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Abstract

The localisation of facial landmarks is an important prafia computer vision, with
applications to biometric identification and medicine. Ti&easing availability of three-
dimensional data allows for a complete representationefdahial geometry, overcoming
traditional limitations inherent to 2D, such as viewpointldighting conditions. However,
these benefits can only be fully exploited when the procgssimcentrates purely on the
geometric information, disregarding texture. This facpéticularly interesting when
addressing the localisation of anatomical landmarks, &s 1ot clear to date whether
geometric information can be used to fully replace texterg.(the localisation of the eye
corners and the lips is believed to be strongly linked towextlues).

In this paper we present a quantitative study of 3D landmacklization based on
geometry, texture or a combination of both, integrated iommon framework based on
Gabor filters that has reported state of the art results. Wetd0 facial landmarks and
find that, while the algorithm performs poorly for the noge with a mean 3D error of
6.15mm, the remaining landmarks are all localised with aoremder 3.35mm, with the
outer eye corners and mouth corners performing partigweell. Interestingly, geometry
and texture achieved comparable results for the inner ayeecoand mouth corners, while
texture clearly outperformed geometry for the outer eyaer.

1 Introduction

Facial landmark localisation is the primary step in a number of computer visiteansy$nclud-
ing facial recognition, facial pose estimation, medical diagnostics and multirmpgieations.
Historically most landmark localisation algorithms have used standard 2D im&geh. sys-
tems, no matter how accurate, are always going to be limited by the fact thatréheperating
on dimensionally reduced representations of 3D objects. A significantrambextra infor-
mation about the human face is contained in the 3D spatial dimension.

A number of different approaches have been taken with regard to liogpafecial land-
marks in 3D images. Geometry based techniques have received a gdod aantion. Se-
gundo et al. present an effective system which uses surface dassifitechniques in order to
localise landmarks [Segundo et al., 2010]. The authors record a 3@skttan error of under
10mm for 90% of images in their test set. Creusot et al. combine machine lgamira large
number of geometric techniques in their system [Creusot et al., 2013]adthers note that
while this system does not outperform others in terms of accuracy, itpkyésrm quite well
in terms of robustness. Since the algorithm used is not sequential in refartkire to detect
certain landmarks does not influence the localisation of subsequent leksdnTdis system
provides a framework for landmark localisation and leaves potential fordumprovement.

Zhao et al. present a statistical model based approach in [Zhao etHl], Athis system
works well in challenging situations where there is facial occlusion and#oy gxpressive
faces. This system learns the spatial relationships between differeimdaks and uses this
in conjunction with local texture and range information. The authors useipalnComponent



Analysis (PCA) to create a statistical facial feature map. This is essentiatlynhination of
individual geometry (landmark coordinates), shape (range imagesende (texture images)
models. The authors report a mean 3D error rate of below 5.07mm for &t landmarks.

Perakis et al. use local shape descriptors to localise facial landmamtek[P et al., 2013,
Passalis et al., 2011]. These local shape descriptors characterisgathe profile at a given
landmark. By evaluating the shape index at a landmark in a number of trainigg#aamodel
can be constructed. These descriptors are generated by examinirrntieab curvature and
spin image at a landmark. A facial landmark model is then created. This idusedstrain
the relative locations of detected landmarks. Models are also createe flefttnd right hand
side of the face. These are used to deal with profile or semi-profile.fabessystems achieves
relatively good results with a mean 3D error of below 5.58mm for all 8 targatedinarks.

One particular approach which has received increased attention int neza's is the use
of Gabor filters for facial landmark localisation [Movellan, 2002]. Jdharet al. use Gabor
filter banks for landmark localisation in [Jahanbin et al., 2008]. This tectenimmplements
the same landmark localisation procedure as Wiscott et al. used in their Elagtib Braph
Match system (without the elastic constraint) [Wiskott et al., 1997]. While tilecais do not
present in depth results in this particular paper, it does serve as adrdatef work carried out
by the same research group [Gupta et al., 2010b]. This particular sgsteinines curvature
detection, Gabor filters and expert knowledge of the human face to lotatidemarks using
anthropometric information based on the work carried out by Farkas enahe medical
field [Farkas and Munro, 1987]. This information plays a vital role in digthimg a sensible
search region which is then examined to further improve the accuracyailidation.

An interesting element of the work by Gupta et al. [Gupta et al., 2010b] isxahor filters
are applied to both range and texture and their framework allows for at ditegration of
both sources of information. However, the authors did not provide adletnalysis of this
aspect and results were limited to 2D standard deviation errors, which hampghorough
comparison to other approaches. In this work we present a quantitatigse of landmark
localization errors when using texture, range or both sources of infmat the same time.
We use the framework developed by Gupta et al. and reproduce thts remorted originally,
which allows to also calculate the mean 3D error to make results comparabletéa netark.
We find that the inclusion of both texture and range information always yibklbest results,
although the benefit of range was negligible in some cases. Interestiogthef inner eye
corners and mouth corners the error results were similar for all threel tttenatives.

2 AutomaticLandmark Localisation Using Anthropometric | nfor-
mation

The landmark localisation procedure carried out remains as faithful ssie to the method
developed by Gupta et al. [Gupta et al., 2010b]. Generally speakinggbsgtim first uses
curvature information to detect an approximate location for a particular larkdrising an-

thropometric information a search region is defined around this approxinatithe position
is then refined using as described below. The 10 landmarks localisedean@4hb tip, with

points and root center, inner and outer eye corners and mouth corners

Nose Tip (prn): The Iterative Closest Point (ICP) algorithm is used to register ea@hifac
the database to a frontal template face. These aligned images are usedlised|uent steps.
Once all images have been aligned the manually localised tip of the template fakensata
an approximate location for tip of the nose in all images. A window of 96 mm x 96mm is
then defined around this approximated nose tip. Since all faces havé&betdly aligned, the
actual nose tip is present in this large window for all cases. This meanthéhatethod is not
fully automated since it relies on the manually localised tip of the template face.

It has been observed that the Gaussian surface curvature of thethip dse is distinctly
elliptical (K >0,) [Moreno et al., 2003, Segundo et al., 2010, Creusot et al., 2B6d8this rea-



son the Gaussian surface curvature=(15 pixels) is evaluated within the search region about
the nose tip approximation. The maximum Gaussian curvature within the regidkeis &3
final location of the nose tip (prn).

Nose Width Points (al-al): These points are localised by first defining a search region around
the detected nose tip. The size of this window (42 mm x 50 mm) is defined baskd orean

and standard deviation values published by Farkas [Farkas and ML889]. A Laplacian of
Gaussian edge detector € 7 pixels) is then used within this region. Moving in a horizontal
direction from the nose tip, the first edge encountered is consideredhe Ip@se contour and

is retained. Then, points of negative curvature are detected by giagexa unwrapped chain
code for the nose contour and using a derivative of Gaussian filteisarie dimensional sig-

nal to detect points of critical curvature [Rodriguez and Aggarwal0198lose width points

are finally selected from the critical points immediately above and below the alectbordi-

nate of the nose tip. The widest of these are selected as nose width points.

Inner Eye Corner (en-en) & Center of Nose Root (m’): A search region for the left and right
inner eye corners is defined using the location of the detected nose tipaadvidth points.
The vertical limit defined based on the fact that for the average adult,istende between
inner eye corners and the tip of the nose in the vertical direction is 0.3803 tiraelstance
between the tip of the nose and the top point of the head [Farkas and M@&0, Gupta et al.,
2010b]. Gupta et al. allow for variations in the measure by setting the umggcal limit
at (prny + 0.3803 x 1.5|prn, — V,|), whereV,, is theY coordinate of the highest vertical
point in the 3D model. The horizontal limit is obtained by using the locations of tse n
width points and the nose tip. Specifically, horizontal limits are defined fronmdise tip to
aly jet /right £ 0.5laly e pe — aly rignt| for the left and right inner eye corners.

The Gaussian curvature within this region is evaluated and the location of nmaxamu
vature is used as an approximation for the location of the inner eye cerner {5 pixels).
Finally a region of 20mm x 20mm is defined around this peak of Gaussiaatcuev

The location of inner eye corners are then refined with a modified versitredEBGM
technique [Jahanbin et al., 2008, Wiskott et al., 1997]. In brief, thisnigcle involves com-
paring the Gabor coefficients generated for each pixel in the seajicmmith the coefficients
for the landmarks of 89 training images. These 89 images consist of hanttaxpressive
faces. The images are selected in an attempt to cover as much featureevasgrossible (i.e.
closed/open mouth and eyes). 80 Gabor coefficients (known as a {&fbare generated at
each landmark for each of the example images. A filter bank of 40 Gabos fiftarsed (5
scales x 8 orientations). 40 coefficients are generated for both r@mjeaqd texture (2D)
images. While the specific parameters of these filters are not provided jmg@tal., 2010b],
we used the filter bank outlined in by Wiscott et al. [Wiskott et al., 1997]. Nuae, for the
database used, all images should be scaleﬁ\byen Gabor filtering is applied.The final loca-
tion of the inner eye corner is obtained by finding the pixel which has a Gabmost similar
to that of any training landmark. The similarity score is given in equation (1):
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where.J and.J’ are the jets to be compared, defined/as= a; ¢s. Wherea is the magnitude
and ¢ is the phase of the Gabor coefficient at a given pixel.The jets contain dither 80
coefficients depending on which form of EBGM is to be used. Gupta ethalsecto use 2D

and 3D Gabor coefficients. In this work 2D, 3D and 2D+3D results amnegpewed. The center
of the nose root is determined by finding the mid-point between the two inesc@yers.

Outer Eye Corners (ex-ex): A search region for the outer eye corners is defined based on the
location of the detected inner eye corners as per [Gupta et al., 201ib]20 x 34 mm region
is evaluated using the same search procedure as used for the innermeses.c Gupta et al.



chose to use 2D EBGM search as the outer eye corner region doeaveodlistinct enough
curvature characteristics. In this work all three EBGM techniques aleiaed.

Mouth Corners (ch-ch): The lip curvature is examined in order to determine a search region

for the mouth corners. The Gaussian curvature of both the upper aed lipa is elliptical in

nature. The regions immediately above the upper lip and below the lower lip/pesliolic

(K < 0). These properties can be used to define upper and lower search linthe fmouth

corners. The horizontal limits are defined Wyl jc s — 0.7|aly jert — aly right])s (Al ieft)]

for ch;.y; and analogously fath,.;44:. In order to remove noise a certain amount of smoothing

must be carried out when calculating Gaussian curvature. In somethaggaussian curvature

of the upper or lower lip is too weak and cannot be localised. In suchsdhasetroughs in

Gaussian curvature immediately above and below the lip region are used as lfiite

these are usually stronger features than the lips, errors can arisesedrehing for peak mean

curvature in the next stage of the algorithm as there is a high mean curalingethe jaw line.
The mean curvatures(= 2 pixels) is then calculated for the defined search region. Since

the mouth corners are regions of high mean curvature the peak curvatuedn this region is

taken as an estimate for of the mouth corner. A 30mm x 11mm search regidmisddaround

these mouth corner estimates. The same EBGM procedure used to localige toereers is

also used to precisely localise the mouth corners. Gupta et al. chose tb+3B EBGM. In

this work 2D, 3D and 2D+3D EBGM results are compared.

3 Experimental Results & Discussion

3.1 Test Data

The performance of the landmark localisation algorithm is evaluated usingettess BDFR

database [Gupta et al., 2010a]. It contains high resolution (751 x 58pix32 mm per pixel)
pairs of portrait and range images from 118 healthy adult subjects.ci8 landmarks have
been manually located. Both range and portrait images were acquired sieauigiyusing a
regularly calibrated stereo vision system and the data was filtered, intexgb@lad smoothed
to remove impulse noise and large holes [Gupta et al., 2010a]. From thepbi#8it-range

pairs of the database, 89 were used in the EBGM search and the remdi6ihgvére used as
test data.

3.2 Landmark Localisation Results

The landmark localisation results obtained for the Texas 3DFR databaggvarein Table
2. All results are given in millimetres. As mentioned previously Gupta et al. dpmwide
3D error results [Gupta et al., 2010b]. Thus, we compared our resultee tones originally
provided, in terms of 2D standard deviation and confirmed that our implemengataithfully
reproduced the original method (Table 1).

The mean error result of the nose tip is noticeably larger than the localisdtiba other
landmarks. On closer examination it appears that in all cases the detestetipiés above
the manually localised nose tip (in the Y direction). This can clearly be seen oot in
Figure 1. This figure shows clearly that the median value for the X erromis @s expected in
a normal error distribution. The Y distribution is extremely skewed to one sitteeananually
localised nose tip (a negative Y error is above the manual location for ightiface). Since
the standard deviation of the Y error is relatively small it seems that the isshoat ithe peak
of Gaussian curvature does not correspond to the same location thelraanatators have
identified as the nose tip.

The mean error results obtained for the nose width points are reasortaldehe standard
deviations are impressive, especially when using the modified EBGM teehnfiBD mean
error of under 2mm is recorded for both inner eye corners. The eytcorners which are
slightly more difficult to localise are detected with a mean error of under 2.6mm. #me



X std. dev (mm) Y std. dev (mm) 2D std. dev (mm)
Landmark Gupta ThisMethod Gupta ThisMethod Gupta ThisMethod

PRN  1.045 0.766 1.680 1.714 1.978 1.705

AL Left 0.721 0.647 1.655 0.710 1.805 0.739
AlRight  0.798 0.546 1.646 0.814 1.829 0.818
EN Left 1.488 1.249 1.245 0.908 1.940 1.363
EN Right 1.354 1.378 1.344 0.792 1.908 1.417
M 1.355 1.415 1.811 1.010 2.261 1.417
EXLeft 1.795 1.727 1.285 1.047 2.208 1.850
EXRight 2.126 1.940 1.384 1.248 2.537 2.149
CH Left 1.948 1.749 0.933 1.692 2.160 2.321
CHRight 1.976 1.429 1.045 0.844 2.235 1.460

Table 1: Error standard deviation results comparison with Gupta et alt§&u@al., 2010b]

X Error(mm) Y Error(mm)

Figure 1: Vertical Prn Error Bias

error of below 2.16mm is achieved for both mouth corners. The algorithes dave particular
difficultly with faces where facial hair is present. This is as expected wiserg Gabor filters
as there is a significantly different response to a Gabor filter when faaiiais present.

One interesting point to note is that the three worst results obtained arefthrde land-
marks localised using techniques which do not involve training. The trainage of EBGM
uses manual landmark locations. This means that when EBGM is used, théhatgeearches
for a location on an unknown image which is most similar to the training data, whizdsisd
on manual locations. For the nose tip and width points the algorithm seamheparticular
image feature (e.g. maximum Gaussian curvature) which is said to be pa¢feaitlandmark.
Perhaps using EBGM for all landmarks might yield better performanceth®npossible issue
could be marker bias. No details are provided about how many annotatoused but using
separate annotators for test and training data could be a possible solution.

Landmark | Prn A, Alg En, Eng M Ex, Exzg Chy, Chg

3Dmean | 6.15 3.35 331 182 1.75 276 248 259 216 2.02
3Dstdev | 1.75 165 1.88 150 152 159 258 299 3.04 215

Table 2: Landmark localisation error
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Figure 2: 3D error boxplot

3.3 Texture& Range Comparison

The inner eyes and outer mouth corners are detected using 2D + 3D EBB&12 EBGM
is used for the outer eye corners. The same similarity metric is used in eaclilyagth the
only difference being the coefficients examined.

Landmark ‘ 2D EBGM 3D EBGM 2D+3D EBGM
En Left 1.83+1.53 2.18+1.70 1.82+ 1.50
EnRight | 1.75+£ 155 1.99+ 1.58 1.75+1.52
Ex Left 248+ 258 5.10+5.28 2.39+2.12
ExRight | 2.59+2.99 8.91+ 7.22 2.494+ 2.27
ChLeft | 2.20+2.83 2.54+2.89 2.16+ 3.04
ChRight | 2.15+2.44 2.20+1.61 2.02+ 2.15

Table 3: 2D, 3D & 2D+3D EBGM comparison, in terms of 3D error (meastd. dev.)

Interestingly, Table 3 shows that for the inner and outer eye corneisdlusion of range
coefficients improves localisation results. Gupta et al. use 2D + 3D for the &ye corner
while they choose to use just 2D for the outer eye corners. The restdtimet here suggest
that a similar improvement in localisation could be achieved with the inclusion géramfior-
mation. While it is clear that just using 3D information results in poor localisatiolopaance
it should be noted that the 3D information only influences the result of lotialisavhen a 3D
coefficient is more similar to one of the training image coefficients than any dheoeffi-
cients. This means that in some individual cases the inclusion of 3D infornratigradversely
affect localisation but for the entire database the average error iseédu

With regard to the mouth corners the use of texture and range informatioltsresthe
best mean error performance. This is the same as the behaviour for éndantthmarks. Once
again the worst mean error is recorded when just range informationds use

Itis clear that in all cases examined the inclusion of more information (textusmge) in
the EBGM stage results in better overall localisation. This suggests that therginsitare and
the procedure Gupta et al. use for choosing the landmark location woitkes/egll. It suggests
that in the majority of cases the inclusion of extra information leads to enhdocalisation
performance. Obviously there is a computational overhead to be coedidéren including
this extra information but in cases where speed isn’'t an issue it seemsehatlision of 2D
and 3D information leads to the best localisation performance.

Since the 2D and 3D EBGM techniques are directly comparable, Table Zghatvfor all
landmarks examined texture information yields better results. Though forribeéye corners
and mouth corners this difference is quite small.



4 Conclusion

We have shown that the method developed by Gupta et al. achieves stateaof ldndmark
localisation results. The one weak point is the localisation of the nose tip whiglitespoor.
Even though the localisation of the tip is poor it does not appear to advexiety the local-
isation of subsequent landmarks where the location of the nose tip is usefirie d search
region. Another better performing method, such as that used by Seguadoceuld perhaps
be used for the localisation of the nose tip [Segundo et al., 2010].

It was determined that for the EBGM stage, the inclusion of both textureargerinfor-
mation yields the best results. Interestingly, for the inner eye cornersnanth corners the
error results recorded are similar for each of the EBGM methods. Foutiee eye corner 3D
EBGM performed quite poorly, with 2D and 2D+3D obtaining similar results. Fhiggests
that for outer eye corner detection, 2D EBGM could be used without aisent (~ 0.3mm)
decrease in mean error.
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