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Abstract

This dissertation presents a new learning-based representation that is referred to as Visual 

Speech Unit for visual speech recognition (VSR). 

The automated recognition of human speech using only features from the visual 

domain has become a significant research topic that plays an essential role in the 

development of many multimedia systems such as audio visual speech recognition 

(AVSR), mobile phone applications, human-computer interaction (HCI) and sign 

language recognition. The inclusion of the lip visual information is opportune since it can 

improve the overall accuracy of audio or hand recognition algorithms especially when 

such systems are operated in environments characterized by a high level of acoustic noise. 

The main contribution of the work presented in this thesis is located in the 

development of a new learning-based representation that is referred to as Visual Speech 

Unit for Visual Speech Recognition (VSR). The main components of the developed 

Visual Speech Recognition system are applied to: (a) segment the mouth region of 

interest, (b) extract the visual features from the real time input video image and (c) to 

identify the visual speech units. The major difficulty associated with the VSR systems 

resides in the identification of the smallest elements contained in the image sequences 

that represent the lip movements in the visual domain.

The Visual Speech Unit concept as proposed represents an extension of the standard 

viseme model that is currently applied for VSR. The VSU model augments the standard 

viseme approach by including in this new representation not only the data associated with 
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the articulation of the visemes but also the transitory information between consecutive 

visemes. A large section of this thesis has been dedicated to analysis the performance of 

the new visual speech unit model when compared with that attained for standard (MPEG-

4) viseme models. Two experimental results indicate that:

1. The developed VSR system achieved 80-90% correct recognition when the 

system has been applied to the identification of 60 classes of VSUs, while the 

recognition rate for the standard set of MPEG-4 visemes was only 62-72%.  

2. 15 words are identified when VSU and viseme are employed as the visual 

speech element. The accuracy rate for word recognition based on VSUs is 7%-

12% higher than the accuracy rate based on visemes. 
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Chapter 1 

Introduction

1.1 Introduction

Automatic Visual Speech Recognition (VSR) has became a significant research topic that 

plays an essential role in the development of many multimedia systems such as audio-

visual speech recognition (AVSR) [18, 19], mobile phone applications, human-computer 

interaction [58] and sign language recognition [22]. Visual speech recognition can also be 

applied in the development of systems for person identification, machine control or game 

animation.

In general, a VSR system consists of five steps: face localization, lip segmentation, 

visual feature extraction, visual speech modeling and recognition. The standard system 

architecture of a VSR system is shown in Fig 1.1. The first task of a VSR system is to 

locate the face. This is usually carried out based on the analysis of various skin models. 

Following the localization of the face, the region of interest surrounding the lips is

extracted in each image of the video sequence. The third step deals with the calculation of 

the visual features that are extracted in order to produce a compact representation that 

describes either the visual appearance or the shape of the lips in each image. The result of 

the feature extraction is used to generate feasible visual speech models that represent the 

lip motions during the speech process. The last step of the VSR system performs the 

visual speech recognition task in order to register and match the visual speech elements 

present in the input video sequence and those contained in a database. 
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Fig. 1.1: Overview of the General VSR System Architecture.

1.2 Problem Outlines 

Visual speech perception is inherently a multi-process, whose aim is to provide and 

interpret the information necessary to establish communication at perceptual level 

between humans and computers. It is well known that the lip visual information is 

opportune since it can improve the overall accuracy of audio or hand recognition 

algorithms especially when such systems are operated in environments characterized by a 

high level of acoustic noise [1, 23]. 

In recent years, visual speech information has been exploited to increase the 

robustness of the conventional Audio-Speech Recognition system [18, 19]. In this regard, 

several Audio Visual Speech Recognition (AVSR) systems that are able to recognize 
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complex video-speech patterns from multiple speakers are being reported [20, 21]. While 

such AVSR systems are useful when operated in noisy environments, it is worth 

mentioning that they are not suitable to be used in the development of a sign language 

recognition system [22] since the users of the sign language recognition systems are 

people with hearing or speech impairment. Due to this reason, there is a need to research 

and develop visual-only, audio-less recognition systems, generically called visual speech 

recognition (VSR) systems.

The task of solving visual speech recognition using computers proved to be more 

complex than initially envisioned. The visual speech recognition has been carried out on 

discrete or continuous visual domains. In the discrete visual domain the main emphasis 

was placed on the evaluation of the independent mouth shapes or lip movements (i.e.: 

viseme). Continuous visual domain deals with the analysis of sequences of visual speech 

that correspond with multiple context-dependent mouth shapes or lip movements (i.e.: 

words/sentences). In this thesis, the main focus is placed on the analysis of the discrete 

speech elements based on “isolated words”. The isolated word in the database contains a 

limited number of visemes (more than two visemes in general). It is useful to notice that 

we assume a sentence can be formed as a large number of visemes. Both isolated words 

and sentence can be referred as “continuous visual speech” which includes two more 

visemes (mouth shapes) and this study will be addressed in the future work. 

Since the first automatic visual speech recognition system was reported by Petajan 

[23] in 1984, abundant VSR approaches have been reported in the literature over the last 

two decades.  While the systems reported in the literature have been in general concerned 

with advancing theoretical solutions to various subtasks associated with the development 
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of VSR systems, this makes their categorization difficult.  However the major trends in 

the development of VSR can be divided into three distinct categories:

1. Feature extraction techniques. The feature extraction techniques applied in the 

development of VSR systems can be divided into two categories: shape based [3, 

7-10, 24-27] and intensity (appearance) based [2, 6, 28-30] approaches. Based on 

a detailed literature review we can conclude that the intensity-based approaches 

limited geometrical errors and in general produce better results than shape based

feature extraction techniques. 

2. Classification algorithms. A number of visual classifiers are proposed to solve the 

visual recognition task including weighted distance in visual feature space [5], 

neural network [8, 33], support vector machines [23, 32] and HMM [38-41, 43]. 

By far though, HMMs have proved to be the most widely used classifier in the 

development of VSR systems.

3. Recognition tasks.  In this process, common recognition tasks include the 

recognition of visemes [1, 42, 55, 57], isolated words [7], connected digits [9, 35] 

and sentences [36], mostly in English, but also in French, Chinese and other 

languages. The literature on VSR indicates that most systems were focused on the 

robust identification of small independent speech elements (visemes) while the 

word recognition task has been viewed as a simple combination between standard 

visemes.

Based on the aforementioned categorization, we can notice that numerous methods 

have been proposed to address the problem of feature extraction and visual speech 

classification, but very limited research has been devoted to the identification of the most 
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discriminative visual speech elements that are able to model the speech process in the 

continuous visual domain. As mentioned earlier, most works on VSR focused on the 

identification of visemes, but in practice the viseme identification proved problematic 

since visemes have a limited visual support when analysed for continuous lip motions 

and as a result different visemes may overlap in the feature space, a fact that makes their 

identification difficult.

To address the problems associated with the standard viseme recognition approach, 

this thesis will provide a theoretical evaluation and quantitative answers to the following 

issues:

 How to extract the information associated with the lips motions from the frames 

that define the input video sequence?

 What is the appropriate set of visual speech element that can be applied for VSR 

by including not only the data associated with the visemes but also the transitional 

information between consecutive visemes?

 What criteria can be applied to register the new visual speech element into the 

continuous visual speech sequence and how to apply them to word recognition? 

In order to answer these questions, a new set of visual speech elements for VSR, 

referred to as Visual Speech Units (VSU), is proposed in this thesis. Other contributions 

of this work include the development and evaluation of several techniques such as 

Pseudo-Hue based lip segmentation, lip-feature extraction based on EM-PCA manifold 

representation and HMM based classification. The main contribution of this dissertation 

is located in the theoretical studies that lead to the development of a new set of speech 

elements (VSUs) for VSR.  Another important task is to evaluate the performance of the 
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VSU representation when applied to the recognition of isolated words. Based on 

experimentation, it is demonstrated that the inclusion of the new set of speech elements 

improves the overall performance of the VSR system when compared with the 

performance offered by the analysis of the standard set of visemes.

1.3 Overview of the proposed VSR System

In order to achieve robust visual speech recognition, the process of visual speech 

recognition is formulated as shown in Fig. 1.2. The new system presented in this thesis 

consists of four major components: lip segmentation, feature extraction, Visual Speech 

Units modeling and Visual Speech Units registration and Classification. 

 Intensity-based Lip Segmentation

For any given image from the input video sequence, a generic skin colour model is 

applied to extract the initial facial skin areas. In order to extract the lips from skin regions, 

the pseudo-hue is calculated based on RGB component values and the lips are segmented 

by applying a histogram-based thresholding scheme. The image area describing the lips is 

extracted in each frame from the input video sequence. 

 Manifold Representation

A representation using 3-dimensional (3D) PCA vectors that describe the visually 

spoken words is proposed. These PCA vectors are referred to “word manifold”. In this 

regard, the image data contained in the region of interest (ROI) surrounding the lips is 

extracted from the previous step and it is converted into a matrix form. The converted 

data is compressed using Expectation Maximization PCA (EM-PCA) into a 3-

dimensional feature space, where each image area describing the lips in the input 

sequence is projected onto the low-dimensional EM-PCA space. 
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t

Fig. 1.2 An overview of the Visual Speech Recognition system.

The aim of this procedure is to obtain an EM-PCA “trajectory” where for each mouth 

shape a low dimensional vector is assigned. The projections of these images form a 

trajectory that truly extends to different mouth shapes and lip movements. To obtain a 
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continuous representation, the manifold is interpolated using cubic splines and re-

sampled based on equal distances on the interpolated manifold surface. The re-sampled 

manifolds are used for Visual Speech Units modeling.

 Visual Speech Units Modeling

This is an off-line component of the system that is applied to generate a database of 

VSUs. The proposed VSU extends the standard viseme model by including in the new 

representation the transition between consecutive visemes. In the training process, the 

VSU are constructed from the training data and for each class of VSU a mean model is 

generated based on the EM-PCA representation. 

 Visual Speech Units Registration and Classification

In the final phase of the VSR system, the registration process between the VSU mean 

models and the continuous manifold calculated from the input video sequence is carried 

out using Dynamic Time Warping (DTW). In this way, the VSU recognition process is 

viewed as a two-step approach. In the first step, the VSU mean models are registered to 

the continuous manifold calculated from the input video sequence manifold using DTW. 

Then in the second step, the matching cost between the VSU mean models and the 

registered sections of the continuous manifold are measured using HMM classification. 

This process is applied in an iterative manner until the entire surface of the continuous 

manifold is covered by an ordered sequence of VSUs. 

In conclusion, the main goal of this thesis is to advance theoretical and practical 

solutions in the field of feature extraction, visual speech modeling and visual speech 

recognition based on a flexible framework that analyses the lip movements in the visual 

domain.
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1.4 Thesis Overview

Chapter 2 is a literature review of the related techniques proposed by different research 

groups to solve the problem of VSR.

Chapter 3 explains the proposed lip segmentation algorithm with various evaluation 

results. The EM-PCA manifold representation for visual speech feature extractions is also 

discussed. 

Chapter 4 gives a particular analysis of the viseme model and introduces our proposed 

VSU model. 

Chapter 5 details a large number of experimental results where the performance of the 

new VSU model is compared against that offered by the standard set of MPEG-4 visemes.

Chapter 6 concludes with a summary and advances some future work directions
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Chapter 2 

Literature Review

2.1 Introduction

Recognition of human speech by computers using only visual information is a significant 

research area that spans across multiple disciplines such as linguistics and speech 

modeling [27]. In the past decades, a great deal of research effort has been devoted to the 

development of robust visual speech recognition (VSR) systems that are able to localize 

the region of interest (ROI) around the lips, extract visual information from lip 

movements and emulate human cognitive ability in recognizing speech based on the 

dynamic deformation of the lips outlines. The aim of a VSR system is to provide valuable 

aid to the acoustical [3] or gesture recognition [22] under degraded conditions. 

There has been much progress in automatic VSR over the past decades and various 

visual speech recognition techniques are reported. However, it is useful to note that most 

of the research in automatic VSR has been concentrated around two major topics: feature 

extraction and visual speech classification. In this regard, the feature extraction process 

requires robust lip segmentation and extraction of suitable features that are able to encode 

the lip movements in a low dimensional representation. Thus, the visual speech features 

provide a rich source of information that can be used in the development of computer 

vision systems able to understand human actions and behaviors. For example, the speech 

visual features have been currently applied to solve a large range of practical problems 
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such as face or facial expression recognition [59], control the car environment [58] and 

image animation and coding [60, 62].

Once features become available, the next step involves visual speech classification 

that is applied to identify the visual elements in the input video sequence. The literature 

on VSR indicates that visual speech classification has focused on two major issues: visual 

speech classes and the design of visual speech classifiers. The visual speech class is the 

choice of the speech model that is assumed to generate the observed features. This class 

is organized as the basic unit of visual speech that can be concatenated to form words and 

sentences, thus providing the flexibility for the proposed visual speech recognition

systems to be extended to cover large vocabulary representations [27]. The visual speech 

classifier is the statistical classification approach of the automatic VSR process. The 

classifier is applied to model and classify the speech classes.

In the next section, the most relevant approaches in the area of lip segmentation, 

feature extraction and classification will be analysed.

2.2 Lip Region Localization

Lip segmentation has become an important issue in both automatic VSR processing and 

automatic face recognition. In such systems, the region of interest (ROI) around lips must 

be detected in each frame of the image sequence. This procedure is normally carried out 

by fitting a range of colour models to the image and this is followed by face detection and 

extraction of the ROI surrounding the lips.

Early VSR systems performed the lip segmentation in conjunction with the 

application of artificial markers (lipstick) on the lips [11]. The application of lipstick 

enables the system to detect precisely the lips in the image data, but this procedure is 
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inappropriate since it is uncomfortable for users and such VSR systems can be operated 

only in constrained environments. Thus, the main research efforts have been concentrated 

in the development of vision-based lip segmentation algorithms. Many studies have 

shown that colour information can be successfully applied to identify the skin or face in 

digital images [2]. The main idea behind this approach is to transform the RGB signal 

into a new representation where the mouth is clearly visible, so that it can be easily 

segmented. To this end, a large number of colour representations have been proposed. In 

1996, Coinaiz et al [5] used the hue component of the HSV representation to highlight the 

red colors which are assumed to be associated with the lips in the image. Later, the HSV 

colour space is further used by Zhang and Measereau [4] for lip detection. They used 

prominent peaks in the hue signal as an indicator to locate the position of the lips. Then 

based on the identified lip area, the interior and exterior lip boundaries are extracted 

using both colour and spatial edge information using a Markov Random Field (MRF) 

framework. Other approaches carried out the lips detection task in the YCrCb colour

space since that facial skin covers a small area of the CrCb subspace [12, 13].

In 2001, Eveno et al [2] propose a new colour mixture and chromatic transformation 

for lip segmentation. In their approach, a new transformation of the RGB colour space 

and a chromatic map was applied to increase the discrimination between the lips and 

facial skin. They demonstrated that the proposed approach is able to achieve robust lip 

detection under non-uniform lighting conditions. Later, Eveno et al [3] introduced a 

different method where the pseudo-hue [6] was applied for accurate lip segmentation that 

has been embedded in an active contour framework. They applied the proposed algorithm 
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for visual speech recognition and the results show significant improvement in terms of 

accuracy in lip modeling. 

Another method for mouth segmentation has been proposed by Liew [14] in 2003. In 

their approach, the colour image is transformed into the CIE-Lab and CIE-Luv colour

spaces, and then a lip membership map is computed using the spatial fuzzy clustering 

algorithm. After morphological filtering, the ROI around the mouth can be identified 

from the face area.

In 2006, Guan [17] improved the contrast between lip and the other face regions 

using the Discrete Hartley Transform (DHT). In this paper, lips are extracted by applying 

wavelet multi-scale edge detection across the C3 component of the DHT which takes both 

the colour information and the geometric characteristic into account.

2.3 Feature Extraction

As indicated in the first chapter of this dissertation the feature extraction techniques 

developed for VSR can be categorized into two major groups, namely shape-based and 

intensity-based feature extraction approaches.

2.3.1 Shape-based Feature Extraction

The shape-based approaches rely on the extraction of geometrical features from the 

outline of the lips. This information is used to encode a standard set of mouth shapes that 

are applied to model the lip motions during the speech process. 

This approach was applied by Petajan [23, 24] in the development of a lip-reading 

system where simple shape features such as height, width and mouth area are used to 

encode the shape of the region described by the lips contour. In 1994, Hennecke et al [15] 

used a deformable template to model lips dynamics. This template is generated based on 
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a model of the lips defined by a set of parameters which are chosen by minimizing a 

criterion based on the distance between the edges of the model and the edges of the lips. 

The proposed approach shows good results in tracking the height and widths of lips, but it 

has some problem on the lower edges of lips under various lighting conditions.

Using a different approach, Silveira et al [7] employed the horizontal and vertical 

features extracted from the mouth shape. In this study, the difference between the two 

consecutive frames of the sequence under analysis is calculated and an entropy-based 

threshold is computed to detect the mouth region. One horizontal distance and three 

vertical distances calculated from the lip data are extracted and used for visual speech 

recognition on a subset of words. 

It is important to note that the approaches detailed above use a limited number of 

geometric features and their performance proved to be inappropriate when applied to 

image data affected by non-constant illumination conditions. To circumvent this problem, 

other approaches apply Active Shape Models (ASM), Active Appearance Model (AAM), 

or snakes to extract the lip outlines [3, 25]. But the application of these techniques to 

VSR proved to be problematic since they require a complex initialization procedure. For 

instance in 1995, Luettin et al [8] developed an ASM method that was able to learn the 

grey-level profile around the lip contours. They applied additional constraints to ensure 

that the detected boundary belongs to the possible lip shapes only, but to achieve this they 

used a large training set that is able to cover a high variability range of lip shapes. 

Moreover, the images contained in the training set have to be cautiously calibrated. The 

initial mouth shapes associated with different articulation conditions have to be constant. 

Otherwise the ASM method leads to unreliable results [3].
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This approach was further advanced by Li and Ai [9] when they applied the ASM 

approach for mouth contour extraction in conjunction with the Ada-Boost classification 

scheme to characterize the local texture. ASM approaches identify the lips in the image 

by fitting a statistical shape model of the lips to the video frames. Such model-based 

approaches are less sensitive to image noise as they only use the lip contour information, 

but they are not very useful in describing the continuous speech process [1, 27, 77]. 

Other implementations use the Active Appearance Model (AAM) approach [26] as to 

extract the lip shapes where the shape model is combined with a statistical model in the 

intensity domain [16]. The AAM is a generalization of the widely used ASM approach 

since it uses all the information in the image region covered by the target object, rather 

than just that near modeled edges [78]. Although the performance of AAM is 

demonstrated to outperform ASM in lip tracking [26-27], it still has two disadvantages 

when applied to motion tracking. First, the estimated out-of-plan motions are not very 

well accommodated since AAMs encode the lip shapes using a 2D representation. 

Second the convergence of the optimization process to desired minima is not guaranteed 

[79]. However, both AAM and ASM techniques are sensitive to tracking and modeling 

error [27]. 

More recently, Tian et al [10] combined shape, colour and motion for lip tracking. 

They developed a method for tracking lip contours in colour images by applying a multi-

state model that is able to represent different mouth shapes such as open, relatively open 

and tightly closed across individuals. The lip state transitions were determined by the lip 

shapes and colour. Given the initial location of the lip template in the first frame, the 

algorithm tracks the lip key points using the Lucas-Kanade method where the lip 
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contours are detected by enforcing the corresponding lip template parameters. This 

method proved to be able to track lips even in the presence of vertical and horizontal head 

rotations. The main limitation of this method is based on limited lip templates (open, 

relatively closed and tightly closed). For non-symmetrical facial expressions and complex 

lip shapes which are not included in the training set, errors between the tracking lip 

contour and actual lip shapes are encountered. 

2.3.2 Intensity-based Feature Extraction

One limitation associated with the shape-based approaches (e.g.: ASM, AAM) 

resides in the fact that only geometrical information is used to encode the mouth shapes. 

Such shape based approaches only analyze the lip contour information and they do not 

encode the speech articulation [27]. For example, lip contours cannot describe the 

information related to the oral cavity and the protrusion of the lips. In addition these 

approaches are sensitive to tracking errors and they are not able to encompass the 

information contained in consecutive frames efficiently. Their performance is depended 

on the initial conditions and they are not able to directly handle cases well outside the 

training templates.

To address these issues, intensity-based approaches [2, 6, 27, 28] have been proposed. 

Their major advantage is that they use the entire grayscale (or colour) information 

available to sample the spectrum of mouth shapes. Intensity-based features are capable of 

encompassing the visual information within the mouth cavity and the surrounding face 

regions that are not included in the high-level shape-based features [27]. The intensity-

based features are demonstrated to produce better results than features extracted using 

ASM and AAM algorithms in [21]. In this regard the image area around the lips is 
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extracted for each frame in the video sequence and this information can be compressed to 

obtain a low-dimensional representation using PCA [29, 31], DCT [28, 29], and LDA 

[30]. The representation of the mouth shapes in a low-dimensional feature space proved

to be opportune and the performance of these methods in general is better than that 

attained by the shape-based VSR techniques [21]. Moreover, intensity-based approaches 

do not require a priori statistical lips models and this fact allows the development of 

computationally efficient VSR systems [27]. 

2.4 Classification

2.4.1 Visual Speech Classes

The literature review on VSR systems indicates that researchers have attempted 

speech recognition for individual words (digits, letters, etc) or sentence level [7, 29, 35-

37]. The main disadvantage of these approaches resides in the fact that an extensive 

database is necessary to model all words contained within the English dictionary. In 

recent years, the main investigations have focused on the robust identification of visemes. 

The basic unit that describes how speech conveys linguistic information is the phoneme 

[1]. In visual speech, the smallest distinguishable unit in the visual domain is called 

viseme [1, 42, 55, 57]. A viseme can be viewed as a cluster of phonemes and a model for

English phoneme-to-viseme mapping has been proposed by Pandzic and Forchheimer [54] 

(see Appendix A). In this regard, static and dynamic visemes were both used for visual 

speech synthesis. A static viseme can be conceptualized as a still human face picture with 

the visual configuration represented by the mouth shape, tongue and jaw that is visually 

correlated with the speech sound corresponding to a phoneme [83]. Dynamic visemes 

represent the process of the visual lip movements during the speech articulation. These 
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dynamic visual speech elements can be produced by independent phonemes, or 

constructed from continuous visual speech such as words or sentences [39-40]. More 

recently researchers have approached visual speech recognition using the dynamic 

visemes concept.

Goldschen et al [84] proposed a continuous optical automatic speech recognizer 

(OASR) that uses 13 dynamic features for optical information from the oral-cavity 

shadow of a speaker. In this system, 150 sentences are tested using Hidden Markov 

Models based on visemes, trisemes and generalized trisemes. In 1999, V. Matousek [61] 

developed one of the first viseme-based classification systems where a time-delayed 

neural network is applied to classify 14 classes of visemes. This work has been further

advanced by Foo et al [38-40, 55], where adaptive boosting and HMM classifiers were 

applied to recognize visual speech visemes. Yau et al [56] initially examined the 

recognition of 3 classes of viseme using motion history image (MHI) segmentation and 

later they increased the number of visemes up to 9 classes. In this system, 2D spatio-

temporal templates (STT) combined with the discrete stationary wavelet transform and 

Zernike moments were used to describe the lip movements in the temporal domain and 

HMM were used for classification [41].

In the literature on VSR, a viseme is regarded as the smallest unit that can be 

identified using the visual information from the input video data. Word recognition (or 

other continuous speech recognition) is viewed as a simple combination of standard 

visemes. Although words can be theoretically formed by a combination of standard 

visemes, in practice viseme identification within words is problematic since different 

visemes may overlap in the feature space a fact that makes their identification difficult. 
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2.4.2 Classifiers

A large number of classifiers have been proposed for automatic VSR. One of the 

most simplistic classifier evaluates the Euclidean distance between the pre-stored visual 

features and those extracted from the input video sequence [23, 24].  The main advantage 

of this approach resides in its simplicity but it proves to be inaccurate when applied to 

discriminate a large number of mouth shapes.

In 2002, Gordan et al [32] introduced Support Vector Machine (SVM) to recognize 

temporal sequences of visemes. They trained one SVM for each viseme in the database 

and in their approach they used SVMs with 3rd degree polynomial kernels. They reported 

a recognition rate of 90% when they applied their system to recognize a small set of 

visemes.

Artificial neural networks (ANN) have also been used for visual speech classification. 

In this regard, Yau [27] proposed an ANN based learning algorithm to classify the 

moment-based features that were used to describe a small number of visemes. In this 

approach, an ANN is trained for each viseme class contained in the database. The 

experimental results reported in the paper show that they achieved 84% recognition rate 

when applied to the recognition of 9 classes of visemes.

In 2006, Ravyse et al [83] introduced a multi-stream Dynamic Bayesian Network 

(DBN) model to analyze either audio and video streams for AV automatic speech

recognition. They applied the proposed DBN based system and the classical Hidden 

Markov Model in order to recognize 50 independent sentences. The experiments 

indicated that the DBN model is more robust than HMM when applied to noisy data.

However, Hidden Markov Models [33, 73] are the most widely used classification 

scheme for VSR. In 1998, Potamianos et al [35] applied an HMM classifier whose 
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parameters were optimized by maximum likelihood Viterbi training for automatic lip-

reading. In their work, both lip contour and image transform-based visual feature are 

considered for HMM training. The performance showed significant improvement

compared to standard techniques that analysis the lip motions only in the intensity 

domain.

Yu and Bunke [36] combined HMMs with grammar to recognize visual speech 

sentences of email commands and words describing integers. In this paper, a set of basic 

words is used to generate pre-defined sentences based on some grammar knowledge. For 

each basic word, a HMM is constructed. After training the HMMs for each individual 

word in the database, a complex HMM is obtained by concatenating the individual 

HMMs according to the grammar. The complex HMM is applied to recognize any 

sentence generated in agreement with the pre-defined grammar. This VSR system 

achieved 80% correct words recognition but it attained only 54% successful recognition 

when the system was applied for sentence recognition.

In the same year, Chan [37] developed an HMM based audio-visual speech 

recognition system that combines geometric and appearance based visual features. 

Initially, geometric features such as the height and width of the lips are extracted using a 

contour-based lip tracking algorithm. Then, the pixel-based features that are robust to 

variation in scale and translation are extracted. To achieve this goal, a subset of pixels 

located in the center of the inner mouth was selected. This cluster of pixels was found 

effective in capturing sufficient details of the appearance of the teeth and tongue to be 

used in the discrimination of the spoken words. In the final stage, an HMM is applied to 

recognize word-models in the input video sequence. The experimental data indicates that 
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this approach is able to produce sufficiently accurate results up to 90% in 9 isolated digits 

recognition of a single speaker. 

In recent years, coupled HMMs, factorial HMMs and Ada-boosted HMMs have been 

explored. Foo and Dong [38] applied a boosted multi-HMM classifier to recognize visual 

speech elements. The main novelty of this approach is the Baum-Welch training 

algorithm that is used to classify the visemes in English. Later, they improved their initial 

approach by combining adaptive boosting and HMMs to build AdaBoosting-HMM 

classifiers [39]. This classifier is trained to cover different groups of visemes. In 2005, 

they further improved the HMM using a novel two-channel training strategy [40]. In this 

classification strategy, a separable-distance function that measures the difference between 

a pair of training samples is adopted. The symbol emission matrix of an HMM is split 

into two channels: a static channel to maintain the validity of the HMM and a dynamic 

channel that is modified to maximize the separable distance. This approach achieved an 

80% recognition rate.

In 2007, Yau et al [41] propose the use of image moments and multi-resolution 

wavelet images for visual speech recognition. In their approach, the input video data is 

represented by a general spatio-temporal template that is decomposed by applying the 

discrete stationary wavelet transform and HMMs are used for viseme modeling. The 

preliminary results show that this system achieved about 88% correct recognition when 

applied to recognize 14 classes of visemes.

By far though, the most widely used classifiers are traditional HMMs that 

statistically model transitions between the visual speech classes and assume a class-

dependent generative model for the observed features. 
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2.5 Summary

In this chapter, a large number of VSR systems have been reviewed with the main focus 

being on the lip segmentation, feature extraction and classification. Based on this review, 

I conclude that lip segmentation methods based on skin models are the most promising 

approaches. Among all feature extraction and classification algorithms, intensity-based 

feature extraction techniques used in conjunction with HMM are the best approaches to 

model and analyze temporal processes for VSR. 

I also noticed that visemes are widely used as the basic speech element by many 

research groups, but they have the main shortcoming that visemes cover only a small 

subspace of the mouth motions represented in the visual domain. In additional to this, the 

viseme model cannot represent transitions between visemes in continuous speech (words) 

recognition system. To address this problem, in this thesis a new VSR model called 

Visual Speech Unit (VSU) is proposed. An application based on this VSU model is 

developed to recognize group of words and the experimental results demonstrate the 

validity of the adopted approach. 

In the next chapter, all stages of the adopted lip segmentation methods are described. 

In the next chapter also a new Expectation-Maximization Principal-Component-Analysis 

(EMPCA) manifold representation that is applied to encode the mouth shapes is detailed.
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Chapter 3 

Feature Extraction: Lip Segmentation and 
Manifold Representation

3.1 Introduction

The task of feature extraction entails two steps namely lip segmentation and manifold 

representation. Lip segmentation requires several computational procedures that are 

applied to enhance the presence of the facial skin in the image, to find the color 

difference between the face skin and lips in the image and finally to identify the region of 

interest (ROI) around the lips. Fig. 3.1 outlines the developed lip-extraction algorithm. In 

this process, the lip-segmentation procedure is applied individually to captured images 

contained in visual speech videos. To enhance the presence of skin in the image, the

pseudo-hue component is calculated based on the RGB values of tracking images and the 

region around the lips is extracted by applying a histogram-thresholding scheme. This 

algorithm is used by human annotation for mouth alignment. The images resulting from 

lip segmentation are used as input data for manifold representation.

Fig. 3.1 Lip segmentation process
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Manifold representation is employed to extract the lip-features from each frame in 

the video sequence using a space compression technique that is applied to reduce the 

dimensionality of the input data. To achieve this goal, an Expectation-Maximization 

Principal-Component-Analysis (EM-PCA) is applied to obtain a compact representation 

for all images resulting after the application of the lip segmentation procedure. An outline 

of the EM-PCA manifold generation process is shown in Fig. 3.2.

Fig. 3.2 Manifold generation process.

At the beginning of this process, the images describing the lip area in each frame of 

the image sequence are represented as high-dimensional input vectors. Then EM-PCA is 

employed to compress input data (vectors) into a low-dimensional space. This low-
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dimensional EM-PCA vector referred as “word manifold” that is subjected to an 

interpolation procedure that is applied to obtain a continuous representation.

3.2 Intensity-based Lip Extraction

Lips are highly deformable objects where their shape varies significantly during the 

speech process. Lips also vary in shape, colour, reflection and their relation to 

surrounding features such as tongue and teeth [3]. As indicated before, the first step of 

the lip extraction algorithm involves pre-processing the input data to enhance the 

presence of the facial skin in the image and find the colour difference between the face 

skin and lips. Such techniques are often referred in the literature to as “skin detection”.

Skin detection has received a lot of research interest in recent years where the main 

aim of the developed systems is the identification of human skin regions in a colour 

image. The skin detection algorithms have been applied to face detection [44], [45], 

visual speech analysis [7] and lip tracking [10]. In particular, skin detection algorithms 

play an important role in the development of face detection techniques since the search 

space for feature of interest such as eyes and mouth can be greatly reduced through the 

detection of skin regions. 

The main challenge that has to be addressed by skin detection algorithms is to 

accommodate the large variations that may occur in the skin appearance [7]. In general, 

the skin detection is achieved using either pixel-based classification methods or region-

based methods. In pixel-based classification, the algorithms divide the image content into 

two disjoint classes, namely the skin and non-skin pixels, while region-based methods 

evaluate the spatial differences between the preceding frames and current frame by 
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evaluating the motion in consecutive frames. Since region-based techniques are sensitive 

to background motions, this thesis will focus on the analysis of the pixel-based methods.

In the last two decades, a large number of techniques have been proposed for skin 

detection that analyse the pixel distribution in colour images [44, 46]. In this regard, five 

colour spaces and non-parametric skin-modelling methods (lookup table and Bayes skin 

probability map) have been evaluated in [47]. In [48] two popular parametric skin models 

have been compared in chrominance-separated colour spaces and a new skin-detection 

algorithm has been proposed. Building on this, in [3] and [2] a pseudo-hue colour model 

has been successfully applied for lip-detection and this approach will be followed in this 

thesis since it offers an elegant and accurate skin-detection framework.

3.2.1 Colour Model 

Colour provides strong visual cues and plays important roles in various aspects of 

biological vision [B2]. Historically, computer vision techniques have been applied to 

monochromatic data where changes in the intensity map are used to identify the objects 

present in the image [B1]. Many investigations indicate that the difference between 

human skins is better captured by the chrominance components than the luminance [49, 

80-81]. For example, human lips are defined by a darker colour than the colour of the 

surrounding skin. Thus, the choice of colour models can be considered as the primary 

step in lip segmentation.  

A colour model is an abstract mathematical formulation that describes the way

colours can be represented as tuples of numbers, typically as three or four colour

components (e.g. the RGB and CMYK colour models). RGB is the default colour model 

for most available image formats. It has three primary colours red(R), green (G) and blue 
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(B). A typical camera always provides images of tri-chromatic pixels with RGB 

components.

Any other colour models can be obtained from a linear or non-linear transformation 

from RGB.  In this regard, Hue based colour models for skin detection represent accurate 

highlight between lips and skin. It is described as follows.

 HSI & HSV: Colours are described by the chrominance (Hue) - the property 

of a colour that varies in passing from red to green, followed by the strength 

of colour (Saturation) - the property of a colour that varies in passing from red 

to pink and the brightness (Intensity) - also called lightness or value, the 

property that varies in passing from black to white. Hue corresponds to 

intuitive notion of “colour” while saturation is the vividness or purity of

colour. HSI attempts to produce a more intuitive representation of colour than 

the RGB colour space but it cannot be described directly by RGB. While the 

transformation from RGB to HSV is invariant at white lights, ambient light 

and surface orientations relative to the light source and hence, the HSV color 

space may form an optimal representation for skin detection methods [80]. 

Other similar colour models are HSL and TSL. 

3.2.2 Proposed Lip-segmentation Algorithm

The aim of the developed algorithm for lip segmentation is to increase the 

discrimination between lips and facial skin. Then using this primary information, we 

attempt to identify the mouth position by employing a histogram-thresholding scheme 
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that separates the lips from the facial skin. The algorithm that has been developed 

consists of three main steps: 

 Colour models for face skin and lips. 

 Histogram-based thresholding for lip-detection. 

 Image normalization.

3.2.2.1 Colour Models for Face Skin and Lips

Many studies have indicated that colour plays a key role in the development of skin 

detection algorithms. This observation is motivated by the fact that the skin is better 

characterized by the chromatic components than by the brightness component [2]. Our 

experiments have also indicated that the skin and lip pixels can be separated in the RGB 

space. This can be observed in Fig. 3.3 where the histograms calculated for selected skin 

and lips regions are illustrated.

In Fig. 3.3 it can be observed that the skin and lip pixels have quite different 

components in the RGB space. For both regions the red colour is dominant. Based on the

colour distributions shown in Fig. 3.3 it can be concluded that the skin colour is more 

yellow than the colour of the lips because the difference between red and green is greater 

for lips than for skin and as a result the pseudo-hue [6, 49] component is best suited to 

sample this difference. 

The pseudo-hue component is demonstrated better results than lip segmentation 

using classic Hue component in skin detection and lip segmentation [3]. The pseudo-hue 

component presents more accurate distinguishable between lips and skin, that is able to 

speed up the segmentation when thresholding is applied.
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The pseudo-hue is computed as follows:

),(),(

),(
),(

yxRyxG

yxR
yxH


                     (3.1)

Where R(x, y) and G(x, y) are the red and green components of the pixel with co-

ordinates (x, y), and H(x, y) is the pseudo-hue value. As can be observed in Fig 3.4, the 

lip areas can be better observed in the pseudo-hue image than in the hue image. 

Fig. 3.3 RGB histogram profile for selected skin and lip regions.
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 (a)

(b)           

Fig. 3.4 RGB, Pseudo-Hue and Hue images.

3.2.2.2 Lip Detection Based on Histogram Thresholding

Thresholding is a basic segmentation technique that has been applied to remove the 

background information that is associated with the face skin and retain the mouth area as 

a uniform region in the image [49-50]. The aim of this operation is to binarise the 

pseudo-hue image into two values as follows:
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Where ),( jif  and ),( jig  are the input and output images respectively and Th is a 

threshold value. In this implementation, the threshold Th is selected based on the 

knowledge that the histogram calculated from pseudo-hue image has two apparent peaks 

as illustrated in Fig. 3.5. 
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Fig. 3.5 Histogram-based selection of the threshold value

While the second peak of the histogram is generated by bright image areas (lips), the 

threshold (‘Th’) is automatically detected as the local minimum with respect to the 

second peak in the histogram as illustrated in Fig. 3.5. This operation will identify the 

mouth area in the image and a ROI around the lips is constructed as the bounding box 

that encompasses the extreme corners of the upper lips as depicted in Fig. 3.6. 

Morphological techniques were applied to close the gaps between the segmented pixels 

and eliminate the isolated pixels generated by noise (see Fig. 3.6(c)). The fixed geometric 

structure of the face has been used to identify the final lips position in the image. In this 
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regard, the most left corner of the lips is used for the mouth alignment. The region of 

interest around mouth is extracted based on the area between nose and jaw.  This process

is illustrated in Fig. 3.6(f). It is important to notice that the approach used on lip 

segmentation is semi-manual (i.e.: the lip location is automatically identified based on the 

structure of the face, then the extraction is corrected by manually alignment for some 

images). It is motivated to learn and adopt other automate approaches (e.g.: AAM, MHI) 

to improve the robust of lip segmentation in the future work. 

(a) (b) (c) (d) (e)

(f)

Fig. 3.6 Lip detection process.

(a) Original RGB Image (b) Pseudo-Hue Component (c) Image resulting after 
thresholding and the application of morphological operators. (d) Image describing the 
mouth region. (e) ROI extracted from the original image. (f) Alignment example of 
mouth detection



CHAPTER 3: FEATURE EXTRACTION

34

3.2.2.3 Image Normalization

Image normalization is often applied to compensate for uneven illumination that is 

generated by the image acquisition procedure. In our implementation, the mean flow 

technique is applied to normalize the image intensities and to remove the undesired 

illumination effect of the skin. This image normalization technique is defined as follows: 
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n                  (3.3)

Where N is the normalized image, P is the original raw image, R is row and C is column, 

n is the row index (n = 1… 40). Images resulting from the normalization procedure are 

used as input data for the VSR system. 

3.2.3 Lip Segmentation Results

The proposed lip-segmentation method has been tested on data generated by two 

speakers and a number of experimental results are depicted in Fig. 3.7. 

(a)

(b)

Fig. 3.7 Lip-segmentation results.

(a) Speaker One (b) Speaker Two.

In our experiments we have used a database of 700 visual speech sequences 

associated with 50 words. Fig. 3.8 shows eight sequence examples where each sequence 

describes the lip movements for one word. 
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A

B

C

D

E

F

G

H

Fig. 3.8 Sequences of lip segmentation results.

(a) Word ‘I’ (b) Word ‘You’ (c) Word ‘But’ (d) Word ‘Boot’ (e) Word ‘Barbie’ (f) Word ‘Heart’ 
(g) Word ‘Hoover’ (h) Word ‘Chard’.

3.3 EM-PCA Algorithm 

Principal Component Analysis (PCA) is a transform that is widely applied to reduce 

the dimensionality of the input data. The main idea behind PCA is to identify a 
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compressed representation for input data in order to highlight the similarities and 

differences between input patterns. Since the input patterns have high dimensions, the 

application of exhaustive search procedures to identify the similar patterns is a time 

consuming procedure. Thus, in order to represent the input data efficiently the PCA is 

applied to generate orthogonal (eigenvector) decomposition. 

Although PCA is a powerful technique for image compression it has several 

shortcomings. The first is the fact that it is a naïve method for finding the principal 

component directions and it is cumbersome to be applied to data defined by a large 

numbers of data points. Another shortcoming of standard PCA is that it is not efficient 

when applied to sparse data [51]. 

The Expectation-Maximization (EM) is a probabilistic framework that is usually 

applied to learn the principal components of a dataset using a probabilistic space 

partitioning approach. Its main advantage resides in the fact that it does not require 

computing the sample covariance as PCA and has a complexity limited to O (knp) where 

k is the number of leading eigenvectors to be learned. This redundant parameterization of 

the models gives us a more robust procedure when applied to sparse data. It can be 

formulated in terms of estimating the maximum likelihood values for missing 

information at the each iteration [52, 53]. The EM algorithm has the following steps: 

 Initialization

 Assume some initial models. The better the initial models sample the 

modes of the data, the better the estimated result. The initial 

parameters are used to evaluate the expectation, as indicated in the 

next step.
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 Expectation Step (see Equation 3.4)

 Use the current estimate of the parameters and the observed data to 

estimate the unknown factors that will minimise the distance between 

the patterns to the closest models (i.e. compute the expected value of 

the data for the next step based on the estimate of the parameters and 

observed data).

Maximization Step 

 Based on this information we need to compute the Maximum 

Likelihood (ML) estimate of the parameters using the data from the 

expectation step. 

 Convergence

 Iterate the expectation and maximization steps until a convergence 

criterion is met. It is useful to note at each iteration, an increase in the 

log-likelihood is obtained and the algorithm is guaranteed to converge 

to a local maximum. 

Expectation-Maximization PCA (EM-PCA) is an extension of the standard PCA 

technique by incorporating the advantages of the EM algorithm in terms of estimating the 

maximum likelihood values for missing information. This technique has been originally 

developed by Roweis [51] and its main advantage over the standard PCA is the fact that it 

is more appropriate to handle large high dimensional datasets especially when dealing 
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with missing data and sparse training sets. The EM-PCA procedure has two distinct 

stages, the E-step and M-step:

         E-step: AVVVW 11T  )(

M-step:
1TT

new WWAWV  )( (3.4)

Where ‘W’ is the matrix of unknown states, ‘V’ is the test data vector, ‘A’ is the 

observation data and T is the transpose operator. The columns of ‘V’ span the space of the 

first k principal components.

To illustrate the superior performance of the EM-PCA when compared to that 

attained by the standard PCA, both algorithms were applied to 6200 images associated 

with 3 classes of mouth shape (natural close, open and tight close) with the aim to reduce 

the high dimensions of the input data to a 2-dimensional space (see Fig 3.9). 

All images are randomly selected from video speech sequences and they are 

manually labeled into three classes. The experimental results in Fig. 3.9(b-d) indicate that 

EM-PCA algorithm converges to the expected solution in only three steps and the 

compression result presents a better data distributions among three classes of mouth 

shape than the standard PCA (Fig. 3.9a). In another words, the EM-PCA data 

compression reduces the class overlapping with a larger extent than the standard PCA 

when the training mouth shape images are generated in a very high-dimensional (1200 

dimensions) space. 
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-Natural close -Open -tight close

(a)

(b)
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 (c)

(d)

Fig. 3.9 The EM-PCA and Standard PCA when applied to a large dataset (6900 images). (a) 
Standard PCA. (b) EM-PCA, 1st iteration (c) EM-PCA, 2nd iteration. (d) EM-PCA, 3rd iteration. 
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3.4 Proposed Approach: EM-PCA Manifold Representation

Visual speech feature extraction is a key component required by the VSR system. As 

indicated before, intensity-based and shape-based feature extractions are two of the most 

commonly used algorithms in literature (see Section 2.3). One of the major drawbacks of 

the shape-based feature extraction is that needs large training sets to cover the large range 

of mouth shapes and this fact make the inclusion of these feature extraction schemes into 

VSR applications difficult.  

In our implementation, intensity-based feature extraction and EM-PCA data 

compression algorithm have been deemed to be the most appropriate. These methods are 

used to encode the appearance of the lips in each frame as a point in a low-dimensional 

feature space that is obtained by projecting the input data onto the eigenvector space 

generated by the EM-PCA procedure. 

3.4.1 Manifold Calculation from Input Data

For visual speech recognition purposes, the gray-level images describing the lip motions 

were extracted from the input data in order to provide a more efficient data structure for 

feature extraction (Section 3.3). In our approach, the gray-level pixels from all segmented 

frames (see Fig. 3.7) are arranged in one large vector. From this vector a low-dimensional 

space is calculated using the EM-PCA algorithm. The matrix conversion procedure 

applied to generate the one-dimensional vector A is depicted in Fig. 3.10.

In our database, each image resulting from the lip segmentation algorithm is [40×30] 

size normalized and it is converted into a matrix of intensity values by reading the image 

in a raster scan mode.
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Fig. 3.10 Matrix conversion to one-dimensional vector.

The next step involves data compression using the EM-PCA procedure. There are different 

ways to select the number of components. This selection is very dependent on how much 

information you are going to present (i.e.: some researchers [89] use a 32-D subspace or a 

10-D subspace for image interpolation comparisons). In this implementation we used 

only the first three EM-PCA components since they are able to capture approximately 

87% of the 40,000 images contained in the database. Then, the lip images extracted for 

each frame are projected onto the EM-PCA low-dimensional space and for each image a 

low dimensional feature point (vector) is obtained. The feature points obtained after data 

projection on the low-dimensional EM-PCA space are joined by a poly-line by ordering 

the frames in ascending order with respect to time (see Fig. 3.11). As mentioned in 

Section 1.3, a surface is generated based on the trajectories of the feature points in the 3D 

EM-PCA space where different mouth shapes/lip movements generate a compressed 

representation of the visual speech that is referred to as “manifold” 

Each feature point on the manifold surface presents a particular mouth shape and the 

whole manifold encodes the entire lip movements of the visual speech sequence. It is 

useful to notice that three EM principal components (PC) are strongly related to the 

features that describe the mouth shape. In this case, the 1st PC captures the skin 

information around lips while the 2nd PC captures more localized information such as the 

geometry of the mouth shapes (closed, opened, etc.). The 3rd dimensional PC captures 
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finer details (the presence of teeth and tongue). We can tell this by looking at original 

images in EM-PCA representation.

(a)

(b)

Fig. 3.11 EM-PCA “Word Manifold” representation.

(a) “hot” (b) “bart”. Each feature point of the manifold is obtained by projecting the 
image data onto the low-dimensional EM-PCA space.
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 (a)

(b)

Fig. 3.12 “Word Manifold” Examples. 

(a) “Word Manifold” generated from three image sequences representing the word 
“Bart”. (b) “Word Manifold” generated from three image sequences representing 
the word “Hook”. Note: The EM-PCA space is represented by the first three principal 
components: PC1, PC2 and PC3. It is important to notice that the appearances of 
manifolds for each word indicate that their shapes are similar and contains information in 
regard to the word spoken.
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Since the EM-PCA “Word Manifold” encode the lip motion through image 

compression, the shape of the manifold will be strongly related to the words spoken by 

the speaker and recorded in the input video sequence. Fig. 3.12 illustrates the manifolds 

calculated for three independent image sequences (describing two words) in the EM-PCA 

feature space. It can be noted that the shapes of the manifolds are very similar and can be 

interpreted as word “signatures”.

3.4.2 Manifold Interpolation

As illustrated in Fig. 3.12 the shape of the “word manifold” can be potentially used 

to discriminate between different words. While “word manifold” can be interpreted as a 

word “signature”, they cannot be used directly to train a classifier and to recognize an 

unknown input image sequence since the number of feature points that generate the 

“word manifold”  is not constant (the number of frames contained in the input image is 

variable and depends on the complexity of the word spoken by the speaker). In this way, 

short words such as “bart”, “hot”, etc. have associated a small number of frames and as 

results the manifolds will be defined by a small number of feature points. Conversely, 

longer words such as “beautiful” and “banana” have associated larger image sequences 

and the number of feature points that defines the manifolds is larger. This is a real 

problem when these manifolds are used to train a classifier as the number of feature 

points is different.

This “word manifold” representation is not convenient due to the fact that the spoken 

words are sampled by a different number of frames that may vary when the video data is 

generated by different speakers. To address this issue, the feature points that define the 

“word manifold” are interpolated using a cubic spline to obtain a continuous manifold 
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representation. The application of the cubic spline interpolation has two main advantages. 

Firstly, it allows the generation of smooth EM-PCA “word manifold” and secondly it 

reduces the effect of noise (and the influence of objects surrounding the lips such as teeth 

and tongue). This is clearly shown in Fig. 3.13 where the appearance of the manifolds 

obtained after the application of cubic interpolation is illustrated. Fig. 3.13 illustrates the 

interpolated manifolds generated for the two examples of the word “bart”. 

(a)

(b)

Fig. 3.13 “Word Manifold” interpolation.

(a) Initial manifolds - word “bart”; (b) Interpolated manifolds - word “bart”.
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3.5 Summary
This chapter describes the process of lip segmentation and EM-PCA “word manifold” 

representation. In this regard, the mouth region is segmented after the pseudo-hue 

component is subjected to histogram-based thresholding that is applied to separate the 

face skin and mouth regions in the image. Afterwards, the “word manifold” is generated 

from the lip gray-level intensity images and this data is compressed into a low-

dimensional feature space using an EM-PCA procedure. Since these “word manifolds”

are defined by a different number of frames, they cannot be used directly as inputs for 

classification. To address this problem, the “word manifolds”  are interpolated to generate 

a continuous representation that will be further analysed to identify the visual speech 

units (VSU) that will be detailed in the next chapter of this thesis.
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Chapter 4

Visual Speech Modeling

4.1 Introduction

Visual speech recognition (VSR) is a difficult task that involves the identification of 

visual speech models. Visual speech models are required to generate speech classes that 

are typically constructed from observed mouth shapes. In general, each speech class is 

defined as a basic unit and these units can be concatenated to form words and sentences, 

thus allowing the VSR systems to be applied to continuous speech sequences [27].

The selection of the appropriate visual speech model is the key issue for any VSR 

system. The literature review detailed in Section 2.4 indicates that visemes play an 

important role in the development of VSR systems and many researchers have 

approached continuous speech (e.g. at word level) recognition as a process of sequential 

viseme recognition [1, 27, 43, 55, 81]. Although words can be theoretically formed by a 

time-ordered combination of standard visemes, in practice due to various pronunciation 

styles, similar visemes can be associated with different visual signatures. In addition to 

this, the articulation (pronunciation) phase plays an important role in the process of 

defining each viseme [38-40] and as a result the viseme representation is not able to 

model the transitions between consecutive visemes. In order to alleviate the shortcomings 

associated with standard visemes, a new Visual Speech Unit (VSU) model is proposed in 

this thesis. This new speech representation includes not only the information associated 

with standard visemes but also the transitory information between consecutive visemes. 
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In the approach discussed in this thesis, the registration process between the VSU mean 

models and the continuous word manifolds (see Chapter 3) is carried out using Dynamic 

Time Warping (DTW).

4.2 Viseme Review

4.2.1 Viseme Introduction

The basic unit that describes the audio speech process is represented by the phoneme 

[1]. In the case of the visual speech, the basic units that correspond to the visually 

distinguishable phonemes are referred to as visemes [63]. A viseme can be regarded as 

the smallest element that describes a phoneme or a group of phonemes in the visual 

domain. In this thesis, viseme is seen as the representation in the visual domain of the 

mouth shapes that correspond to one or more phonemes. In order to represent visemes in 

the EM-PCA feature space, the images that correspond to a particular viseme are 

manually selected based on the appearance of the mouth shapes and the presence of teeth 

and/or tongue. Then these manually selected images will be projected on the EM-PCA 

eigenspace and the low-dimensional points are used to represent visemes based on the 

manifold representation. (A number of examples are shown in Section 4.2.2)

In recent years, the theory of viseme modeling has been actively researched and 

found applications in the areas of Automatic Speech Recognition (ASR) [1, 23], Visual 

Speech Recognition (VSR) [27, 38-43, 55-57] and computer animation [60, 63]. Most 

researchers converged to the conclusion that visemes should be constructed using basic 

visual lip motions that are observed during the speech process. The relationship between 

phonemes and viseme is a many-to-one mapping because phonemes do not generate an 

exact correspondence between lip position and acoustic sounds. In another words, 
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phonemes are easy to “hear” but hard to “see”. For example, although phonemes [b], [m] 

and [p] are acoustically distinguishable, they are always grouped [27, 40, 43] into one 

viseme category as they are described by similar sequences of mouth shapes.

In this thesis, English is used as the language for visual speech recognition. Although 

there is a reasonably strong consensus about the set of English phonemes, there is less 

unanimity about the selection of most representative visemes [60]. Since phonemes and 

visemes cannot be mapped directly, the total number of visemes is much lower than the 

number of standard phonemes. In practice, various viseme sets have been proposed with 

their sizes ranging from 6 [57] to 50 visemes [64]. Actually this number is by no means 

the only parameter in assessing the level of sophistication of different schemes applied 

for viseme categorization [60]. For example, some approaches propose small viseme sets 

based on English consonants [27], while others propose the use of 6 visemes that are 

obtained by evaluating the discrimination between various mouth shapes (closed, semi-

opened and opened mouth shapes [57]). A list of proposed viseme categories is provided 

in Appendix A. This thesis adopts the viseme model established for facial animation by 

an international object-based video representation standard known as MPEG-4 [54]. 

Based on the MPEG-4 viseme model, there are nine visemes associated with English 

consonants and five visemes associated with English vowels. The representation of the 

MPEG-4 viseme categories using EM-PCA manifolds is discussed in the next section.

4.2.2 Viseme Representation

In the visual speech processing domain, a viseme consists of a time-ordered sequence 

of lip shapes. In practice, VSR systems are trained with either static visemes where each 

viseme is generated separately by the speakers (the speaker is asked to speak each viseme 
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individually), or with visemes that are manually constructed by isolating the frames of 

interest from continuous video speech sequences.

The static visemes are mapped based on mouth shapes and placement of tongue 

during phoneme articulation. For example, Lee and Yook [43] developed a viseme 

mapping table that is shown in Fig. 4.1.

Fig. 4.1 Mapping table for 6 visemes associated with Standard English consonants [43].

The static visemes are favored by researchers since they are easy to generate and 

identify. In this way, the speaker is asked to articulate each isolated viseme and the

images extracted from the video sequence are used to generate a viseme representation. 

An example that shows the mapping between phonemes and visemes is introduced by S. 

Foo and Lian [40], which is illustrated in Fig. 4.2. 

Fig. 4.2 Phoneme to viseme mapping [40].
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Many researchers [27, 38-43, 55-56, 61] have applied this static viseme generation 

approach in the development of VSR systems, but the identification of static visemes is 

better suited for recognition of isolated visemes than their recognition in continuous 

speeches that is seen as a process of sequential viseme recognition.  Humans do not speak 

in discrete units and as a result speech recognition has to be formulated in terms of 

viseme identification from a continuous flow of lip movements. This fact indicates that 

static visemes may not be directly applicable to word recognition, the viseme changes 

gradually in varied speech environment. For example, within a small segment of 

continuous speech such as a word, the previous viseme affects the initial mouth shapes 

associated with the next viseme while the middle portion of the viseme is relatively 

stable. In order to handle the dynamic characteristics of lip motions for automatic visual 

speech recognition, visemes are more realistically generated by isolating the frames from 

continuous video speech sequences.

In this approach, the set of visemes is extracted from input video sequences 

associated with different words. For instance, frames describing viseme [b] are extracted 

from words such as ‘Bart’, ‘blue’ etc., while frames describing viseme [s] are extracted 

from words such as ‘slow’, ‘snow’, etc. As indicated in Chapter 3, an EM-PCA manifold 

encodes the lips motions through image compression where the shapes of the manifolds 

are strongly related with the words spoken. 

The feature points on the manifold surface describe particular mouth shapes or lip 

movements and indicated earlier they are manually selected to construct visemes from 

spoken words. An example is provided in Fig. 4.3(a).
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 (a)

(b)
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(c)

(d)

Fig. 4.3 The representation of the visemes [b], [a:] and [t] in the EM-PCA manifolds of the 
word [ba:t] (the initial manifold is represented using a red line, continuous (interpolated) 
manifold is represented using a black line). 

(a) Projection points associated with images from the video sequence on initial manifold 

(b) Feature points are displayed in blue for viseme [b], in red for viseme [a:] and in green for 
viseme [t] in one instance of word ([ba:t]) manifold. The initial state of the video sequence 
(silence state) is shown in the diagram with a black cross. The interpolated manifold is plotted 
with a black line.  

(c) The regions in the EM-PCA feature space for visemes [b], [a:] and [t] are constructed from 
five instances of the word (‘bart’) manifold. The region describing the [silence] state is 
represented in the diagram with a black star. The word manifold is plotted with a black line. 

(d) The regions in the EM-PCA feature space for visemes [b], [a:] and [t] are constructed from 
five instances of the word ‘bart’. The region describing the [silence] state is represented in the 
diagram with a black star. All word manifolds are plotted with a black line. 

Note: All samples are represented in same EM-PCA space with different angles of view.
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Fig. 4.3 (a) shows the association between feature points that form the manifolds and 

the corresponding images that define visemes. Three sets of images are shown for the 

word manifold ‘Bart-[ba:t]’. From this diagram, it can be observed that frames 

describing standard visemes include three independent states. The first state is the initial 

state of the viseme; the second state describes the articulation process and the last state 

models the mouth actions associated with the relaxed state. These frames are projected 

onto the EM-PCA space and as a result each viseme is defined by a number of feature 

points as illustrated in Fig. 4.3 (b). The feature points for visemes [b], [a:] and [t] on the 

EM-PCA manifold are constructed from video sequences describing the word ‘Bart-

[ba:t]’. By analyzing different instances of the same word [ba:t], a group of features 

points for visemes [b], [a:] and [t] is constructed based on the manifold representation. 

These feature points are manually drawn in the EM-PCA space as ellipsoids to indicate 

the space covered by particular visemes. The example of this ellipse is shown in Fig. 

4.3(c) and (d). 

Fig. 4.4 depicts another example for the word ‘beef’ where is illustrated the 

representation of visemes [b], [i:] and [f] in the EM-PCA feature space. 

Based on these examples, it can be concluded that visemes can be theoretically 

applied to identify the words spoken, but they only cover a small part of the word 

manifold (see Appendix D for more examples). Visemes are too small entities to fully 

characterize the entire word information since the transitions between visemes are not 

used in the viseme-based speech representation. 
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Fig. 4.4 The representation of the visemes [b], [i:] and [f] in the continuous EM-PCA 
manifold. 

The region describing the [silence] state is represented in the diagram with a black star Five 
instances interpolated manifold of the word ‘beef’ are plotted with a black line. 

Note that visemes [b], [i:] and [f] cover only a small part of the word manifold.

4.2.3 Visemes Limitations  

The previous section demonstrates that visemes are able to describe partially the 

word manifolds. While the viseme representation detailed in Figs. 4.3 and 4.4 is intuitive 

and easy to be applied in the development of VSR systems, it still has associated several 

drawbacks. The main shortcoming associated with the viseme representation is given by 

the fact that a large part of the word manifold (i.e. transitions between visemes) is not 
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used in the recognition process. This approach is inadequate since the inclusion of more 

instances of the same viseme extracted from different words would necessitate larger 

regions required to describe the feature space for each viseme (see Fig. 4.5) and this will 

lead to significant overlaps in the feature space when describing different visemes. 

To circumvent this problem most of the developed VSR systems applied the viseme 

recognition process to a reduced set of visemes and to a relatively small number of words 

[27, 36, 40-41, 56, 61, 63, 65]. This problem is clearly shown in Fig. 4.5 where the 

process of constructing viseme spaces for two different words in illustrated. It is 

important to note that in the manifold representation of the word ‘chard’ the viseme [a:]

is distorted when compared with the viseme [a:] of the word ‘Bart’ and the consonant [r]

cannot be distinguished. The viseme [t] and viseme [d] are in the same category of 

viseme model and they require larger regions in the feature space. (See Appendix D for 

more examples.)



CHAPTER 4: VISUAL SPEECH MODELING

58

Fig. 4.5 The viseme feature space constructed for two different words. Word ‘Bart’ – visemes 
[b], [a:] and [t]. Word ‘chard’ – visemes [ch], [a:] and [d]. 

Note 1: the viseme [a:] (dark red ellipsoid) is distorted in the word [cha:d] when compared with 
viseme [a:] (red ellipsoid) in the word [ba:t]. A large region is required to describe the viseme [a:] 
in these two different words. 

Note 2: viseme [d] (green) in word [cha:d] and viseme [t] (dark green) in word [ba:t] are in the 
same category of visemes and they require a larger region in the feature space.

Note 3: in the manifold representation of the word ‘chard’, the viseme [a:] is distorted and the 
consonant [r] cannot be distinguished. 

Another limitation of the viseme-based representation is that some visemes may be 

severely distorted and even may disappear in the video sequences that describe visually 

the spoken words [41, 65-66]. As mentioned above, the viseme may suffer distortions 

during continuous speech (see section 4.2.2) and in addition the mouth shapes that define 

some visemes may be difficult to detect in the EM-PCA space. In other words, some 
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visemes may be severely distorted when the next or previous visemes are intentionally 

accentuated in continuous spoken.

These problems can be observed in Fig. 4.6(a), where the viseme [ch] can be clearly 

located in the manifold of the word ‘cheat’, but it cannot be located in the manifold of the 

word ‘choose’. The articulation of [ch] is produced only by the vocal cords using air-

stream and as a result the viseme [ch] is not visible. In Fig. 4.6 (b) the viseme [h] is silent 

(cannot be observed) in words ‘heart’ [ha:t], ‘hat’ [hæt] and ‘hook’ [hu:k]. The 

articulation of [a:], [æ] and [u:] are typical emphasized in these words and the viseme [h]

is not visible in the words manifolds.

(a)
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(b)

Fig. 4.6 Limitations of the viseme-based approach

(a) The EM-PCA manifolds for words ‘cheat’ [chi:t] (red) and ‘choose’ [chu:s] (black). The 
viseme [ch] displayed in green is visible in the manifold of the word ‘cheat’, but it cannot be 
distinguished in the manifold of the word ‘choose’. 

(b) The EM-PCA manifold for words ‘heart’ [ha:t] (blue), ‘hat’ [hæt] (red) and ‘hook’ [hu:k] 
(black). The feature space for viseme [a:] is depicted in cyan, for viseme [æ] in green and for 
viseme [u:] in purple. Viseme [h] cannot be distinguished.

These limitations indicate that visemes do not map accurately the lip motions and 

they are subjected to a large degree of distortion when evaluated in continuous speech 

sequences. In conclusion, the viseme model is not optimal when applied to continuous 

visual speech recognition. Thus, in this thesis a new representation is proposed that 

extends the viseme model by including the transitions between visemes. This new 

representation is called Visual Speech Unit and will be detailed in the next section.
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4.3 Visual Speech Unit Representation

As indicated in Section 4.2 there is no consensus among vision researchers about 

how the sets of visemes in English are constituted [1, 27, 60] and in the previous section 

it has been shown that visemes are not efficient models to be used for continuous visual 

speech recognition. This is the fact that they cover only a small portion of the words 

manifolds and they may be severely distorted by the preceding visemes during the 

continuous speech process (see Section 4.2.3). 

In this thesis, a new representation called Visual Speech Unit (VSU) is proposed. 

Each VSU is manually constructed from the word manifolds and it has three distinct 

states: (a) articulation of the first viseme, (b) transition to the next viseme, (c) articulation 

of the second viseme. This can be observed in Fig. 4.7. 

(a) (b)

Fig. 4.7 Examples of Visual Speech Units

(a) VSUs: [silence –b], [ä-b] and [ә-b] (b) VSUs: [b-a], [b-i] and [b-u].

It is important to note that in the approach detailed in this thesis the MPEG-4 viseme 

set is used to construct VSU models. In this approach, the state [silence] is considered as 

an independent class of viseme. This is motivated by the fact that the speech process 

starts from [silence] and then the word is articulated (consisting of one viseme or more) 

and ends in [silence]. Fig. 4.8 (a) shows the manifolds constructed for VSUs [silence-b], 

[silence-a:] and [silence-o] which are extracted from words ‘bart’, ‘heart’ and ‘hot’. Fig. 
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4.8(b) shows the manifold examples for VSUs [g-silence], [p-silence] and [f-silence]

extracted from words ‘charge’, ‘cheap’ and ‘beef’. 

(a)

(b)

Fig. 4.8 Manifold examples for VSUs containing the viseme [silence].

(a) Manifold examples for [silence] to visemes [b] ([ba:t]), [a:] ([ha:t]) and [o] ([hot]). 

(b) Manifold examples for visemes [g] ([cha:g]), [p] ([chi:p]) and [f] ([bi:f]) to [silence]. 
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The diagrams depicted in Fig. 4.8 indicate that transitions from [silence] or 

transitions to [silence] can be used to detect the start or the end section of the words that 

are described visually in the video sequence. As a result, this information is used to 

perform the registration between VSUs and the word manifold. This will be described in 

Section 4.3.2.

4.3.1 Generation of Visual Speech Unit Models

Each VSU is manually constructed from word manifolds using the viseme 

information and the transition information between consecutive visemes. In this regard, 

the corresponding feature points for consecutive visemes are first segmented based on 

word manifold representation (see Section 4.2.2). The start point of VSU is estimated as 

the center feature point that is related to the articulation of the first viseme and the end 

point of VSU is estimated as the center feature point related to the articulation of the 

second viseme.  An example that illustrates the construction of the VSU is in Fig. 4.9.

 (a)
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(b)

Fig. 4.9 Examples of Visual Speech Units

(a) The word ‘heart’ ([ha:t]), word manifold (black line) and all visemes [silence] (black 
ellipsoid), [a:] (red ellipsoid) and [t] (green ellipsoid). Note that viseme [h] is not visible (see 
Section 4.2.3 and Fig. 4.6a). 

(b) VSUs Segmentation: [silence-a:] (red manifold), [a:-t] (blue manifold) and [t-silence] (green 
manifold).

As mentioned before, visemes may be distorted during the continuous speech process 

and this generates a real problem when visemes are applied to construct VSUs. For 

instance, the word ‘heart’ [ha:t] can be constructed using the following viseme sequence: 

[silence], [h], [a:] and [t].  Using the VSU representation the word ‘heart’ is constructed 
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using the following sequence of VSUs: [silence-h], [h-a:], [a:-t] and [t-silence]. In 

practice, viseme [h] cannot be identified in the visual domain and all we observe is a

continuous articulation from viseme [silence] to [a:]. To address this problem, in the 

approach detailed in this thesis, the construction of VSUs is based on adjacent the 

visemes that can be identified in the word manifolds (or visemes describe the articulation 

process (lip movements) that can be observed in the visual domain). In the manifold 

representation, the visemes that can be observed in the visual domain are represented as a 

unique region in the EM-PCA feature space. Using this approach, the VSUs associated 

with word [ha:t] are: [silence-a:], [a:-t] and [t-silence] and they are displayed in Fig. 4.9.

To further illustrate the construction of VSUs, a number of additional examples are 

depicted in Fig. 4.10. From these examples it can be clearly observed that VSUs do not 

include only the lip motions associated with particular visemes but also the transitions

between adjacent visemes. 

Fig. 4.10 Examples of Visual Speech Units. The EM-PCA manifolds of VSUs: [silence-b], [b-
o], [b-u], [b-i], [b-e].



CHAPTER 4: VISUAL SPEECH MODELING

66

To apply the VSU representation to visual speech recognition, we construct a mean 

model for each class of VSU. Given a testing sequence (a “word manifold”) that 

describes one word, and a set of VSUs, we can not compare them directly to each other 

since they are different objects (VSU is an element of a word). Due to this reason, the 

manifold has to be divided into a number of sub-sections, and corresponding regions of

each sub-section are registered between mean model of all possible VSUs and word 

manifold (registration VSUs will be detailed in section 4.3.2). To facilitate this process, 

the interpolated word manifolds (see Chapter 3) are re-sampled uniformly into a fixed 

number of feature-points. In order to generate standard manifolds for training and 

recognition tasks, the re-sampling procedure will generate a pre-defined number of key-

points that are equally distanced on the interpolated manifold surface. This re-sampling 

procedure ensures the identification of a standard set of feature key-points as illustrated 

in Fig. 4.11. (Appendix E provides more examples of VSU representations.) . 

(a)
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(b)

Fig. 4.11 VSU Manifold re-sampling process. 

(a) Two manually constructed manifolds of VSU [silence-a:] (red) and two manifolds of 
VSU [silence-u] (blue) 
(b)Re-sampled manifolds for all VSUs by using 20 equally distanced key-points (red and 
blue points)

In this way, the VSUs are obtained by manually extracting the corresponding 

manifold from the word manifolds. For each VSU, 5 manifolds are extracted from five 

instances of the same word and they are used to calculate the mean model. This manual 

procedure is followed by the calculation of the mean model as illustrated in Fig. 4.12 (in 

our implementation all VSU manifolds have been uniformly re-sampled into 20 key-

points). 
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(a)

(b)
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(c)

Fig. 4.12 The calculation of VSU Mean Models.

(a) Four manifolds of the word [ba:t] displayed in blue,  where the four visemes (can be observed 
in visual domain) are shown as follows: [silence] in black, [b] in green, [a:] in red and [t] in 
purple. 
(b) The VSU extracted from the re-sampled manifolds. [Silence - b] (blue points), [b-a:] (red 
points) and [a:-t] (green points). 
(c) The mean model for all VSUs are marked in black in the diagram ([silence-b] – black line, [b-
a:] – black circles and [a:-t] - black squares).

The calculation of the VSU mean models is illustrated in Fig. 4.13. In Fig. 4.13 (a) 

and (b), the calculation of the mean model for VSU [silence-b] from five examples of the 

word [ba:t] is shown. In Fig. 4.13 (c), the calculation of the mean model for VSU 

[silence-a] from five examples of the word [ha:t] is illustrated.

In Fig. 4.13 (a), the mean model of VSU [silence-b] is compared against the VSUs 

extracted from word manifold [bu:t], [bot] and [bi:t]. Fig. 4.13 (b) shows that the VSUs 

extracted from word manifolds are well approximated by the [silence-b] VSU mean 

model. Fig. 4.13 (c) shows another example where the mean model of VSU [silence-a:] is 

compared with the VSUs that are extracted from the manifolds of words [ha:t], [ha:f] and 
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[ha:bi]. As expected, the mean model and the VSUs extracted from the word manifolds 

have similar shapes. The manifolds of the words shown in Fig. 4.13 are not used to 

calculate the VSU mean models. (Appendix F shows other 5 VSUs representation for 

different words)

(a)

 (b)
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(c)

Fig. 4.13 The VSU Mean Models and the VSU extracted from different word manifolds.

(a) Mean model of VSU [silence-b] (red line) and three word manifolds (two examples each 
word): [bu:t] (black line), [bő:t] (cyan line) and [bi:t] (green dot line). 
(b) The mean model of VSU [silence-b] (red line) and the VSU samples extracted from the word 
manifolds displayed in (a). 
(c) The mean model for VSU [silence-a:] (blue line) and VSU [silence-a:] samples extracted from 
word manifolds (two examples each word): [ha:t] (red line), [ha:lf] (black line) and [ha:bi] (cyan 
line). Note: the mean model of VSU [silence-b] is calculated from 5 examples of the word [ba:t]. 
The mean model of VSU [silence-a:] is calculated from 5 examples of the word [ha:t]. 

The VSU mean models depicted in Fig. 4.12 and Fig. 4.13 are used to train a set of 

HMM classifiers. In the implementation presented in this thesis, to minimize the class 

overlap one HMM classifier has been trained for each VSU class. In this way, the 

recognition is viewed as a competitive process where all VSU mean models are 

registered to the interpolated manifold that is calculated from the input video sequence 

(see Chapter 3). In other words we attempt to divide the word manifold into a number of 

consecutive sections, where each section is compared against the mean models of all 

VSUs stored in the database. To achieve this, we need to register the VSU mean models 

with the surface of the word manifold. In this work the registration between VSU mean 
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models and the surface of the word manifolds is carried out using the Dynamic Time 

Warping (DTW) algorithm.  

4.3.2 Registration between VSU Model and Word Manifold

4.3.2.1 Dynamic Time Warping Review

Dynamic Time Warping (DTW) is a classical algorithm that is applied to identify the 

optimal fitting (or alignment) between two time-ordered series. The warping between two 

time series can be used to find their corresponding regions or to determine the level of 

similarity between them. 

Let X and Y be two time series, of lengths |X| and |Y|, where KwwwW ,...,, 21 is 

the warp path ( )),max( YXKYX  , K  is the length of the warp path, ),( jiwk  is 

the kth element of the path, i is the index for time series X and j is an index for time series 

Y. The optimal warp path is calculated by minimizing the fitting cost between the two 

time series as follows,







Kk

k
kjki wwDistWDist

1
, )()(                 (4.1)

Where )(WDist is the distance (typically the Euclidean distance) is associated with the 

warp pathW , and )( , kjki wwDist  is the distance between two data points with indexes i

and j. The warp path must start at the beginning of each time series and finish at the end 

of both time series. This ensures that every element of each time series is used in the 

calculation of the warp path. 

DTW is a simple solution that has been commonly used in the development of VSR 

systems to determine the similarity between time series and to find corresponding regions 

between two time series of different lengths [67-70].
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4.3.2.2 Registration between VSU and Word Manifold

The VSU recognition process is viewed as a two-step approach. In the first step we 

need to register the VSU mean models to the word manifold using Dynamic Time 

Warping. Using this approach, the test data (word manifold) is divided into a number of 

consecutive sub-sections, where each sub-section is compared against the mean models 

of all possible VSUs. For example, the registration of the first section of the word 

manifold is always compared against all VSUs that start with [silence]. After the 

application of DTW, the registered regions are outlined based on the minimum distance 

between the mean models and the sub-section of word manifold. Once the best registered 

region is classified, the end point of the classified region is the start point of the next 

section of the word manifold (i.e.: after [silence-b] is classified, then the next section will 

be registered against all VSUs that start with [b]).   

In the second step we measure the matching cost between the VSU mean models and 

the registered section of the manifold using HMM classification (in our implementation 

we have used a three-state HMM classifier (This classification topology is detailed in 

Chapter 5). For instance, [silence] is the start viseme of the word [ba:t] and DTW is 

applied to measure the local distance between the VSU mean model manifold [silence-b] 

and the word manifold [ba:t]. The optimal alignment (warping) between these two 

manifolds via point-to-point mapping in shown in Fig. 4.14. 

This procedure is applied for all VSUs contained in the database and the complete 

registration process of the word [ba:t] is illustrated in Fig. 4.15.
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Fig. 4.14 Registration using Dynamic Time Warping between the mean model manifold of 
VSU [silence-b] (purple line) and the word manifold [ba:t] (red line).

Fig. 4.15 Complete registration using Dynamic Time Warping between the VSU mean 
models and the word manifold, [silence-b] (purple line), [b-a:] (blue line), [a:-t] (green line) 
and the word manifold [ba:t] (red line).

As illustrated in Fig. 4.15, the registration between the VSU mean models and the 

word manifold is applied iteratively until the last section of the manifold ends with the 
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state [silence] that is common for the beginning and the end of the word (mouth closed). 

This process is illustrated step-by-step in Fig. 4.16.

(a)

(b)
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(c)

(d)                       
Fig. 4.16 Step-by-Step VSU registration and classification.

(a) The registration of three classes of the VSU Class 1: [silence-b] (red line); Class 2: [silence-ch] 
(purple line); Class 3: [silence-a:] (blue line) to the word manifold (black dotted line). 
(b) Registration between the [silence-b] VSU mean model and the word manifold. 
(c) Registration between the [silence-ch] VSU mean model and the word manifold. 
(d) Registration between the [silence-a:] VSU mean model and the word manifold. 
Note: the registered section of the manifold is used as input for the HMM classifier. The HMM 
classifier returns the match cost between the input and models contained in the database. In this 
example, the registration section from [silence-b] VSU mean model achieved the best matching 
cost (evaluated using a three-state HMM classification).
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The example depicted in Fig 4.16 indicates that the VSUs that are registered with the 

word manifold are identified in succession. For instance in the word [ba:t], the end point 

of the first VSU [silence-b] is the start point of the second VSU [b-a:]; the start point of 

the VSU [a:-t] is the end point of the second VSU [b-a:]. This process is shown in Fig. 

4.17.

(a)

(b)

Fig. 4.17 The complete registration and matching between the VSU mean models contained 
in the database and the manifold of the word [ba:t]. (a) Registration and matching for a single 
word. (b) Registration and matching for five instances of the same word. 
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4.3 Summary

Visual speech recognition is a difficult task that involves the identification of the visual 

speech elements based only on the visual information associated with the lips movements. 

The choice of the visual speech element is one of the key issues in the development of 

VSR systems. In this chapter, a comprehensive review of the viseme model reveals 

several shortcomings associated with this speech representation that can be summarized 

as follows: 

1. There is no widely accepted consensus among researchers in regard to the 

optimal set of visemes. 

2. Viseme representation is not able to fully characterize continuous speech (i.e. 

transitions between visemes are not used in this representation).

3. Visemes may be severely distorted or they may even disappear during the 

continuous speech process.  

To address these issues, a new speech element that is referred to as a Visual Speech Unit 

is proposed in this thesis. VSU extends the standard viseme concept by including in this 

representation not only the viseme information but also the transitions between 

consecutive visemes. The main advantages of VSUs can be summarized as follows:

 VSUs maximize the use of information present in the word manifold. 

 Transition from or to [silence] state can be used to identify the beginning and 

the end of the word manifold.

 VSUs are constructed using only visemes that can be observed in the visual 

domain.
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 The VSUs are robust speech elements that show good stability when extracted 

from different words (i.e. VSU [silence-b] has similar characteristics when 

extracted from words such as [ba:t], [bi:t] or [bi:f]).

In this implementation, VSUs are manually constructed by extracting the key-points

of interest from the word manifolds and they are described by the mean models that are 

calculated for each class of VSU. The VSU recognition process is a two-step-approach. 

In the first step the mean models of VSU are registered to the word manifold using the 

Dynamic Time Warping procedure that attempts to divide the word manifold into a 

number of consecutive VSUs. In the second step, the matching cost between the VSU 

mean model and the registered section of the word manifold is calculated using HMM 

classifiers. 

To fully assess the discriminative power of the proposed model, we tested up to 60 

VSUs that were recorded by two different speakers. In the next chapter, a large number 

of experiments will be conducted to evaluate the feasibility of the new speech model

when applied to visual speech recognition tasks.
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Chapter 5 

Experimental Results

5.1. Introduction

The previous chapter discussed the proposed Visual Speech Unit (VSU) that extends the 

standard viseme concept by including in this new speech representation the transitions 

between consecutive visemes. The VSU recognition process consists of two main steps. 

In the first step, Dynamic Time Warping (DTW) is applied to register the mean models 

for each VSU class to the interpolated manifold that is calculated from the input video 

sequence. In the second step, the matching cost between the VSU mean models and the 

registered section of the manifold is calculated using Hidden Markov Model (HMM) 

classifiers (the HMM classification scheme that is included in the development of the 

proposed VSU-based VSR system is detailed in Section 5.5).

The aim of this chapter is to evaluate the accuracy of the recognition process when 

used in conjunction with the proposed VSU speech representation. These experiments 

were conducted on a set of words that are depicted in Table 5.1. The experimental tests 

were divided into three sets.  The first set of experiments (Experiment 1) was conducted 

to evaluate the accuracy of the VSU models when compared with the performance 

attained by standard MPEG-4 visemes. The aim of the second set of experiments 

(Experiment 2) is to evaluate the performance of the VSU recognition with respect to the 

number of samples used to train the HMM classifiers. The performance of the proposed 

VSR system has been evaluated on data produced by two speakers (see Table 5.1). The 
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last set of experiments is to evaluate the performance of word recognition using VSU 

models that compared with using viseme models. When VSU and viseme are separately 

employed as the basic visual speech element for the word model, two different decision 

algorithms are used to identify 15 words in proposed system.

5.2.   Description of Database

For evaluation purposes a database generated by two Chinese speakers has been 

created. This database consists of 50 words where each word is spoken 10 times by 

speaker one and 20 words where each word is spoken 6 times by speaker two. In our 

database we have included simple words such as ‘boat’, ‘heart’, ‘check’, etc. and more 

complex words such as ‘babie’, ‘hover’, ‘bookman’, ‘chocolate’, etc (see Table 5.1). In 

our study we have conducted experiments to evaluate the recognition rate based on 12 

classes of visemes (see Table 5.2) and 60 classes of VSUs (see Table 5.3). The video data 

has been captured using a SONY DCR-HC19E camera recorder with a sampling rate of 

25 frames per second. The size of each image is [320*240] and the images are captured 

in the standard RGB colour format. The database used to evaluate the performance of the 

VSR system consists of more than 40,000 colour images. Examples of images contained 

in the database are shown in Appendix B. 

Table 5.1: Words Database

Speaker Words
1 Bart, boat, beat, bet, bird, boot, barbie, book, beef, barge, 

birch, bookman, batch bobby, beefalo beautiful, before, 
heart, hot, heat, hat, hook, harpy, hobby,  hoover, half, 
home, chard, choose, cheat, check, charge, cheap, 
channel, charming, chocolate, chief, wart, zart, fast, 
banana, January, truth, part, put, mart, mood, I, bar, card. 

2 Bart, boat, beat, boot, heart, hot, heat, hook, charge, 
choose, heat, check, wart, zart, fat, bar, art, ill, oat, fool.
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Table 5.2: The set of MPEG-4 visemes

Viseme Number Phonemes Example Words Number of samples

1 [b], [p], [m] but, part 330

2 [s], [z] zart, fast 30

3 [ch], [dg] chard, charge 174

4 [f], [v] fast, half, 86

5 [I] beat, heat 148

6 [A:] but, chard, 286

7 [e] hat, bet 136

8 [O] boat, hot 112

9 [U] hook, choose 104

10 [t, d] but, bird, 268

11 [h, k, g] card, hook, bug 142

12 [n] banana, night 20

13 [Th] think, that, n/a

14 [r] read, roses n/a

Note: This table adopts the viseme model established for facial animation applications by MPEG-
4, which is an international audiovisual object-based video representation standard [41, 54].

Table 5.3: 60 classes of Visual Speech Units 

VSU Groups Number 
of classes

Example VSUs

Group 1:
(Start with 
[silence])

9 [silence-b], [silence-ch], [silence-z], [silence-f], 
[silence-a:],  [silence-o], [silence-i:], [silence-
e], [silence-u:]

Group 2
(End with 
[silence])

16 [a:-silence], [o-silence], [eu-silence], [u-
silence], [k-silence], [i:-silence], [ch-silence], 
[f-silence], [m-silence], [ng-silence], [ë-
silence], [n-silence], [et-silence], [ğ-silence], [s-
silence], [ә-silence]
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Group 3:
(Middle VSU)

35 [b-a:], [b-o:], [b-i:], [b-u:], [b-ә], [b-ë], [a:-t], 
[a:-b], [a:-f], [a:-ğ], [a:-ch], [o-b], [o-t], [o-k], 
[i:-f], [i:-p], [i:-t], [u:-t], [u:-k], [u:-f], [ë-t], [f-
ә:],[f-o], [k-m], [f-a:], [w-a:], [z-a:], [ә:-t], [e-
k], [ә:-ch], [n-a:], [a:-n], [ch-a:], [ch-u:], [ch-i:]

Note: This table displays the 60 VSU classes used in the experimental evaluation. (60 classes are 
generated using data produced by Speaker One and 30 classes are generated using data produced 
by Speaker Two).

5.3. Hidden Markov Models

Hidden Markov Models (HMM) are statistical pattern recognition tools that have 

been widely used in the development of handwriting, speech and video recognition 

systems. Essentially, the HMM classification performs a partition of a process into a 

number of discrete states [39], [71].

A Markov chain [72], [73] is a simple finite-state representation in which each state 

has an associated probability value where the sum of the probability values leaving a 

particular state is one. In this representation each state has one transition to the next state, 

a fact that makes the transition process stochastic. The Hidden Markov Model represents 

a generalization of the Markov chains since HMM is defined as a set of states (where one 

state is the initial state), a set of output symbols, a set of state transitions and a transition 

probability map for each state [72], [73], [74]. HMMs are particularly useful when 

applied for classification of sequential data processing via supervised learning.

As indicated in the literature survey in Chapter 2, the vast majority of vision 

researchers have adopted HMM classification schemes to solve the visual speech 

recognition task. In many proposed VSR systems the left-right HMM topology is used, 

where each state of the HMM is described by a set of mouth shapes and the state 

transitions represent the probability that a mouth shape will change to another in the 

visual representation of the speech elements (i.e. visemes or VSUs). The output returned 
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by the HMM gives information in regard to the sequence of states generated for a 

particular input data.

5.4. Hidden Markov Model Classification

In this thesis, the viseme or VSU is represented by a time-ordered set of key-points 

that are obtained by re-sampling the manifolds that are manually constructed from the 

word manifolds (See Section 4.3). The HMM classification performs the division of the 

input sequence into a number of discrete states, where the observation sequence On is 

defined by the key-points of the re-sampled manifold (n represents the number of key-

points calculated for each viseme or VSU manifold). This process is described in Fig. 5.1 

(a) where On is associated with a sequence of hidden states St. Experimental studies on 

lips dynamics indicate that the lips motions associated with VSUs can be partitioned into

three states using one Gaussian per state and a diagonal covariance matrix. 

 Visual Speech Unit – HMM States

The first state describes the articulation of the first viseme of the VSU. The second 

state is defined by the transition to the next viseme, while the third state is the articulation 

of the second viseme. Fig. 5.1 (b) illustrates graphically the partition of the VSU into a 

sequence of three hidden states. 

 Viseme – HMM States

The representation of visemes using three states HMM classifiers has been adopted 

by the vast majority of researchers [1, 37-40, 43]. In this work, this approach has been 

followed and the states generated by each viseme can be described as follows: 

 The first state describes the transition from the initial state of the viseme to 

articulation. 
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 The articulation state is the part of the viseme that describes the largest variation 

in lips dynamics. 

 The third state is the end part of the viseme when the mouth restores to the 

relaxed state at the end cycle of the speech process. 

Among these states, the articulation provides the highest level of information in 

discriminating between different visemes. Fig. 5.1 (c) illustrates the partition of the 

viseme into a sequence of three hidden states.

(a)

 (b)

(c)

Fig. 5.1 HMM topology for VSU and viseme (a) General observation and state sequence 
relationship. (b) HMM partition of the Visual Speech Unit into a sequence of three hidden states. 
(c) HMM partition of the viseme into a sequence of three hidden states [40].
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For this implementation, the unknown HMM parameters consisting of transition 

probabilities and observation probabilities are estimated iteratively based on the training 

samples using a Baum-Welch algorithm. We have constructed one HMM classifier for 

each class of VSU and one HMM classifier for each viseme as well. Each trained HMM 

estimates the likelihood of the inputs given each of the models. The HMM classifier that 

returns the highest likelihood will map the input visual speech to a particular class in the 

database. During the training process, the number of hidden states is set to three, the 

length of sequence is set as the number of key-points and the maximum number of 

iterations is set to 30. (Appendix G shows the application of the HMM to model the 

VSUs mouth shapes).

5.5. Analysis of the Experimental Results

5.5.1. Experiment 1: Performance Evaluation for Visual Speech Units 
and Visemes.

The 60 classes of VSUs listed in Table 5.3 are divided into three distinct groups. The 

first group is defined by the VSUs that start from the [silence] state. The second group is 

formed by the VSUs whose last state is [silence]. The third group consists of “middle” 

VSUs, which are defined by the articulation of two consecutive visemes and the 

transitory information between them. The reason to adopt this database segregation is to 

speed up the recognition process by using the knowledge that the VSUs that contain the 

state [silence] are located either at the beginning or at the end of the word manifold. 

This experiment is conducted to evaluate the classification accuracy when visemes 

and VSUs are employed as speech elements and the number of words in the database is 

increased. For each VSU, 5 samples are used for training and the others for testing. For 
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each viseme, half of the samples are used for training and the other half for testing. The 

classification results for speaker one is depicted in Fig. 5.2 (60 classes of VSUs and 12 

classes of visemes). The classification results for speaker two are depicted in Fig. 5.3 (30 

classes of VSUs and 10 classes of visemes). Based on the experimental results, it is 

noticed that the correct identification of the visemes in the input video sequence drops 

significantly with the increase in the number of words in the database. Conversely, the 

recognition rate for VSUs suffers a minor reduction with the increase in the size of the 

database. This drop in recognition accuracy when visemes have been used as speech 

elements was expected due to the viseme distortion and the occurrence of silent visemes. 

For example, in the EM-PCA manifold of the word ‘Barbie’ [ba:bi] we can observe that 

the second viseme [b] is severely distorted when compared to the first viseme [b]. In the 

manifold of the word ‘beat’ [bi:t], the viseme [t] is invisible because the mouth is closing 

fast and in the manifold of the word ’fast’ [fa:st], the transition between visemes [s] and 

[t] reveals more information than either of the visemes (see Appendix C for more 

examples).

During the classification process, it has been discovered that some un-expected 

registration results occurred when the word manifold is generated under the complex 

conditions (e.g.: speaker is tired). In these situations, the DTW-based registration failed 

to track multiple occurrences of the same VSU in complex words (e.g.: ‘banana’). This 

problem generates most of the classification errors. Fig. 5.4 depicts examples when the 

DTW-based registration produces correct and incorrect VSU registration results when 

applied to different word manifolds.
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Viseme [b,p,m] [s,z] [ch] [f,v] [I] [a:] [e,ә] [O] [U] [t,d] [k,g] [n]

Average 
Rate

95% 33% 62% 85% 56% 82% 33% 90% 52% 81% 28% 80%

Fig. 5.2 Viseme vs. VSU classification for speaker one. NOTE: The average recognition rate 
for 12 visemes is 71% while the average recognition rate for 60 VSUs is 88%.  
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Viseme [b,p,m] [ch] [f,v] [I] [a:] [e,ә] [O] [U] [t,d] [k,g]

Average 
Rate

80% 70% 75% 85% 85% 55% 36% 90% 43% 90%

Fig. 5.3. Viseme vs. VSU classification for speaker two. NOTE: The average recognition rate 
for 10 visemes is 61% while the average recognition rate for 30 VSUs is 86%.  
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(a) 

(b)
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(c)

Fig. 5.4. Correct and incorrect VSU registration.

NOTE: All displayed word manifolds are not used to calculate the mean model of VSU. 

In the Fig. 5.4 (a), the mean model VSU [b-i:] (red line) is used to register the 

corresponding sections in three examples of the word [bi:t] (blue line) and three examples 

of the word [bi:f] (pink line). The registered sections for examples of the word [bi:t] 

(black cycle line) and one registered section from word [bi:f] (black square line) are 

correct, while two registered sections for word [bi:f] (black cross on pink line) are 

incorrectly identified. These miss-registrations are caused by the incorrect articulations 

for visemes [b] and [i:].
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In Fig. 5.4 (b), the VSU mean model [a:-dg] (red line) is used to register the 

corresponding sections for five examples of the word [cha:dg] (dash-dot line). The 

classification results for four registered sections (black cycle on blue line) - manifold B to 

E are correct while one registered section (black cross on pink line) - manifold A is 

incorrectly classified. 

In Fig. 5.4 (c), the mean model of VSU [n-a:] (red line) is used to register the 

corresponding sections from two examples of the word [banana] (black line). The 

classification result for registered section (pint point line) of manifold B is correct; the 

registered section (blue cross line) of the manifold A is incorrectly classified. The reason 

that caused the registration failure for manifold A is those two sections of the VSU [n-a:] 

are too closely positioned in the EM-PCA space to allow precise identification. 

(Appendix F shows more registration examples for VSU [n-a:].) 

5.5.2. Experiment 2: Performance Evaluation for Visual Speech Units 
with the Variation in the Number of Training Examples.

In this experiment we evaluate the recognition rate for each class of VSU when the 

number of samples employed to train the HMM classifiers is varied. In this experiment, 2, 

3, 4 and 5 samples generated by Speaker One are used to train the HMM classifiers for 

each VSU class and the experimental results of 60 VSUs are shown in Fig. 5.5 (a).  For 

Speaker Two data, 2, 3, 4 and 5 samples are used to train the HMM classifiers for each 

VSU class and the results of 30 VSUs are illustrated in Fig. 5.5(b).

As expected, the recognition rate is higher when the number of samples used in the 

training stage is increased. In Fig. 5.5 it can be also observed that the recognition rate for 

Group 3 (middle VSUs) is lower than the recognition rate for Groups 1 and 2. This is 
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explained by the fact that the VSUs contained in Groups 1 and 2 starts or ends with 

[silence] and this state can be precisely located in the word manifold.  

(a)
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(b)

Fig. 5.5 Visual Speech Unit classification with respect to the number of training examples.

(a) Speaker One. (b) Speaker Two.  In blue the overall recognition rate for all groups is 
depicted. In light blue the recognition rate for Group 1-First VSUs, in yellow the 
recognition rate for Group 3-Middle VSUs and in dark red the recognition rate for Group 
2 - VSUs are depicted.

5.5.3. Experiment 3: Performance Evaluation for Visual Speech Units 
and Visemes in the Context of Word Recognition

This experiment is conducted to evaluate the word classification accuracy when the

VSUs and visemes are employed as speech elements. The lips dynamics associated with 

VSUs and visemes are partitioned using three HMM states (see Section 5.4) and each 

word is modeled as sequence of time-ordered VSUs or visemes. This process is displayed 
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in Figure 5.6. In this diagram the 3-dimensional (3D) EM-PCA vectors that describes 

visually the spoken word (referred as “manifold” as detailed in Section 3.4) is partitioned 

into a set of time–ordered VSUs or visemes. 

(a)
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(c) 

Fig. 5.6. Word-based recognition when the VSUs and visemes are used to model the visual 
speech. (a) Word recognition process. (b-c) The classification process when the VSUs (b) and 
visemes (c) are applied for word recognition.

The word recognition process consists of two stages (see Figure 5.7). In the first stage the 

3D EM-PCA vectors associated with the input word is partitioned into a set of basic 

visual speech elements (VSU or viseme) and the resulting sequence is described by a set 

of ordered HMM states. In this representation each video frame (vector) is labeled to a 

particular HMM state. In the second stage, the HMM state sequence resulting from stage 

one is recognized using a decision algorithm that is based either on a probability 

synthesis rule approach or on a Viterbi algorithm.  
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(a)

(b)

Fig. 5.7. Word Recognition Process. (a) Stage 1: Generation of the HMM state sequence. 
(b) Stage 2: Word recognition process. 

As indicated earlier, in this implementation the word recognition is evaluated using two 

decision algorithms:

(a) Probability Synthesis Rule (PSR). This approach evaluates the recognition of each 

independent speech element (VSU or viseme) in the HMM sequence associated with the 

input word. (For more details refer Dong et al [86] and Alaa EI. Sagheer et al [87]). For 

instance, the word [ba:bi] will generate the following VSUs ([silence-b] + [b-a:] + [a:-b] 

+ [b-i:]) and visemes ([b] + [a:] + [b] + [i]) sequences. The testing sequence will be 

classified as [ba:bi] only if all VSUs ([silence-b] + [b-a:] + [a:-b] + [b-i:]) are correct 

classified or visemes ([b] + [a:] + [b] + [i]) are correct classified. This result is denoted as

PSR in Table 5.4 for VSU based recognition and viseme based recognition.
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 (b) Viterbi algorithm (VA). Using this approach, the transition and emission 

probabilities matrix between the HMM states for all words in the database (in this 

experiment a database containing 15 words is used. 5 instances for each word) are re-

estimated using the Baum-Welch algorithm. Given a HMM state sequence calculated 

from EM-PCA vectors associated with the input word (Stage 1), the most likely state path 

specified by transition and emission probabilities matrix between the hidden states 

associated with the input word and the words contained in the database is calculated 

using the viterbi algorithm. (For more details of this procedure refer Durbin et al [88]). 

Based on above results, the percentages of the most likely probable HMM states of input 

word that agrees with the training HMM state sequences contained in the word database 

are calculated. 

For instance, given most likely probable HMM states of testing word likelystates and one 

training HMM states sequence of word model A, the length (len) are normalized by the 

length of the HMM state sequence that calculated from the testing word. Based on time-

ordered of both sequences, each state of likelystates with each state of word model A will 

be compared one by one if they are same or not. (e.g.: If the fourth state of word model A 

is 1 and the fourth state of likelystates is 1, then they are same). The percentage of 

likelystates that agrees with word model A is calculated as the number of same states in 

the total number of states (len). This calculation is shown as follow:

Percentage 1: sum(A==likelystates) → 
len

statessameofNumber =0.8200

In order to find the best accuracy among all word models, the percentage of likelystates

that agrees with other word models are also calculated as follow:



CHAPTER 5: EXPERIMENTAL RESULTS

102

Percentage 2: sum(B==likelystates) →
len

statessameofNumber = 0.4100

…

Percentage n: sum (N==likelystates) → 
len

statessameofNumber =0.3430

Note: sum() is the matlab function to compute total number of same states between word 
model (A, B, …, N) and testing data (likelystates). In the example provided above the 
best accuracy is achieved for the word model A. 

This classification algorithm is implemented using the HMM functions of the MATLAB 

Statistics Toolbox [http://www.mathworks.com/]. 
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Fig.5.8. The application of the Viterbi algorithm for word recognition. Note: this procedure 
is also applied when the visemes are applied for word recognition.

The experimental results depicted in Table 5.4 are obtained when the PSR and VA word-

based classification schemes were applied to a database of 15 words generated by the 

speaker one where each word consists of at least 3 visemes or VSUs. For each word 5 
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samples are used for training and 5 samples are used for testing.  The classification rate is 

calculated as follow equation:

%
Re

100
TestingofNumberTotal

cognitionCorrectofNumber
RatetionClassifica 

Table 5.4. Word Correct Recognition Rate 

VSU-based Classification Viseme-based ClassificationWord

PSR VA PSR VA
Bart 80% 100% 100% 100%

Boat 80% 100% 100% 100%

Boot 100% 100% 60% 100%

Barbie 80% 80% 40% 40%

Beef 60% 100% 100% 80%

Birch 80% 100% 60% 100%

Bobby 100% 40% 20% 60%

Heart 100% 100% 100% 80%

Hot 100% 100% 80% 40%

Harpy 100% 80% 80% 100%

Hobby 60% 60% 40% 60%

Charge 80% 100% 40% 80%

Zart 100% 80% 100% 100%

Fast 100% 100% 40% 100%

Banana 20% 20% 0% 40%

Average Rate
82% 84% 64% 77%

PSA: Probability Synthesis Rule.  VA: Viterbi Algorithm
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The experimental results indicate that the correct word recognition based on VSUs 

classification is 7%-12% higher than the correct word recognition based on visemes 

classification. It can be also observed that the recognition rate obtained when the Viterbi 

algorithm (VA) is applied for classification is higher than that attained by the probability 

synthesis rule (PSR). This is motivated by the fact that the Viterbi algorithm attempts 

finding the most likely sequence of hidden states between the HMM sequences calculated 

for the input word and those calculated for the words used for training. For instance, let’s 

assume that the viseme [a:] is not recognized as part of the word ‘charge’ [cha:dg]. If 

viseme [ch] and [dg] are correctly classified, the word ‘charge’ can still be recognized 

since the vast majority of hidden states are correctly identified within the Viterbi path.

Although the experimental results depicted in Table 5.4 are only indicative since they 

are produced on a small database, they strengthen the conclusion that the VSUs provide a 

more elaborate visual speech representation than the standard visemes. 

5.6. Summary

In this chapter, three experiments were conducted to assess the performance of the 

proposed Visual Speech Unit representation. In this approach the VSUs are constructed 

from the re-sampled word manifolds and the recognition between the VSUs extracted 

from the input data and the model VSU stored in the database is carried out using HMM 

classifiers. 

In this thesis three distinct experiments were conducted.

 Experiment 1 investigates the performance of VSU and standard viseme 

representations when applied to the recognition of a set of words. It is 
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observed that the recognition rate for VSUs generated by both speakers (80-

90%) is higher than the recognition rate of visemes (62-72%). 

 Experiment 2 evaluates the classification accuracy attained for VSUs when 

the number of samples applied to train the HMM classifiers is varied. The 

experimental data indicates that the recognition rate is higher when the 

number of training samples is increased. Another important finding resulting 

from this investigation is the fact that the classification accuracy for Group 3 

(middle VSU) is slightly lower than the recognition rate obtained for Group 1 

and Group 2 VSU categories.

 Experiment 3 presents the recognition accuracy attained for word recognition 

based on VSU model concept or viseme model. Based on either of two 

different decision algorithms, the result shows better accurate rate when VSU 

is used as the basic visual speech element.

The experimental results presented in this chapter indicate that the Visual Speech Unit is 

an accurate representation for word based visual speech recognition. 
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Chapter 6 

Conclusions and Future Work

6.1. Conclusions

6.1.1 Thesis Summary

Visual Speech Recognition (VSR) is a very challenging task that involves collaborative 

research efforts in multiple areas such as computer vision, pattern recognition, image 

processing and human actions modeling. In general, five tasks are required in any VSR 

system. First, the human face has to be located and tracked in each frame of the video 

sequence. Second, the region-of-interest (ROI) surrounding the lips have to be extracted 

from input video data. Third, the optimal visual features have to be calculated in order to 

produce a representation that describes the shape of lips in each image. Forth, an accurate 

visual speech model has to be generated to encode the lip motions during the speech 

process. Finally, the last task is to recognize the visual speech models in the input video 

data.

In many multimedia systems such as audio-visual speech recognition (AVSR) [18, 

19], mobile phone applications, human-computer interaction [58] and sign language 

recognition [22, 82], VSR provides useful cues since the visual information may improve 

the overall accuracy of audio and hand recognition systems when they are operated in 

environments characterized by a high level of noise. VSR techniques have also been 

applied in the development of systems for person identification [77], machine control or 

game animation. 
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To be successful VSR has to address complex issues such as feature extraction 

techniques, classification algorithms and recognition tasks. In this thesis, several new 

techniques have been applied to address issues that arise in the development of VSR 

applications and they can be summarized as follows:

 Intensity-based Lip Segmentation

The pseudo-hue based on the RGB data is calculated and the lips are segmented by 

applying a histogram-based thresholding scheme. The image area describing the lips is 

extracted for each frame from the input video sequence. 

 Manifold Generation

The grayscale data around the lips region is extracted and this information is used to 

generate the low-dimensional space that is calculated using the EM-PCA procedure. This 

grayscale data is projected onto the low-dimensional space and for each frame will be 

calculated a low dimensional point (vector). The feature points obtained after data 

projection on the low-dimensional EM-PCA space are joined by a poly-line by ordering 

the frames in ascending order with respect to time. The aim of this procedure is to obtain 

a discrete manifold where for each mouth shape a low dimensional vector is assigned. To 

obtain a continuous representation, the manifold is interpolated using cubic-spline. 

 Visual Speech Unit Modeling

The proposed VSU model extends the standard viseme model by including in the 

new representation the transition between consecutive visemes. In this manner, the 

manifold representation generated from the input image sequence describing visually the 

spoken word is broken into an ordered sequence of VSUs. In the training process, the 



APPENDIX A: VISEME MODEL IN LITERATURES

108

VSUs are constructed from training data and for each class of VSU a mean model is 

generated based on the re-sampled EM-PCA manifold representation. 

 Visual Speech Unit Registration and Classification

Finally, the registration process between the VSU mean models and the continuous 

manifold calculated from the input video sequence is carried out using Dynamic Time 

Warping (DTW). In this way, a two-step approach is adopted in the VSU recognition 

process. In the first step, DTW is applied to register the VSU models and the input 

continuous manifold. In the second step, HMM is employed to calculate the matching 

cost between the registered section of input manifolds and VSUs contained in the 

database. The classification result is based on the best matching cost of the registered 

section of manifold and the VSU model which is contained in the database.

 Experimental results 

The developed VSR system has been evaluated on real data generated by two

speakers and the experimental data indicates that the VSU recognition rate (80-90%) is 

significantly higher than the recognition rate obtained for MPEG-4 visemes (62%-72%). 

It is useful to note two facts that might cause the lack of accuracy for standard viseme 

recognition (10-20% lower than VSU recognition rate). First, during the training section, 

the viseme samples are difficult to construct because they are presented by a small 

number of mouth shapes. Second, a large variation was noticed even within the same 

class of visemes. For example, in the word [ba:bi:], the first viseme [b] shows different 

characteristics when compared with the second viseme [b] in the visual speech 

representation. In another fact, the VSU provides a more accurate representation for 

speech modeling into the word recognition test than the standard viseme representation 
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and the reported results confirm the superiority of the VSU representation when applied 

to continuous visual speech.

6.1.2 Contributions

As indicated in the literature review provided in Chapter 2, the most difficult 

problems that have to be addressed by VSR are the feature extraction, the development of 

accurate speech models and classification. The first task of feature extraction involves the 

extraction of the lips in the image data. In practice, various approaches have been 

proposed where the most simplistic highlight the lips in image data by applying lipstick.  

Although this approach is effective, it is not comfortable for users and such systems can 

be operated only in constrained environments. Thus, the main research efforts have been 

concentrated in the development of vision-based lip segmentation algorithms. In this 

manner, approaches based on the evaluation of the shape and colour skin models proved 

to be the most promising. The shape-based approaches require complex initialization 

procedures and proved to be cumbersome when applied to continuous data, thus in this 

work has been developed an intensity-based approach that identifies the lips in data 

converted to the pseudo-hue representation. The development of the lips segmentation 

algorithm represents a minor contribution of this research work. 

Feature extraction was another major topic of interest for this research. In this thesis 

it has been detailed the application of the EM-PCA manifolds to generate a compact 

representation that is able to encode the lips motions in the visual domain. While the 

words are defined by image sequences of different lengths, in this work the discrete 

manifolds were interpolated to generate a continuous representation. The developed 

feature extraction scheme represents an important contribution of this work.
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The appropriate selection of the visual speech model is the key issue in the 

implementation of VSR systems. The vast majority of the proposed VSR systems 

employed visemes to model the visual speech where continuous speech is viewed as a 

simple combination of standard visemes. In this investigation, we noted that visemes 

offer only a partial representation when applied to the representation of the words in 

continuous speech, since the transitions between visemes are not used in the recognition 

process. To address this problem, in this thesis a new speech model referred to as Visual 

Speech Unit (VSU) is proposed and represents the major contribution of this work. Other 

minor contributions are located in the development of HMM classification schemes. 

6.2. Future Work

A detailed analysis of the experimental results indicates that two factors contribute to 

errors in the recognition process. These two factors can be summarized as follows:

1. The errors in classification are mostly generated by the errors in registration 

between the VSU models and continuous manifold.

2. The image data are generated by two speakers and the database is defined 

only by a limited number of VSUs.

In order to overcome the abovementioned issues and improve the recognition accuracy of 

the proposed VSR technique, future investigations need to be focused on the following 

areas:

• Improve the DTW technique that performs the registration between VSU models 

and continuous manifold.  In the implementation detailed in this thesis, VSUs 

that start or end with [silence] can be precisely located in the words manifold, but 

the registration of “middle” VSUs can be improved especially when dealing with 
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complex words (e.g.: like ‘banana’, ‘January’, etc) that consist of multiple 

“middle” VSUs. 

• Evaluate the proposed approach on a larger number of VSUs that are generated 

by multiple speakers. Based on the standard MEPG-4 viseme category, the total 

number of VSUs that can be theoretically constructed is 196. Thus, the 

performance of the proposed VSR system needs to be evaluated on more 

comprehensive databases defined by an increased number of VSU models and a 

larger vocabulary.

• Evaluate the proposed VSR system when applied to identify the words in larger 

video sequences where multiple words are spoken by the speaker.  

• The data evaluated in this thesis did not include images showing 3D rotations of 

the speaker’s head. In order to deploy the proposed VSR system in real world 

applications, additional work is required to extend the proposed VSU 

representation to cover 3D rotations. The VSU model will be extended to cover 

the front and side face of multiple degrees of lips. This investigation can help in 

the discrimination of visual speech in very complex environment and also be 

used for 3D human speech animation modeling.

• Future research will be also concerned with the inclusion of the VSU based 

visual speech recognition in the implementation of a robust sign language gesture 

recognition system in order to increase its overall performance.

• The proposed VSR system can also be deployed into the development of systems 

for vehicle control and interaction with industrial robots.
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Appendix A

Viseme Models

Table A.1 to A.3 show three different viseme categories that have been proposed in the 

literature on VSR. The viseme category displayed in Table A.1 is the adopted viseme 

standard in this thesis, this viseme table is introduced by I.S. Pandzic and R. Forchheimer 

which is an international audio-visual object-based video representation standard.

Viseme 
Number

Phonemes Example Words Vowels or 
Consonants

Image Example
in Database

1 [b], [p], [m] put, bed, me consonants

2 [s], [z] Zeal, sit consonants

3 [ch], [dZ] chard, join consonants

4 [f], [v] far, voice consonants

5 [t, d] tick, door, consonants

6 [k, g] gate, kick consonants

7 [n, l] Need, lead consonants

8 [Th] think, that, consonants n/a in database

9 [r] read consonants n/a in database

10 [I] beat, heat vowel

11 [A:] but, chard, barbie vowel

12 [e] hat, bet vowel

13 [O] boat, hot vowel

14 [U] hook, choose vowel

Table A.1 Viseme Model of MPEG-4 standard for English [27, 39-40, 51]
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viseme Class Phonemes in cluster

silence [silence], [sp]

Lip-rounding based vowels [ao], [ah], [aa], [er], [oy], [aw], [hh], 
[uw], [uh], [ow], [ae], [eh], [ey], [ay], 

[ih], [iy], [ax]
Alveolar-semivowels

Alveolar-fricative
Alveolar

Palato-alveolar
Bilabial
Dental

Labio-dental
Velar

[l], [el], [r], [y]
[s], [z]

[t], [d], [n], [en]
[sh], [zh], [ch], [jh]

[p], [b], [m]
[th], [dh]
[f], [v]

[ng], [k], [g], [w]

Table A.2  44 Phoneme to 13 Viseme Mapping using the HTK phone set [1, 76]

Viseme number Viseme description

1 Mouth close

2 Slightly open in small degree of mouth 
opening

3 Medium degree of mouth opening

4 High degree of mouth opening

5 Mouth open when teeth are observable

6 Mouth open when teeth are not 
observable.

Table A.3 Representation of six major viseme classes [57].
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Appendix B

Original Images Dataset

Figures B.1 to B.4 show the original images generated by two speakers. 

Figure B.1: Samples of original frames from video sequence 1(Speaker One)

Figure B.2: Samples of original frames from video sequence 2 (Speaker One)
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Figure B.3: Samples of original frames from video sequence 3(Speaker Two)

Figure B.4: Samples of original frames from video sequence 4(Speaker Two)
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Appendix C

Continuous Manifold Representation

Figures C.1 to C.6 depict the manifolds of several words analyzed in this thesis. Each 

figure contains 2 examples of each word. 

Figure C.1: Two continuous manifolds of the word [bu:t]
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Figure C.2: Two continuous manifolds of the word [ba:bi]

Figure C.3: Two continuous manifolds of word [chu:s]
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Figure C.4: Two continuous manifolds of the word [hot]

Figure C.5: Two continuous manifolds of the word [bi:t]
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Figure C.6: Two continuous manifolds of the word [fäst]. 
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Appendix D

Viseme Representation

Figures D.1 to D.3 show the viseme mapping in single word manifolds. These figures 

demonstrate that the visemes cover only a small part of the word manifold. 

Figure D.1: Viseme [b], [o] and [t] - word manifold- [bot].
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Figure D.2: Viseme [b], [u] and [t] - word manifold-[bu:t].

Figure D.3: Viseme [ch], [e] and [k] - manifold-[chek].
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Figure D.4: Representation of same class of viseme [ch] and [dg] extracted from the word 
manifolds [cha:dg] (four examples).

Note the overlap between the viseme [ch] and viseme [dg] in the EM-PCA space. 
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Figure D.5: Representation of viseme [b] and viseme [o] extracted from different words 
manifolds - [bot] and [bobi] (2 examples each word).

The viseme [o] is displayed in the pink region when extracted from the manifold of the 

word [bot] and in the purple region when extracted from the manifold of the word [bobi]. 

Note a large region required to map the viseme [o] in the feature space. The viseme [b] is 

displayed in the cyan region when extracted from the manifold of the word [babi]. We 

can observe the large variation between the first and the second viseme [b] in the 

manifold of the word [babi].
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Figure D.6: Representation of viseme [b] and viseme [a:] extracted from different word 
manifolds- [ba:t] and [ha:t] (2 examples each word).

The viseme [a:] is displayed in the red region when is extracted from the manifold of the 

word [ba:t] and in the pink region when extracted from the manifold of the word [ha:t]. 
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Figure D.7: Representation of viseme [u:] extracted from different word manifolds- [chu:s] 
and [hu:k] (2 examples each word).

The viseme [u:] is displayed in the red region when is extracted from the manifold of the 

word [hu:k] and in the purple region when is extracted from the word [chu:s]. Again we 

can notice that a large region is required to map the viseme [u:] in the feature space.
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Appendix E

Visual Speech Unit Representation 1

Figures E.1 to E.3 show the re-sampled manifolds of several Visual Speech Units. In 

each figure, there are two samples for each Visual Speech Unit (VSU). 

Figure E.1: Re-sampled VSU Manifolds. Five VSUs which all start with viseme [silence] 
(two samples for each VSU). 



APPENDIX E: VISUAL SPEECH UNIT REPRESENTATION 1

127

Figure E.2: Re-sampled VSU Manifolds. Five VSUs which all start with viseme [b] (two 
samples for each VSU).
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Figure E.3: Re-sampled VSU Manifolds. Five VSUs which all end with viseme [silence] (two 
samples for each VSU).
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Appendix F

Visual Speech Unit Representation 2

Figures F.1 to F.5 show the mean models for different VSUs and VSU samples extracted 

from different word manifolds. In these examples, each figure has two parts: (a) 

illustrates the VSU mean models and the word manifolds; (b) illustrates the similarity 

between the VSU mean models and the VSU samples extracted from the words 

manifolds displayed in (a).

Figure F. 1 to F. 5 indicate that:

1. The part of word manifolds show similar characteristics when they contain the 

same VSU.  

2. There can be noticed some variation for the same VSU such as [na:] when appears 

in succession in a complex words such as ‘banana’ (Figure F.4). 

The words manifolds displayed in Figures F.1 to F.5 are not used to calculate the VSU 

mean model.
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(a)

(b)

Figure F.1: The mean model of VSU [b-a:] and the VSUs extracted from different words 
(two examples each word). (a) Mean model of VSU [b-a:] (red), word manifolds: [ba:bi[ (pink), 
[ba:dg] (black) and [ba:t] (blue). (b) Mean model of VSU [b-a:] (red), test VSUs [b-a:] extracted 
from [ba:bi[ (pink), [ba:dg] (black) and [ba:t] (blue). 



APPENDIX F: VISUAL SPEECH UNIT REPRESENTATION 2

131

(a)

(b)
Figure F.2: The mean model of VSU [b-i] and the VSUs extracted from different words (two 
examples each word). (a) Mean model of VSU [b-i] (red), word manifolds: [ba:bi[ (blue) and 
[bobi] (black). (b) Mean model of VSU [b-i] (red), test VSUs [b-i] extracted from [ba:bi] (blue) 
and [bobi] (black). 
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(a)

(b)
Figure F.3: The mean model of VSU [b-o] and the VSUs extracted from different words 
(two examples each word). (a) Mean model of VSU [b-o] (red), word manifolds: [bot] (blue 
dot), [bok] (pink) and [bobi] (black dash). (b) Mean model of VSU [b-o] (red), test VSUs [b-o] 
extracted from [bot] (blue dot), [bok] (pink) and [bobi] (black dash).
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(a)

(b)

Figure F.4: The mean model of VSU [n-a:] and the VSUs extracted from the word-‘banana’ 
(two examples). (a) Mean model of VSU [n-a:] (red), word manifolds-‘banana’: example 1 (blue) 
and example 2 (cyan dash). (b) Mean model of VSU [n-a:] (red), test VSUs [n-a:] extracted from 
example 1 (blue) and example 2 (cyan dash).
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(a)

(b)
Figure F.5: The mean model of VSU [ch-silence] and the VSUs extracted from different 
words (two examples each word). (a) Mean model of VSU [ch-silence] (red), word manifolds: 
“barge” [ba:dg] (blue dash) and “birch” [bә:ch] (pink dash). (b) Mean model of VSU [ch-silence] 
(red), test VSUs [ch-silench] extracted from [ba:dg] (blue cycle), and [bә:ch] (pink square). 
Note: [ch] and [dg] are in the same class of viseme (green region).
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Appendix G

Visual Speech Unit Representation 3

Figures G.1 shows one example where the mouth shapes associated with a VSU are 

modeled using three-state HMMs. 

Figure G.1: VSU modeling using three state HMMs. The manifold of the [b-a:] is plotted with 
a red line. 
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