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Abstract

The localisation of facial landmarks is an important problem in computer vision, with
applications to biometric identification and medicine. Theincreasing availability of three-
dimensional data allows for a complete representation of the facial geometry, overcoming
traditional limitations inherent to 2D, such as viewpoint and lighting conditions. However,
these benefits can only be fully exploited when the processing concentrates purely on the
geometric information, disregarding texture. This fact isparticularly interesting when
addressing the localisation of anatomical landmarks, as itis not clear to date whether
geometric information can be used to fully replace texture (e.g. the localisation of the eye
corners and the lips is believed to be strongly linked to texture clues).

In this paper we present a quantitative study of 3D landmark localization based on
geometry, texture or a combination of both, integrated in a common framework based on
Gabor filters that has reported state of the art results. We target 10 facial landmarks and
find that, while the algorithm performs poorly for the nose tip with a mean 3D error of
6.15mm, the remaining landmarks are all localised with an error under 3.35mm, with the
outer eye corners and mouth corners performing particularly well. Interestingly, geometry
and texture achieved comparable results for the inner eye corners and mouth corners, while
texture clearly outperformed geometry for the outer eye corners.

1 Introduction

Facial landmark localisation is the primary step in a number of computer vision systems includ-
ing facial recognition, facial pose estimation, medical diagnostics and multimediaapplications.
Historically most landmark localisation algorithms have used standard 2D images.Such sys-
tems, no matter how accurate, are always going to be limited by the fact that theyare operating
on dimensionally reduced representations of 3D objects. A significant amount of extra infor-
mation about the human face is contained in the 3D spatial dimension.

A number of different approaches have been taken with regard to localising facial land-
marks in 3D images. Geometry based techniques have received a good deal of attention. Se-
gundo et al. present an effective system which uses surface classification techniques in order to
localise landmarks [Segundo et al., 2010]. The authors record a 3D localisation error of under
10mm for 90% of images in their test set. Creusot et al. combine machine learning and a large
number of geometric techniques in their system [Creusot et al., 2013]. Theauthors note that
while this system does not outperform others in terms of accuracy, it doesperform quite well
in terms of robustness. Since the algorithm used is not sequential in nature,a failure to detect
certain landmarks does not influence the localisation of subsequent landmarks. This system
provides a framework for landmark localisation and leaves potential for future improvement.

Zhao et al. present a statistical model based approach in [Zhao et al., 2011]. This system
works well in challenging situations where there is facial occlusion and/or very expressive
faces. This system learns the spatial relationships between different landmarks and uses this
in conjunction with local texture and range information. The authors use Principal Component



Analysis (PCA) to create a statistical facial feature map. This is essentially a combination of
individual geometry (landmark coordinates), shape (range images) andtexture (texture images)
models. The authors report a mean 3D error rate of below 5.07mm for all 15facial landmarks.

Perakis et al. use local shape descriptors to localise facial landmarks [Perakis et al., 2013,
Passalis et al., 2011]. These local shape descriptors characterise theshape profile at a given
landmark. By evaluating the shape index at a landmark in a number of training images a model
can be constructed. These descriptors are generated by examining the principal curvature and
spin image at a landmark. A facial landmark model is then created. This is usedto constrain
the relative locations of detected landmarks. Models are also created for the left and right hand
side of the face. These are used to deal with profile or semi-profile faces. The systems achieves
relatively good results with a mean 3D error of below 5.58mm for all 8 targetedlandmarks.

One particular approach which has received increased attention in recent years is the use
of Gabor filters for facial landmark localisation [Movellan, 2002]. Jahanbin et al. use Gabor
filter banks for landmark localisation in [Jahanbin et al., 2008]. This technique implements
the same landmark localisation procedure as Wiscott et al. used in their Elastic Bunch Graph
Match system (without the elastic constraint) [Wiskott et al., 1997]. While the authors do not
present in depth results in this particular paper, it does serve as a basis for later work carried out
by the same research group [Gupta et al., 2010b]. This particular systemcombines curvature
detection, Gabor filters and expert knowledge of the human face to localiselandmarks using
anthropometric information based on the work carried out by Farkas et al.in the medical
field [Farkas and Munro, 1987]. This information plays a vital role in establishing a sensible
search region which is then examined to further improve the accuracy of localisation.

An interesting element of the work by Gupta et al. [Gupta et al., 2010b] is thatGabor filters
are applied to both range and texture and their framework allows for a direct integration of
both sources of information. However, the authors did not provide a detailed analysis of this
aspect and results were limited to 2D standard deviation errors, which hampers a thorough
comparison to other approaches. In this work we present a quantitative analysis of landmark
localization errors when using texture, range or both sources of information at the same time.
We use the framework developed by Gupta et al. and reproduce the results reported originally,
which allows to also calculate the mean 3D error to make results comparable to related work.
We find that the inclusion of both texture and range information always yieldsthe best results,
although the benefit of range was negligible in some cases. Interestingly, for the inner eye
corners and mouth corners the error results were similar for all three tested alternatives.

2 Automatic Landmark Localisation Using Anthropometric Infor-
mation

The landmark localisation procedure carried out remains as faithful as possible to the method
developed by Gupta et al. [Gupta et al., 2010b]. Generally speaking the algorithm first uses
curvature information to detect an approximate location for a particular landmark. Using an-
thropometric information a search region is defined around this approximationand the position
is then refined using as described below. The 10 landmarks localised are the nose tip, with
points and root center, inner and outer eye corners and mouth corners.

Nose Tip (prn): The Iterative Closest Point (ICP) algorithm is used to register each face in
the database to a frontal template face. These aligned images are used in all subsequent steps.
Once all images have been aligned the manually localised tip of the template face is taken as
an approximate location for tip of the nose in all images. A window of 96 mm x 96mm is
then defined around this approximated nose tip. Since all faces have beenfrontally aligned, the
actual nose tip is present in this large window for all cases. This means thatthe method is not
fully automated since it relies on the manually localised tip of the template face.

It has been observed that the Gaussian surface curvature of the tip ofthe nose is distinctly
elliptical (K >0,) [Moreno et al., 2003,Segundo et al., 2010,Creusot et al., 2013].For this rea-



son the Gaussian surface curvature (σ = 15 pixels) is evaluated within the search region about
the nose tip approximation. The maximum Gaussian curvature within the region is taken as
final location of the nose tip (prn).

Nose Width Points (al-al): These points are localised by first defining a search region around
the detected nose tip. The size of this window (42 mm x 50 mm) is defined based onthe mean
and standard deviation values published by Farkas [Farkas and Munro, 1987]. A Laplacian of
Gaussian edge detector (σ = 7 pixels) is then used within this region. Moving in a horizontal
direction from the nose tip, the first edge encountered is considered to bethe nose contour and
is retained. Then, points of negative curvature are detected by generating an unwrapped chain
code for the nose contour and using a derivative of Gaussian filter on this one dimensional sig-
nal to detect points of critical curvature [Rodriguez and Aggarwal, 1990]. Nose width points
are finally selected from the critical points immediately above and below the vertical coordi-
nate of the nose tip. The widest of these are selected as nose width points.

Inner Eye Corner (en-en) & Center of Nose Root (m’): A search region for the left and right
inner eye corners is defined using the location of the detected nose tip and nose width points.
The vertical limit defined based on the fact that for the average adult, the distance between
inner eye corners and the tip of the nose in the vertical direction is 0.3803 timesthe distance
between the tip of the nose and the top point of the head [Farkas and Munro, 1987,Gupta et al.,
2010b]. Gupta et al. allow for variations in the measure by setting the upper vertical limit
at (prny + 0.3803 × 1.5|prny − Vy|), whereVy is theY coordinate of the highest vertical
point in the 3D model. The horizontal limit is obtained by using the locations of the nose
width points and the nose tip. Specifically, horizontal limits are defined from thenose tip to
alx,left/right ± 0.5|alx,left − alx,right| for the left and right inner eye corners.

The Gaussian curvature within this region is evaluated and the location of maximum cur-
vature is used as an approximation for the location of the inner eye corner (σ = 15 pixels).
Finally a region of 20mm x 20mm is defined around this peak of Gaussian curvature.

The location of inner eye corners are then refined with a modified version of the EBGM
technique [Jahanbin et al., 2008, Wiskott et al., 1997]. In brief, this technique involves com-
paring the Gabor coefficients generated for each pixel in the search region with the coefficients
for the landmarks of 89 training images. These 89 images consist of neutraland expressive
faces. The images are selected in an attempt to cover as much feature variance as possible (i.e.
closed/open mouth and eyes). 80 Gabor coefficients (known as a Gaborjet) are generated at
each landmark for each of the example images. A filter bank of 40 Gabor filters is used (5
scales x 8 orientations). 40 coefficients are generated for both range (3D) and texture (2D)
images. While the specific parameters of these filters are not provided in [Gupta et al., 2010b],
we used the filter bank outlined in by Wiscott et al. [Wiskott et al., 1997]. Notethat, for the
database used, all images should be scaled by1
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when Gabor filtering is applied.The final loca-

tion of the inner eye corner is obtained by finding the pixel which has a Gabor jet most similar
to that of any training landmark. The similarity score is given in equation (1):
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whereJ andJ ′ are the jets to be compared, defined asJj = aj e
iφj . Wherea is the magnitude

andφ is the phase of the Gabor coefficient at a given pixel.The jets contain either40 or 80
coefficients depending on which form of EBGM is to be used. Gupta et al. chose to use 2D
and 3D Gabor coefficients. In this work 2D, 3D and 2D+3D results are compared. The center
of the nose root is determined by finding the mid-point between the two inner eye corners.

Outer Eye Corners (ex-ex): A search region for the outer eye corners is defined based on the
location of the detected inner eye corners as per [Gupta et al., 2010b]. This 20 x 34 mm region
is evaluated using the same search procedure as used for the inner eye corners. Gupta et al.



chose to use 2D EBGM search as the outer eye corner region does not have distinct enough
curvature characteristics. In this work all three EBGM techniques are evaluated.

Mouth Corners (ch-ch): The lip curvature is examined in order to determine a search region
for the mouth corners. The Gaussian curvature of both the upper and lower lips is elliptical in
nature. The regions immediately above the upper lip and below the lower lip are hyperbolic
(K < 0). These properties can be used to define upper and lower search limits for the mouth
corners. The horizontal limits are defined by[(alx,left − 0.7|alx,left − alx,right|), (alx,left)]
for chleft and analogously forchright. In order to remove noise a certain amount of smoothing
must be carried out when calculating Gaussian curvature. In some casesthe Gaussian curvature
of the upper or lower lip is too weak and cannot be localised. In such cases the troughs in
Gaussian curvature immediately above and below the lip region are used as limits.While
these are usually stronger features than the lips, errors can arise whensearching for peak mean
curvature in the next stage of the algorithm as there is a high mean curvaturealong the jaw line.

The mean curvature (σ = 2 pixels) is then calculated for the defined search region. Since
the mouth corners are regions of high mean curvature the peak curvaturevalue in this region is
taken as an estimate for of the mouth corner. A 30mm x 11mm search region is defined around
these mouth corner estimates. The same EBGM procedure used to localise the eye corners is
also used to precisely localise the mouth corners. Gupta et al. chose to use 2D+3D EBGM. In
this work 2D, 3D and 2D+3D EBGM results are compared.

3 Experimental Results & Discussion

3.1 Test Data

The performance of the landmark localisation algorithm is evaluated using the Texas 3DFR
database [Gupta et al., 2010a]. It contains high resolution (751 x 501 pixels, 0.32 mm per pixel)
pairs of portrait and range images from 118 healthy adult subjects. 25 facial landmarks have
been manually located. Both range and portrait images were acquired simultaneously using a
regularly calibrated stereo vision system and the data was filtered, interpolated and smoothed
to remove impulse noise and large holes [Gupta et al., 2010a]. From the 1149portrait-range
pairs of the database, 89 were used in the EBGM search and the remaining 1060 were used as
test data.

3.2 Landmark Localisation Results

The landmark localisation results obtained for the Texas 3DFR database aregiven in Table
2. All results are given in millimetres. As mentioned previously Gupta et al. do not provide
3D error results [Gupta et al., 2010b]. Thus, we compared our results tothe ones originally
provided, in terms of 2D standard deviation and confirmed that our implementation a faithfully
reproduced the original method (Table 1).

The mean error result of the nose tip is noticeably larger than the localisation of the other
landmarks. On closer examination it appears that in all cases the detected nose tip is above
the manually localised nose tip (in the Y direction). This can clearly be seen in theboxplot in
Figure 1. This figure shows clearly that the median value for the X error is 0mm as expected in
a normal error distribution. The Y distribution is extremely skewed to one side of the manually
localised nose tip (a negative Y error is above the manual location for an upright face). Since
the standard deviation of the Y error is relatively small it seems that the issue isthat the peak
of Gaussian curvature does not correspond to the same location the manual annotators have
identified as the nose tip.

The mean error results obtained for the nose width points are reasonable while the standard
deviations are impressive, especially when using the modified EBGM technique. A 3D mean
error of under 2mm is recorded for both inner eye corners. The outereye corners which are
slightly more difficult to localise are detected with a mean error of under 2.6mm. A mean



X std. dev (mm) Y std. dev (mm) 2D std. dev (mm)

Landmark Gupta This Method Gupta This Method Gupta This Method
PRN 1.045 0.766 1.680 1.714 1.978 1.705

AL Left 0.721 0.647 1.655 0.710 1.805 0.739
Al Right 0.798 0.546 1.646 0.814 1.829 0.818
EN Left 1.488 1.249 1.245 0.908 1.940 1.363

EN Right 1.354 1.378 1.344 0.792 1.908 1.417
M’ 1.355 1.415 1.811 1.010 2.261 1.417

EX Left 1.795 1.727 1.285 1.047 2.208 1.850
EX Right 2.126 1.940 1.384 1.248 2.537 2.149
CH Left 1.948 1.749 0.933 1.692 2.160 2.321

CH Right 1.976 1.429 1.045 0.844 2.235 1.460

Table 1: Error standard deviation results comparison with Gupta et al. [Gupta et al., 2010b]
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Figure 1: Vertical Prn Error Bias

error of below 2.16mm is achieved for both mouth corners. The algorithm does have particular
difficultly with faces where facial hair is present. This is as expected whenusing Gabor filters
as there is a significantly different response to a Gabor filter when facialhair is present.

One interesting point to note is that the three worst results obtained are for the three land-
marks localised using techniques which do not involve training. The training stage of EBGM
uses manual landmark locations. This means that when EBGM is used, the algorithm searches
for a location on an unknown image which is most similar to the training data, which isbased
on manual locations. For the nose tip and width points the algorithm searches for a particular
image feature (e.g. maximum Gaussian curvature) which is said to be presentat that landmark.
Perhaps using EBGM for all landmarks might yield better performance. Another possible issue
could be marker bias. No details are provided about how many annotators are used but using
separate annotators for test and training data could be a possible solution.

Landmark Prn AlL AlR EnL EnR M’ ExL ExR ChL ChR

3D mean 6.15 3.35 3.31 1.82 1.75 2.76 2.48 2.59 2.16 2.02
3D stdev 1.75 1.65 1.88 1.50 1.52 1.59 2.58 2.99 3.04 2.15

Table 2: Landmark localisation error
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Figure 2: 3D error boxplot

3.3 Texture & Range Comparison

The inner eyes and outer mouth corners are detected using 2D + 3D EBGM while 2D EBGM
is used for the outer eye corners. The same similarity metric is used in each case (1) with the
only difference being the coefficients examined.

Landmark 2D EBGM 3D EBGM 2D+3D EBGM

En Left 1.83± 1.53 2.18± 1.70 1.82± 1.50
En Right 1.75± 1.55 1.99± 1.58 1.75± 1.52
Ex Left 2.48± 2.58 5.10± 5.28 2.39± 2.12

Ex Right 2.59± 2.99 8.91± 7.22 2.49± 2.27
Ch Left 2.20± 2.83 2.54± 2.89 2.16± 3.04

Ch Right 2.15± 2.44 2.20± 1.61 2.02± 2.15

Table 3: 2D, 3D & 2D+3D EBGM comparison, in terms of 3D error (mean± std. dev.)

Interestingly, Table 3 shows that for the inner and outer eye corners theinclusion of range
coefficients improves localisation results. Gupta et al. use 2D + 3D for the inner eye corner
while they choose to use just 2D for the outer eye corners. The results obtained here suggest
that a similar improvement in localisation could be achieved with the inclusion of range infor-
mation. While it is clear that just using 3D information results in poor localisation performance
it should be noted that the 3D information only influences the result of localisation when a 3D
coefficient is more similar to one of the training image coefficients than any of the2D coeffi-
cients. This means that in some individual cases the inclusion of 3D informationmay adversely
affect localisation but for the entire database the average error is reduced.

With regard to the mouth corners the use of texture and range information results in the
best mean error performance. This is the same as the behaviour for the other landmarks. Once
again the worst mean error is recorded when just range information is used.

It is clear that in all cases examined the inclusion of more information (texture &range) in
the EBGM stage results in better overall localisation. This suggests that the similarity score and
the procedure Gupta et al. use for choosing the landmark location works quite well. It suggests
that in the majority of cases the inclusion of extra information leads to enhancedlocalisation
performance. Obviously there is a computational overhead to be considered when including
this extra information but in cases where speed isn’t an issue it seems that the inclusion of 2D
and 3D information leads to the best localisation performance.

Since the 2D and 3D EBGM techniques are directly comparable, Table 3 shows that for all
landmarks examined texture information yields better results. Though for the inner eye corners
and mouth corners this difference is quite small.



4 Conclusion

We have shown that the method developed by Gupta et al. achieves state of the art landmark
localisation results. The one weak point is the localisation of the nose tip which isquite poor.
Even though the localisation of the tip is poor it does not appear to adverselyaffect the local-
isation of subsequent landmarks where the location of the nose tip is used to define a search
region. Another better performing method, such as that used by Segundo et al., could perhaps
be used for the localisation of the nose tip [Segundo et al., 2010].

It was determined that for the EBGM stage, the inclusion of both texture and range infor-
mation yields the best results. Interestingly, for the inner eye corners andmouth corners the
error results recorded are similar for each of the EBGM methods. For the outer eye corner 3D
EBGM performed quite poorly, with 2D and 2D+3D obtaining similar results. Thissuggests
that for outer eye corner detection, 2D EBGM could be used without a significant (∼ 0.3mm)
decrease in mean error.
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