

$

NeatVision: A Development
Environment for Machine Vision
Engineers

By

Paul F. Whelan, Robert Sadleir & Ovidiu
Ghita1

Abstract: This Chapter will detail a free image analysis development
environment for machine vision engineers. The environment provides
high-level access to a wide range of image manipulation, processing and
analysis algorithms (over 300 to date) through a well-defined and easy to
use graphical interface. Users can extend the core library using the
developer’s interface, a plug-in, which features, automatic source code
generation, compilation with full error feedback and dynamic algorithm
updates. The Chapter will also discuss key issues associated with the
environment and outline the advantages in adopting such a system for
machine vision application development.

$.1 Introduction

For many novices to the world of machine vision, the development of
automated vision solutions may seem a relatively easy task, as it only
requires a computer to understand basic elements such as shape, colour
and texture? Of course this is not the case. Extracting useful information

1 http://www.cipa.dcu.ie/

from images is a difficult task and as such requires a flexible machine
vision application development environment. The design of machine vision
systems requires a broad spectrum of techniques and disciplines. These
include electronic engineering (hardware and software design),
engineering mathematics, physics (optics and lighting), mechanical
engineering (since industrial vision systems deal with a mainly mechanical
world) as well as the system engineering aspects of developing reliable
industrial systems. In this chapter will focus on one aspect of the machine
vision design cycle, namely the algorithm development environment
(refereed to as NeatVision (1)). It aims to provide novice and experienced
machine vision engineer’s with access to a multi-platform (realised through
the use of Java) visual programming development system.

Java is an interpreted programming language and as such applications
written in Java are not executed directly on the host computer, instead
these applications are interpreted by the Java Virtual Machine. As a
results Java programs generally run slower than native compiled programs
written in languages such as C or C++. This performance issue is
constantly being addressed by Sun Microsystems. Just-in-time compliers
significantly improved the performance of Java applications by removing
the need to reinterpret already executed code. Sun further improved the
performance of Java by introducing HotSpot technology. This technology
enhances application performance by optimising garbage collection and
improving memory management. With the recent release of the Java 2
Platform Standard Edition 1.5.0 the performance of Java is approaching
that of native programming languages.

The NeatVision environment provides an intuitive interface which is
achieved using a drag and drop block diagram approach. Each image
processing operation is represented by a graphical block with inputs and
outputs that can be interconnected, edited and deleted as required.
NeatVision (Version 2.1) is available free of charge and can be
downloaded directly via the Internet2.

$.1.1 Standard Installation

The requirements for the standard NeatVision installation are:

• JRE 1.4.X - The J2SE Java Runtime Environment (JRE) allows end-users to run Java

applications. (e.g. j2re-1_4_2_09-windows-i586-p.exe)
• JAI 1.X - Java Advanced Imaging (JAI) API. (e.g. jai-1_1_X-lib-windows-i586-jre.exe)
• NeatVision Standard Edition (neatvision.jar). NeatVision is distributed as a ".jar" file.

The contents of this file should not be extracted; any attempt to do this will cause
NeatVision to cease functioning.

Please insure that the JAI is placed in the same path as the JRE. This only
becomes an issue if you have multiple versions of Java on your machine

2 www.NeatVision.com

(the default is that JAI will place itself in the most recent version of the
Java). Assuming the JRE has been installed in C:\Program
Files\Java\j2re1.4.2_09 and the NeatVision jar file is in D:\NV,
then the following single line command3 will enable NeatVision to run from
D:\NV.

"C:\Program Files\Java\j2re1.4.2_09\bin\java.exe" -classpath

D:\NV\neatvision.jar NeatVision

$.2 NeatVision: An Interactive Development Environment

NeatVision is just one example of a visual programming development
environment for machine vision (2), other notable examples include
commercial programmes such as Khoros (3) and WiT (4). Visual
programming involves defining variables, specifying operations, which are
to be performed on these variables and their derivatives in order to
perform a specific task. This is achieved by creating a structured flow of
data using branching, looping and conditional processing. Traditionally
computer programs have been written using textual programming
languages. These programs can process data in a complex fashion;
unfortunately the data paths and the overall structure of the program
cannot be easily identified from the textual description. This can make it
very difficult to appreciate the relationship between the source code and
the functionality, which it represents. Although the programmer specifies
the data flow in a visual program, the order in which the components
execute is defined by the availability of data. Conditional processing
concepts are supported in the visual domain by using dedicated flow
control components. The main disadvantages of existing visual
programming environments includes their cost, lack of cross platform
support and the fact that they tend to be focused on image processing
rather than image analysis applications (the latter must be considered a
key element of any practical machine vision application).

Text based programming languages such as MATLAB (5) can be a
powerful alternative to visual programming. In addition to the
disadvantages outlined with respect to the visual programming languages,
text based approaches require the user to have a higher level of
programming skills when compared to visual programming environments.
Text based interactive environments are generally more suitable to
experienced users, in fact experienced users can become frustrated by the
visual programming environment as complex programmes can take longer
to develop (Note: we have recently developed a MATLAB compatible VSG
Image Processing & Analysis Toolbox toolbox (12) that replicates
NeatVisions functionality to allow MATLAB users build machine vision

3 The NeatVision argument must have a capital 'N' and 'V'.

solutions). Hence our aim is to produce a suitable environment for those
new to machine vision while retaining the flexibility of program design for
the more experienced users. Based on our review of exiting text and visual
programming based machine vision development environments, the key
criteria necessary are outlined below:

• Multi-platform: The development environment must be able to

run on a wide range of computer platforms.
• Focused on machine vision engineering: The environment

should contain a wide range of image processing and analysis
techniques necessary to implement practical machine vision
engineering applications.

• Easy to use: It should allow users to concentrate on the design of
machine vision solutions, as opposed to emphasizing the
programming task.

• Upgradeable: The environment must contain a mechanism to
allow users to develop custom vision modules.

A visual program can be created by defining input data using the input
components, then implementing the desired algorithm using the
processing and flow control components. The data flow is specified by
creating interconnections between the components. The program can be
completed by adding output components to view the data resulting from
the algorithm execution. Details on the design of the NeatVision
development environment appear elsewhere (6).

$.3 NeatVision’s Graphical User Interface (GUI)

The NeatVision GUI (Figure $.1) consists primarily of a workspace where
the processing blocks reside. The processing blocks represent the
functionality available to the user. Support is provided for the positioning of
blocks around the workspace, the creation and registration of
interconnections between blocks. The lines connecting each block
represent the path of the data through the system. Some of the blocks can
generate child windows, which can be used for viewing outputs, setting
parameters or selecting areas of interest from an image. If each block is
thought of as a function, then the application can be thought of as a visual
programming language. The inputs to each block correspond to the
arguments of a function and the outputs from a block correspond to the
return values. The advantage of this approach is that a block can return
more than one value without the added complexity of using C-style
pointers. In addition, the path of data through a visual program can be
dictated using special flow control components. A visual program can
range in complexity from three components upwards and is limited only by
the availability of free memory.

Figure $.1: Key features of the NeatVision environment.

As each block is processed it is highlighted (in green) to illustrate that it is
active. This allows users to see the relevant speeds of parallel data
streams within a visual program. This can help identify potential
processing bottlenecks within the workspace allowing for a more efficient
balanced design. The colour coding of the blocks data connection type
and its status also aids in the design process. To aid user operation each
data connection has two colour coded properties, namely the block data
type and connection status. NeatVision currently supports eight data
types, i.e. Image (red), Integer / Array data (green), Double precision
Floating point data (blue), Boolean data (orange), String data (pink),
Fourier data (light blue), Coordinate data (purple) and Undefined data
(black). The other connection property relates to its status. There are three
main states for a connection, connected (green), disconnected (red) and
disconnected but using default value (orange).

This approach provides a fast and simple alternative to conventional text
based programming, while still providing much of the power and flexibility.
The visual workspace can be compiled and executed as with a
conventional programming language. Errors and warnings are generated
depending on the situation. There is currently support for 15 input graphics
file formats and 13 output formats. Some of the main formats are listed
below (R indicates a read-only file format and RW indicates a read/write
file format).

• BMP (RW) Microsoft Windows Bitmap.
• BYT (RW) Raw image data, grey scale only with a maximum pixel

depth of 8 bits.
• FPX (R) Kodak FlashPix is a multiple-resolution, tiled image file

format based on JPEG compression.
• GIF (R) Graphics Interchange Format (GIF), is a bitmap file format

which utilises Lemple-Zev-Welch (LZW) compression.
• JPEG (JPG) (RW) Joint Photographic Experts Group (JPEG) file

interchange format is a bitmap file utilising JPEG compression.
• PCX (RW) PC Paintbrush (PCX), a bitmap file using either no

compression or Run Length Encoding (RLE).
• PNG (RW) PNG is a lossless data compression method for

images.
• PBM (RW) Portable BitMap. The portable bitmap format is a

lowest common denominator monochrome file format.
• PGM (RW) Portable Greymap Utilities. This is a non-compressed

bitmap format, hence allowing image data to be left intact.
• PPM (RW) Portable PixelMap. The portable pixelmap format is a

lowest common denominator colour image file format.
• RAS (RW) Sun Raster Image (RAS), a bitmap file format using

either no compression or RLE.

• RAW (RW) Raw image data. This is similar to the BYT format
described earlier except in this case colour image data is also
supported.

• TIFF (TIF) (RW) Tagged Image File Format is a bitmapped file
format using a wide range of compression techniques.

System parameters can be adjusted and the system may be reset and
executed again until the desired response is obtained. At any stage blocks
may be added or removed from the system. NeatVision also contains a
built in web browser to allow easy access to online notes and support
tools.

$.4 Design Details

NeatVision is designed to work at two levels. The user level allows the
design of imaging solutions within the visual programming environment
using NeatVisions core set of functions. NeatVision (Version 2.1) contains
300 image manipulation, processing and analysis functions, ranging from
pixel manipulation to colour image analysis to data visualisation. To aid
novice users, a full introductory tutorial and some sample programmes can
be found on the NeatVision website. A brief description of the main
system4 components (7) is given below; see Appendix I for additional
details:

• Data types: Image, integer, double, string, Boolean, array,

medical image sequences.
• Flow control: Path splitting, feedback, if (else), for loop. (See

Figure $.2).
• Utilities: Rotation, pixel manipulation, resize, URL control, additive

noise generators, region of interest, masking operations.
• Arithmetic operators: Add, subtract, multiply, divide, logical

operators.
• Histogram: General histogram analysis algorithms, local

equalization.
• Image Processing: Look-up tables (LUT), threshold, contrast

manipulation.
• Neighbourhood based filtering: Lowpass, median, sharpen,

DOLPS, convolution, adaptive smoothing (or filtering).
• Edge detection: Roberts, Laplacian, Sobel, zero crossing, Canny
• Edge features: Line/arc fitting, edge labelling and linking.
• Analysis: Thinning, binary detection, blob analysis, labelling,

shape feature measures, bounding regions, grey scale corner
detectors.

4 Items in italics are only included in the NeatVision advanced edition.

• Clustering: K-means (grey scale and colour), unsupervised colour
clustering.

• Image transforms: Hough (line and circle), Medial Axis, DCT,
Cooccurrance, Fourier, distance transforms.

• Morphology: Several 2D morphological operators, including
erosion, dilation, opening, closing, top-hat, hit-and-miss,
watershed.

• Colour: Colour space conversion algorithms, RGB, HSI, XYZ,
YIQ, Lab.

• 3D Volume: 3D Operators (thinning, Sobel, threshold, labelling),
maximum and average intensity projections, rendering engine
(Java and Intel native: wire frame, flat, Gouraud, Phong), 3D to 2D
conversion, data scaling, 3D windowing, 3D arithmetic, 3D image
processing, 3D labelling, 3D morphological operators, 3D
reconstruction, 3D clustering

• Low Level: Pixel level operators; get pixel value, set pixel value
and basic shape generation.

• String: String operators, object addition, to upper case and to
lower case.

• Maths: An extensive range of numerical operators and utilities,
including constants and random number generation.

• JAI Colour: Colour algorithms implemented using JAI (Java
Advance Imaging (8)), operators, processing, filters and edge
detectors.

• OSMIA functions (Wintel native only): NEMA and AIFF image
reader, ejection fraction measurement, 2D optical flow (Lucas &
Kanasde and Horn & Shcunck courtesy of Barron (9) via the
European Union funded OSMIA project (10)), XY normalization

At the more advanced developers level (11), NeatVision allows
experienced application designers to develop and integrate their own
functionality through the development and integration of new image
processing/analysis modules.

$.5 Developers Environment

NeatVision was originally designed so that it could be easily extended by
building on previously developed algorithms. This feature has been
finalised with the release of version 2.1 of the NeatVision visual
programming environment. This allows users to:

• Develop new NeatVision components that can ultimately be reused

by other NeatVision developers
• Reuse the core NeatVision components in new user defined

components

• Submit your component or library of components to wider NeatVision
community.

(a) (b)

(c) (d)

(e) (f)

Figure $.2 Flow control / graphic utility examples: (a) Path splitting, (b)
looping feedback, (c) if (else), (d) for loop, (e) 3D Viewer, (f) Image
profiling.

NeatVision development assumes a basic level of familiarity with the Java
programming language from Sun Microsystems and the NeatVision

developers plug-in. Additional details on developing for NeatVision (11)
and the design concepts behind NeatVision along with detailed
explanations of many of the its algorithms can be found are also available
(6).

 (a) (b)

(c)

Figure $.3: NeatVision component development wizard. (a) Select Add
New Component from the popup menu of the user area of the component
explorer. (b) Select component to be added. (c) Define the component
skeleton (i.e. the number and type of inputs and outputs for the associate
block). This generates the necessary component wrapping code.

When the developer’s interface and the Java Developers Kit (JDK)5 are
present a ‘user’ tab appears alongside the ‘system’ tab in the component

5 Installation of the developer plug-in will require you to upgrade the JRE to the JDK. As the
JDK compiler is not backward compatible and is frequently modified, we have restricted
developer’s interface to a specific version of the Java - i.e. JDK 1.3.X. To activate the
developers version, you will need the developers update file (developer.jar). To install this
please close down NeatVision and place developer.jar in the classpath. It should be activated
the next time you start NeatVision. (Also be sure to download the latest version of

explorer. The developer can add a new component by right clicking
anywhere within the ‘user’ view of the component explorer. After right
clicking, a popup menu will appear. The ‘Add New Component’ option
must be selected from this menu in order to create a new file (Figure $.3).
The user is then queried as to whether they would like to create a
NeatVision Component, a Java Class or a Java Interface (Note: a
NeatVision Component is just a special type of Java class). A filename for
the class or interface must be specified at this point. If a Java Interface or
standard Java class is specified at then a text editor window is displayed
with the relevant skeleton source code. The developer may edit and
compile this code as desired. If a NeatVision component is specified then
a component development wizard is launched.

The wizard allows the developer to specify the visual appearance of the
component including width and height in pixels, component name and
number of inputs and outputs. The wizard also allows the developer to
specify the data type and data description associated with each of the
inputs and outputs. Once all of the required information has been entered
the developer need only press the ‘Create’ button to generate to skeleton
source code for the desired NeatVision component. The developer can
then edit the skeleton source code (Example $.1) as required in order to
implement the desired component functionality. At any stage the source
code for the component can be compiled. This is achieved by selecting the
relevant compile option from the ‘Project’ menu. Selecting the compile
option launches the Java compiler distributed with the JDK and any errors
in the specified file(s) are subsequently listed in the message window at
the bottom of the main NeatVision window. For each error a description,
filename and line number are provided. The user need only click on an
error message to highlight the relevant error in the source code. Once all
errors have been corrected the message ‘compilation succeeded’ is
printed in the status bar. Following successful compilation the block is
available for use and can be included in a workspace like any core
NeatVision component.

The NeatVision developers interface extends and complements the visual
programming interface by allowing users to develop custom components
that can encapsulate the functionality of core NeatVision components, thus
extending the already vast NeatVision library of components.

neatvision.jar). e.g. ..\java.exe -classpath ..\neatvision\neatvision.jar;
..\neatvision\developer.jar NeatVision

$.5.1 Developing for Reuse

As mentioned previously, the skeleton code for a new NeatVision
component is generated using the component development wizard (see
Example $.1). In previous versions of NeatVision the entry point for a
component was the main() method and the programmer was
responsible for interfacing directly with component inputs and outputs to
read and write the associated data values. In NeatVision 2.1 the main()
method is replaced by the create() method. This revised approach
makes the development of new NeatVision components more
straightforward and facilitates component reuse. The programmer is no
longer required to interface directly with the component inputs and outputs.
Instead, when a component becomes active, NeatVision automatically
reads the data values at the inputs to a component and passes the
associated data to the create() method in the form of a populated
DataBlock object. Each entry in the DataBlock object corresponds to
the data at the input with the corresponding index (0, 1, 2, etc. 0 being the
topmost input). After the input data has been processed the results must
be stored in a new DataBlock object which is returned from the
create() method upon completion6. Each entry in the returned
DataBlock object is then passed to the output with the corresponding
index (0, 1, 2, etc. 0 being the topmost output).

$.5.1.1 The DataBlock class

The DataBlock class is used to represent the input and output data
values associated with a particular NeatVision component. The data
associated with a DataBlock object is represented as an array of objects.
This means that the DataBlock class is future proof and will deal with
any type of data that may be supported either by the core NeatVision
components or any custom components developed by NeatVision users.
The specification for the DataBlock can be found in the NeatVision
Developers guide (11).

$.5.2 How to Reuse

The functionality provided by any of the core NeatVision classes can be
called from within custom user defined classes that are developed using
the NeatVision developers plug-in. This is achieved by calling the static
create() method of the NeatVision class.

Object NeatVision.create(String class, DataBlock args)

6 Note: If only one object is being returned from the create() method (i.e. if the block

has only one output) then it is not necessary to encapsulate this within a DataBlock object.
Instead, it can be returned directly and NeatVision will pass the returned object to the single
output of the component.

The parameters of the create() method are a String object and
DataBlock object. The String object represents the class name of the
desired component and the DataBlock object represents the parameters
that will be passed to an off-screen instantiation of the desired component.
The DataBlock argument must have the same number of entries as the
number of inputs connected to the desired component and each entry
must represent the data required by the associated input (0, 1, 2, etc.).
The create() method then returns a new DataBlock object that
represents the outputs that were generated after the requested component
processed the specified inputs. The create() method can also handle up
to four arguments that are not encapsulated within a DataBlock object,
for example:

Object NeatVision.create(String class, Object arg0)

• Call the create method of the single input component with name
‘class’.

Object NeatVision.create(String class, Object arg0, Object arg1)

• Call the create method of the dual input component with the name
‘class’.

All arguments must be represented as objects when using this approach.
This means that any primitives must be wrapped before being passed to
the create() method. Take the integer arguments for the dual threshold
operation as an example:

There are special wrapper classes available for converting all primitive
types (boolean, byte, short, int, long, double and float)
into objects (Boolean, Byte, Short, Integer, Long, Double
and Float). Objects of these classes can be constructed by simply
passing the relevant primitive to the constructor of the relevant class (see
int to Integer example above). The static create() method of the
NeatVision class routes the specified DataBlock object to the create()
method of the specified class and returns the resulting output DataBlock
object.

Example $.2 illustrates a simple example of reuse. This involves calling
the Not operation from inside a custom user defined class. Example $.3
illustrates the development of the TestDev class. This sample program

removes boundary regions prior to K-Means clustering. The Canny edge
detector is then applied to the original image and keeping only closed
structures we find the approximate perimeter of the strong edges. The K-
Means and the closed structure overlay images along with the
approximate perimeter values are the final block outputs.

Example $.1: The skeleton code for a double input/single output
component. Note that the entry point is the create() method. This is
called whenever the block receives a full complement of input data.

Example $.2: A simple example of reuse, calling the Not operation from
inside a custom user defined class.

$.6 Sample Applications

NeatVision provides an image analysis software development environment
that can work at several levels. For example, at a relatively low level
individual pixels can be manipulated. Alternatively, NeatVisions built in
functionality can be used to generate solutions to complex machine vision
problems. Figure $.5 illustrates how the reconstruction by dilation
morphological operator can be used to remove or detect objects that are
touching the binary image border. Figure $.6 illustrates how NeatVision
can be used to isolate defects in the centre panel of a crown bottle top.

Example $.3: Development of the TestDev class.

Example $.3: Development of the TestDev class (Cont’d)

(a) (b)

(c)

Figure $.4. Implementation of the TestDev class illustrated in Example
$.3. (a) The associated class file tag in the user area. (b) A sample
program illustrating the operation of this block. (c) Sample images (left to
right): Input image, K-Means clustered image and the closed structure
overlay image.

 (a) (b) (c)

(d)

Figure $.5: Removal of boundary objects using reconstruction by dilation.
(a) Original image. (b) Boundary object removal. (c) Detected boundary
objects. (d) Associated visual workspace.

 (a) (b)

(c)

Figure $.6: Bottle top inspection. (a) Input image. (b) Output image in
which the defects are highlighted in white. (c) The NeatVision visual
program.

$.7 Application Development Case Study

In this section we will outline the application of NeatVision to a typical
machine vision application, namely the characterization of surface mount
components. We aim to develop a robust NeatVision program capable of:

• Automatically counting all components fully within the field of view

in the image illustrated in Figure $.7 (i.e. all elements touching the
image boundaries must be removed prior to image analysis).

• Isolate, and highlight, the largest component within the image.
• Find the approximate area of the largest component within the

image

The system must be robust, and with this in mind it should be capable of
automatically determining threshold values from the image data.

Figure $.7: Image segment (pcb_3) containing 15 surface mounted
components fully with in its field of view. (Image supplied courtesy of
Agilent Technologies (Ireland), acquired using their sequential colour
technique at 470, 524 and 660 nm (BGR))

$.7.1 Outline Solution

The proposed solution, as summarized in the NeatVision program
illustrated in Figure $.8 consists of a number of distinct stages. This
solution is used solely to illustrate to power and flexibility of NeatVision
and does not represent the optimal solution for such an application.

Stage 1: The input colour image (pcb_3.gif) is loaded and converted to
greyscale. A binary version of this image is then automatically produced by
examining the grey scale histogram upper and lower values. Due to the
high contrast the automated threshold selection consists of the mid point
between the upper and lower grey scales in the original image, Figure $.9.

Stage 2: Using the morphological technique Reconstruction by Dilation,
we isolate any part of the image touching the boundary, Figure $.10

Stage 3: Once the incomplete objects touching the image boundary have
been removed we use a 5x5 RAF (Rectangular Averaging Filter) to
remove any remaining noise, Figure $.11. Take care to threshold the
filtered image at mid grey as the RAF filter produces a grey scale image.

Stage 4: Each blob region is now assigned a grey scale value using
labelling by location. These grey patches are then count by finding and
marking each grey patch by its centroid. The centroids are then counted
and divided by 2 to give the final component count. Figure $.12

Figure $.8: Proposed NeatVision solution.

Stage 5: Using the fact that the largest surface mounted component is
bounded by the two largest blobs in the image, we can identify and extract
these blob regions, Figure $.13

Stage 6: The final step involves finding the convex hull of the output from
the previous stage. This now approximates the largest surface mounted
component. The area of this region is then calculates to determine its size.
This convex hull image is then combined with the original image to
highlight its location, Figure $.14.

Figure $.9: Automated threshold selection stage and the resultant binary
image.

Figure $.10: Using reconstruction by dilation to identify the incomplete
objects touching the image boundary.

Figure $.11: Isolating the components of interest and noise removal.

Figure $.12: Component counting by isolating and counting the grey patch
centroid values (a cross indicates each centroid value).

Figure $.13: Identifying the bounds of the largest component.

Figure $.14: Identifying calculating the area of the largest component.
Overlay on original image to highlight its location.

$.8 Conclusions

NeatVision was designed to allow novice and experienced users to focus
on the machine vision design task rather than concerns about the subtlety
of a given programming language. It allows machine vision engineers to
implement their ideas in a dynamic and straightforward manner.
NeatVision standard and developers versions are freely available via the
Internet and are capable of running on a wide range of computer platforms
(e.g. Windows, Solaris, Linux).

Acknowledgements: While NeatVision is primarily a collaboration of
researchers within the Vision Systems Group in Dublin City University
(Ireland), we would also like to acknowledge all those who have supported
the NeatVision project through the submission of algorithms for inclusion
or for their constructive and useful feedback. Development of the MATLAB
compatible VSG Image Processing & Analysis Toolbox which offers
MATLAB users NeatVision functionality was funded in part by HEA PRTLI
IV National Biophotonics and Imaging Platform Ireland (NBIPI) (13).

References
1. NeatVision: Image Analysis and Software Development

Environment. Available at http://www.neatvision.com Accessed July
2010

2. Sage D and Unser M, Teaching Image Processing Programming in
Java. IEEE Signal Processing Magazine 2003: Nov:43-52

3. Khoros: Khoral Research, Inc Available at http://www.khoral.com
Accessed July 2010

4. WiT: Logical Vision, Available at http://www.logicalvision.com
Accessed July 2010

http://www.neatvision.com/
http://www.khoral.com/
http://www.logicalvision.com/

5. MathWorks: Matlab, Available at http://www.mathworks.com
Accessed July 2010

6. Whelan PF and Molloy D (2000), "Machine Vision Algorithms in
Java: Techniques and Implementation", Springer-Verlag, London

7. NeatVision: Users Guide, Available at
http://neatvision.eeng.dcu.ie/user.html Accessed July 2010

8. JAI: The Java Advanced Imaging (API), Available at
http://java.sun.com/products/java-media/jai 2005; Accessed Oct.25

9. Barron JL, Fleet DJ and Beauchemin S. Performance of optical flow
techniques. International Journal of Computer Vision 1994; 12(1):43-
77.

10. OSMIA - Open Source Medical Image Analysis, EU Fifth Framework
Programme (IST: Accompanying Measures). Available at
http://www.eeng.dcu.ie/~whelanp/osmia/ Accessed July 2010

11. NeatVision: Developers Guide, Available at
http://neatvision.eeng.dcu.ie/developer.html Accessed July 2010

12. VSG Image Processing & Analysis Toolbox (VSG IPA TOOLBOX
beta) Available at http://www.cipa.dcu.ie/code.html Accessed July
2010

13. National Biophotonics and Imaging Platform Ireland (NBIPI).
http://www.nbipireland.ie/ Accessed July 2010

http://www.mathworks.com/
http://neatvision.eeng.dcu.ie/user.html
http://java.sun.com/products/java-media/jai
http://java.sun.com/products/java-media/jai
http://www.eeng.dcu.ie/%7Ewhelanp/osmia/
http://neatvision.eeng.dcu.ie/developer.html
http://www.cipa.dcu.ie/code.html
http://www.nbipireland.ie/

APPENDIX I:

Users Summary
Vision Systems Laboratory, Centre for Image Processing and

Analysis (CIPA)
Dublin City University
info@neatvision.com

The following list summarises some of the main NeatVision methods users
may wish to interface too. Many of these are fairly self-explanatory, but if
the method you require is not listed or does not have enough information
to enable you to use it drop us an email at tech@neatvision.com with
‘NeatVision Methods’ in the subject line. Additional help can be found in
the input/output tags for each block in the NeatVision visual programming
interface. Also refer to P.F. Whelan and D. Molloy (2000), Machine Vision
Algorithms in Java: Techniques and Implementation, Springer
(London), 298 Pages [ISBN 1-85233-218-2] for additional details.

Normalization of greyscale image operations occurs to keep the output
image within greyscale range 0-255.

mailto:info@neatvision.com
http://www.eeng.dcu.ie/%7Ewhelanp/vsg/papers/book2000.html

Method Description Inputs
(Index #: data type [descriptor])

Outputs
(Index #: data type

[descriptor])
DATA Image, Integer, Double, Boolean, String, Array (of integers) and 3D (DICOM, Analyze, Vol, Sequence)
FLOW CONTROL SplitterX2, SplitterX3, SplitterX4, Feedback, If, Else, For and Terminate
UTILITIES
HalveImageSize A grey-scale image whose size is halved 0:GrayImage 0:GrayImage
DoubleImageSize A grey-scale image whose size is doubled 0:GrayImage 0:GrayImage
PointToSquare A grey-scale image whose white pixels are

represented by white squares.
0:GrayImage 0:GrayImage

PointToCross A grey-scale image whose white pixels are
represented by white crosses.

0:GrayImage 0:GrayImage

Rotate A grey-scale image is rotated in a clockwise
direction by a user specified amount

0:GrayImage
1: Integer [user specified rotation (degrees)]

0:GrayImage

RotatePlus90 A grey-scale image is rotated in a clockwise
direction by 90 degrees

0:GrayImage 0:GrayImage

RotateMinus90 A grey-scale image is rotated in an anticlockwise
direction by 90 degrees.

0:GrayImage 0:GrayImage

ROI7 A grey-scale image from which a rectangular region
of interest is extracted by the user via the GUI.

0:GrayImage 0:GrayImage

PolyROI8 A grey-scale image from which a polygon region of
interest is extracted by the user via the GUI.

0:GrayImage [User interaction] 0:GrayImage

EnhancePolyROI2 A grey-scale image from which a polygon region of
interest shall be emphasised. User defined input
region.

0:GrayImage [User interaction] 0:GrayImage

7 Left click and hold to draw the ROI, then release when complete.
8 The user inputs a polygon by left-clicking a series of points (marked in red). When the user clicks a point within 4 pixels

of the start point or alternatively right-click to finalize and close the polygon. Once closed the polygon will be displayed in
green. To begin a new polygon use shift-click.

Measure_Line An image from which the Euclidean distance

between two user-selected points is calculated. Must
rerun programme to generate new line length.

0:GrayImage [User interaction] 0:Double [Euclidean distance]

Scale A grey-scale image is scaled by user defined
dimensions

0:GrayImage
1: Integer [width of the scaled image]
2: Integer [height of the scaled image]

0:GrayImage

Mask A grey-scale image whose border is masked by a
user specified amount.

0:GrayImage
1: Integer [Mask size in pixels, Default =3]

0:GrayImage

Centroid

Replace the greyscale shapes (Range 0-255) in the
original image by their respective centroids
(commonly used after the 8-bit labelling operators)

0:GrayImage 0:GrayImage [Binary]

Centroid_16

Replace the greyscale shapes (Range 0-65535) in
the original image by their respective centroids
(commonly used after the Label_16 operators)

0:GrayImage 0:GrayImage [Binary]

BinaryToGreyscale Convert WHITE pixels in a binary image to a given
greyscale.

0:GrayImage [Binary]
1:Integer [greyscale (0-255)]

0:GrayImage

GreyScalePixelSum Generates an integer which is the sum of all pixels
contained in the input image

0:GrayImage 0:Integer

FirstWhitePixelLocator Coordinate point representing the location of the first
white pixel in the image input image.

0:GrayImage 0:Coordinate

RemoveIsolatedWhitePixels Any white pixels with less than one white
pixel (3x3) neighbour are set to black. This can be
used to remove noise from a
binary image.

0:GrayImage 0:GrayImage [Binary]

SaltnPepperGenerator Add salt and pepper noise to the input image 0:GrayImage
1:Double (0-1.0)

0:GrayImage

AdditiveWhiteNoiseGenerator Add a user defined level of white noise to the input
image

0:GrayImage
1:Integer (1-1024)

0:GrayImage

GaussianNoiseGenerator Add a user defined quantity of Gaussian noise to the
input image

0:GrayImage
1:Double (0-255.0)

0:GrayImage

RayleighNoiseGenerator Add a user defined quantity of Rayleigh noise to the
input image

0:GrayImage
1:Double (1.0-255.0)

0:GrayImage

PoissonNoiseGenerator Add a user defined quantity of Poisson noise to the
input image

0:GrayImage
1:Double (0-511.0)

0:GrayImage

HTTPSendScript Send arguments to a URL 0:String [URL]

1:String [Arguments]
0:String [Return values]

HTTPGetImage Retrieve image from a URL 0:String [URL] 0:GrayImage [Retrieved Image]
ARITHIMETIC
Add Image addition 0:GrayImage [A]

1:GrayImage [B]
0:GrayImage [C = A+B]

Subtract Image subtraction 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A-B]

Multiply Image multiply 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A*B]

Divide Image division 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = A/B]

And Boolean AND operation 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = AND(A,B)]

Or Boolean OR operation 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = OR(A,B)]

Not Boolean NOT operation 0:GrayImage [A] 0:GrayImage [C = NOT(A)]
Xor Boolean Exclusive OR operation 0:GrayImage [A]

1:GrayImage [B]
0:GrayImage [C = XOR(A,B)]

Minimum Minimum of two images 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = Min(A,B)]

Maximum Maximum of two images 0:GrayImage [A]
1:GrayImage [B]

0:GrayImage [C = Max(A,B)]

HISTOGRAM
HighestGreyLevelCalculator Compute the highest grey level from the input image 0:GrayImage 0:Integer [highest grey level]
LowestGreyLevelCalculator Compute the lowest grey level from the input image 0:GrayImage 0:Integer [lowest grey level]
MeanSquareError Compare the input images using the mean square

error operation
0:GrayImage
1:GrayImage

0:Double [mean square error]

AverageIntensityCalculator Compute the average intensity of the input image 0:GrayImage 0:Double [average intensity]
EntropyCalculator Compute the entropy of the input image 0:GrayImage 0:Double [entropy]
VarienceCalculator Compute the variance of the input image 0:GrayImage 0:Double [varience]
KurtosisCalculator Compute the kurtosis of the input image 0:GrayImage 0:Double [kurtosis]
StandardDeviationCalculator Compute the standard deviation of the input image 0:GrayImage 0:Double [standard deviation]
SkewnessCalculator Compute the skewness deviation of the input image 0:GrayImage 0:Double [skewness]

LocalEqualisation3x3 Local histogram equalisation using a 3x3 region 0:GrayImage 0:GrayImage
LocalEqualisation5x5 Local histogram equalisation using a 5x5 region 0:GrayImage 0:GrayImage
PROCESSING
Inverse Inverse the LUT of the input image 0:GrayImage 0:GrayImage
Logarithm Transform the linear LUT into logarithmic 0:GrayImage 0:GrayImage
Exponential Transform the linear LUT into exponential 0:GrayImage 0:GrayImage
Power The linear LUT is raised to a user specified double

value
0:GrayImage
1:Integer [power, default=3.0]

0:GrayImage

Square The linear LUT is raised to power of 2. 0:GrayImage 0:GrayImage
SingleThreshold Single threshold operation 0:GrayImage

1:Integer [(1-255): Default = 128]
0:GrayImage [Binary]

MidlevelThreshold Single threshold operation: threshold level =
MIDGREY (127)

0:GrayImage 0:GrayImage [Binary]

DualThreshold Dual threshold operation. All pixels between the
upper and lower thresholds are marked in WHITE.

0:GrayImage
1:Integer [upper value, default =128]
2:Integer [lower value, default =1]

0:GrayImage [Binary]

TripleThreshold This operation produces an LUT in which all pixels
below the user specified lower level appear black, all
pixels between the user specified lower level and the
user specified upper level inclusively appear grey
and all pixels above the user specified upper level
appear white.

0:GrayImage
1:Integer [upper value, default =128]
2:Integer [lower value, default =1]

0:GrayImage

EntropicThreshold Compute the entropy based threshold. Relies on
maximising the total entropy of both the object and
background regions to find the appropriate threshold

0:GrayImage 0:Integer

Threshold3x3 Adaptive threshold in a 3x3 region. 0:GrayImage
1:Integer [constant offset, default=0]]

0:GrayImage

Threshold5x5 Adaptive threshold in a 5x5 region. 0:GrayImage
1:Integer [constant offset, default=0]]

0:GrayImage

IntensityRangeEnhancer Stretch the LUT in order to occupy the entire range
between BLACK (0) and WHITE (255)

0:GrayImage 0:GrayImage

HistorgramEqualiser Histogram equalisation 0:GrayImage 0:GrayImage
IntensityRangeStrecher Stretch the LUT between the lower and upper

threshold to occupy the entire range between
BLACK (0) and WHITE (255)

0:GrayImage
1:Integer [lower grey level, default=0]
2:Integer [upper grey level, default=255]

0:GrayImage

IntegrateImageRows Integrate image rows 0:GrayImage 0:GrayImage
IntegrateImageColumns Integrate Image columns 0:GrayImage 0:GrayImage
LeftToRightSum Pixel summation along the line 0:GrayImage 0:GrayImage
LeftToRightWashFunction Left To Right wash function (once a white pixel is

found, all pixels to its right are also set to white)
0:GrayImage 0:GrayImage

RightToLeftWashFunction Right To Left wash function (once a white pixel is
found, all pixels to its left are also set to white)

0:GrayImage 0:GrayImage

TopToBottomWashFunction Top To Bottom wash function (once a white pixel is
found, all pixels to its below are also set to white)

0:GrayImage 0:GrayImage

BottomToTopWashFunction Bottom To Top wash function (once a white pixel is
found, all pixels to its above are also set to white)

0:GrayImage 0:GrayImage

FILTER
Convolution Convolution. This operation requires coefficients to

be specified in the form of a square, odd sized
integer array, “null” represents “don’t cares”. See
Appendix A.2 for an example.

0:GrayImage
1:Integer [] [Array of mask values. No entry

default to null. “Don’t Care” = null statement]

0:GrayImage

DOLPS DOLPS – Difference of low pass 3x3 filters. Image A
results from applying 3 iterations of the low pass
filter. Image B results from applying 6 iterations of
the low pass filter. DOLPS = A-B.

0:GrayImage 0:GrayImage

LowPass Low pass 3x3 filter 0:GrayImage 0:GrayImage
Sharpen High pass 3x3 filter 0:GrayImage 0:GrayImage
Median Median 3x3 filter 0:GrayImage 0:GrayImage
Midpoint Midpoint 3x3 filter 0:GrayImage 0:GrayImage
RectangularAverageFilter Rectangular Average Filter operation. Size of filter is

user defined
0:GrayImage
1:Integer [filter size, default = 5]

0:GrayImage

SmallestIntensityNeighbour Replace the central pixel of the 3x3 mask with the
minimum value

0:GrayImage 0:GrayImage

LargestIntensityNeighbour Replace the central pixel of the 3x3 mask with the
maximum value

0:GrayImage 0:GrayImage

AdaptiveSmooth Adaptive smoothing of grey scale images. In order to

apply it to colour images, the input image has to be
split into RGB components and adaptive smooth has
to be applied to each channel. If the colour image is
applied directly the algorithm will smooth the
average intensity image. (Slow process)

0:GrayImage
1:Integer [number of iterations: possible values: 1

to 10, default = 5]
2:Double [variance strength: possible values: 0.1 -

> 0.9, default = 0.2]
3:Double [Diffusion parameter: possible values:

1.0 -> 20.0, default = 10.0]

0:GrayImage

EDGES
Roberts Roberts edge detector 0:GrayImage 0:GrayImage
Sobel Sobel edge detector 0:GrayImage 0:GrayImage
Laplacian Laplacian edge detector. User defined 4-connected

or 8-connected neighbourhood
0:GrayImage
1:Integer [possible values: 4 or 8, default = 8]

0:GrayImage

Prewitt Prewitt edge detector 0:GrayImage 0:GrayImage
FreiChen FreiChen edge detector 0:GrayImage 0:GrayImage
BinaryBorder Binary Border edge detector 0:GrayImage [Binary] 0:GrayImage [Binary]
NonMaxima Edge detection using non maxima suppression 0:GrayImage 0:GrayImage
IntensityGradientDirection Compute the 3x3 intensity gradient direction.

Gradients range from 1 to 8.
0:GrayImage 0:GrayImage [pixel values from

1-8]
ZeroCrossingsDetector Zero crossings edge detector 0:GrayImage 0:GrayImage
Canny Canny edge detector 0:GrayImage

1:Double [standard deviation or spread parameter,
possible values: 0.2 -> 20.0, default = 1.0]

2:Integer [lower threshold, default = 1]
3:Integer [upper threshold, default = 255]

0:GrayImage [edge magnitudes]
1:GrayImage [edge directions]

EdgeLabel Edge labelling operation. Expects a binary image
resulting from the application of the Canny edge
detector.

0:GrayImage
1:Boolean [Set True if you want closed structures]

0:GrayImage [A binary image
whose edge pixels are grouped
into polygonal shapes]

LineFitting Line fitting in the edge structure. Expects a binary
image resulting from the application of the Canny
edge detector.

0:GrayImage
1:Boolean [Set True if you want closed structures]

0:GrayImage [A binary image
whose edge pixels are grouped
into polygonal shapes]

ArcFitting Arc fitting in the edge structure. Expects a binary

image resulting from the application of the Canny
edge detector.

0:GrayImage
1:Boolean [Set True if you want closed structures]
2:Boolean [Set True if you want display the circles

associated with detected arcs]
3:Boolean [Set True if you want display the lines

that are not grouped into arcs segments]

0:GrayImage [A binary image
whose edge pixels are grouped
into polygonal shapes]

EdgeLinking9 Edge linking (scanning window is user defined).
Expects a binary image resulting from the
application of the Canny edge detector.

0:GrayImage
1:Integer [The size of scanning window. (5-11)]

0:GrayImage [Edge linked
image]

ANALYSIS
ThinOnce Full application of the thinning algorithm. Thin till

completion resulting in a skeleton image.
0:GrayImage [Binary] 0:GrayImage [Binary]

Thin The input binary image is thinned N times as
specified by the user

0:GrayImage [Binary]
1:Integer [N – number of iterations]

0:GrayImage [Binary]

CornerPointDetector Skeleton corner detection from a binary image
based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

JunctionDetector Skeleton junction detection from a binary image
based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

LimbEndDetector Skeleton limb end detection from a binary image
based on a 3x3 region

0:GrayImage [Binary] 0:GrayImage [Binary]

BiggestBlob Extract the biggest white blob from a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
SmallestBlob Extract the smallest white blob from a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
BlobFill Fill the holes in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
Labeller Label by location unconnected shapes in a binary

image (Range 0-255)
0:GrayImage [Binary] 0:GrayImage

LabelByArea Label the unconnected shapes in a binary image in
relation to their size (Range 0-255)

0:GrayImage [Binary] 0:GrayImage

MeasureLabelledObjects Measure the N (user specified) largest objects in a
binary image (Range 0-255)

0:GrayImage [Binary]
1:Integer [limit on the number of labelled objects

measured, default=5]

0:String [contains data
describing the measured objects:
(Grey Scale, Area, Centroid)]

9 O. Ghita and P.F. Whelan (2002), “A computationally efficient method for edge thinning and linking using endpoints”,

Journal of Electronic Imaging, 11(4), Oct. 2002, pp 479-485.

WhiteBlobCount Count the number of white bobs in a binary image

(Range 0-255)
0:GrayImage [Binary] 0:Integer [Range 0-255]

1:GrayImage [A white cross is
overlaid on each blob found.]

Label_16 Label by location the unconnected shapes in a
binary image (Range 0-65535). Note: This is outside
the 8-bit display range. Slow process.

0:GrayImage [Binary] 0:GrayImage

WhiteBlobCount_16 Count the number of white bobs in a binary image
(Range 0-65535). Slow process.

0:GrayImage [Binary] 0:Integer [Range 0-65535]
1:GrayImage [A white cross is

overlaid on each blob found.]
ConvexHull Compute the convex hull boundary 0:GrayImage [Binary] 0:GrayImage [Binary]
FilledConvexHull Compute the filled convex hull 0:GrayImage [Binary] 0:GrayImage [Binary]
CrackDetector Highlight cracks in the input image 0:GrayImage 0:GrayImage
EulerNumberCalculator Compute the Euler number from a binary image 0:GrayImage [Binary] 0:Integer [Euler number]
WhitePixelCounter Compute the number of white pixels 0:GrayImage 0:Integer [pixel count]
IsolateHoles Isolate holes in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
IsolateBays Isolate bays in a binary image 0:GrayImage [Binary] 0:GrayImage [Binary]
ConnectivityDetector Connectivity detection in a thinned skeleton binary

image. Mark points critical for connectivity in a 3x3
region.

0:GrayImage [Binary] 0:GrayImage

BoundingBox Minimum area bounding rectangle 0:GrayImage 0:GrayImage
FilledBoundingBox Filled minimum area bounding rectangle 0:GrayImage 0:GrayImage
BoundingBoxTopCoordinate Compute the top left coordinate of the minimum area

bounding rectangle
0:GrayImage 0:Coordinate [top left]

BoundingBoxBottomCoordinate Compute the bottom right coordinate of the minimum
area bounding rectangle

0:GrayImage 0:Coordinate [bottom right]

CornerDetector Grey Scale (SUSAN) corner detector 0:GrayImage
1:Integer [Brightness threshold]
2:Integer [Geometric threshold]

0:GrayImage [Corner points]

K-MEANS CLUSTERING
GrayScaleCluster Cluster a grey scale image (number of clusters are

user defined) using the k-means algorithm.
0:GrayImage
1:Integer [Number of clusters]

0:GrayImage [Gray-scale]

ColorCluster Cluster a colour image (number of clusters are
user defined) using the k-means algorithm.

0:Image [Color Image Input]
1:Integer [Number of clusters]

0:GrayImage [Gray-scale]

Un_ColorCluster Unsupervised colour clustering using the k-means

algorithm.
0:Image
1:Double [Low threshold (possible values 0.5-1.0),

default=0.6]
2:Double [High threshold (possible values 1.0-

1.5), default=1.2]

0:GrayImage [Gray-scale]
1:Image [Colour]
2:Integer [Number of clusters]

PseudoColor Pseudo-colour operation 0:Image [grey-scale or colour image] 0:Image [false colour image]
TRANSFORM#
MedialAxisTransform Medial axis transform operation. Binary image

showing the simple skeleton
0:Image [binary] 0:Image [binary]

MedialAxisTransform_GS Medial axis transform operation. GS image where
each point on the skeleton has an intensity which
represents its distance to a boundary in the original
object

0:Image [binary] 0:GrayImage [grey scale]

FFT Fast Fourier Transform: FFT 0:GrayImage [Input image dimension must be a
power of 2]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

IFFT Inverse Fourier Transform 0:File [A Fourier data file which shall be
interpreted as an image.]

0:GrayImage [The resulting
gray-scale image which represents
the interpreted Fourier data]

FFTLowpass Low pass frequency filter 0:File [Fourier Data File]
1:Double [cut-off value (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTHighpass High pass frequency filter 0:File
1:Double [cut-off value (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g.

pixel access) is can be done directly in Java.

FFTAdaptiveLowpass FFT adaptive lowpass filter 0:File

1:Double [limit (0-1.0)]
0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTBandpass FFT band-pass filter 0:File [Fourier Data File]
1:Double [inner limit (0-1.0)]
2:Double [outer limit (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTBandstop FFT band-stop filter 0:File [Fourier Data File]
1:Double [inner limit (0-1.0)]
2:Double [outer limit (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTMultiply Multiply two Fourier data files 0:File [Fourier Data File]
1:File [Fourier Data File]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTDivide Divide one Fourier data file by another 0:File [Fourier Data File]
1:File [Fourier Data File]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTGaussian FFT Gaussian filter. Input 0 requires an integer value
that = 2^n where n is a +ve integer. Note: size =
width = height

0:Integer [size of a new Fourier data file which
contains Gaussian coefficients]

1:Double [Standard deviation of the Gaussian
coefficients (0.1-5.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTSelectivePass FFT selective frequency filter 0:File [Fourier Data File]
1:Double [The cutoff value of the filter (0-1.0)]
2:Double [The x-offset of the symmetric selective

filter (0-1.0)]
3:Double [The y-offset of the symmetric selective

filter (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

FFTSymmetricSelectivePass FFT selective symmetric frequency filter 0:File [Fourier Data File]

1:Double [The cutoff value of the filter (0-1.0)]
2:Double [The x-offset of the symmetric selective

filter (0-1.0)]
3:Double [The y-offset of the symmetric selective

filter (0-1.0)]

0:File [Fourier Data File]
1:GrayImage [Grey-scale image

transformed to its Fourier
coefficients]

DCT2D Direct Cosine Transform operation 0:GrayImage [Input image dimension must be a
power of 2]

0:GrayImage [Real Part]
1:GrayImage [DCT Magnitude]

IDCT2D Inverse DCT (filtering factor is user defined) 0:GrayImage
1:Double [DCT quality coefficient (0-2.0)]

0:GrayImage [IDCT image]

Hough Line Hough Transform 0:GrayImage [Binary] 0:GrayImage
InverseHough Inverse Hough Transform. The integer input

specifies how many of the brightest pixels shall be
taken into account when performing the Inverse
Hough operation.

0:GrayImage
1:Integer [Number of bright points to be

considered, default=10]

0:GrayImage

CircHough Circular Hough Transform 0:GrayImage [binary image to be subjected to the
circular Hough transform]

0:GrayImage [Image]
1:GrayImage [Transform space]

CooccurrenceMatrixGenerator Compute the co-occurrence matrix 0:GrayImage 0:GrayImage
CooccurrenceMatrixEnergyCalculator Compute the energy of the co-occurrence matrix 0:GrayImage 0:Double
CooccurrenceMatrixEntropyCalculator Compute the entropy of the co-occurrence matrix 0:GrayImage 0:Double
CooccurrenceMatrixContrastCalculator Compute the contrast of the co-occurrence matrix 0:GrayImage 0:Double
CooccurrenceMatrixHomogenityCalculator Compute the homogeneity of the co-occurrence

matrix
0:GrayImage 0:Double

DistanceTransform3x3 Compute the distance transform in a 3x3 window
(input binary image)

0:GrayImage [Binary] 0:GrayImage

DistanceTransform5x5 Compute the distance transform in a 5x5 window
(input binary image)

0:GrayImage [Binary] 0:GrayImage

LeftToRightDistanceTransform Left to right distance transform (input binary image) 0:GrayImage [Binary] 0:GrayImage
RightToLeftDistanceTransform Right to left distance transform (input binary image) 0:GrayImage [Binary] 0:GrayImage
TopToBottomDistanceTransform Top to bottom distance transform (input binary

image)
0:GrayImage [Binary] 0:GrayImage

BottomToTopDistanceTransform Bottom to top distance transform (input binary
image)

0:GrayImage [Binary] 0:GrayImage

GrassFireTransform Grass fire transform (input binary image) [8-
connected]

0:Image [Binary] 0:Image [grey-scale]

MORPHOLOGY
Dilation Dilation operation (user specify connectivity of the

structured element 4 or 8)
0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

Erosion Erosion operation (user specify connectivity of the
structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

Open Opening operation (user specify connectivity of the
structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

Close Closing operation (user specify connectivity of the
structured element 4 or 8)

0:GrayImage
1:Integer [(4 or 8), default=8]

0:GrayImage

ErodeNxN Erosion operation with a user defined NxN
structuring element (X or null = don’t cares)

0:GrayImage
1:Integer [Array]

0:GrayImage

DilateNxN Dilation operation with a user defined NxN
structuring element (X or null = don’t cares)

0:GrayImage
1:Integer [Array]

0:GrayImage

MorphologicalValley Morphological valley operation (user specify
connectivity of the structured element 4 or 8)
[Default=8]

0:GrayImage
1:Integer (4 or 8)

0:GrayImage

MorphologicalTophat Morphological top hat operation (user specify
connectivity of the structured element 4 or 8)
[Default=8]

0:GrayImage
1:Integer (4 or 8)

0:GrayImage

HitAndMiss Hit and miss transformation. Hit and miss array
masks must not overlap.

0:GrayImage
1:Integer [user defined hit array, blanks

correspond to DON'T CARE)]
2:Integer [user defined miss array]

0:GrayImage

MorphGradient Morphological Gradient (user specify connectivity of
the structured element 4 or 8) [Default=8]

0:GrayImage
1:Integer

0:GrayImage

ReconByDil Reconstruction by dilation 0:GrayImage
1:GrayImage [Seed]
2:Integer [SE size]

0:GrayImage [Reconstructed]
1:GrayImage [Elements

removed]
ReconByDil_UI Reconstruction by dilation via a user selected seed

point (8-connected).
0:GrayImage [User interaction]

0:GrayImage [Reconstructed]
1:GrayImage [Elements

removed]
DBLT Double [Hysteresis] Threshold based reconstruction.

Binary Outputs. Seed threshold to reduce noise
Mask threshold to maximise signal

0:GrayImage
1:Integer [seed threshold]
2:Integer [mask threshold]

0:GrayImage [Reconstructed]
1:GrayImage [Seed Image]
2:GrayImage [Seed Image]

Watershed Watershed transform (return the watershed image

and the region boundaries image)
0:GrayImage 0:GrayImage [Watershed Image]

1:GrayImage [Binary,
Watershed boundaries]

COLOUR
GreyScaler Average three colour planes 0:Image [colour] 0:GrayImage
ColourToRGB Extract the RGB color planes 0:Image [colour] 0:GrayImage [R]

1:GrayImage [G]
2:GrayImage [B]

RGBToColour Create an image from individual RGB channels 0:GrayImage [R]
1:GrayImage [G]
2:GrayImage [B]

0:Image [colour]

ColourToHSI Extract the HSI colour planes 0:Image [colour] 0:GrayImage [H]
1:GrayImage [S]
2:GrayImage [I]

HSIToColour Create an image from individual HSI planes 0:GrayImage [H]
1:GrayImage [S]
2:GrayImage [I]

0:Image [colour]

ColourToOpponent Extract the opponent process colour representation 0:Image [colour] 0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

ViewOpponent Normalize (0-255) opponent process colour
channels. Used to view the normalized colour
(unsaturated) channels

0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

0:GrayImage [Red_Green]
1:GrayImage [Blue_Yellow]
2:GrayImage [White_Black]

ColourToCMY Extract the CMY (Cyan, Magenta, Yellow) colour
planes

0:Image [colour] 0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

CMYToColour Create an image from individual CMY (Cyan,
Magenta, Yellow) planes

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

0:Image [colour]

ViewCMY Normalize (0-255) CMY channels. Used to view the
normalized colour (unsaturated) channels

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

0:GrayImage [C]
1:GrayImage [M]
2:GrayImage [Y]

ColourToYUV Extract the YUV colour planes 0:Image [colour] 0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

YUVToColour Create an image from individual YUV planes 0:GrayImage [Y]

1:GrayImage [U]
2:GrayImage [V]

0:Image [colour]

ViewYUV Normalize (0-255) YUV channels. Used to view the
normalized colour (unsaturated) channels

0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

0:GrayImage [Y]
1:GrayImage [U]
2:GrayImage [V]

ColourToYIQ Extract the YIQ colour planes. 0:Image [colour] 0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

YIQToColour Create an image from individual YIQ planes 0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

0:Image [colour]

ViewYIQ Normalize (0-255) YIQ channels. Used to view the
normalized colour (unsaturated) channels

0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

0:GrayImage [Y]
1:GrayImage [I]
2:GrayImage [Q]

ColourToXYZ Extract the XYZ colour planes 0:Image [colour] 0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

XYZToColour Create an image from individual XYZ planes 0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

0:Image [colour]

ViewXYZ Normalize (0-255) XYZ channels. Used to view the
normalized colour (unsaturated) channels

0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

0:GrayImage [X]
1:GrayImage [Y]
2:GrayImage [Z]

ColourToLAB Extract the Lab colour planes. 0:Image [colour] 0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

LABToColour Create an image from individual Lab planes 0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

0:Image [colour]

ViewLAB Normalize (0-255) Lab channels. Used to view the
normalized colour (unsaturated) channels.

0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

0:GrayImage [L]
1:GrayImage [a]
2:GrayImage [b]

3D VOLUME
DicomSave A grey-scale volume image whose pixels shall be

saved into DICOM format (*.dcm) (Double-click to
activate). Requires the DICOM header file generated
by DicomRead.

0:VolumeImage
1:String [Path of the original DICOM header file]

DicomRead Extract the grey-scale volume image data from a
DICOM image. The header information is also made
available to be passed to DicomSave

 0:VolumeImage
1:String [Path of the original

DICOM header file]
2:String [DICOM header]

XYZviewer Slices in a grey-scale 3D image are viewed from
their X, Y and Z directions

0:VolumeImage

IMGfrom3D Get a slice from a 3D data set (slice is specified by
user). Returns the min max pixel values from within
the slice.

0:VolumeImage
1:Integer [Range: 1 to the number of slices in the

volume, default=1]

0:GrayImage
1:Integer [minimum pixel value

within slice]
2:Integer [maximum value within

slice]
Scale3dData Scale pixel values in a 3D grey-scale image to the

range 0 – integer input
0:VolumeImage
1:Integer [Scale range required, (default=255)]

0:VolumeImage

Thres3D Threshold the 3D data 0:VolumeImage [Grey-scale]
1:Integer [Threshold value, default=200]

0:VolumeImage [Binary]

Mask3D Generate a 3D mask. Zeros a user-defined number
of rows, columns and slices.

0:VolumeImage [Grey-scale]
1:Integer [size of 3D mask, default=1]

0:VolumeImage [Grey-scale]

Sobel3D 3D Sobel 3x3x1 (18-neighbourhood) edge detector 0:VolumeImage [Grey-scale] 0:VolumeImage [Grey-scale]
Blob3D Extract the 3D blobs from binary 3D image. Each

blob is assigned a grey scale value.
0:VolumeImage [Binary] 0:VolumeImage [Binary]

BigestBlob3D Extract the N (user defined) biggest 3D blobs from
3D binary image.

0:VolumeImage [Binary]
1:Integer [Number of large blobs required, range

0-255, default=1]

0:VolumeImage [Binary]

Thinning3D 3D thinning operation of a binary 3D data set 0:VolumeImage [Binary] 0:VolumeImage [Binary]
MIP Maximum intensity projection transform 0:VolumeImage 0:GrayImage
AIP Average intensity projection transform 0:VolumeImage 0:GrayImage

PushSlice Push (insert) an image slice into the 3D data set 0:VolumeImage

1: GrayImage [Image to be inserted]
2:Integer [slice number - between 1 and depth

(default=1)]
3:Integer [minimum pixel value within slice

(default=1)]
4:Integer [maximum pixel value within slice

(default=255)]

0:VolumeImage

RenderEngine Surface rendering of a binary image. Image can be
displayed as a cloud of points, wire frame, flat
shading, Gouraund shading and Phong shading.
(Double-click to activate). Allows user to translate,
scale and rotate image.

0:VolumeImage 0:VolumeImage

LOW LEVEL#
GetPixel A grey-scale image from which a pixel intensity at a

certain coordinate is obtained.
0:GrayImage
1: Coordinate [coordinate of the pixel in question]

0: Integer [intensity of the pixel
at the specified coordinate]

SetPixel A grey-scale image from which a pixel at a certain
coordinate is replaced with one of a user defined
intensity.

0:GrayImage
1: Integer [grey-scale intensity of the replacement

pixel]
2: Coordinate [coordinate of the pixel in question]

0:GrayImage

RemovePixel A grey-scale image from which a pixel at a certain
coordinate is removed (removing a pixels sets that
pixel to black).

0:GrayImage
1: Coordinate [coordinate of the pixel in question]

0:GrayImage

DrawLine Draw a line in the grey-scale image 0:GrayImage
1: Coordinate [starting coordinate of the line]
2: Coordinate [finishing coordinate of the line]
3: Integer [gray-scale intensity of the line]

0:GrayImage

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g.

pixel access) is can be done directly in Java.

DrawBox Draw a hollow box in the grey-scale image 0:GrayImage

1: Coordinate [upper top left]
2: Coordinate [lower bottom right]
3: Integer [grey-scale intensity]

0:GrayImage

FillBox Draw a filled box in the grey-scale image 0:GrayImage
1: Coordinate [upper top left]
2: Coordinate [lower bottom right]
3: Integer [fill grey-scale intensity]

0:GrayImage

DrawCircle Draw a white hollow circle in the grey-scale image 0:GrayImage
1: Coordinate [coordinate of the centre of the

circle]
2: Integer [radius]

0:GrayImage

FillCircle Draw a white filled circle in the grey-scale image 0:GrayImage
1: Coordinate [coordinate of the centre of the

circle]
2: Integer [radius]

0:GrayImage

GetImageWidth Width of the input grey-scale image 0:GrayImage 0: Integer [width of the input
grey-scale image]

GetImageHeight Height of the input grey-scale image 0:GrayImage 0: Integer [height of the input
grey-scale image]

GenerateCoordinate Generate the coordinate value from the (x,y)
components.

0: Integer [x]
1: Integer [y]

0: Coordinate

GeneratePoints Generate the (x,y) components of a given
coordinate.

0: Coordinate 0: Integer [x]
1: Integer [y]

STRING
StringAdd Combine two strings (objects) 0: Undefined [first of two strings (objects) which

are to be added]
1: Undefined [second of two strings (objects)

which are to be added]
2:

0: String [The resulting string
which is made up from the two
input strings]

StringToLowerCase A string which shall be converted to lower case 0: String 0: String

StringToUpperCase A string which shall be converted to upper case 0: String 0: String
MATH# Library of standard mathematical operators.
JAIColour See the JavaTM Advanced Imaging website: http://java.sun.com/products/java-media/jai/
OSMIA – Tina 5 Interface See http://www.eeng.dcu.ie/~whelanp/osmia/ for details on interfacing NeatVision with Tina 5.0

Some of these functions use data types / variables that are for internal NeatVision use only. Access to such data (e.g.

pixel access) is can be done directly in Java.

http://www.eeng.dcu.ie/%7Ewhelanp/osmia/

	$
	NeatVision: A Development Environment for Machine Vision Engineers
	$.4 Design Details
	$.8 Conclusions
	References
	DATA
	UTILITIES
	ARITHIMETIC
	HISTOGRAM
	PROCESSING
	FILTER
	EDGES
	ANALYSIS
	MORPHOLOGY
	3D VOLUME
	STRING
	JAIColour
	OSMIA – Tina 5 Interface

