel is mapped to the direction of a half-ray in space,
together with an anchor point. In principle, the ray direction
for each pixel is completely independent of the ray direc-
tions of the surrounding pixels, thus allowing application to
any type of central or non-central camera. The calibration
technique described in [14] uses two images of a grid in dif-
ferent, known, positions. By determining the location seen
by each pixel on each grid, the set of all camera ray direc-
tions can be determined. A generalisation to this calibra-
tion method, termed generic calibration, was proposed by
Sturm and Ramalingam [15], wherein the world transforma-
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tion between grid positions is not known a priori. Here, the
calibration consists of determining the points seen by a pixel
on each of three grids in unknown orientations. Effectively
this becomes the estimation of the positions and orientations
of each of the three grids, since knowledge of these allows
the world ray-plane intersections to be determined. The cal-
ibration process as proposed in [15, 16] can be summarised
as follows: Three images of a calibration grid in different
orientations are acquired, and for each camera pixel the lo-
cation it sees on each grid is determined. The ray anchor
points (camera centre for central cameras) and grid orien-
tations are then linearly estimated using this location data,
and refined via bundle adjustment. Finally, the calibration
area is extended by imaging the grid in new orientations
that intersect with the previously calibrated region, and us-
ing geometric constraints and bundle adjustment to estimate
their pose. All the ray directions are stored in a lookup table
as Plücker matrices. This calibration method will hereafter
be referred to as the standard generic method.
The standard generic method is applicable to any camera

geometry, and thus the calibration process is very general in
order to cope with both central and non-central cameras.
Consequently, many of the inherent geometric constraints
of central cameras are not taken advantage of when calibrat-
ing these cameras. This paper proposes a new generic cal-
ibration method for cameras with a single centre of projec-
tion (hereafter referred to as the proposed generic method)
that is optimum given the constraints of central cameras.
The three key contributions in this paper are as follows:
Firstly, the issue of specifying accurate input data is ad-

dressed. The standard generic method [16] uses homo-
graphic interpolation with chessboard grid patterns. In the-
ory, generic calibration can achieve pixel level calibration,
and thus it seems appropriate to use pixel level data as input
to the algorithm. Such data can be obtained by the use of
spatio-temporally varying grids displayed on a flat screen
monitor. We have termed these grids ’active grids’, and
while this method has been used before [14][17][18], no
discussion has been preferred on their performance for cali-
bration purposes. An explanation of active grids is given in
§2, along with an evaluation of their performance relative to
standard localisation techniques. Secondly, a novel method
for the linear estimation of the camera centre is proposed.
The estimation of the camera centre in the standard generic
method is ”rather complicated” according to Sturm himself
[15] and is given without any geometrical interpretation. In
§3 active grids are shown to allow other, more simple and
more accurate methods of determining the camera centre
for central cameras. Thirdly, an alternative pose estimation
stage is proposed. The pose estimation stage proposed by
Sturm is a 3-point technique that does not lend itself well to
large scale single shot pose estimation. The new pose esti-
mation algorithm is derived and evaluated in §4. Together,
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Figure 1. Vector plot of error residuals for homographic interpo-
lation (20mm grid pitch) showing bias (left). Vectors are scaled
×20. Binary and sinusoidal active grid patterns for encoding ver-
tical location (right).

the above modifications serve to make the proposed generic
method for central cameras both more robust and more ac-
curate than the standard method. Simulations and experi-
ments with real data are presented in §5 that demonstrate
the improved performance. The effects of the modifications
and the accuracy of the complete calibration are shown and
discussed.

2. Active Grids

Binary chessboard grids are typically used in camera cal-
ibration, since the corners of the chessboard grid squares
can be easily extracted and accurately localised in images
of the grids. This results in many grid to image correspon-
dences. For the standard generic method, these correspon-
dences must be used to determine the intersection points
of camera rays with the grid (i.e. the location seen on the
grid by each camera pixel). In most cases, the intersection
points will not lie exactly on a grid corner. Therefore, ho-
mographic interpolation is employed in [15] to determine
the intersection points based on the extracted image coordi-
nates of the four closest grid corner points. However, this
approach is unsuitable for high fidelity calibration, since
any distortion present in the images of the calibration grids
introduces a bias in the results. Fig 1 (left) shows a vector
plot of the error residuals after homographic interpolation
is applied to 500 random points on a 300mm × 300mm
grid (simulated camera with radial distortion). The system-
atic bias in the plot increases with distance from the image
centre, suggesting it is primarily due to radial distortion.
Our use of active grids overcomes this problem with ho-

mographic interpolation by providing a direct localisation
of the point seen by every pixel viewing the active grid,
thus enabling pixel-level calibration. An active grid is a
flat-screen TFT monitor that is used to display a temporal
sequence of spatially varying grayscale patterns. The loca-
tion of any point on the active grid can be decoded from the
intensity displayed at that point across the sequence of pat-
terns. We have used patterns from the domain of structured
light to encode location. This approach is similar in spirit



to the approach used by Sagawa in [17] for distortion cor-
rection. However, in that case the displayed patterns vary
only temporally, resulting in difficulty resolving the bound-
aries of narrow stripes (the authors fall back on linear in-
terpolation in these situations). In our method, each active
grid requires 22 patterns to be consecutively displayed in
order to fully encode the location data. Two patterns are
used to determine thresholds, 12 patterns encode location
on an 8× 8 grid using Gray coded binary patterns, and 8 si-
nusoidal grayscale patterns encode location spatially within
each square in this grid. The set of binary and sinusoidal
patterns that encode vertical location are shown in Fig. 1
(right). Both the binary patterns and their inverses are dis-
played to make the decoding near white/black boundaries
more robust. The phase of the sinusoidal patterns is shifted
by 90o between consecutive patterns, and location is de-
coded from them as in [19].

Active grids overcome the distortion bias associated with
homographic interpolation and consequently are ideal for
use in the calibration process. The proposed generic method
relies substantially on active grids for its accuracy, and
therefore, since they have not previously been benchmarked
against standard techniques for feature localisation, a per-
formance evaluation of them is provided. Corner detection
in chessboard patterns was recently shown to be invariant to
both perspective bias and distortion bias, and so to outper-
form non-corner based patterns [20]. Consequently we used
derivative corner localisation and saddle-point corner local-
isation techniques with a chessboard grid for the bench-
marking process. The comparison between the active grids
method and these two standard methods is shown in Fig 2.
The experiments were conducted with real data by subpix-
ally localising corners in the image of a chessboard grid,
displayed on a TFT monitor, using the two standard meth-
ods. An active grid was then displayed on the monitor and
decoded. The subpixel corner locations for the active grid
method were determined by searching this decoded loca-
tion data with the known metric grid dimensions. A second
active grid was then placed in front of the camera, and the
locations on this grid seen by the corner subpixels of each
method were decoded directly. By mapping these locations
to the knownmetric chessboard structure via homographies,
the RMS error residuals for each method were determined.
The robustness of active grids to variations in camera-grid
displacement, orientation, image blur and additive Gaussian
noise is seen in Fig. 2 to be superior to that of the standard
methods under almost all conditions. Note that, where not
otherwise specified, the camera-grid distance is 200mm, the
orientation is 0o, and there is no blurring or additive noise.
The excellent performance of the active grids in the com-
parison is partly due to their robustness to image sensor
blooming in regions of high contrast: for active grids the
highest resolution data is extracted from the sinusoidal pat-

Figure 2. Performance plots for saddle point localisation, deriva-
tive localisation and active grids localisation. Orientation is mea-
sured between the grid normal and the camera axis in the horizon-
tal plane.

terns, which contain only low contrast.

3. Linear Estimation
The purpose of the linear estimation stage in central

generic calibration is to determine the position of the cam-
era centre in the camera coordinate system attached to the
base (usually first) grid. The camera centre is the single
point through which all camera rays would pass if no reflec-
tion or refraction occurred. The linear estimation stage of
the standard generic method is based on a collinearity con-
straint: for each ray, the camera centre and the world coordi-
nates of the intersection point of that ray with each grid are
collinear. This can be expressed mathematically by stack-
ing the local homogeneous coordinate for each intersection
point in a 4 × 4 matrix. Collinearity is enforced by ensur-
ing the determinant of this matrix is zero. The algorithm
for determining the camera centre and plane positions and
orientations from this starting point for the standard generic
method is ”rather complicated” as stated by Sturm in [15].
See [15, 16] for a detailed explanation.
By taking a novel interpretation of existing methods for

the calibration of pinhole cameras, an alternative, less com-
plex, linear estimation stage is proposed. As known, pin-
hole calibration techniques are not suitable for wide field-
of-view cameras due to the existence of severe non-linear
image distortion that invalidates the linear projectionmodel.
The key idea of the proposed method is that an additional
active grid is used as a synthetic image plane in the cali-
bration, thus forming a synthetic pinhole camera. By plac-
ing the synthetic plane in front of the general camera so as
to intersect the camera rays on the object side of the cam-
era optics, as shown in Fig. 3, a distortion free image is



Figure 3. Linear estimation of camera centre for proposed generic
calibration. Synthetic image plane allows use of pinhole calibra-
tion techniques for determining centre.

formed on the synthetic image plane. The synthetic camera
can then be calibrated using any standard pinhole calibra-
tion method, with the desired estimate of the camera cen-
tre being [px py f ]

T . The pose of grids two and three can
also be extracted from the synthetic pinhole calibration us-
ing well known techniques [1][3]. In this way the non-linear
calibration problem is converted to a linear calibration prob-
lem. This new approach provides a key link between the
established theory of pinhole calibration and the generic
calibration of central cameras, allowing the generic cali-
bration of non-pinhole central cameras using pinhole cal-
ibration techniques. The number of grids required for the
proposed generic method is three - two for the pinhole cali-
bration plus one for the synthetic image plane - which is the
same number as required for the standard generic method.
Note that active grids are ideal for use as synthetic image
planes in this method as they can directly provide the re-
quired ray-grid intersection points.
A question arises as to which pinhole calibration tech-

nique should be used for the proposed linear estimation
stage? To answer this, two well known pinhole calibration
techniques, those of Sturm [1] and Wang [21], were incor-
porated into separate implementations of the proposed lin-
ear estimation stage. Both of these techniques are based on
the same underlying constraints on the image of the abso-
lute conic, but they take different approaches to determining
the solutions. A comparison of the robustness to Gaussian
noise of these two implementations of the proposed linear
estimation stage, and of the standard generic method linear
estimation stage, is shown in Fig. 4. Errors in the estima-
tion of the camera centre, and in the translation and rotation
of the second and third grids involved in the calibration,
are shown (averaged over 50 trials). The ray-point error is
the perpendicular distance between each estimated ray and
its known points of intersection with each calibration grid.
These results are for a simulated camera with camera centre
[0 0 600]T (in coordinate frame of first grid), and with focal
length and distortion parameters chosen to simulate a wide

Figure 4. Centre estimation performance plots for standard generic
method, standard generic method with bundle adjustment, and
proposed generic method using both Sturm’s and Wang’s planar
pinhole calibration techniques.

angle camera with FOV of 100o. Results are shown for the
standard generic method both with and without bundle ad-
justment of the grid transformations, as described in [16].
Bundle adjustment is not applied to the other two methods.
The results clearly indicate that both of the implementations
of the proposed linear estimation stage outperform that of
the original generic method across all levels of noise tested.
For the proposed generic method, the implementation using
Sturm’s calibration outperforms that using Wang’s calibra-
tion in all cases, and therefore Sturm’s pinhole technique is
used in the proposed generic method. It is interesting to note
that bundle adjustment does not appear to significantly im-
prove the calibration result for the standard generic method.
This is likely due to the error in the linear estimation of the
camera centre (centre estimate is not bundle adjusted).

4. Pose Estimation

Pose estimation is required during generic calibration
in order to increase the number of calibrated camera rays.
Once the pose of an additional grid is estimated, the cam-
era ray associated with each pixel that sees this additional
grid can be included in the calibration. Exact solutions to



Figure 5. Proposed linear pose estimation method using synthetic
image plane.

the general pose estimation problem can be found for either
three or four non-collinear point-image pairs by solving a
fourth or higher degree polynomial [22]. However, closed
form solutions to the pose estimation problem for more than
four points do not exist [23]. The most common approach
to pose estimation in these cases is to minimise either the
image space error or the object space error using standard
nonlinear minimisation techniques. An iterative technique
[23] has also been proposed.
In the standard generic method [15] a geometric three

point algorithm for estimating the pose is described. Given
calibrated rays with directions Ri and Rj , and the dis-
tance dij between their intersection points with the grid
of unknown pose, the depths λi and λj of the intersec-
tion points can be computed by simultaneously solving
|λiRi − λjRj |2 = d2ij for i, j = (l,m, n), i 6= j. Addi-
tional points are used to determine the correct pose from the
eight possible solutions. A significant disadvantage of the
algorithm is that, when included in a RANSAC framework,
a linear re-estimation of the pose based on all inliers is not
possible (typically the final step in RANSAC). The method
is also very sensitive to additive noise (although a guided
selection of sufficiently separated points can alleviate this
problem), and is computationally expensive.
To overcome these difficulties a linear least-squares so-

lution to the pose estimation problem is proposed. Although
the method does not minimise geometric error, it is linear,
fast, always gives a solution, and can conveniently be in-
corporated within a RANSAC framework. The method is
derived based on standard camera geometry and the pinhole
camera model, similarly to [24]. With reference to Fig. 5,
given a grid in the base position (canonical grid) with world
coordinate points Xi ∈ 3, and a grid with an unknown
pose T ∈ 3 relative to the canonical grid containing un-
known world points X0

i ∈ 3, we wish to determine the
unknown pose T . This is achieved via the insertion of a
synthetic image plane placed in a known orientation (the
orientation selection is discussed later) between the camera
centre and the canonical grid, as shown in Fig. 5. Note
that this synthetic image plane is a mathematical construct

only and is not physically realised. The key to the proposed
approach is that the synthetic image plane allows the gen-
eral pose estimation problem to be converted to a pinhole
pose estimation problem. Points Xi can be projected onto
the synthetic image plane by intersecting the previously cal-
ibrated rays with this plane. The projection is according to
the pinhole model

x0i = PX 0
i (1)

where xi ∈ 2 are the imaged points on the synthetic image
plane and P is the known 3 × 4 camera projection matrix
associated with the synthetic image plane. Since the canon-
ical grid is on the world Z = 0 plane, we also have

x0i = HXi[1 2 4]] (2)

and
X 0
i = TXi (3)

whereH is a homography in 2. Therefore

HXi[1 2 4]] = PT(:,[1 2 4])Xi[1 2 4]]

= KR[I(3×3)|− C̃]T(:,[1 2 4])Xi[1 2 4] (4)

where C̃ ∈ 3 is the inhomogeneous coordinate of the cam-
era centre,K is the 3× 3 camera calibration matrix for the
synthetic image plane, andR ∈ SO(3) is the world rotation
of the synthetic image plane. Therefore

(KR)−1H =

⎛⎝ T11 T12 T14 − C̃1
T21 T22 T24 − C̃2
T31 T32 T34 − C̃3

⎞⎠ (5)

Letting
G = (KR)−1H (6)

gives
sR0 =

¡
G1 G2 G1 ×G2

¢
(7)

where Gi is the ith column of G. An orthonormal R0 is
obtained via the SVD. The scale factor, s, can be obtained
as

s = mean

¡
G1 G2

¢¡
R̂1 R̂2

¢ (8)

The translation is

t̂ =
G4 + C̃

s
(9)

The desired pose estimate is then

T̂ =

µ
R̂ t̂

0(1×3) 1

¶
(10)

The orientation of the synthetic image plane should be
chosen so as to be as perpendicular as possible to the known
rays involved in the estimation process. This orientation is
determined in a least-squares sense by minimising the sum
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Figure 6. Performance comparison of pose estimation stage of pro-
posed generic method, proposed generic method with RANSAC,
and standard generic method.

of the angles between the calibrated rays and the synthetic
image plane, as in [25].
The robustness to Gaussian noise of the standard generic

method’s pose estimation stage (embedded in RANSAC,
followed by non-linear optimisation), and the pose esti-
mation stage of the proposed generic method, both on it’s
own and embedded in a RANSAC framework, is evaluated
for simulated data. The simulated camera centre is fixed
at [0 0 600]T , and the translations and Euler rotations of
the grid whose pose is to be estimated are randomly cho-
sen from [−150mm 150mm] and [−30o 30o] respectively.
The mean rotational and mean percentage translational er-
rors are shown in Fig. 6. It is seen that the proposed
generic method’s pose estimation consistently outperforms
that of the standard generic method for all simulated levels
of noise. Also, embedding the linear method in a RANSAC
phase actually reduces the accuracy of the estimates. This is
possibly due to the non-isotropic nature of the noise that re-
sults from projecting Gaussian noise from the image plane
onto a non-parallel plane.

5. Experimental Results
Both the standard and proposed generic methods are

analysed for real data with respect to a ray-point error met-
ric, distortion correction, and separate motion reconstruc-
tion tasks. All images for these experiments were taken
using a 360 OneVR hyperboloidal omnidirectional mirror
1 in conjunction with a Nikon D70 SLR digital camera.
This catadioptric configuration has a single centre of pro-
jection. For each calibration method approximately 207o of
the horizontal FOV and approximately 82o of the vertical
FOV of the camera was calibrated, using three grids for the
linear estimation of the camera centre, and a further three
grids to extend the calibrated region to include additional
pixels. Active grids were used for all grids during calibra-

1Kaidan Inc., Feasterville, PA

Table 1. Camera centre and grid transformation estimates for cata-
dioptric sensor calibration. Centre and translations are measured
in mm, rotations are measured in degrees.
Method Centre R1 T1 R2 T2
Original 169.29 34.65 130.58 35.27 182.84
method 152.06 -141.74 -13.35

-106.48
Proposed 167.90 36.52 139.66 35.61 192.13
method 159.82 -142.08 -13.70

-116.21

Table 2. Ray-point errors (mm) for all rays involved in the linear
estimation stage for each calibration method (BA = bundle adjust-
ment).

Method Error type Error Error after BA
Original Mean 3.2219 1.1634
method SD 1.4923 0.6583
Proposed Mean 0.1924 0.1314
method SD 0.0906 0.0727

tion, with the same images used as input to both methods so
that direct comparisons between the standard generic and
proposed generic methods are not influenced by the type of
input data. A RANSAC stage is applied to the locations
decoded from the active grids in order to remove any incor-
rectly decoded location data (RANSAC thresholds empiri-
cally chosen with reference to Fig. 2).
The first three grids used in the calibration were found

to have 41467 common intersecting rays, of which 31398
were determined to be inliers. Table 1 shows, for each cali-
bration method, the estimates of the camera centre, and the
estimated Y Z yaw-roll rotation angles and translation mag-
nitudes for the second and third grids. Note the significant
difference between the estimated values of the camera cen-
tre z coordinate for each method.
The ray-point error metric, described in §3, can be ap-

plied to each calibration dataset to give an indication of
the relative errors in each calibration (actual positions of
the camera centre and the second and third grids are not
known). Table 2 shows the mean and standard deviation
of the ray-point errors for each method, both before and
after bundle adjustment. Bundle adjustment is applied to
the proposed method here for comparative purposes only.
The non-bundle-adjusted parameters are used in the remain-
der of the calibration with the proposed generic method,
whereas the bundle adjusted results are used for calibration
with the standard generic method (as per [26]). The ray-
point error results clearly show that the configuration of the
camera centre and the calibration grids is in greater geomet-
ric agreement for the proposed generic method than for the
standard generic method. These results also agree with the
simulated results in §3, specifically they show that the lin-
ear estimates of the proposed generic method are capable of



Figure 7. Cylindrically unwarped catadioptric image after standard
generic calibration (top) and proposed generic calibration (bottom)

outperforming the bundle adjusted estimates of the standard
generic method.

5.1. Distortion Correction

Two distortion correction experiments were carried out
in order to both qualitatively and quantitatively evaluate
each of the calibration methods.
In the first experiment the calibration data is used to re-

move the inherent non-linear distortion from the calibrated
area of an omnidirectional image of a real scene. A portion
of a cylindrical image is formed by intersecting the cali-
brated rays with a unit cylinder, the axis of which is coin-
cident with the camera centre, and the cylinder is then un-
wrapped to form a planar image. Fig 7 shows the cylindri-
cally unwarped images calculated using the calibration data
from the standard generic and proposed generic methods.
As expected, real world straight lines that are parallel to the
mirror axis (vertical) are mapped to straight lines in both of
the corrected images. However, some abberation is visible
in the image corrected using the standard generic method
calibration data (highlighted by ellipse). In contrast, the
corrected image formed using the proposed generic method
has significantly less aberration. Note that the field of view
of the cylindrical unwarped image for the standard generic
method is less than that of the proposed generic method due
to the smaller estimate for the z coordinate of the camera
centre using the standard generic method.
Quantitative evaluation of the calibrations was carried

out by generating a perspectively corrected image of an
18×12 chessboard calibration grid, with square side length
53mm. The plane onto which the corrected images are pro-
jected is selected as described in §4. Distortion residuals are
measured after applying a homography between the distor-
tion corrected image of the grid and the known metric grid
structure. Fig. 8 shows the distortion residuals for both the
standard and proposed methods. No radial distortion bias is
visible in either vector plot, but the plot for the standard
generic method displays large divergences along roughly
vertical lines at the left and right of the image. These
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Figure 8. Vector plots of residuals after distortion correction of a
chessboard grid for standard generic method (left) and proposed
generic method (right). Vectors are scaled ×15

correspond to areas where two active grids with misesti-
mated poses meet, and correspond to the aberrations seen
in Fig. 7 (top). The divergences and residuals are smaller
for the vector plot using the proposed generic method (mean
RMS error = 2.23mm, STD = 1.06mm) than for the vector
plot using the standard generic method (mean RMS error =
4.54mm, STD = 1.96mm) indicating a better calibration.

5.2. Motion Reconstruction
Motion reconstruction experiments were conducted for

the cases of pure translation and pure rotation. The ex-
perimental setup consisted of a 3D calibration object (two
orthogonal planar chessboard grids) rigidly mounted on a
stage capable of controlled rotation and translation. For the
translation experiment, the object was translated 100mm in
steps of 20mm, and for the rotation stage it was rotated by
90o in steps of 22.5o. Point matches were manually ex-
tracted across both image sequences, and used to index the
Plücker matrix lookup tables for each calibration method to
get the corresponding ray direction information. The essen-
tial matrix, E, between each image pair was linearly esti-
mated using the ray-based epipolar constraint L0EL = 0,
where L,L0 are the first 3 components of the Plücker vec-
tors derived from the Plücker matrices [25]. Rotations
and translations are extracted from the essential matrices
according to [27]. The motion reconstruction results are
shown in Fig.9. It can be seen that the motion estimated
with the proposed generic method is closer to linear in the
case of translation, and closer to 90o in the case of rotation,
than for the standard generic method. For visualisation pur-
poses the differences between the average translation vector
and the estimated translation vectors are scaled ×4.

6. Summary and Conclusions
This paper proposes a novel method of generic camera

calibration for cameras with a single centre of projection.
The main contributions of the paper are a performance eval-
uation of active grids for use in calibration, an improved lin-
ear estimation stage based on a new interpretation of an ex-
isting technique that allows pinhole calibration techniques
to be applied to the calibration of non-pinhole cameras, and
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Figure 9. Translation (left) and rotation (right) reconstruction us-
ing calibration data from standard generic method and proposed
generic method.

a new linear pose estimation stage. The individual compo-
nents of the proposed method are separately evaluated using
simulated data, with the results indicating that the proposed
generic method outperforms the standard generic calibra-
tion method in terms of accuracy and robustness to noise.
The proposed generic method is also evaluated against the
standard generic method for real data using a hyperboloidal
omnidirectional camera, with the results for distortion cor-
rection and motion reconstruction tasks showing the im-
proved performance of the proposed generic method.
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