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ABSTRACT
This paper evaluates the performance of state of the art colour
invariants for the purposes of local image feature detection.
We adapt the Harris-Laplace detector for colour invariance
and test it under general image distortions. A second inves-
tigation examines the correlation between the colour invari-
ants where the number of correctly detected unique points
are analysed. This paper aims to answer if colour invari-
ants should be used for feature detection purposes, and if they
could be jointly used by feature fusion techniques to augment
the performance of intensity-based detectors.

Index Terms— colour detector, Harris-Laplace, local
feature detection, photometric invariance, colour invariants.

1. INTRODUCTION

In the last two decades local invariant interest point detection
has established itself as one of the most important research
areas of computer vision. Local image features have proven
successful in their tasks, as they can be made robust to vary-
ing viewing conditions such as scale, rotation and perspec-
tive changes. The majority of local feature detectors are still
intensity-based only, in spite of substantial developments in
various colour invariant models.

In this study, we implement scale-invariant colour local
feature detectors and aim to answer two questions that will fa-
cilitate the integration of colour information into mainstream
modern local feature detection. Firstly, this study evaluates
the most promising colour gradient photometric invariants on
two natural scene datasets, one with only illumination varia-
tions and the other is a dataset widely used in the evaluation
of intensity-based detectors containing a large range of imag-
ing distortions. Secondly, we investigate the correlation be-
tween the tested colour invariants on actual experimental re-
sults, which to our knowledge is here performed for the first
time. Our study uses colour invariants to create a colour ver-
sion of the Harris-Laplace [1] detector. For the purposes of
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feature detection (without a descriptor) most colour invari-
ants have predominantly been evaluated using datasets with
only lighting variations and containing images of individual
objects like the Amsterdam Library of Object Images1. In the
context of feature detection, the literature lacks an evaluation
and comparison of the most prominent colour invariants using
image data that contain image distortions other than illumina-
tion.

The first part of our study addresses the limitations of pre-
vious works, by evaluating colour features more rigorously
using the distortion criteria that were employed in the testing
of state of the art intensity-based detectors (ie. scale, view-
point, blurring, JPEG compression and illumination). The
second part is related to the complementarity between the
tested colour invariants. Our correlation analysis reports the
number of unique correct points that each gradient type can
generate. It also identifies which gradient types could be used
conjointly, to obtain a better overall performance.

The overall contributions of this paper can be summarised
as follows: The robust evaluation of state of the art colour in-
variants in the context of feature detection under the presence
of typical image distortions. Secondly, investigating their cor-
relation to intensity and identifying if they can be utilised to
augment intensity-based detectors. The results will help to
maximise the distinctiveness and robustness of local image
feature detection.

1.1. Previous Work

The most successful intensity-based local image features are
gradient-based, and rely on scale-invariant corner and blob
detection, like the well known Harris-Laplace [1], and LoG
(Laplacian of Gaussian) [2] detectors. For this reason we fo-
cus our colour feature detection study on gradient-based ap-
proaches. In the case of colour-based detectors, the most sta-
ble and robust to illumination variations as was shown in [3],
have been based on the colour Harris introduced by Mon-
tesinos et al. [4]. Van de Weijer et al. [5, 6] extended the

1http://staff.science.uva.nl/ aloi



colour Harris by proposing a set of photometric variants and
quasi-invariants. Their evaluation was limited however, to
non-scale-invariant corner detection. Geusebroek et al. [7]
propose a set of photometric colour invariants using the Gaus-
sian colour model. The performance of local image descrip-
tors created from these colour invariants were evaluated by
Burghouts and Geusebroek [8] and some proved to be su-
perior to gray-scale intensity. Stöttinger et al. [9] propose
a light-invariant Harris-Laplace feature detector in the con-
text of image retrieval, though their focus was not to fully
compare their colour invariant gradient with others from the
literature. Faille [10] proposes a colour Harris corner detector
which is invariant to specularities, shading and colour illu-
mination. However the method uses fixed scales for matching
images under illumination distortions. Unnikrishnan and Her-
bert [11] evaluate two illuminant invariant functions on the
RGB space, they detect scale and rotation invariant points us-
ing the LoG operator and obtain better results than using only
the intensity under illumination variations. One limitation of
their study is the lack of an evaluation of their detector under
viewpoint changes.

2. COLOUR FEATURE POINT DETECTION

Our study adapts the Harris-Laplace [1] (HL) detector for
colour feature detection using colour invariants. It has been
one the most widely used gradient-based detectors, and was
shown to be reliable under rotation, scale and illumination
changes along with limited perspective deformations [1]. Due
to space restrictions we briefly refer here to the relevant math-
ematical formulas required to explain the HL’s adaptation for
colour detection. The Harris detector is based on the second
moment matrix, that is often used to describe local image gra-
dient distributions. For an image I, the scale-adapted structure
tensor at position x is given by Eqn.1:

H(x, σI , σD) = σ2
DG(σI)⊗

[
L2
x(σD) LxLy(σD)

LxLy(σD) L2
y(σD)

]
(1)

The image gradients (Lx, Ly) are computed by convo-
lution with the first derivatives of the Gaussian kernel with
standard deviation σD. These derivatives are then convolved
with G(σI ), the Gaussian kernel with standard deviation σI .
The other relevant expression is the operator that provides the
scale-invariance; the scale normalised Laplacian (Eqn. 2).
Lxx(x, σn) denotes the response at image location x of the
convolution of the second derivative of the Gaussian with the
original input image (in the x-direction, with std. dev. σn).
The LoG response is indicative of the similarity between the
LoG kernel and the local image structure on which it is being
convolved with. To achieve scale-invariance, a scale-space
image stack is constructed by convolving the input image and
the LoG with increasing σn. When the LoG response results
in a local 3D maxima across the scale-space image stack, then
a characteristic scale for that local structure exists at that loca-

tion in the scale-space representation. To summarise the HL
detector, Eqn.1 is used to detect corners of various sizes and
Eqn. 2 allows for a characteristic scale to be estimated for
those corners.

|LoG(x, σn)| = σ2
n|Lxx(x, σn) + Lyy(x, σn)| (2)

2.1. Color Invariant Gradients

For our colour detectors, we utilise Eqns. 1 and 2 but colour
invariants are used instead of the standard gray-scale inten-
sity gradients. These invariants are formed from four colour
spaces: The Opponent Colour Space (O1, O2, O3) [5]. Hue
Saturation and Intensity (H,S, I) [5]. The Spherical Colour
Space (r, θ, ϕ) [5]. The Gaussian Colour Model (Ê, Êλ, Êλλ)
[7], shown in Eqn. 3. Due to space restrictions we can only
show the formula for the Gaussian model as it is a more un-
common colour space, please refer to the literature [5] for the
expressions of the other colour spaces.

Our evaluation uses 9 different colour gradients: The
Light-Invariant (LightINV ) gradient [9]. The specular-
shadow-shading quasi-invariant (SPSSINV ) [5]. The specu-
lar quasi-invariant (SPINV ) [5]. The shadow-shading quasi-
invariant (SSINV ) [5]. The shadow-shading full invari-
ant (SSF−INV ) [6]. The specular-shadow-shading variant
(SPSSV AR) [5] is not an invariant gradient but it is in-
cluded for a more complete evaluation and comparison of
the invariants alongside the grayscale intensity. The last
three invariants (CINV , HINV and WINV ) are proposed by
Geusebroek et al. [7] and they use the Gaussian Color Model. Ê

Êλ
Êλλ

 =

 0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

 R
G
B

 (3)

To summarise the implementation of all the colour invari-
ants, we show in Table 1 how they are obtained from their
respective colour spaces. The invariants of Van de Weijer et
al. [5, 6] were adapted from their released code2 (Color Fea-
ture Detection I & II) . Our notations are the same used in
the authors original works, and the subcripts (λ) of Êλ and
Êλλ refer to the first and second colour channels of the Gaus-
sian model. The term Lx in Table 1 refers to the Lx of the
structure tensor (Eqn. 1), the x subscript denotes the first or-
der derivatives in the x-direction. To obtain the second order
Lxx of the LoG operator, the second derivatives of the colour
channels are used instead for the expressions of Table 1.

3. EXPERIMENTS

The first part of these experiments evaluates the performance
of the aforementioned colour invariants when used in local
feature detection of natural scene images using the HL de-
tector. The invariants are also compared with the standard

2http://cat.cvc.uab.es/ joost/software



Table 1: Summary of the implementation of the colour invariants.
Method LINV SPSSINV SPINV
Lx

√
(HxS)2 + (Sx)2 HxS

√
(O1x)2 + (O2x)2

Method SSINV SPSSV AR SSF−INV
Lx r

√
(ϕx)2 + (sin(ϕ)θx)2

√
(Ix)2 + (Sx)2

√
(ϕx)2 + (sin(ϕ)θx)2

Method CINV HINV WINV

Lx

√(
ÊÊλx−ÊλÊx

Ê2

)2
+
(
ÊÊλλx−ÊλλÊx

Ê2

)2 √(
ÊλλÊλx−ÊλÊλλx

Ê2
λ+Ê

2
λλ

)2 √(
Êx
Ê

)2
+
(
Êλx
Ê

)2
+
(
Êλλx
Ê

)2

intensity gradients (Ix). The second experiment is a corre-
lation analysis to investigate which colour gradient generates
the most unique number of correctly matched points. A cor-
relation matrix shows the complementarity between all the 10
tested gradient types and is useful when considering the fu-
sion of multiple gradients to achieve a higher performance
than using a single gradient type on its own.

Our evaluations are carried out on two datasets: the Ox-
ford3 dataset which has become the de facto database to
evaluate local features, and the Middlebury Stereo4 dataset.
Mikolajczyk’s Oxford dataset consists of image sets with
various distortions: blurring, zoom and rotation, JPEG com-
pression, illumination and viewpoint changes. We used all
sets (7 colour sets) except the black and white one which
is not relevant to this study. The Middlebury Stereo dataset
provided by Scharstein and Pal [12], consists of multiple sets
of stereo images of natural scenes. These image sets vary in
illumination conditions and we utilise a set of images (from
5 different scenes) that contain varying illumination but no
viewpoint changes. Examples of these images are shown in
Fig. 1.

3.1. Feature Detection Experiments

Mikolajczyk and Schmid [13] propose an approach to eval-
uate the quality of local interest point detection using robust
metrics. We follow the same evaluation method in this study
to provide standardized results. In [13] two features are con-
sidered correctly matched if the detected areas overlap by

3www.robots.ox.ac.uk/ vgg/research/affine
4http://vision.middlebury.edu/stereo/data

more than 40%. We set a more strict threshold of 10% to
evaluate the localisation stability of the colour gradients more
robustly. See Fig. 2 (a,d) for a summary of the results, show-
ing the mean number of correct correspondances across all
distortion levels for both datasets.

These detection results show that the intensity is the over-
all best performer. Only one invariant (WINV ) is superior to
the intensity when applied to the illumination varying Middle-
bury dataset. The colour invariants were clearly inferior when
applied to the Oxford dataset as they prove to be less robust
to imaging distortions, namely scale and viewpoint changes.
These results prove the necessity to evaluate colour invariants
under a more general set of imaging conditions other than
just illumination. To conclude, the overall performance of the
tested colour invariants is insufficient to merit their indepen-
dent adoption for local feature detection tasks. The follow-
ing correlation study therefore investigates their potential for
complementing the intensity channel.

3.2. Correlation of Color Gradients

Results for the correlation of the gradients are experimentally
obtained from the feature detection results. We calculate the
correlation between two gradient types by the percentage of
correctly matched points that are common between them, out
of the total number of points that can potentially be matched.
The unique correct matches for a gradient type are denoted
as the matched points that only that particular gradient type
extracts (amongst all the 10 tested gradients). The unique
matches results are shown in Fig. 2 (b, e) and the average
correlation matrix plots are shown in Fig. 2 (c, f).

Fig. 1: Top row: Oxford dataset examples. Bottom row: Samples of the Middlebury ’Art’ image set.



In Fig. 2 (b) it can be seen that with the Middlebury data
the top 2 colour invariants (WINV and LightINV ) generate
comparable number of correct unique matches to the inten-
sity. The Oxford dataset is again more problematic for the
colour gradients and their relative performance to the inten-
sity is here poorer. In spite of this, the WINV and LightINV
invariants on the Oxford set still generate in total 105% of the
number of unique points that the intensity gradients are able to
match (at the lowest distortion level), and 113% at the highest
distortion. For the Middlebury set, these figures are 180% and
166% respectively. The capacity to incorporate more unique
matches into the feature detection step using colour invariants
is thus significant. This feature fusion could result in a final
set of detected features that are more robust to distortions and
more unique, benefiting subsequent feature description and
matching tasks.

The correlation matrices indicate that all of the colour in-
variants are in fact highly uncorrelated with the intensity and
are thus capable of positively influencing the performance of
intensity if used conjointly. The summary of this correla-
tion study is that the top 2 colour invariants provide a con-
siderable number of unique points. A further feature fusion
study is needed to properly evaluate the overall gain in per-
formance, but the results from our study provide clear indi-
cations that colour invariants can indeed augment the perfor-
mance of intensity-based feature detection.

4. CONCLUSION

This study evaluated the performance of colour photometric
invariants in the context of local feature detection using nat-
ural scenes containing the typical set of imaging distortions
that state of the art intensity-based detectors have been evalu-
ated with. We found that intensity is the overall top performer,
it also performs comparatively to the colour invariants un-
der illumination variations. Colour invariants proved to have
poorer robustness to the general imaging distortions (ie. scale
and viewpoint) inherent in the Oxford dataset. The domi-
nance of intensity-based detectors, can be largely attributed
to the luminance axis containing the majority of the varia-
tion in the RGB-cube [14], and the stability of the localisa-
tion of its gradients. For these reasons the intensity performs
best overall for general imaging conditions, and only under
more severe illumination conditions should colour gradients
be considered for local feature detection.

Despite their overall inferiority when utilised individually,
our correlation study obtained promising results and suggests
that colour invariants should indeed be considered for feature
fusion as they are uncorrelated to the intensity and generate
considerable number of unique matches. The colour invari-
ants that obtained the optimal balance of uniqueness and are
least correlated to intensity, areWINV [7] and LightINV [9].
These have the biggest potential to be used in conjuction with
intensity in future local image feature fusion studies.

(a) Avg. Correct pts. (Middlebury).
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(b) Avg. Unique pts. (Middlebury).
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(c) Avg. Correlation (Middlebury).
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(d) Avg. Correct pts. (Oxford).
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(e) Avg. Unique pts. (Oxford). (f) Avg. Correlation (Oxford).

Fig. 2: Summary of Correct Correspondances and Correlation Analysis.
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