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3D Facial Landmark Localization with Asymmetry
Patterns and Shape Regression from Incomplete
Local Features

Federico M. Sukno, John L. Waddington, and Paul F. Whelan

Abstract—We present a method for the automatic localization artifacts (e.g. holes, spikes) that help assess performnanc
of facial landmarks that integrates non-rigid deformation with challenging scenarios.
the ability to handle missing points. The algorithm generates On the other hand, in medical applications such as facial

sets of candidate locations from feature detectors and perfors . ) . .
combinatorial search constrained by a flexible shape model. A Surgery [11], lip movement assessmeint[10] or craniofacial

key assumption of our approach is that for some landmarks dysmorphology [[7], [[B], the latter of which is the focus of
there might not be an accurate candidate in the input set. This our research, there is a greater focus on the highly accurate
is tackled by detecting partial subsets of landmarks and inferring |gcalization of landmarks, as they constitute the basisfi-
those that are missing, so that the probability of the flexible model ysis that is often aimed at detecting subtle shape diffeenc

is maximized. The ability of the model to work with incomplete . . .
information makes it possible to limit the number of candidates DePending on the author, localization and repeatabilitprer

that need to be retained, drastically reducing the number of are considered clinically relevant when they excéedm [13]
combinations to be tested with respect to the alternative of tryig  or 2 mm [14]. Acquisition conditions are therefore carefully
to always detect the complete set of landmarks. controlled to minimize occlusions, holes and other artifac

We demonstrate the accuracy of the proposed method in the ; P ;
Face Recognition Grand Challenge (FRGC) database, where we For (_-:'xamp_le, using a hand held Iager scanner it is possible to
obtain a high quality ear-to-ear facial sfan

obtain average errors of approximately 3.5 mm when targeting ¢ st " _
14 prominent facial landmarks. For the majority of these our The increased availability of three dimensional (3D) scans

method produces the most accurate results reported to date in has made it possible to overcome traditional limitatiorteein
this database. Handling of occlusions and surfaces with missing ant to 2D, such as viewpoint and lighting conditions. Frois th
parts is demonstrated with tests on the Bosphorus database, o gnective, we can make a first distinction between methods
where we achieve an overall error of4.81 mm and 4.25 mm . . .
for data with and without occlusions, respectively. To investigate USINg exclusively geometric cues (e.g. curvature) andethos
potential limits in the accuracy that could be reached, we also that analyze also texture information. While the latter hidnee
report experiments on a database ofl44 facial scans acquired benefit of including an additional source of informationgyth
in the context of clinical research, with manual annotations Suﬁer from two Shortcom|ngs 1) not a” 3D scanners prov|de
performed by experts, where we obtain an overall error of o416 and, even when they do, it cannot be assured thasthis
2.3 mm, with averages per landmark below3.4 mm for all 14 . .
targeted points and within 2 mm for half of them. The coordinates ~accurately registered to the geomelryl[12]; 2) they may tmeco
of automatically located landmarks are made available on-line. more sensitive to viewpoint and lighting conditions, asues
Index Terms—3D Facial landmarks, Geometric features, Sta- information is n.ot mvanapt t(.) these factors. .
tistical shape models, Craniofacial anthropometry. Thus, there is a special interest in methods that localize
facial landmarks based purely on geometric informatiore Th
most widely used feature to encode the facial geometry for
. INTRODUCTION landmark detection has been surface curvature. Buildiow fr
] ) early works on surface classification (using mean and Gawssi
Accurate and automated detection of facial landmarks S atures [[15] or shape indeX [16]), several authors have

an important problem in computer vision, with wide applizyniored the properties exhibited by certain facial land®a

cation to biometric identification [1]=[6] and medicin€l 7] For example, it has been found that the nose and chin tips
[11]. Biometric applications are typically concerned wite are peaksor caps while the eye and mouth corners apits
robustness of_the alg_orithm (e.0. tp occlusions, expraessio, cups [L7]-[27]. This classification has proved useful for
non-collaborative subjects) to achieve systems that can bggn detection of the most distinctive facial features, kbt
deployed in a wide variety of scenarios. In this contextiestayenera), it does not suffice for highly accurate localizatnd

of the art algorithms can detect the most prominent facill restricted to a very small number of specific landmarkeh wi
landmarks with average errors typically betwe&mm {0 jiye jikelihood of being extended to other points.

6 mm on large databases like the Face Recognltlon _G_r_andSimiIar limitations are observed in the use of relief curves
Challenge (FRGC)L[12]. These include diverse va“'S'“O(%r profileg, that is, a projection of the range information

) _(depth) onto the vertical or horizontal axes. With some as-
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sumptions regarding the orientation of the head (relative the problem is actually more general: for example, a feature
the scanner), this procedure allows the use of the resulling detector can fail to provide a suitable candidate for the chi
projections to detect some facial landmarks. This has provép because) it is occluded (e.g. by a scarfy;) the surface is
helpful in detecting the nose tip, even under some variation missing (e.g. acquisition artifacts),;) because of limitations
head pose [22], but without informing on localization a@my:  inherent to the detector itself, even though the surfacénef t
Recent extensions include the generation of multiple m®fib chin was captured correctly by the scanner. In the latteg,cas
account for large changes in head pdsé [23] and combinatioms say the the feature detector has producéalse negative
with curvature cues to derive heuristics for the detectibn which, as discussed above, is almost impossible to avoid.
reduced sets of points on the eyes and nasé [21]. Othetn this paper we present Shape Regression with Incomplete
geometric features include the response of range data wh@&tal Features (SRILF) for the detection of facial landnsark
convolved with a set of primitive filters [24], Gabor wavelet It can handle any combination of missing points and allows
[25], or combinations of features such as local volume, spiar non-rigid deformations, while working on a global basis
images, distance to local plane, or Radial Basis Functitmstead of trying to avoid false negatives, we provide a
(RBF) shape histograms [20]. [26]—[28]. mechanism to handle them by using a flexible shape model that
Regardless of the features that are used, it is unlikelyahaencodes prior knowledge of the facial geometry. Therefore,
unique and highly accurate detection can be achieved. bgentwe withdraw the requirement of a complete set of features
nose tip, so far the most successfully detected facial lamkm and try to match our set of targeted landmarks to a set
suffers from both false positives and negatives. Hence, tbe candidates that is potentially incomplete. Our matching
responses from feature detectors are usually combined wafigorithm, based on RANSAC_[B7], consists of analyzing
prior knowledge to improve performance. This leads us toraduced subsets of candidates and completing the missing
second distinction between methods that use a trainingoseinformation by inferring the coordinates that maximize the
derive these priors and those that employ heuristic rules. probability of the flexible model. Thus, despite the resigti
Methods targeting a small subset of landmarks are oftsubset possibly containing only part of the targeted lanéis)a
training-free. A set of carefully designed rules encodes tlestimates for the remaining coordinates are inferred frioen t
prior knowledge, sometimes with the help of anthropometrivnodel priors. Subsets of candidates that fulfill the statbt
statistics[[8]. A weakness of these methods is that theyllysuaconstraints of the shape model are retained and additional
follow a chain of rules that depend on one another. Ftandmarks are incorporated iteratively as long as the set
example, some methods) [3],_ |21, [25], [29] start by locatinremains a plausible instance of the shape model. The cost
the nose tip and use its location to constrain the searchmegof including a new candidate is computed as the median of
of the remaining points, while others [30] first detect theen squared distances to the closest candidate (per landmark),
eye corners and use these to fit a local plane from whighich provides robustness to potential landmarks for which
the nose tip is determined as the furthest point. Therefor®y nearby candidates have been found. The best solution is
missing or incorrectly detecting one landmark compromiseetermined as the one with minimum inclusion cost among
the detection of all subsequent landmarks in the chain.  those with the largest number of candidates (i.e. those with
Prior knowledge can also be derived from a training sehe largest support).
At the expense of requiring that such a set (with appropriateThe key contribution of SRILF is to bridge the gap between
annotations) is available, training-based methods aree méwo research streams:
flexible than their training-free counterparts in the laadks e Methods based on robust point matching but restricted
that can be targeted, as there is no need to derive specific to rigid transformations, as done by Creusot et al.
rules for each point. This has been widely exploited in 2D  [27], which can handle missing landmarks but do not
landmarking algorithms and is becoming more popular also allow non-rigid deformation and are therefore strongly

in 3D, especially since the availability of large annotated limited in their accuracy. We have shown experimentally
databases. Examples of this strategy include the use ohgrap that inability to cope with non-rigid deformations can
matching [[28], [[31], random forests [32] or statistical gha considerably impair accuracy even in databases without
models [19], [20], [38]-135]. expression changes [38].

Recently, it has been shown that statistical methods cane Methods based on statistical shape models that allow
produce accurate results for diverse subsets of landniggs [ non-rigid deformation but cannot handle missing land-

[20], [35], [36]. The common idea behind them is to combine marks [19], [20], [35], [36].
the responses of local feature detectors with shape camistra Recent efforts to tackle these shortcomings have not pro-
that ensure plausibility of the result at a global level.c8in vided a general and unified framework. Passalis et[al. [19]
localization of landmarks is simultaneously addressedseh and Perakis et al. [20] exploited facial symmetry to divideit
methods are more robust to localization errors in individughape model into left and right sub-models, but each of these
points. Nonetheless, current approaches still rely on #aé-a is actually a separate statistical model in itself, netatsg
ability of a complete set of features, i.e. the local featui@ complete set of features and not allowing inference of the
detectors are expected to always provide at least one Riitdlndmarks of the other sub-model. In contrast, SRILF always
candidate positionfor each targeted landmark, which carprovides estimates for the positions of all landmarks rdigas
prove quite difficult for most feature detectors. of the subset for which information is missing.

One can relate this intuitively to partial occlusions, but Another alternative based on statistical models is that of
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Zhao et al.[[35],[[36], who address a local optimization mafteeontains surfaces of higher quality than those from FRG@& wit
an initial solution is provided (e.g. by a previous face deie manual annotations performed by experts. Targeting thessam
block). Thus, even if some feature detectors produce pabt landmarks, we obtain an average error2df mm on 144
responses, the search is constrained to a bounded neightamial scans.

hood and is unlikely to diverge. However, we can see that theWe present the details of our landmark localization al-
problem is actually shifted to the availability of an adetguagorithm in Section]I; experimental results are provided in
initialization and, therefore, the solution is not global. Section[TI], followed by a discussion in Sectidn]IV and

The idea of using statistical constraints to complete mgssiconcluding remarks in Sectidnl V.
landmarks in shape models has been explored previously and
has found diverse applications. These_ mclgde predictiveg t Il SHAPE REGRESSION WITHINCOMPLETE L OCAL
normal shape of vertebrae from their neighbors to assess FEATURES (SRILF)
fractures [[39], initializing a registration algorithm fro a
reduced set of manual annotations|[40],/[41] or reconstigct  The SRILF algorithm has three componenis:selection
bones or facial surfaces from partial observatidng [423].[4 of candidates through local feature detectiai); partial set
Solutions to estimate the unknown variables were based m@atching to infer missing landmarks by regression; com-
regularized or partial least squarés|[44],][45], canonamat binatorial search, which integrates the other two comptmen
relation analysis[[46] or linear regressidn [[39]. Howevier, We present each of these in separate subsections.
all cases the goal of these models is to predict unknown parts
of the shape based on a partial observation that is pre-define .
statically. That is, the part of the shape that will be a\ddds A. Local Feature Detection
known already when the model is constructed, either at onceLet M be a facial surface described by vertices M, let
[39] or sequentially one landmark at a tinie [47]. In contrasfa(¢,)}£_, be the set of manual 3D annotations containing
we use a unique Principal Component Analysis (PCA) modeeindmarks and leD(v) be adescriptorthat can be computed
to handle any combination of known and unknown landmarksr every vertexv. We want to train a local descriptor model
(as this information is not know in advance) and select tlet bdor each landmark. The objective is to computesigilarity
solution based on a cost function as described above. Asimiscores(v) based solely on the local descriptors, that correlates
concept has been explored recently by Drira et[all [48] in theell with the distance to the correct position of the tardete
context of face recognition, to predict the missing infotima landmark. That is, for each landmafk we seek a function
of curves extracted from facial surfaces that might be alyti f;,() such thats;(v) = fx(D(v)) is high for vertices close to
incomplete due to occlusions or artifacts. a(¢;) and low for all other vertices of the mesh.

We use Asymmetry Patterns Shape Contexts (APSQ) [49]For example, spin image5 [52] or 3DSC[50] are popular
as feature detectors. These constitute a family of geometgeometric descriptors; and one of the simplest options to
descriptors based on the extraction of asymmetry patteons f obtain similarity scores, quite widespread both in the 2@ an
the popular 3D Shape Contexts (3DSC)]|[50]. APSC resol@® landmark localization literature, is to compute the afise
the azimuth ambiguity of 3DSC and offer the possibility tdo atemplatederived as the average descriptor from a training
define a variety of descriptors by selecting diverse spatisdt.
patterns, which has two important advantages: 1) choolimg t 1) False Positives:For every mesh vertex, the Euclidean
appropriate spatial patterns can considerably reducertbese distance to the targeted landmark can be computed as:
obtained with 3DSC when targeting specific types of points;

2) once an APSC descriptor is built, additional descriptas d(v,l) = ||v —a(ly)]| 1)
be buit mcrgmentally at very low cost. Ideally, vertices with highs;(v) should be close to the target

We experimentally demonstrate the accuracy of our a%ﬁd have smali(v. £+). H ften th fal
proach by testing it on FRGC, the most widely used database”... """ (v’ ’“)'. owever, very often there afaise
for reporting 3D landmark localization. We obtain an avera _osmvesLe. vertices with higls,(v) andd(v, ¢;) at the same
error of approximately3.5 mm when targetingl4 promi-

ime. Whether a vertex is considered a false positive or not
nent facial landmarks. For the majority of these our methao

ddepends on how close to the target we require it to be, which is
. set by amacceptance radius 4. To successfully locate a given
produces the most accurate results reported to date in tﬁs . : .
ndmark, we wish to retain enough candidates (theX@p-

database among methods based exclusively on geometric cfes e S
Additionally, we also show that our results compare welireve® that at least one of them is within our acceptance radius:
with methods combining both geometry and texture, which », _ min{n = Rp(s,(v)) |d(v, ) <7a,vE M} (2)
have reported lower errors only in the case of the eye corners n
where texture seems to play a more prominent role. We also Rp(sp(v)) = #({w € M|sp(w) > sk(v)})  (3)
test our algorithm on the Bosphorus databasé [51], and sh
the suitability of SRILF to handle scans with occlusions
where large parts of the facial surface are missing.

To investigate potential limits in the accuracy that coul
be reached, we report experiments on a database acquired vl = argmax{s(v) € M |d(v,l;) < ra} 4)
in the context of craniofacial dysmorphology research,clwhi v

O?Wus,Nk is the required number of candidate®2() is the
{descending) rank function ang() is the cardinality of a set.
é\lternatively, if vi is the highest scoring vertex withirn:
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a small proportion (the outliers). The latter will be dealthw
. i S T by the partial set matching explained in the next section.

L
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' ‘ | | vector, constructed by concatenating the coordinated. of
it landmarkd. By applying PCA over a representative training
H " SRR set [53], we get the mean shageand the eigenvector and
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B. Partial set Matching with Statistical Shape Models
Letx = (33173/1, 21,X2,Y2,22,.- ., L, YL, ZL)T be a Shape
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eigenvalue matrice® and A, respectively, sorted in descend-
ing order (\;; > Ajj;, Vi < j). Given any set ofL points
x, we can obtain its PCA representationtas= ®7 (x — %),

'
10 &

-
NI
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Accemame radius [mmi which will be considered to comply with the PCA model (i.e.
to be a plausible instance within such a model) if it satisfies
Fig. 1. Required number of candidates to be retained so tHaast one of M 5
them is within the acceptance radius from the target. Theplot indicate bj 9 8
the results for all meshes in FRGCv1 database when targétngght corner Z A <p ( )
of the mouth using spin images. j=1 13

where M is the number of retained principal components and
d&t is a constant that determines the flexibility of the model,
which we set to3, = 4 as in [38].

However, if the point set is incomplete, we may want to use
the available points and the model statistics to infer thibae
Fi={veM|dv,ly)>rans(v)>se(vi)} (6) are missing. Lek/ be thefixed (or available) landmarks, and
x9 the unknown landmarks (the onesdaes$. Without loss
of generality we group the missing landmarks franto 3g:

we can give a precise definition of false positives as the
of verticesF," that are farther from the targét thanr, but
score higher thaw}:

Thus, Nj, is also the number of false positives plus one.
2) Candidate SetsGiven a meshM and a landmark,, to
be targeted, we define the setaandidatedor that landmark, X9 = (T1,Y1, 21,5+ -, g, Yg, zg)T

Ci. as theg, highest scoring vertices: ! = (a1, Yos1, Zor1 R
- g v dJg ) ~g I 9 9
Cr={veM|Rp(sk(v)) < or} (6) x9 PI

From the discussion in the previous paragraphs we can infer
that the set’;, will contain at least one candidate within, if The objective is to infer the coordinates of landmarksso
and only if o, > N,. Clearly, we do not knowV,, beforehand that the probability of the resulting shape complying with
and trying to ensure, > N, results in very highp,, without the PCA model is maximized, ideally without modifying the
a guarantee to be sufficient for all meshes. coordinates inx/. Let Pr(x) be the probability that shape
To illustrate this, consider a sét;}¥ , where we compute x complies with the model. Assuming thdtr(x) follows
the number of candidates required for each megft,. These @ multi-variate Gaussian distributiok’(0, A) in PCA-space,
values depend on our choice of; the smallerr4 the larger this probability is proportional to the negative exponahtf
number of candidates we need to retain. ffly. 1 shows tH® Mahalanobis distance, as follows:
resulting number of candidates fop between2 and40 mm Pr(x) ~ o(-b"AT'D) (10)
when targeting the right corner of the mouth in FRGC v1.
As observed in the figure, the distributions &% tend to We want to find its maximum with respect ¢, so we need
be very skewed. Thus, setting, based on the maximum to cancel the first order derivatives simultaneously forttadi
values (which are typically outliers) is an expensive capiccomponents ok?:
as it implies retaining up to one or two orders of magnitude oPr(x) __—
more candidates than needed in the majority of cases. This is s — 0 5 - (=b"A7'b)=0 (11)
a common problem to almost any geometric descriptor. . - - . _ - .
In contrast, we seto, as an outlier threshold for the R€Placingb = &% (x —X) and definingy = x — X we obtain:

distribution ofN,Ei), as follows: OPr(x)
ox9 ox9

ok =q3+1.5(¢3 — q1) (7) )
Note thaty and x differ only by a constant, so we can take
which is a standard criterion to determine outllers baymg derivatives directly with respect tg. We also define a new

=0 & i(—yT<I>A—1<§Ty) =0 (12)

andgs the lower and upper hinges (or quartiles) {o¥,”} . matrix @ — ®A-'®7T to simplify the notation:

Continuing with the example in Figl 1, if we sef = 10 mm oPr(x) P

we getor ~ 50, while the maximum ofN,E” is above1000. e 0 & W(—yT\Ily) =0 (13)
X y

Choosingg;. based on an outlier threshold for the distribu-
tion implies that, in the vast majority of cases, we will d#te 2y 555ume that the shape has been aligned (e.g. by Procroatgsis)
a candidate that is withiny from the target, but we will miss so that Similarity is removed.
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We can explicitly separate the components relategt/taand Algorithm 1 SRILF: Shape Regression with Incomplete Local

yY, as follows: Features _
1: Start from input mesh\t

Tgy — yo \' [ woe wol y? (14) 2: for (all landmarks(;,, 1 < k < L) do
vy y/ wis Wit y! 3. Compute descriptor scoreg(v), Vv € M
9 o 4:  Determine landmark candidat€s using [6)
oy ) = 0 (0T I end o
o . - 6: for (all 4-tuple combinations of candidates,) do
+ (y)Tw9lyl + (yf)T\Ilffyf> 7. Initialize x/ = x4
8: Infer %9 using [17), obtainingk
=~y — (U9 Ty — (BI)Ty/ — w9yl (15) o while (x fulfills the constraints in[{8)Ho
The expression can be further simplified by noting tiiats ~ ° for (all other landmarks¢y, ¢ x/) do
symmetric (because the inverse Afis symmetric), 1 for (all candidates,, for landmarkey) dof
12: Add the candidate;, to x/ to obtainx],,,
i( —yTWy) =0 e B9y + w9yl =0 (16) 13 Infer fife_st from x/_, to o_btainfctest.
dy? 14: Constrainx,.s; to be within M (optional)
Finally, as long asP¥9 is invertible, we can solve foy?, 15: g?‘mpute the resulting cosf(c;.) as in [18)
16 end for
y! = —(W99) T wily/ 17: Compute the landmark cost(k) = mine, v(cy)
_ _(@gA—l(Qg)T)*l(@gA—l(‘ﬁf)T)yf (17) 18: end for ‘ . o
19: Add to x/ the landmark with minimumy (k)
As explained in Sectiofl] I, the idea of using statisticato: Infer %9 from the updateck’ to obtainx

constraints to complete missing landmarks has been explore::  end while

previously by other authors. The closest approach to oursds:  Compute the score far, as#(xf) + e 7(®)

the one from de Bruijne et al[ [39], where a closed forns: end for

solution is obtained using the maximum likelihood estimates: Keep the subset that achieves the highest score
of x9|x/ from the covariance matrix of the training set:
While results tend to be very similar, the main difference
is that we maximize the probability of the shape after the

projection into model space, which results in higher prdliigb The inclusion cost in{18) is a key aspect of the algorithm

OT compliance W'th. the model ?t the expense of having aISOa%d is divided in two parts from the definition dfx;..;. The
higher reconstruction error fat/.

first part is the reconstruction error for tligked landmarks,
while the second part considers the distance from the ederr
C. Combinatorial Feature Matching landmarks to their closest candidates. Note that a possible

We use RANSAC as the basis for our feature matchirgjternative would be usiny®” (x —%)|| as the inclusion cost,
procedure, as described in Algl 1. We start frdmsets of but such a choice would neglect the effect of the coordinates
candidate points, one set for each landmark. As describedfferred forx?. The definition ofy(cx) based on the median
Section(II-A, these candidates are the top-scoring vertige implies that the landmark cost(k), in line 12 of Alg. [, is
to ox, which is determined during training. All combinationghe least median of squares [55], which provides robustness
of 4 landmark candidates are then evaluated. In principle, W@ potential outliers (e.g. landmarks for which no nearby
could also start from subsets ®fpoints as we use Similarity candidates have been found).

alignment { degrees of freedom), butpoints were found t0  For each set that is checked, a score is computed. The

provide more robustness to estimate the initial alignment. angidates successfully includedsif (i.e. those which allow
We use eq[(17) to infer the positions of missing landmarksgmpletion of a shape fulfilling the PCA constraints) are

As long as the generated shape fulfills the model constraintgnsidered inliers. Thus, the cardinality »f is used as the
we successively add candidates from the remaining landmagkain component of the score. Upon equality of inliers, the

in a sequential forward selection stratedy |[54]. The coslpset with smallest(k) is preferred.
of including a new candidate; into x/ is computed as

the median of squared distancesxf),,, taking the closest ~The optional statement in line 114 of Alg] 1 forces all

candidates to the current estimate for the missing landsnark&ndmarks to be on the input surface, e.g. by shifting them
to the nearest vertex oM. This is useful for discarding

vier) = median(AXicq) (18) incorrect solutions but could be disabled to tolerate axiohs
Afrosr = {|f<test(5k) —xl ()2, Ve x{est} or missing parts of the surface.
minck ”f(test(ék') - Ck'r”Q) Ve, ¢ X{est

1) Complexity: The loop of linesl1 to 16 of Alg. [l plays
where ¢, € C, are the candidates for landmark, x(¢;) a central role in the overall complexity of the algorithm.cka
indicates the position of the-th landmark andk is the best time this loop is executed we need to compute the matrix
PCA reconstruction of shapein a least squares sense. inversion of eq.[(T7). For each potential landmark to be ddde
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a new repetition of this loop is neeffedhus, the complexity TABLE |
of the algorithm is variable and depends on how quickly we LANDMARK DEFINITIONS AND ABBREVIATIONS
can discard implausible combinations of candidates. Name Abbr | Description
An efficient way to discard implausible combinations dt Alare crest (2) ac | Nose comner, L/R (insertion of each
i alar base)
low cost was presented by Passalis et BLl [19]' For eas:gheilion 2) ch Mouth corner, L/R (labial commissure)

new combination, they check the distances between all paifiSygocanthion (2) en | Inner-eye comer, LIR
of landmarks and discard the combination if these are roExocanthion (2) | ex | Outer-eye corner, LIR

compatible with the distances observed in the training&ee. | Labiale inferius | i | Middle point of the lower lip
. . . . . Labiale superius Is Middle point of the upper lip

use of distances is possible due to their choice to excludgasion n Depressed area between the eyes, just
scaling from the transformation relating image and modgl _ above the nose bridge _ _
coordinates, which is not our case. Rather, we adapt theffogonion Pg gr?'?hgpcﬁm‘)m anterior, prominent point
approach to scale invariance by using ratios of distances| tp;onasale pm | Nose tip (most anterior midpoint of the
validate combinations of candidates at ling of Alg. [I. nasal tip) _

2) ConvergenceAs we are interested in accuracy, we do apSubnasale sn | Point at which the nasal septum merges, in

the midsagittal plane, with the upper lip

exhaustive search instead of random sampling. However, we
do retain the idea of consensus as the figure of merit, heece th
relation of our algorithm with RANSAC. On the other hand, . ) o )
an exhaustive search does not guarantee finding a plausf§id Without illumination changes; FRGC v2 contaif$)7
solution, which depends on the choice of the threshold f§F&ns fromiG6 subjects with both illumination and expression
plausibility 3. and the number of false positives. For exampl&@riations, some of which are very significant.

when large parts of the torso are included in the scan theré/¥& Will report experimental results using-fold cross-
might be too few candidates retained in the facial regiore ONalidation on each database version (v1 or v2) and results
can always choose to keep the best solution that was found®@ning on v1 and testing on v2, to reproduce the different

far, even if deemed implausible. However, in such a sitmatiGXPerimental settings reported in the literature.
we could also benefit from the splitting of such best solution All Scans were pre-processed with a median filter to remove

into x/ andx? and re-run the algorithm with more candidate§Pikes and a smoothing filter based on a bi-quadric approxima
for the inferred landmarks, namely increasing V¢, ¢ x7. tion of each vertex from 8 mm neighborhood. Finally, scans

The advantage of increasing the candidates for just p4gre decima_lted byafaqtor of4 and converted to t_riangulated
of the landmarks is twofold1) it reduces the number of MeShes. This resulted in an average of approximaiai)0

combinations to tesg) it generally results in lower proportion Vertices per mesh. _ .
of combinations being plausible, which are the most expensi Qround truth annotauong for this database are also pybllcl
ones to discard. Adding candidates for landmarksxif available. We used annotations from Szeptycki efal. [34h w
would most likely produce additional subsets of candidaff® additions and correc_:%)ns introduced by Creusot e@a}. [
combinations that are plausible but are still geometrgcallvhich are available on litie We target the 4 facial landmarks
similar to combinations already available before addingier available in this set, with definitions as indicated in Tdble
candidates, thus increasing the computational cost withou

much benefit in accuracy. B. Geometric Descriptors

3) Examples:Visualizing the different steps of the combi- e yse APSC[49] as geometric descriptors (i.e. to generate
natorial search can be helpful to illustrate the processriesl he scoress(v)). APSC descriptors are constructed by ex-
in Alg. [l For this purpose we have generated a large numQgicting asymmetry patterns from a 3DSC. The computational
of example videos showing the behavior of SRILF both fagost of the latter is considerably higher than the extractib
typical and extreme cases, which are available orfine asymmetry patterns, which allows computing several APSC

descriptors at a computational cost comparable to a sirgle d
[1l. EXPERIMENTAL EVALUATION scriptor. On the other hand, the use of asymmetry resolees th
A ERGC Database azimuth ambiguity of 3DSC, which speeds up the co.mputation
of the scores and tends to compensate the extra time needed

The FRGC database [12] is a large publicly available corpys puild the descriptors. While individual APSC descriptors
that haS been W|de|y Used to I‘eport |andmal’k |0ca|izati%n achieve Comparab|e accuracy to other popu'ar des{sqpto
results, thus allowing for a direct comparison of our alfori  sych as spin images or 3DSC, using a pool of APSC to target
with state of the art methods. The 3D part of the databaggch landmark with the most appropriate descriptor pravide
provides both geometric (range) and texture informatiod afmproved localization accuracy with a marginal increase in
is divided in two parts (owversion3: FRGC v1 contain®43 computation cost [49]/]56].
scans from275 subjects with only mild expression variations e evaluated all APSC descriptors listed[in][49] and choose

3Note that each execution of the loop between lingsto 16 of Alg. [II the most appropriat(_a for ea-Ch landmark u_sing_default win
involves only one matrix inversion, as all candidates testétin the I(')op 11 > 12 x 15 elevation, azimuth and radial bins covering a

correspond to the same landmark and therefore produce the gditraf e~ SPherical neighborhood of,,.., = 30 mm radius and setting
eigenvector matrixp into ®/ and ®9.
4http://www.cipa.dcu.ie/face3d/SRILExamples.html [15.07.2013] 5Available at http://clementcreusot.com/phd/ [08.07.2013]
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the smallest radial bins at,;,, = 1 mm. We select this only
once, using the FRGC v1 database.

TABLE Il

SUMMARY OF COMPARED METHODS ON THEFRGCDATABASE

In all cases, we obtained descriptor templates for each land

) e X Method # of | # scans De(_:i— Sm_oothing lee
mark by averaging over the training set. As manual annatatig Lmk | tested | mation filter filling
for FRGC have been shown to be rather noisy, we used heAlyuzt al. 5 | v2: 4007 | none yes yes
Least Squared Corrections of Uncertainty algorithml [57] Cry
build the templates. In brief, this means that we assumed |an [5g 9 vl:953 | 1:4 yes
uncertainty in the manual annotations, which were alloveed [ Creusot et al. W vITo43 T o
move within a small neighborhood of radiug to enforce - ﬂgain v2: 4007
consistency of the extracted descriptors. Previous exysris [59] 7 vi:946 | 1:4
on this database produced stable results /fprbetween’ Lu & Jain . V1 953 -
and 20 mm, hence we adopt a conservative value and set :

r, = 5 mm. The ground truth displacements are only used Pas etalll g v2:975 | 1:4 yes yes

during training to derive the templgtes and are specific th ed Perakis et al. s V2975 | 1.4 ves yes

descriptor. We have shown that this strategy is more aceurat

than simply trusting the manual annotations| [57]. Segundo etal. || V"zl_: fo4037 none yes
Descriptor scores were computed as the negative Euclidearsykno et ar, " Vi 943 L4 Jes

distance to the template. We also explored using the Maha- (SRILF) v2: 4007 i

lanobis distance, which generally reduced the errorspagth | SzePckietalll o 11 46 | none yes yes

this was significant only for the landmarks in the mouth and—g & Moon

chin (ch, Is, li and pg). Since the dimension of the APSC 3 | vi:200 | none

descriptors is relatively high90 bins) using the Mahalanobis| 4hao etal. 15 "21,:1446020 none yes yes

distance proved computationally expensive, even though we Zhﬁt al Vvl': 162

computed it after projection into a lower dimensional space  [36] 151 21500 | NONe yes yes

obtained by PCA. Thus, Mahalanobis distances were used
only for those landmarks on the mouth and chin; Euclidean
distances were used for all other landmarks. A summary of the experimental settings of all compared
Our evaluation of descriptors is based on the expected loca¢thods is provided in Table] II, including the total number
accuracyey, which quantifies the expected localization errodf landmarks targeted and the size of the test sets that were
of a descriptor when it is evaluated in a local neighborﬁoodeported by their authors. Decimation is often used, with
of the target[[56] and the required number of candidates 1:4 being the preferred factor because it allows to reduce
as defined in Sectidn 1I-A2. To avoid biasing the localizatiocomputational load without impairing accuracy. Most melt$o
results, we evaluated the descriptors only within each ééld apply smoothing filters to deal with spikes and noise in the
the cross-validation split. Results for thet fold of FRGC v1 range data and a few of them apply also hole-filling. Thus, we
are provided in Supplementary Table I. The descriptorslfinaisee from Tabl&]I that our experimental settings are sintdar
chosen for each landmark are highlighted in blue. The coiter the majority of compared methods.
used was to include a new descriptor only if there were noneTable [l gathers the localization errors reported on
already included that could achieve comparable performarfeRGCv1. It can be seen that, among methods using only ge-
(i.e. not significantly different from the best). This dilgc ometric information, our results are the best for all lantkaa
led to the choice of Qi, A+R and A+Dyr and either A or other than the nose tip, where Szepticky et [34] and Yu
A+D 4rr. However,1-ring APSC are faster to compute thar& Moon [24] obtain averages about half a millimeter lower.
2-rings, therefore we chooseyA However, in both cases the errors of these methods in the rest
Results on the2nd fold of FRGCv1 were similar to thoseof landmarks make them far less accurate than SRILF.
discussed above, hence we kept the same selection of descrijfVhen considering methods that combine both geometric
tors for all experiments in this paper. Note that this redate and texture information, we find that the two methods by Zhao
what descriptors were used but not to the number of candidagé al. [35], [36] perform better than SRILF for the eye comer
retainedp, which must be recomputed for each training set.(both inner and outer). However, for the othedandmarks
that can be compared, SRILF produces either equivalent or
better performance than all methods using texture, evargtino
we use only geometric information. A similar trend can be
In this section we compare localization errors for the observed in the results for FRGCv2 (Tabled IV and V) for
targeted landmarks measured as the Euclidean distance towhich we split the comparison in two, depending on whether
manual annotations. We provide results for SRILF togethtite algorithms were trained on FRGCv1 or FRGCv2.
with results reported in the literature from othr methods.  Training on FRGCv1 and testing on FRGCv2 is the most
challenging scenario, as the training data do not contaimgt
6The neighborhoods used to comp@feare determined as the nearest ring§acjg| expressions but these are present in the test setae ¢
around each targeted point for which accuracy is stablesd heighborhoods . .
analyze how this affects accuracy by comparing the results

can play a role when comparing descriptors but that was natéake in these i o ) i
experiments, hence we omit them here. Please refér fo [56]efails. from TabledTll and1V, i.e. training with FRGCv1 and testing

C. Localization Accuracy on FRGC
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TABLE Il
LANDMARK LOCALIZATION ERRORS REPORTED ONFRGCV1, IN TERMS OF MEAN + STANDARD DEVIATION. VALUES IN [MM]

A. Approaches based on geometric cues only

Method Eyes Nose Mouth and chin
en ex n prn ac sn ch Is fi pg
Creusot et al.[[27] 4.67 6.25 4.50 4.07 4.14 3.39 4.84 3.62 4.68 5.46
+2.26 +3.35 +2.48 +2.16 +2.37 +1.71 +2.94 +2.19 +2.40 +2.98
Lu & Jain [60] ]8.25 9.9 . 83 - - 6.1 - - -
+17.2 +17.6 - +19.4 - - +17.9 - - -
Segundo et all [21] 4.21 - - 2.69 6.69 - - - - -
+3.33 - - +2.14 +2.93 - - - - -

Sukno et al. (SRILF)|  3.57 4.71 2.76 2.77 3.17 2.36 3.23 2.83 3.82 4.24
+1.76 +2.79 | £1.76 | £1.68 | £1.83 | £1.24 | £2.19 | +£1.62 +1.95 | £2.46

Szeptycki et al.[[34] 3.85 7.96 - 2.27 6.18 - 8.56 -
+2.03 +3.87 - +1.35 +4.23 - +7.47 -

Yu & Moon [24] 5.17 - - 2.18 - - - - - -
+13.30 - - +6.83 - - - - - -

B. Approaches combining both geometry and texture

Colbry [5§] 5.8 - 4.8 4.0 - 4.1 5.4 - - 11.7
+4.75 - +6.4 +5.4 - +5.9 +6.75 - - +7.3

Lu & Jain [59] 5.85 7.5 - 5.0 - - 3.6 - - -
+3.15 +5.51 - +2.4 - - +3.11 - - -

Zhao et al.[[35] 3.21 4.27 - 2.68 4.47 - 3.93 2.72 3.76 -
+1.97 +2.82 - +1.85 +3.69 - +2.53 | £1.51 | £2.07 -

Zhao et al.[[36] 3.11 3.92 - 4.11 4.18 - 3.60 2.74 3.81 -
+1.49 | £2.02 - +2.20 +1.75 - +1.96 +1.42 +1.97 -

TABLE IV
LANDMARK LOCALIZATION ERRORS ON FRGCV2 USING MODELS TRAINED ONFRGCV1, IN TERMS OF MEAN 1= STANDARD DEVIATION. VALUES IN
[Mm]

A. Approaches based on geometric cues only

Method Eyes Nose Mouth and chin
en ex n prn ac sn ch Is Mi pg
Creusot et al[[27] 4.30 5.93 4.22 3.36 3.72 3.65 5.57 4.26 5.47 6.72
+2.05 +3.08 +2.47 +1.95 +1.72 +1.61 +3.41 +2.63 +3.90 +4.15
Segundo et all]21] 3.52 - - 2.73 5.34 - - - - -
+2.30 - - +1.39 | +1.89 - - - -

Sukno et al. (SRILF)| 3.35 4.49 2.55 2.22 3.09 2.81 4.05 3.40 4.82 5.39
+1.63 | £2.64 | £1.60 | £1.31 | £1.18 | £1.11 | +£3.12 | £1.97 | £4.04 | £4.01

B. Approaches combining both geometry and texture

Zhao et al.[[3B] 4.07 5.10 - 4.88 6.80 - 5.03 3.53 6.48 -
+2.07 | £2.99 - +2.52 +4.37 - +3.07 | £1.86 +3.16 -
Zhao et al.[[36] 3.23 4.10 - 4.43 4.64 - 4.22 3.37 4.65 -
+1.44 | £2.05 - +2.56 | £2.06 - +2.41 | £1.89 | +£3.41 -

TABLE V

LANDMARK LOCALIZATION ERRORS WHERE BOTH TRAINING AND TEST SHS DERIVE FROMFRGCV2, IN TERMS OF MEAN £ STANDARD DEVIATION.
VALUES IN [MM]

A. Approaches based on geometric cues only
Eyes Nose Mouth and chin
Method en Y ex n prn ac sn ch Is I pg
Alyuz et al. [29] 4.98 - - 3.26 4.60 - - - - -
n/a - - n/a n/a - - - - -
Passalis et al [19] 5.25 5.71 - 4.91 - - 6.06 - - 6.31
+2.53 | +£3.46 - +2.49 - - +4.30 - - +4.43
Perakis et al.[[20] 4.28 5.71 - 4.09 - - 5.49 - - 4.92
+2.42 | +3.38 - +2.41 - - +3.89 - - +3.74
Sukno et al. (SRILF)| 3.54 4.63 2.53 2.34 2.62 2.70 3.87 3.31 4.55 4.91
+1.74 | £2.67 | £1.63 | £1.70 | £1.35 | £1.12 | £2.77 | £1.83 | £3.39 | £3.54

TABLE VI
LANDMARK LOCALIZATION ERRORS ON THE CLINICAL DATASET, IN TERMS OF MEAN £ STANDARD DEVIATION. VALUES IN [MM]
Method Eyes Nose Mouth and chin
en ex n prn ac sn ch Is fi pg

Sukno et al. (SRILF)| 1.73 3.21 1.72 1.90 2.01 1.83 2.55 2.19 2.35 3.35
+1.07 | £1.99 | £1.20 | +£1.29 | £1.27 | £1.12 | £1.69 | +£1.27 | +£1.38 | +2.12
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on FRGCvl or FRGVCv2, respectively. We can see thi Resuilts training with FRGCv1

SRILF and the methods by Creusot et @l.][27] and Segundo ~ 4of -~ " -T T P 1
al. [21] maintain their accuracy for all landmarks in the £ye i FRGCv2 1
and most of the nose but not for the mouth and chin landmar _ 2| . i
(Segundo et al. do not target them and the other two methc émf l oo l l ' |
show increased errors). The algorithms from Zhao ef al.,[3% § El : ‘ ' I 1! I ; e
[36] show increased errors for most landmarks when testil g 5 . i l : b i
on FRGCV2. In the case df [B5], errors grow significantly fo g 4H Dl P H H I
all landmarks while the method in_[B6], which incorporate: § L A H H H H H - |
an occlusion model, is able to maintain accuracy for the ey = "|:: I T

[
T
I

and, to some extent, also the nose. Landmarks in the mol : TR [EEI
and the chin clearly show higher errors. I R T L T
Further details for SRILF are provided in Fid. 2. The stron:_ en ex n pm a sn ch s i pg
facial expressions on FRGCv2 resm-t in increased error’se'_n t-Fig 2. Landmark localization errors of SRILF using trainisgts derived
lower part Of the face; t_he bOXPIOtS in FIg. 2 show that this kom FRGCV1 for test sets from FRGCv1 (cross-validation) &RGCv2.
better explained by a rise in the number and the strength of
outliers than by an actual change in overall accuracy (atdit
by the medians). This is a rather straight-forward consecgie ® G
of the mismatch between training and test sets, as illestrat /|
in Fig.[3, top row. FRGCv1 is not a representative traininc
set for some of the scans with strong facial expressions i /7
FRGCV2. In those cases, landmarks in the lower part of thl
face cannot be identified correctly as both the local geo,metr?nmi
around landmarks and the global shape defined from the™ -
deviate considerably from the statistics of the training se ~ ® 7 i
The above can be dealt with by deriving training and tes
sets from FRGCv2, which in our case was done by meags of
fold cross validation (Fid3, bottom row). Now the algonth .
can also tackle cases with strong facial expressions, @ thel
are present in the training set: for example, in Elg. 3 thegiesa $m
in (c) and (e) correspond to the same scan, but localization
results are considerably better in (e). Fig. 3. Examples of landmark localization in FRGCv2 using SRttained
Some limitations of SRILF can be observed in those cases (TECHE L0, 109 200 FHCEE Joe (nokidedin are cisplayed in
where all included cgn@dates correspond to the upper Fr)artb e, while inferred landmarks are displayed in red. We shise th?a o)</erall
the face. The latter is illustrated in example (f) of Hi§J. 8: aerror for each case and a boxplot of the overall errors fosaahs in the test

candidates included ir/ correspond to landmarks above th&et where we can see the position of each example. Thus, fa)dfband

. . ) are representative examples while (c) and (f) are extrexsesg showing
upper lip, while all landmarks from the lower part have bee&iarly worst-case performance. More examples availabléneh:|

inferred (i.e. they are irx9). As the majority of examples

in FRGCv2 have a closed mouth, so does the most probable

estimate unless there is image evidence that contradicfs itseveral example videos that illustrate the behavior of $RIL

possible solution would be to force that at least one of the best, worst and typical cases.

candidates included in/ corresponds to a landmark in the

lower part of the face, providing the necessary constrdorts

a more accurate estimate (e.g. as in Eig. 3-e). However, thls

problem was limited to very few cases: as it can be appreatiate As mentioned earlier, our primary interest is on highly

in the boxplots attached to each example of Eig. 3, (c) aadcurate localization of facial landmarks. In contrasmeamf

(f) correspond to extreme cases, which are clearly outlirersthe methods compared in the previous sections focus on com-

terms of localization accuracy. putational complexity and can extract landmark coordmaie
Another figure of merit used to assess the performance afoutl second per facial scah [21], [27].

localization algorithms is the landmark detection rate, ihe While we do not target low complexity, it is important to

percentage of landmarks that were localized within a giveompare SRILF with the Flexible Landamrk Models (FLMs)

radius from the ground truth. While this is a weaker measupeesented by Passalis et al.][19] and Perakis et al. [20}séThe

than the average errors provided in Tallek II[fo V, it redategecent methods share with SRILF the use of a statistical

to robustness and is sometimes reported. Thus, we providedel to validate combinations of landmark candidates but

detection rates in Supplementary Table Il. These conforcannot handle incomplete sets. The strategy used in FLMs

SRILF as the top-performing approach for most landmarkis. to tolerate large numbers of false positives, in an attemp

Additionally, the landmark coordinates obtained by SRIbF f to avoid any false negatives in at least one side of the face.

all experiments on FRGC are provided on-fineogether with Hence, they need to retain a large number of candidates for

Landmarks and Complexity
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each landmark. In contrast, we retain a smaller number of
candidates and handle false negatives as missing infamati
that is completed by inference from the statistical model.

The computational cost of both SRILF and FLMs depends
on the number of landmarks that are targeted. Hence, we re-
peated the experiments on FRGCv1 targeting different $sibse
of landmarks. We started with a subseBgjoints that matches 30
the landmarks targeted by FLMs and successively addedspoint
until reaching the full set ofi4 landmarks. The results are
summarized in Supplementary Table Ill and include:

e Localization errors per landmark, to verify whether 7778 9 10 11 12 13 14
using smaller subsets (with fewer constraints) has an
impact on the accuracy of the algorithm.

e Computational cost, measured as the average run-time 3
on a PC equipped with an Intel Core i3-2120 CPU @ § 10° }

avg error [mm]
N W b O1

7 8 9 10 11 12 13 14

% cases

107

3.30 GHz with 4 GB RAM. Reported results correspond ~ © Number of candidate—based landmarks
to a C++ implementation using the Armadillo library

T ; Fig. 4. Results on FRGCv1 grouped by number of candidateddasemarks
ﬂﬂ] for the matrix inversions and OpenMI[[GZ] for(cardinality ofx ). Top: average error over all landmarks; Middle: percentage

parallelization. of scans with the number of candidate-based landmarks iwmdichy the

. . . . - horizontal axis; Bottom: average run-time of the combinatagarch. In the
The first conclusion that can be extracted is that locabzati top and bottom plots, bars indicateda% confidence interval of the mean.

errors did not vary much for the different subsets. The lsirge

variations were observed in the eye corners, which showed

slightly higher errors when fewer landmarks were targeteiased on candidates (i.e. includedxif) while the remaining

However, these differences were always withiift of the 2 to 5 landmarks were inferred from the model statistics.

errors obtained when targeting the full setldf landmarks. Finally, it should be noted that both the computation of
SRILF required4.7 seconds to locat& landmarks and descriptors and the combinatorial search involve a large-nu

approximately31.5 seconds to target the full set. We carper of operations that are inherently independent. Thezefo

compare the results when targetifiglandmarks with those the algorithm could in principle be accelerated substéytia

reported using FLMs to target the same subset, which averadlerough parallelization (e.g. by using GPUs).

6.68 seconds on a PC comparable to the one used here [20].

In both cases we can clearly isolate the time taken by the Occlusions and Out-of-plane Rotations

combinatorial search, thus highlighting the differencessen An interesting by-product of the strategy followed by SRILF
our strategy of using incomplete sets of landmarksi{ s that it can naturally handle cases with occlusions or imiss
seconds) and the one used in FLMs of trying to always finghta | et us emphasize that, up to this point, we have referre
the complete set, which was reported to aver@ge seconds. o missing landmarkss those for which feature detectors did
In terms of scalability, an approximate analysis can be doagt produce suitable candidates, although the vast majofit
by assuming a constant number of candidatés,retained for the test surfaces did not present occlusions or missing.part
all landmarks. Targeting an additional landmark with FLMs |n this section, we present tests on the Bosphorus database
multiplies the number of combinations to test by (or v/N. [51], which offers the possibility to test scans with actual
if the extralandmark is symmetric). In SRILF we tegf) N} occlusions (due to hair, glasses or hands covering the face)
combinations, so targeting + 1 landmarks increases theand scans where part of the surface was not captured due to
combinations to test only by a factor of. +1)/(L — 3). self-occlusions generated by large out-of-plane rotation
Therefore, SRILF not only outperforms FLMs in the con- The Bosphorus database contains scans ftofsubjects
crete case of localizing landmarks as in[[19],[[20], but it showing expressions, facial action units and, as mentioned
also scales better when additional landmarks are targsitess above, rotations and occlusions. To facilitate comparison
(L +1)/(L — 3) quickly tends to the unit as we increaée other works, we selected the san®39 facial scans used by
Also, as already mentioned, recall that SRILF needs tometatreusot et al.[[27], namely all available scans but thosé wit
less candidates than FLMs, which results in smaller valdies 3 degree rotations or flagged msalid. We proceeded analo-
N, i.e. NSRILE o NFLM gnd typically NFEM > 1, gously as done with the FRGC database, including decimation
It is worth emphasizing that the complexity of the combiby 1:4 which resulted in an average of approximatéB40
natorial search depends not only on the number of targetegttices per facial scan.
landmarks but also on the number of candidates included intoFig. [3 shows the localization results for each landmark,
x/ case by case, as shown in Fig. 4. Having to test larggiscriminated in three set2803 frontal scans without oc-
subsets of candidates increases the complexity but als@esd clusions (most of which show expressions or action units),
the number of landmarks that must be inferred and, on averagjgb5 scans with out-of-plane rotations ars@1 scans with
localization errors. It can be seen that in the majority afesa occlusions. Models were constructed using exclusivelynsca
(82.6%) there were betweef and 12 landmarks identified that are frontal without occlusions, so that they could eath
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—Frontal not occluded|
10° [ — Rotations
— Occlussions

Localization error [mm]
=
o»-
T

10° b

Fig. 5. Landmark localization errors of SRILF on the Bosplsodatabase.
We show separately the errors for frontal scans withoutusichs (blue),
scans with rotations (red) and scans with occlusions (green

from occluded or rotated scans. Experiments were carried ol
under2-fold cross validation ensuring that no subject was par
of both training and test sets at the same time.

Comparing the errors for the three sets in . 5, we ca
see that the overall performance is maintained for a mgjorit
of landmarks. On the other hand, it is also clear that th
presence of occlusions and rotations increases the pageent
of outliers. Fig_[ﬁ shows snapshots of rotated and occludgd. 6. Examples of landmark localization in the Bosphorusibase using

cases. as well as some especially challenaing scans WhEreSm”‘F: a-c) scans with occlusions, d-f) scans with outaiap rotations that
! P y ging produce large missing parts of the surface, g-i) especidlgllenging cases.

algorithm produces errors considerably larger than theag@e Examples (a) to (g) correspond to average performance whilengh (i) have
Numeric results, in terms of localization errors and dearger errors; in particular, (i) shows the worst resultadied in this database.

tection rates, are provided in Supplementary Tables IV alg%"edmir; i',‘,’fi':fg'j ?aﬁgie;k%na(;:néjilsdpﬁgséél?r?l;fc?ﬂflm are displayed in

V. Similarly to FRGC, comparison to other state of the art '

algorithms is favorable for most landmarks. The landmark

coordinates obtained by SRILF for all tested scans are alseatomical landmarks$ [63], among which we target the same
provided on-lind together with a large collection of snapshots4 points as in the previous experiments. Due to the moderate

of the localized landmarks. size of the dataset, we useédfold cross-validation so that
training sets would always contaii20 scans. All parameters
F. Localization Accuracy for Clinical Data were kept as in Sectidn 1IlB.

d alt?esults are shown in Fi] 7 and Tablgl VI. Average errors
are below3.5 mm for all landmarks and withirz2 mm for

Qri\lf of them. However, we can also see that averages are
still importantly affected by the presence of outliers ahd t
r@edian errors are at or belo mm for the majority of

The experiments presented in the previous sections aime
testing the robustness of SRILF and its performance inioglat

which there are acquisition artifacts, occlusions, stréaugal

expressions and a non-negligible degree of noise intheahanl dmarks. R ' K in the clinical d . ts that
annotations, as discussed in[57]. andmarks. Recent work in the clinical domain suggests tha

In this section we explore how much can we reduce IocalizEl-Jman observers could annotate facial landmarks with ®rror
tion errors by testing SRILF on a clinical dataset where pec etweenl and2 mm ]’ [14], which would be an gcceptable
care has been taken to minimize the presence of artifaffguracy for craniofacial dysmorphology applicatiads [7]

and manual annotations have been performed by experts. Thgompa_nng these r_es_ults fo those in .FRGCVl (the part of
dataset consists af44 facial scans acquired by means of f RGC W'th. Ies_s vanathns due to facial expressions), the
hand-held laser scanflewith an average of approximatelyoveraII localization error is more thanmm lower: 3.'44 mm
44200 vertices per mesh. on FRGCyl,g.;l mm on the clinical dataset. Looking at _each
The dataset contains exclusively healthy volunteers w dmark individually, all of them have lower average esrior

acted as controls in the context of craniofacial dysmorpiyl the clinical dgt:\set. Ilr.' Lei:atlvbe t;r)r(;s, the rr]elductlor: \arage
research. All scans are from different individuals (i.ee @gan errors ranged from slightly abo28% (sn ch, Is, pg) to more

per person) and volunteers were asked to pose with neuffd? ©0% (en).hln both (;j.?fFaSFts the ch|ln tip and outer-eye
facial expressions. Each scan was annotated with a numbef@fers were the most ditficult points to locate.

Thttp://lwww.cipa.dcu.ie/face3d/SRILExamplesBosphorus.htm IV. DISCUSSION

[19.03.2014] . .
8Polhemus FastSCANM, Colchester, VT, USA. Example available at The experiments presented in Section Il have shown that

http:/Awww.cipa.dcu.ie/videos/face3d/ScannibU_RCSl.avi [20.05.2013]. our algorithm can locate facial landmarks with an accuracy


http://www.cipa.dcu.ie/face3d/SRILF_Examples_Bosphorus.htm
http://www.cipa.dcu.ie/videos/face3d/Scanning_DCU_RCSI.avi
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Among remaining methods that target landmarks in all facial
regions, those from Creusot et al. [27], Perakis et [all [20]
and Passalis et al_[19] are the most accurate, although thei
overall errors are abové.5 mm. These three methods also
include strategies to handle partial information: Creietcdl.

| use combinatorial search based on RANSAC but constrained
to a rigid model that can be scaled but not deformed, while
Perakis et al. and Passalis et al. exploit bilateral sympntetr
: account for cases where information is complete only for one
b side of the face, but without providing estimates for theeoth
tod : side. The method by Fanelli et al. [32] is yet another recent
e S work using partial information to target facial landmarktss,
enR enl exR exL N pm acR acL sn chR chL Is i pg unfortunately, has not yet been reported on FRGC.

10

T T T T
R I
S I
[P

' ' ] ]

' ' ' '

I [

1 T ' ' T ' ' '
T 1

1 [ ' ' ] 1 [ [ '

' ' ' ' ' ' ' ' '

Localization error [mm]
l\‘) B
ammfee
ER T
[ETEE S PP
- e e
- -
[
gl

Fig. 7. Landmark localization errors of SRILF on the clinicitaset. V. CONCLUSIONS

In this paper we present SRILF for the automatic detection
4f facial landmarks. The algorithm generates sets of candi-
date points from geometric cues extracted by using APSC
. descriptors and performs combinatorial search constidye

* Approaches based on geometric cues only: these ar§jeyiple shape model. A key assumption of our approach

the most direct competitors, as our algorithm belongs that some landmarks might not be accurately detected by
to this category. A combined analysis of Tabfes Ill tqne gescriptors, which we tackle by using partial subsets
[VIshows that SRILF always obtained lower localizatiopy |angmarks and inferring those that are missing from the
errors than all other geometric methods fidr out of  faxible model constraints.

the 14 tested landmarkse(y ex n, ac, sn ch, Is and  \ye evaluated the proposed method in the FRGC database,
li). For the remaining landmarks, SRILF was the most, here we obtained average errors of approximagelymm
accurate method for the nose tip in FRGCv2 but not ihen targetingl4 prominent facial landmarks. For the ma-
FRGCv1; while it was the most accurate for the chifyiw of these our method produces the most accurate sult
tip in all three experiments, results were similar t0 thg,horted to date in this database. This was verified even for
method by Perakis et al. [20] in FRGCv2. methods combining both geometry and texture, which outper-

e Approaches combining both geometry and texture: irmed SRILF only when targeting eye comers, suggesting

principle, these methods have an advantage over SRIls; texture information might be of special importance in
not only because they incorporate an additional Sourgigs |ocalization of the eyes. It was also shown that smaller
of information but also because manual annotations f@fpsets of landmarks could be targeted while keeping acgura
FRGC have been derived from 2D images and coulthsengially constant and reducing computational cost.
therefore have some bias toward texture. However, thegrom the12 methods that we included for comparison, those
results reveled that our algorithm was still as accurajga; achieved the best results shared with SRILF someabilit
or better than texture-based methods for the majority gf ;se partial information. There seems to be a trend iridigat
compared landmarks and it only produced consistenilfat most successful methods for landmark localization are
higher errors for the eye corers. Nonetheless, thigose that can dynamically determine (on a case by case basis
increase was in all cases bel@w%. what information to rely on and what information to discard

In terms of average errors over all targeted landmarks:; ignore. In this sense, SRILF provides a general framework
SRILF obtains the best results 4 to 3.7 mm), followed by the that integrates non-rigid deformation with the ability tarlklle
method from Zhao et al[ [36]3(7 to 4.1 mm). Interestingly, any combination of missing points.
these two methods share the concept of using partial sets ofVe also investigated the performance of our algorithm on
landmarks if there is no information available for the coetel data with occlusions and out-of-plane rotations, as well as
set. In the case of Zhao et al. this is achieved by using pntential limits in the accuracy that could be reached.iigst
occlusion detection block, which indicates whether thegena our algorithm against expert annotations in a clinical seta
information for a given landmark should be used or discard&ee found that SRILF could localize facial landmarks with an
(presumably due to an occlusion). Comparison to prior wodverall accuracy o2.3 mm, with typical errors belov2 mm
of the same authors without occlusion detection [35] yieldsr more than half of the targeted landmarks. Nonetheléss, t
similar errors in FRGCv1 but considerably higher errors irelates only to overall performance and cannot be guardntee
FRGCv2. However, the number of scans with occlusions (ér all individual cases. Thus, further efforts should cemc
missing parts of the surface) in FRGC is limited and affectsate on reducing the number and the strength of outliers.

a rather small percentage of the data, suggesting that the

information that is discarded is not restricted to occludath ACKNOWLEDGEMENTS
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