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Abstract 

 
The quantitative analysis of live cellular structures in 
time-lapse image sequences is a key issue in evaluating 
biological processes such as cellular motility and 
proliferation. The current clinical practice involves a 
manual tracking procedure, but with the arrival of 
modern image acquisition modalities, the amount of 
data required to be analysed by biologists is constantly 
increasing. As a result techniques that are able to 
process the data automatically are currently developed 
and evaluated. However, problems caused by cellular 
division, agglomeration, Brownian motion and 
topology changes are difficult issues that have to be 
accommodated by automatic tracking techniques. In 
this paper, we detail the development of a fully 
automated multi-target tracking system that is able to 
deal with Brownian motion and cellular division. 
During the tracking process our approach includes 
information such as the neighbourhood relationship 
and motion history to enforce the cellular tracking 
continuity in the spatial and temporal domain. The 
experimental results reported in this paper indicate 
that the proposed cellular tracking approach is able to 
accurately track cellular structures in time-lapse data. 
 
 
1. Introduction 
 

Biological processes such as proliferation and 
migration/motility of cellular structures are 
fundamental aspects that are studied to understand the 
multi-cellular development, wound healing, 
embryogenesis, inflammation, etc. [1-2]. In particular 
cellular motility analysis is important to understand 
these biological processes, as this opens the possibility 
to investigate various diseases including cancer, and to 
analyse the cellular response to different drug 
treatments [1], [12-13]. Cellular motility is evaluated in 

sequences of time-lapse data and the aim of this 
process is to assign the cell-cell association in 
consecutive images. Typically, the cellular tracking and 
analysis is performed manually or using semi-
automated tracking techniques. Nonetheless with the 
development of image acquisition systems the amount 
of data to be analysed by biologists is constantly 
increasing and as a result the tracking process becomes 
a tedious and time consuming task. Thus, the 
development of image processing techniques that are 
able to achieve automatic cellular tracking is more 
necessary than ever before. The existing cellular 
tracking algorithms are based on feature matching, 
motion prediction, and model evaluation and they were 
developed to determine the self-propelled motility 
associated with live cellular structures. While these 
previous proposed algorithms are able to determine the 
cellular tracks when the cells’ motility can be 
statistically evaluated they show poor performance 
when applied to data characterized by Brownian 
motion or cellular proliferation. In this scenario, 
feature-based approaches generate ambiguous tracking 
and the motion models are not able to adapt to the 
Brownian motion. 

In this paper, a novel cellular tracking framework is 
detailed that is able to track multiple cells and 
accommodate cellular proliferation. To adapt to 
Brownian motion the neighbour information is utilised 
in a structural manner and during this process 
structures of cells are matched rather than individual 
cells. This method not only reduces the false 
associations caused by the Brownian motion, but also 
allows the tracking of cells that are generated by 
proliferation. In addition, failure in data association at a 
particular time does not affect the cellular tracking in 
the following images of the sequence. In our 
implementation we used a graph generation technique 
based on Delaunay triangulation that is employed to 
encode the spatial relationship [14-15] between the 
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cells contained in each image frame, where the cellular 
tracking process is performed by evaluating the 
changes in the graph structures in adjacent frames.  The 
proposed tracking algorithm is generic and in this 
paper we have evaluated its performance when applied 
to different cellular data.  
 
2. Previous methods 

 
Cellular tracking has become an active area of 

research and a large number of approaches have been 
proposed to solve the cellular association in time-lapse 
multi-cell data. In general these techniques were 
developed in conjunction with well-defined 
applications where the cell association was carried out 
using features matching [3], motion prediction [7] and 
model evaluation [11] approaches.  

The feature matching and motion prediction 
techniques involve the segmentation of cells in each 
frame and the association of the segmented data 
contained in consecutive images by the use of pattern 
recognition techniques that enforce continuity in the 
spatial and temporal domain. For instance, in [3] the 
feature matching process was carried out for user-
selected cells by minimizing a criterion based on target 
location and feature similarity. The experiments 
demonstrated that this approach produces accurate 
results only when applied to sparse cellular datasets 
and is not able to handle the cell division and Brownian 
motion. A similar distance-based tracking approach is 
investigated in [4-5] and the experimental results 
further strengthened the conclusion that this solution 
alone is not suitable for robust cellular tracking.  

To address the problems faced by feature-based 
tracking algorithms, motion prediction techniques such 
as those based on Kalman filtering and Particle filtering 
were developed [6-7]. These approaches proved to be 
robust only in situations when the cellular motion can 
be approximated by statistical models. However, the 
motion model-driven tracking techniques may fail 
when applied to dense cellular data that is characterised 
by Brownian motion. Their performance largely 
depends on the suitable selection of the noise 
covariance and elaborate simulation/training 
procedures have to be applied to determine the model 
parameters prior to the application of the tracking 
algorithms to real cellular data.  
      Techniques based on appearance and shape models 
were also applied in the development of cellular 
tracking algorithms. Using this approach, the cellular 
structure is initialised in the first frame and then 
propagated to subsequent images to identify the 
motility over the entire image sequence. For instance, 

techniques based on Active Contours, Level Sets and 
Mean-shift have been explored for multiple cellular 
tracking in [10], [11] and [13] respectively. However, 
the main restriction associated with these techniques is 
the fact that they require significant overlapping 
between the model and the target. Thus, if data shows 
frequent divisions, the initial model may overlap with 
multiple targets and the cellular association become 
ambiguous [11]. Recently, a combination of several 
techniques has been investigated for cellular tracking in 
[8] and [12].  The experiments indicated that their 
performance increased when compared to that offered 
by individual techniques but the number of parameters 
that have to be adjusted is very large.  
      Based on this brief overview of the cellular tracking 
algorithms we can conclude that most of the methods 
require user interaction for parameter estimation [11-
13] and the tracking results are inaccurate when applied 
to dense cellular data or data characterised by frequent 
cellular division (proliferation). In this paper we 
propose a new tracking approach that is not hampered 
by problems caused by initialisation and is able to 
adapt to Brownian motion and cellular proliferation.  

   
3. Proposed tracking framework 
 

In our approach the tracking process evaluates the 
neighbourhood relationship between all cells in each 
frame and the cell association is performed by 
assessing the variation in cellular structures contained 
in consecutive frames of the image sequence (see 
Figure 1). Since tracking is carried out for cellular 
structures, the proposed solution does not require any 
initialisation procedure. In addition, our approach does 
not require user-defined constraints or the evaluation of 
feature similarity criteria in the process of cell 
association.  

 

  
Figure 1. Neighbourhood relationship overlaid on 
NE4C cell data 

 
The overview of the proposed fully automated tracking 
framework is illustrated in Figure 2.  
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The cellular tracking framework has two major 
modules: a) Centroid extraction module (CEM) and b) 
Tracking module (TM). The centroid extraction 
module performs the segmentation and the extraction 
of the centroid points by the use of adaptive threshold 
and morphological operations. The generated output 
(centroid coordinates) will be passed to the tracking 
module.  

The tracking module receives the centroid 
coordinates for each cell in two successive images and 
neighbourhood relationship graphs are constructed for 
both frames by applying Delaunay triangulation. In this 
way, each node of the graph represents the cell position 
and edges define the spatial relationship between 
nearest cells. Using these cellular graph 
representations, the problem of node (cell) association 
can be formulated as a graph matching minimisation. 
The similarity between two cellular graph structures is 
evaluated in terms of triangle matching by using the 
Hausdorff distance. This process generates track 
segments that are connected by using global constraints 
such as motion history. The final output generates the 
tracks for each cell in the image.  The main blocks of 
the proposed tracking algorithm will be detailed in the 
next sections of this paper.  
 
3.1. Centroid extraction module 
 

The goal of this module is to segment the images 
and extract the centroid points for all cells present in 
the image data. Segmentation of phase-contrast images 

is a challenging task as the cells’ intensity values are 
not uniform and in general the cellular data is 
characterized by a high level of image noise. Thus, the 
simplistic thresholding operations are not able to 
achieve accurate cell segmentation. The main steps of 
the CEM are listed below. 

(A) To reduce the level of noise, the image is 
filtered with a 3x3 median operator.  

(B) The next step of CEM involves the application 
of Otsu thresholding to obtain the initial segmentation 
of the image data. This thresholding scheme determines 
the suitable threshold between foreground and 
background in an adaptive manner.  

(C) Due to intensity variations, the cells are not 
completely segmented and morphological operations 
are applied to connect the incorrectly divided regions 
and fill the holes. In this process, the concave areas in 
the foreground data are connected using contour 
analysis and the small blobs are removed as they are 
generated by noise. 

(D) Finally, the map resulting after the application 
of the distance transform is evaluated to determine the 
centroids for multiple cells that are agglomerated into a 
cluster. The distance transform map is calculated 
starting from the contour of the region that provides the 
peak in the clustered region and the local peaks were 
selected as the centroids of the individual cells. Figure 
3 shows the results after the application of the centroid 
extraction module. 

 

(a) (b) 

(c) (d) 
Figure 3. (a) Original image (NE4C cellular data). (b) 
Initial segmentation. (c) Final segmentation. (d) 
Centroid points. 

 
 
3.2. Tracking module 

 
In our approach cellular tracking is achieved by 

evaluating the neighbourhood relationship between 
Delaunay meshes calculated for two adjacent frames. 
Tracking module (TM) consists of a number of 
independent processes and they are shown in Figure 2. 

Figure 2. Flow diagram of the proposed 
tracking framework. Left – Centroid 
extraction module. Right – Tracking module 

  
 

Adaptive threshold 
segmentation 
 
Morphological 
operation 
 
Centroid extraction 

Motion history 
for linking 
broken tracks 
 
Track 
generation 
+ 
Node matching 
+ 
Structure 
matching 
 
Represent 
spatial 
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As illustrated in Figure 2, the coordinates of the 
centroid points calculated by CEM are the input for this 
module whereas the output consists of the tracks 
resulting after cell association. The main components 
of the TM will be detailed below.  

(A) To describe the neighbourhood relationship, we 
need to develop a technique that evaluates the spatial 
relationship between neighbouring cells using a graph 
representation. This is performed by applying  
Delaunay triangulation. This approach is able to 
generate the neighbourhood relationship between cells 
by partitioning the space covered by the controid points 
into a structure defined by a set of triangles.  

(B) The next step of the tracking module attempts 
to identify the triangle structures that are common in 
Delaunay meshes that are calculated for each two 
adjacent frames in the image sequence. The triangle 
matching process should be flexible in order to 
accommodate small variations that are caused by 
cellular migration and reject the large variations that 
are usually caused by proliferation. To achieve this 
goal, in this implementation the Hausdorff distance was 
employed to perform triangle matching. Figure 4 
illustrates the Delaunay meshes calculated for two 
consecutive frames where the structure marked in red 
returns the highest similarity. 

Our approach outperforms the tracking techniques 
presented in [14] and [15] as these approaches are not 
able to handle situations caused by proliferation and 
appearance/disappearance of cells close to the image 
border. This is caused by the fact that these approaches 
evaluate the matching process by performing the 
correlation between independent triangles and as a 
result ambiguous matching is possible if the cellular 
structure is severely distorted by significant migration.  

 

  
Figure 4. Neighbourhood relationship generated for 
adjacent images where each node represents the centroid 
of a cell.  

 
     The node (target) association in the proposed 
tracking scheme is formulated as follows.  For each 
node i in the Delaunay graph generated for the frame 
captured at time t-1, a matrix i

tT 1−  that represents pairs 
of triangles is constructed.  In this matrix, the first 

column stores the triangles that share the node i, while 
the second column stores the corresponding matching 
triangles in the Delaunay graph generated for frame 
captured at time t. Similarly, j

tT represents the 
neighbourhood for node j in the current graph at time t. 
In this matrix, the first column stores the triangles that 
share the node j at time t while the second column 
stores the matched triangles in frame at t-1. 

The nodes i and j are associated if the pairs of 
triangles in the corresponding transition matrices 
( i

tT 1− and j
tT ) minimise the Hausdorf distance. For 

instance, in the graphs shown in Figure 5, the triangles 
corresponding to the nodes P and Q are labelled in both 
meshes. 
 

  
Triangles that share the 
node P at time  t-1. 

Triangles that share the 
node Q at time t. 

 

Figure 5. The triangle matching process. 
 
The matrices constructed for nodes P and Q are 
illustrated in Figure 6. These nodes can be associated, 
because one-to-one triangle matching was possible and 
the fact that the matched triangles minimise the 
Hausdorff distance criterion.   
 

Node P  Node Q 
8a 8b 8b 8a 
29a 29b 29b 29a 
3a 3b 3b 3a 
15a 15b 15b 15a 
16a 16b 16b 16a 

 
Figure 6. Transition matrices constructed for the 

nodes P and Q shown in Figure 5. 
 
This matching process was carried out for all nodes 

contained in the cellular mesh. This process generates 
pairs of associated nodes for every two successive 
images and also connects the tracks determined at each 
time t in the image sequence to generate full cellular 
tracks. 
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(C) The last stage of the tracking module performs 
the connection of broken cellular trajectories that are 
generated by image noise or by the 
appearance/disappearance of the cells that merge/split 
in continuous frames.  In this process we use the 
assumption that a reliable cell estimate does not 
appear/disappear close to the centre of the image. If 
new cells appear close to the centre of the image, then 
these are generated either by noise or are the result of 
cellular division. To connect the broken tracks we 
employ motion history analysis that performs a validity 
check for all tracks in the image sequence. In this way, 
if a cell is tracked for a long sequence and it loses the 
track close to the centre of the image (at time t), then 
the algorithm searches for tracks that are newly 
generated after the frame t. The algorithm generates a 
list of nodes and it attempts to connect the broken 
tracks by evaluating the continuity in the spatial-
temporal domain.  
 
 
5. Experiments and Results  
 

The proposed technique was evaluated on NE4C, 
MDCK and HUVEC data. The spatial resolutions of 
these image sequences are 560x400, 400x350, and 
670x510 respectively. The temporal resolutions are 5 
minutes for NE4C data and 10 minutes for others.  

Automated tracking results are compared against the 
manually tracked data and metrics such as the number 
of valid and invalid tracks and sensitivity are used to 
characterize the performance of the proposed 
automated tracking method. In this evaluation a track is 
defined as the cell trajectory from the time the cell is 
first detected until it leaves the areas imaged by the 
camera. Experimental results are depicted in Table 1.  
 
 
Cell 
sequence 

Frames Valid 
track 

Invalid 
track 

Sensitivity 

NE4C 140 23 2 92% 
MDCK 50 60 20 75% 
HUVEC 90 30 8 73% 
 
The results shown in Table 1 indicate that the proposed 
algorithm returns accurate tracking results when 
applied to NE4C data that is characterised by medium 
cell density but the performance of the tracking 
algorithm degrades when applied to MDCK and 
HUVEC cellular data that is characterised by high 
cellular density with a high frequency of cellular 
division (see Figure 7). Visual results that illustrate the 
performance of the proposed algorithm are shown in 

Figures 8 and 9. For visualization purposes, close-up 
images that illustrate the performance of the proposed 
tracking algorithm in the presence of cellular division 
and agglomeration are shown in Figures 10 and 11.    
 

    
             (a)                         (b)                        (c) 
 

Figure 7. Cellular data evaluated in this paper. (a) 
NE4C. (b) MCDK. (c) HUVEC. 
 
 

  
                     (a)                                     (b) 

  
                      (c)                                     (d) 

  
                     (e)                                        (f) 
 
Figure 8. Tracking results when applied to NE4C 
cellular data. (a) Frame 1. (b) Frame 10. (c) Frame 20. 
(d) Frame 30. (e) Frame 40. (f) Frame 50. 
 

Table 1. Sensitivity of tracking results. 
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Figure 9. (Top) Tracking results obtained after the 
algorithm is applied for first 50 frames. (Bottom) 
Tracking results shown in a 2D+time diagram (time is 
represented on Z axis).   
 
 

  
                         (a)                              (b) 

  
                         (c)                             (d) 
 
Figure 10. Tracking results in the presence of cellular 
division. (a) Frame 1. (b) Frame 13. (c) Frame 15. (d) 
Frame 20.  

  
                          (a)                              (b) 

  
                          (c)                              (d) 
 
Figure 11. Tracking results in the presence of cellular 
agglomeration. (a) Frame 1. (b) Frame 10. (c) Frame 
15. (d) Frame 20. 
 
 
6. Conclusion 
  

The aim of this paper was to introduce a novel and 
fully automated framework for cellular tracking. The 
proposed framework encodes the spatial distribution of 
the cells in the image using a graph-based 
representation and tracking is performed by evaluating 
the similarities in the mesh structures that are generated 
for consecutive frames. Full tracks for all detected cells 
in the image are generated using continuity constraints 
that are implemented based on motion history analysis. 
The developed tracking scheme is able to adapt to 
Brownian type motion, does not require initialisation 
procedures, is generic and it can handle difficult 
situations generated by cellular division and 
agglomeration.    

This research is ongoing and future work will be 
focused on the inclusion of motion predictors and on 
the detailed analysis of the motion history to prevent 
the problems generated by over-segmentation in dense 
cellular data.  
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