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Modelling and Removal of Distortions in Images

John Mallon

Abstract

This thesis investigates the compensation and minimisation of distor-
tions in images. Various forms of non-linear lens distortions are modelled
and removed. Projective linear distortions are further minimised to give
the closest ideal projection from erroneous cameras. Traditional cam-
era calibration treats lens distortion simultaneously with camera pose
and lens scaling factors. This often leads to complex algorithms with
multi-image requirements, while alternative so called non-metric meth-
ods such as straight line techniques, lack ready usability and insufficient
precision. Considering the calibration and compensation of non-idealitys
separately, allows greater access to error free projections while consid-
erably simplifying subsequent calibrations. The major contributions of
this thesis are the precise calibration and removal of lens distortions and
the minimisation of perspective distortions. A simple to use technique
is proposed for the closed-form calibration of lens distortion based on a
single view of a planar calibration chart. Detailed examinations show
its accuracy and suitability for all levels of lens distortion. A related
method is proposed for the removal of lateral chromatic aberrations in
images. Distortion models and approximate inverses are derived to give
precise accuracy over all distortion levels including fish-eye lenses. An
analysis of calibration patterns is conducted to determine if the choice of
pattern can influence the accuracy of the calibration. It is revealed that
only specific patterns offer truly bias free control points. Distortion free
images are optimally regenerated to minimise pixel scale distortions.
This technique is further developed to uniquely minimise perspective
distortions, with application to stereo rectification.
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Chapter 1

Introduction

An optical instrument is required to faithfully produce a geometrically con-
sistent image of a given object, where each point of the latter is imaged as a
point in the image. The image is generally formed in accordance with some
predefined imaging model, which in this case is assumed to be a projective
camera. In this thesis, two related factors that serve to degrade the geometric

integrity and quality of an image are considered.

Firstly, the departure of practical optical systems from ideal behaviour, leads to
the introduction of aberrations in the resulting images. Two categories of such
optical errors are addressed, lens distortion and lateral chromatic aberration.
Lens distortion is a well known monochromatic aberration, and is thus present
in both colour and greyscale imaging devices. Its nature is predominantly a ra-
dial geometric displacement of pixels giving a barrel or a pincushion effect but
without loss of image quality. Its chromatic relation, lateral chromatic aber-
ration, arises from the polychromatic nature of light, as it is split into a set
of rays or wavelengths upon entering a colour cameras lens. Whilst traversing
the optical system light of different wavelengths will follow slightly different
paths. Upon reaching the image plane their misaligned recombination intro-
duces chromatic aberration. The focus point of the wavelengths varies both
laterally and axially, prompting the distinctions of lateral and axial chromatic
aberrations. Lateral chromatic aberration is considered in this work and is

characterised by colour dependent shifts in the image plane.

The second source of error arises from the local pixel distortions introduced

following aberration removal, and indeed in many image warping applications
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such as planar stereo rectification. These distortions are akin to local stretch-
ing or warping of pixels, and culminate in both the loss of original image pixels
and the degradation of existing ones, through the enlargement or compaction
of pixels in the re-sampled image. In addition to poor image quality, geomet-
ric distortions may also be introduced. Unlike lens aberrations this form of

distortion can, in general, only be minimised.

Optical aberrations form the foundations of this work, from which a selection
of related problems are addressed. Through the use of mathematical models,
the aberrations, measured at relatively few locations, may be extended to all
pixels in the image. To this end, models of these nonlinear optical aberra-
tions are derived from first principles, while their relationship to alternative
approximations are shown. A comparison between the derived and existing
models is made under the criteria of accuracy and stability. Model inverses
are also derived for the specific intent of generating simulation data of high
integrity. The aberrations in an image are measured with the aid of planar
patterns. Alternative pattern types are analysed to determine which type gives
the best quality measurement data. It is found that certain types of patterns
and detection methods introduce biasing errors in the recovered image loca-
tions. With an appropriate pattern, the measured coordinates are then used
to calibrate the aberration models within a least square framework. This cal-
ibration is specifically focused on being easy to use and implement, exploiting
two geometric priors on the calibration pattern. Using only a single view, a
closed-form estimation problem is derived, including full partial derivatives.
For lens distortion a comprehensive analysis and comparison of the proposed
method is carried out. As the aberration models give no consideration to the
optimal formation of new images, a unique means of minimising local pixel
distortion is developed. This idea is subsequently expanded to address the

unavoidable distortions in planar rectification algorithms.

1.1 Background and Motivation

This section aims to give a brief background to the origins of this work. It
also summaries some earlier work that was carried out during this project, but

which is not the main focus of this thesis.
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1.1.1 Mobile robots

This work originates from work carried out in the area of mobile robotics. A
mobile vehicle or platform is a fundamental tool for research and applications in
this area. Therefore, a general purpose indoor mobile platform named Mobius
(Mobile Vision Autonomous System), shown in Fig. 1.1, was designed and
built. Initial design details may be found in Mallon (2001) and subsequently
in Mallon et al. (2002a). It was designed to sustain agile movement around an
indoor laboratory environment using a combination of sensors including multi-
camera systems. The design strives to capture the essence of autonomy by
ensuring all necessary resources for high level operations are contained onboard
the rig. The two most demanding resources, power and computational sources,
are included onboard with an additional payload overhead. The drive system
comprises of a skid steer system as shown in Fig. 1.2 with encoders for motion
control and tracking. Local motion control is effected by two independent
micro-controllers with a programmable pole-zero compensator, whose digital
outputs are directly interfaced to the stepper motors via digital frequency

converters.

Similarly, with all other mobile robot systems the integration based odometric
tracking system could not be relied upon for an extended period of time. In
an attempt to address this problem, additional 3D sensors, including a stereo
vision system, were employed to both help in the fundamental navigation and
generate more precise localisation. In a primary study on binocular stereo sys-
tems in Ghita et al. (2001), it was found that for many real situations a unique
matching solution could not be applied. This forced an increasing dependency
on several heuristic constraints to discover plausible matching. Following the
addition of a third camera an extra geometric constraint was introduced to re-
duce the influence of heuristics. The system, reported in Mallon et al. (20026)
uses a linear configuration of three equally spaced cameras, mechanically ar-
ranged in an effort to align the respective epipolar lines. A feature based

matching technique is then applied to calculate a limited set of 3D measures.

It became abundantly clear that there were two large problems with this ap-
proach. The first was the virtual impossibility of exactly mechanically position-
ing two (or one for that matter) cameras relative to the third in the trinocular
system. This was further compounded by the slight variations between the

three lenses. Secondly, as a broad field of view is required for potential tasks
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Fig. 1.1: Mobius, showing its trinocular camera system and payload, (Monitor

and optical table)

such as navigation, the use of low focal length lenses with large and variable
lens distortions were effectively unavoidable. This distortion effectively re-
moved the possibility of getting any matching points away from the centre of

the images. Hence, a journey in camera calibration began.

1.1.2 Calibration: Rectification and Distortion

W ithout wanting to expend time and resources on the manufacture of precise
calibration objects, planar calibration routines based on the work in Zhang
(1998), using multiple shots of planar patterns offered an attractive alterna-
tive to traditional methods. This offered the correction of lens distortion and

an estimate for the camera projection matrices. By decomposing these pro-
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Fig. 1.2: The drive system design of Mobius, viewed from underneath. Stepper
motors are coupled to the drive shafts through bevel gears. A toothed belt

rotates auxiliary shafts with incremental encoders attached.

jection matrices, rectifying transformations could be obtained, for example
using the method proposed in Fusiello et al. (2000). However, this rectifi-
cation performed poorly, often giving worse alignments than the mechanical
setup. As metric rectification was not demanded by the intended application,
uncalibrated rectification based on decompositions of the Fundamental Matrix
were investigated. Again, using the method proposed in Hartley (1999), the
rectification still performed poorly. Additionally, both the calibrated rectifi-
cation and its uncalibrated relation had a tendency to introduce severe image
warping, such as shearing into the new images. Consequently, during the
correlation based feature matching or stereo matching phase, the local areas
around a point of interest were quite dissimilar, resulting in very few detected
correspondences. Regarding the lens distortion removal, it was noticed that
the new re-sampled images actually contained a distortion residual of a few

pixels.

This thesis details a thorough investigation of these, and related problems.
Briefly, these include the uncovering of some useful refinements and simpli-
fications regarding the calibration of distortion. The uncalibrated rectifica-

tion performance is improved, ultimately matching the level of the noise in
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the control points. The unavoidable projective distortions were also uniquely
minimised to enhance the multi-image correlation algorithms. From this point
some further important issues are addressed and related extensions were devel-
oped and tested. These broadly include aberration modelling, the specification
of control points for calibration, and the removal of chromatic aberrations in

colour images.

1.2 Literature Review

Understandably, a large amount of effort has been directed at these prob-
lems. Some of the main publications relevant to this thesis are highlighted,
listed under subheadings corresponding to the main chapters. These cover
the modelling of optical aberrations in images, calibration methods for these
aberrations, the specification of planar control points, chromatic aberration

compensations and finally rectification methods and distortions.

1.2.1 Aberration Models

Initially, the photogrammetric community developed methods for modelling
and removing lens distortion. Slama (1980) describes the work of Duane C.
Brown in modelling lens distortion in arial mapping cameras as the combina-
tion of two distinct components, still used and referred to today as radial and
decentering lens distortion. These models are functions of the ‘plate coordi-
nates’ or observed pixel locations in digital terms. The decentering component
of this model was further justified by Brown (1966) wherein he advocated the
replacement of the thin prism model by a (until then) lesser known model of
Conrady (1919) derived by exact ray tracing means. In Brown (1971), formu-
lae for the variation of distortion with focusing distance are revealed. Fryer
and Brown (1986) describes some slight modifications to the decentering lens
distortion variation with focus distance. These focus variation models are how-
ever not used in computer vision as they require the focusing distance to be

known in order to correctly select the distortion profile.

The lens distortion model presented in Slama (1980) has become the accepted

model in many cases, especially if only low distortion is present. Camera
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models for computer vision began including lens distortion factors in an effort
to improve accuracy. Tsai (1987) proposed a popular implementation that
used only the radial selection of the traditional model as presented in Slama
(1980). He commented that a more elaborate model than a plain radial one
would not only fail to improve accuracy, but would lead to numerical instability.
This was further verified in experiments by Wei and Ma (1994). Truism based
methods, generally using straight lines, for example: Prescott and McLean
(1997), Swaminathan and Nayar (2000) and Devernay and Faugeras (2001), are

forced to use this model as the only data available are the distorted projections.

Despite the apparent widespread adoption of the traditional model, its lack of
an analytical inverse makes its use in some calibration techniques awkward. As
a consequence its precise form varies from being a function of distorted coordi-
nates (as was originally mooted) to a function of undistorted coordinates. In
works such as Weng et al. (1992), lens distortion is presented as a function of
undistorted coordinates. Because the undistorted coordinates are unknown, an
approximation is made by replacing the undistorted coordinates with distorted
ones. He justifies this replacement by reasoning that the re-estimation, carried
out with distorted data, will fit equally well. Wei and Ma (1994) also present
the traditional model as an approximation of the true one. However, for sim-
plicity, a general third order rational polynomial model is adopted instead.
Heikkila and Silven (1997) likewise present the model of lens distortion as a
function of undistorted, or in optical terms, Gaussian projections. In Heikkila
(2000) the reverse situation is presented, and without any justification, where
the same distortion function is now presented as a function of distorted coor-
dinates. Considering the many other conflicting interpretations such as Zhang
(1998, 2000), where lens distortion is presented as a function of undistorted
data, and Lucchese and Mitra (2003) where it is presented as a function of
distorted data, and it is little wonder that in some quarters there is a cer-
tain degree of confusion as to the correct interpretation of the lens distortion
model and the benefits thereof. Tamaki et al. (2002) identifies this confusion,

labelling the models: Distorted-to-Undistorted and Undistorted-to-Distorted.

Alternative functions have been proposed to model lens distortion. In the
polynomial approximation vein, Asari et al. (1999) use a general fourth order
polynomial to model distortion in endoscopic images, but no analysis of the
efficiency of such a model is presented. Shah and Aggarwal (1996) also presents

a similar polynomial model including both radial and decentering elements,
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while a more general model has been suggested in Kannala and Brandt (2004).
Ma et al. (2003) propose a similar model to the traditional one, but to a lower
radial order. The advantage gleaned is that a set of inversion solutions become
available. A rational polynomial has also been proposed in Heikkila (2000)

based on the assumption that distortion follows the traditional form.

Rational models with analytical inverses have also been proposed. Fitzgibbon
(2001) presents a single parameter model he calls the divisional model. It
offers a good approximation to most distortion profiles, and has been used for
high distortion applications in Barreto and Daniilidis (2004), and with slight
modifications for fish-eye lenses in Ying and Hu (2004), Brauer-Burchardt and
Voss (2001) and Micusik and Pajdla (2003) all reporting adequate performance.
The disadvantage of this model is that it cannot model nonlinearities within
the distortion profile. Specific fish-eye models have also been proposed. Basu
and Licardie (1995) describes a log based model called the Fish-eye transform,
which is compared with a polynomial approximation. A hybrid stereographic
projection and equisolid angle model has also been proposed for general fish-
eye modelling, achieving a sub-pixel fit. However, these models are unsuitable

for use with normal perspective camera lens distortion.

Model Inverses

As already described, the lack of an analytical inverse for traditional type
distortion models, (both as a function of distorted and undistorted points) is a
drawback in many calibration methods. These inverses are required for image
or data correction depending on the model assumptions adopted, while also

having a important role in the simulation of distortion.

Wei and Ma (1994) propose to use an implicit third order rational polynomial.
The resort to such a general model is a direct consequence of the unknown
form that a possible inverse might take. Heikkila and Silven (1997) partially
address this problem using a fifth order version of this rational polynomial,
which is subsequently trimmed of redundant parameters to give a more likely
solution form. Good accuracy is presented, but only for very low distortion
levels. Its ability to accurately cope outside this range is unknown. A similar
form of a suitable inverse approximation has been proposed in Heikkila (2000)

based on the inclusion of some terms of a first order Taylor expansion with
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the assumed forward distortion model. This model is again tested only for low

distortion levels.

Decentering distortion

The practical value of including decentering distortion in the modelling of
lens distortion is questionable. Many implementations neglect to model it,
seemingly without any adverse consequences. Those that do, find that the
associated parameters are very small. Historically, camera calibration authori-
ties in the 1950°s had refined their techniques producing accurate estimates for
the principal point, but to their dismay discovered that some lenses exhibited
an asymmetrical distortion. This was due to slight misalignments of the lens
elements and became known as decentering distortion. Initially, a thin prism
model was used to model this distortion. W ith the increase of film resolution
and measurement accuracy, Brown (1966) was able to show that the prism
model was in exact agreement with the tangential component of decentering
distortion but at variance by a factor of three with regard to the radial com-
ponent. He proposed an alternative model based on previous work of Conrady
(1919). Considering that the aerial lenses that were being calibrated could
occupy several hundreds of cubic centimeters, were meticulously assembled
and extremely expensive, it is unlikely that current low cost, mass produced
and small format (e.g C-Mount) are manufactured and assembled to a degree

where decentering distortion is negligible.

The ambiguity in the use of decentering distortion originates from the neces-
sity to simultaneously estimate the location of the distortion centre and/or the
principal point, with distortion. In the plumb line method of Fryer and Brown
(1986) adjustable parameters are carried for the centre point. They found that
these parameters were inherently indeterminate if decentering distortion was
included in the distortion model. Slama (1980) also offered the opinion that
“decentering coefficients also interact to a moderate degree” with the princi-
pal point estimation. However, very precise estimates for the principal point
were available from the fiducial marks or through laser collimation, allowing
informed comparisons to be carried out, e.g. (Brown, 1966). For modern cam-
eras there is no requirement on manufactures to align the lens with the sensor
array. Thus without resort to laser collimators the principal point is entirely

unknown.
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By simultaneously carrying a variable distortion centre point, it was noted by
Stein (1993) that a shift in the distortion centre induces decentering like terms
in the radial distortion model. This principal is used by many to exclude
the explicit modelling of decentering distortion. However, it is unclear how
valid this approximation is with increasing decentering distortion. Assuming
the existence of decentering distortion, the recovered centre point will thus not
match the ideal principal point. The opposite argument is made in Ahmed and
Farag (2001) were the centre point is assumed fixed, while decentering elements
are included to account for its inevitable misplacement. However, Clarke et al.
(1998) showed by experiment that this idea is flawed. He states that the
inclusion of decentering can only compensate to a “surprisingly small extent”
for shifts in the principal point. Finally, an alternative selection of methods to
calculate the principal point are described in Willson and Shafer (1994), while
the importance of its estimate in camera calibration is investigated in Hartley

and Kaucic (2002) with respect to the estimated focal length.

1.2.2 Calibration Methods

In addition to distortion modelling work, Duane C. Brown also proposed an
important method for determining lens distortion based on the truism that
straight lines must be imaged as straight lines. This technique, published in
(Brown, 1971), and with extensions in (Fryer and Brown, 1986), became known
as the ‘plumb line” method, where initially fine white thread was stretched by
plumb bobs which were stabilised in an oil bath. A comprehensive historical
review is given in Clarke and Fryer (1998). This technique was adopted by the
machine vision community where simplified versions of the plumb line method
are presented, e.g. Prescott and McLean (1997). Haneishi et al. (1995) and
Asari et al. (1999) describe a similar truism based correction for the correction
of endoscope distortion, using images of co-linear points. Similar, high level
distortion is considered in Brauer-Burchardt and Voss (2001), however the real
example shown, with a quoted residual distortion of +0.7 pixels, resembles a
quite benign distortion level. Since these methods only estimate distortion,

there are sometimes loosely referred to as non-metric calibration.

An intrinsic problem for these multiple line based methods is that it becomes
intractable to form geometric relationships between a distorted line segment

and its true projection. An alternating approach is thus employed, as in Dev-

10
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ernay and Faugeras (2001), which iteratively adjusts the distortion parameters
in order to minimise the line fitting to the distorted line segments. No mean-
ingful geometric relationship exists between this objective error and the dis-
tortion parameters, hence no analytical derivatives are available. This results
in slow convergence and can become unstable for elevated distortion levels,
unless special steps are taken, as in Swaminathan and Nayar (2000). In this
non-metric approach Swaminathan and Nayar (2000) reformulate the objec-
tive function in distorted space instead of the usual undistorted space. This
is done by performing a further search at each alternation to find the location
of a point closest to the considered distorted point, but that lies exactly on
the line fitted to the current undistorted point estimates. The reported re-
sults show improved robustness to noise for simulated data but no meaningful
performance is reported in the real case. A semi-related method has been sug-
gested in Ahmed and Farag (2001) where the curvature of detected lines are
used to estimate the parameters of the derivative distortion equation. How-
ever, as may be expected, the simulation results show abysmal performance in

the presence of noise, while the real results lack a qualitative evaluation.

A more standard means of calibrating distortion is with the simultaneous esti-
mation of a cameras extrinsic and intrinsic parameters. Tsai’s method (Tsali,
1987) involves simultaneously estimating, via an iterative numerical optimi-
sation scheme, the single distortion parameter and some internal parameters
such as focal length, given the 3D position of a set of control points. The ex-
ternal parameters or position of the camera is already computed in a previous
step. The disadvantage of this approach is that it requires known 3D control
points and in return offers relatively low accuracy for all but simple distor-
tion profiles. Algorithmic variations on this principal have been proposed by
many, including Weng et al. (1992) and Wei and Ma (1994) using more ap-
propriate models for lens distortion. These methods also require known 3D
control points. The generation of distortion corrected images is investigated in
Heikkila and Silven (1997), while Heikkila (2000) describes a similar technique
that requires 3D control points or multiple image sets of 2D control points. An
alternative method also based on multiple sets of 2D control points has been
advanced in Zhang (1998, 2000) and Sturm and Maybank (1999). This tech-
nique addresses distortion through an alternating linear least-squares solution
which is then iteratively adjusted in a numerical minimisation including all

estimation parameters. Of course the relative complexity of these techniques

11
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is significantly increased by the inclusion of lens distortion.

On the other hand there are many situations where only distortion removal
is required, not the full complement of intrinsic and extrinsic parameters. A
good example is in the estimation of multiple view geometry in real images,
where techniques have been specifically developed to accommodate lens dis-
tortion. Zhang (1996) investigates the possibility of simultaneously estimating
distortion parameters and the Fundamental Matrix. The results conclude that
this is possible if noise is low and distortion is high. Fitzgibbon (2001), Mi-
cusik and Pajdla (2003) and Barreto and Daniilidis (2004) use an alternative
models for distortion, leading to a polynomial eigenvalue problem and a more
reliable estimation of distortion and geometry. Stein (1997) takes the reverse
approach and uses the error in Fundamental Matrix estimation as an objective

error to estimate distortion parameters.

Alternative methods of distortion calibration exist, where control points corre-
spondences are abandoned in favour of distortion free scenes. These scenes are
then imaged by the camera system, whereupon an image alignment process
is conducted to correct for distortion. Lucchese and Mitra (2003) describes
such a technique, where the distorted image is warped until it registers (in
intensity terms) with the reference image. A similar technique using a coarse
to fine registration is described in Tamaki (2002) while Sawhney and Kumar
(1999) describes a registration technique that does not require an undistorted
reference image. Instead, multiple images are registered for the generation of
a mosaic, and distortion is simultaneously estimated. These techniques have
a very high computational overhead, with twenty minutes quoted in Tamaki
(2002).

A final class of non-metric calibration methods are based on distortion induced
high-order correlations in the frequency domain. Farid and Popescu (2001)
describes such a technique, however its performance is poor in comparison
with regular camera calibration techniques and it also appears to be slightly
dependent on the image content. Yu (2004) further develops this approach with
alternative distortion models and reports accuracy approaching that achieved
with regular camera calibration if the source image is of a regular calibration

target.
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Chapter 1 - Introduction
1.2.3 Planar Calibration Targets

There is an abundance of planar charts used within the realms of camera
calibration as sources of both 2D and 3D control points. These points are
generally constructed on a planar surface by means of some high contrast
pattern. In turn, the pattern also facilitates the recovery of the control point
projections on the image plane. For example, patterns such as squares in
Zhang (1998), Weng et al. (1992), chessboards in Lucchese and Mitra (2002)
and circles in Heikkila (2000), Asari et al. (1999) have become popular as they
can be readily manufactured to a sufficient precision, and their data points are

recoverable through the use of standard image processing techniques.

Naturally, many studies in camera calibration have focused specifically on
achieving high calibration accuracy and stability. These works are primar-
ily founded on high precision control points of either 2D or 3D variety, and
the accurate detection of their projections. Linear least-square techniques for
calibration are improved upon by Tsai (1987) and Weng et al. (1992), who con-
centrate on improving the calibration accuracy by comprehensively modelling
lens distortion and further iteratively optimising the parameters. A compar-
ative study is presented in Salvi et al. (2002). Planar calibration techniques
have been proposed by Sturm and Maybank (1999) and Zhang (1998) that
place the world coordinate system on the calibration object and thus require
only arbitrarily scaled 2D coordinates. These methods, requiring less arduous
control point specifications, have contributed largely to the common adoption

of planar calibration targets.

All these works assume that the detected image points have zero-mean gaussian
distributions in order to correctly converge to the optimal solution through
bundle adjustment. Indeed sub-pixel detection methods have been designed
for use with specific calibration patterns to give improved accuracy. Peuchot
(1992) outlines a method for determining line intersections, while Lucchese and
Mitra (2002) describes a local sub-pixel refinement based on surface fitting.

The latter is experimentally shown to have zero-mean gaussian errors.

The effects of errors in control points have been investigated in Kopparapu and
Corke (1999) where the dependence of camera parameters to inaccurately de-
tected control points are examined. Lavest et al. (1998) advances this problem

by considering the error in measured control points. This Error-in-Variables or

13
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Total-Least-Squares approach requires that the errors are random. This may
not always be the case. Heikkila (2000) describes a calibration technique using
circular control points that are corrected for perspective bias to improve the
calibration accuracy. Excluding this one limited case, the biasing influence of
the actual calibration patterns (squares, circles, etc.) and associated detection

methods have not been addressed so far.

1.2.4 Chromatic Aberration

Chromatic Aberration (CA) can be broadly classified as Axial Chromatic Aber-
ration (ACA) (also known as Longitudinal CA) and Lateral Chromatic Aber-
ration (LCA) (also known as Transverse CA) (Kingslake, 1978). ACA arises
from the longitudinal variation of focal position with wavelength along the op-
tical axis. LCA is the variation of image size with wavelength or the vertical

off-axis distance of a point from its prescribed point.

Chromatic aberrations have been predominately studied with respect to image
formation in the areas of microscopy, photogrammetry and computer vision.
Willson (1994) and Willson and Shafer (1991) considers an active lens con-
trol system to compensate for chromatic aberration, by separately adjusting
three RGB filter lenses to match the colour planes. Their work shows that
chromatic aberrations can be compensated in an image by re-alignments of
the colour channels. Boult (1992) formulates the compensation of LCA as an
image warping problem. No aberration models are employed, focusing solely
on the warping problem, and correcting based only on interpolation between
control points. Jackowski et al. (1997) presents a similar study on geometric
and colour correction in images based on a comparison with a well defined
colour calibration chart. The models used are again surface approximations,
which are far from optimal solutions, especially since only a limited number
of control points are available to estimate the surface parameters. Chromatic
aberrations have been addressed by Kuzubek and Matula (2000) where an
algorithm for the compensation of both LCA and ACA in fluorescence mi-
croscopy is presented, however this technique is not transferrable to images
acquired with regular imaging systems. General usage methods, similar to
those currently existing for lens distortion, are not available for the calibration

of chromatic aberrations.
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1.2.5 Rectification distortions

Rectification is known to be a necessary step in stereoscopic analysis. The
aligning of epipolar lines allows subsequent algorithms to take advantage of
the epipolar constraint, reducing the search space to one dimension. However,
the rectilinear mechanical alignment of two (or more) cameras is prohibitively
difficult, leading to the development of image warping algorithms to simulate
rectilinear images from those of arbitrarily placed cameras. In the uncalibrated
case each image can be subjected to a two dimensional projective transforma-
tion or planar homography. The homographies can be calculated solely from
an analysis of the Fundamental Matrix, to re-orientate the epipolar projections

parallel to the horizontal image axis.

Projective rectification has many degrees of freedom. Among these is the prob-
lem of finding a rectification that minimises the introduction of distortion in
the rectified images. Hartley (1999), Hartley and Zisserman (2003) describes
a technique where a rigid rectifying transformation is derived from the Funda-
mental Matrix. This means that to first order, a points neighborhood undergos
rotation and translation only, hence the original and re-sampled images look
similar. This criteria is only applied to one of the rectifying homographies,
with the result that the second rectified image often contains severe distor-
tions. A related technique has been proposed by Al-Shalfan et al. (2000).
Loop and Zhang (1999) consider a stratified decomposition of both rectifica-
tion homographies in order to minimise projective distortions. This is done by
attempting to force affine qualities on the homographies. As image skew and
aspect ratio are invariant to affine transforms, they make extra constraints
upon the homographies to reduce these distortions. Their approach is not
optimal considering only one local region of the image. It is also prone to
instabilities when working with real images. Other distortion interpretations
have included orthogonality of image corners and maximising image content

over the view window (Faugeras and Luong, 2001).

Pollefeys et al. (1999) describe an alternative approach where rectification
is considered as a reprojection onto a cylindrical surface instead of a plane,
suitable for configurations when the epipole is within or close to an image.
Papadimitriou and Dennis (1996) present an approach for convergent stereo
geometry, while Isgro and Trucco (1999) consider rectification directly from

point correspondences without explicitly determining the Fundamental Matrix.
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These methods however are not focused on the reduction of distortions.

Additionally, the actual rectification performance of many existing planar recti-
fication methods that consider the introduction of distortion, such as (Hartley,
1999, Loop and Zhang, 1999) is often very insufficient when dealing with real

images with noisy point correspondences.

1.3 Mathematical notation

Points and vectors are represented by lower case bold symbols, k = (ki, kn)T,
with entries h\, /c2, etc. Point coordinates are predominantly represented in
homogeneous form by 3 dimensional vectors, e.g ¢ = (u,v,w)T. Ifw ~ 0
then this represents the points in M2 expressed in Euclidean coordinates as
(u/w,v/w)T. When the scale has been fixed, i.e. ¢ = (u/w, v/w, 1)T, these
are known as affine points. If w = 0, the points are knows as points at oo
or directions. Points are scale invariant in that ¢ = ac (a * 0). Lines are
similarly represented by 3 dimensional column vectors, e.g. 1= (la,kJc)T-
Transforms are 3 x 3 matrices of bold uppercase, e.g T, formed of columns
T = [ti,t2,t3] with entries in, tu, ¢33

Control points detected in a distortion free image are denoted by ¢ = (¢, Vv, 1)T,
where the origin is located in the top left corner of the image. Following
a normalisation, these points are referred to as ¢ = (u,®, 1)T to reflect the
normalisation. The lens centric representation of these points are referred to
as p = (x,y,1)T, where the origin is located around the intersection of the

optical axis and the image array.

The distortion affected counterparts of these points are denoted using a breve,
e-g P = (E>#>1)T- 2D canonical coordinates of the calibration model are
referred to as w. The results of fitting the distorted points, ¢ to these model
points are referred to as c, to distinguish that they do not equal the undistorted
points c. Lastly the units of detected points are in pixels, referred to as (pix).

The units of the normalised control points are referred to as {pix).
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1.4 Contributions

In assessing the research described in this thesis, the most important aspects
have been identified. The body of work which represents the core of the re-
search effort in this thesis is highlighted. Related work, of lesser impact, but

still representing advances in the field are also outlined.

Each of the following topics are addressed in the following chapters and form

the backbone contributions of this thesis.

« The models of radial and decentering distortion in an image are derived
from fundamental optic equations. In doing so, the apparent conflicting
usage of alternative distortion models is resolved. The benefits accruing
from its appropriate usage are identified and demonstrated, in compari-

son with alternative interpretations.

¢ Regarding the generation of control points for calibration, it is shown
theoretically and experimentally that the popular circular type pattern
generates an unrecoverable distortion induced bias in the detected control
points. This problem has not been previously identified in any of the

many calibration articles.

* A highly accurate, non-metric and closed-form calibration method for
the calibration of lens distortion is proposed. In contrast with existing
methods, it is suitable for use with all levels of lens distortion, is easy to
use and implement and requires only a single view of a planar calibration

pattern.

« A model based method for the calibration of lateral chromatic aberra-
tion is proposed for its compensation. It represents a considerably more

accessible method than the few existing approaches.

« A technique is proposed to minimise the projective distortions introduced
in planar rectification. It uniquely optimises each transform in order that

the rectified images resemble the original images as closely as possible.

The auxiliary contributions are now outlined, which are interspersed through-

out the thesis.
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e An inverse lens distortion model is derived, displaying much improved

accuracy over existing models.
* A model of lateral chromatic aberration is proposed.

¢ A linear method for computing an affine transform to optimally form a

new undistorted image is described.

« An improved method is described for the robust decomposition of the

Fundamental Matrix to generate two rectifying projective transforms.

1.5 Thesis Outline

The chapters which follow this introduction are arranged as follows. Chapter
2 describes the origins and the forms of all the aberration models considered.
Additionally, an inverse for these functions is proposed. The various models are
theoretically and experimentally analysed on real data, highlighting subtleties

in their usage.

Chapter 3 aims to investigate if the choice of calibration pattern, and in turn
the detection method employed, has any effect on the overall accuracy within
calibration. It is found that circular patterns, and those of a similar type,
induce a distortion based bias in the detected control points. This comes in
addition to a perspective bias. Detailed simulated results confirm the rela-
tionship between lens distortion and this bias source, while its magnitude is
compared with that of the expected noise and blurring within an image. This

bias is finally shown in some real examples, through the use of a hybrid pattern.

Chapter 4, utilising bias free control points, proceeds with the calibration of
the lens distortion models presented in chapter 2. A non-metric type solution
is proposed to solve the problem, uniquely expressed in a closed-form system.
An approach for the generation of distortion free images, using this calibrated
lens distortion model, is advocated whereby local pixel distortions are min-
imised. Comprehensive comparisons between the proposed method and other
methods are described, both on extensive simulated data and with real im-
ages. The dependence of the method on the assumed geometric constraints is
then investigated, considering random and systematic errors in the manufac-

ture of the calibration pattern. An analysis is included regarding the number
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of control points required for successful calibration, in addition to the mis-
calibration resulting from the usage of a bias effected circular type pattern.
The accommodation of decentering distortion within the calibration process
is highlighted, without recourse to its specific inclusion within the distortion
model. Finally, this chapter highlights the violations of a calibrated distortion

profile, resulting from the basic lens variables of focusing and aperture settings.

Chapter 5 extends the calibration of lens distortion to the calibration of lat-
eral chromatic aberrations. An efficient means of estimating its presence is
described. Following calibration and image correction an evaluation with real

images is conducted, clearly identifying the improvement in image quality.

Chapter 6 extends the minimisation of distortions during re-sampling idea,
first encountered in chapter 4, to the problem of planar rectification of stereo
pairs. The approach uniquely optimises each transform to ensure the rectified
images resemble the originals as closely as possible. Additionally, an improved
method for the decomposition of the Fundamental Matrix into two rectifying
transforms is described. The main body of the thesis is closed in Chapter 7,
where a summary of the research work conducted and a review of the results
achieved are presented. A list of the publications stemming from this work is

also provided.
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Chapter 2

Geometric Aberration

Modelling

All lens systems introduce a degree of optical error in an image. The departure
of practical optical systems from ideal behaviour is known as aberrations. The
aberrations affecting images are broadly segregated by the nature of light the
lenses are designed to capture. Monochromatic aberrations both deteriorate
the image quality (spherical aberration, coma, astigmatism) and deform the
image, for example distortion. Colour systems are additionally affected by
chromatic aberration, arising from the fact that refracting is a function of
frequency or colour. In general is is impossible to design a system which is
free from all aberrations. This leads lens manufacturers to consider aberration

compensation as an optimisation between different types.

Fig. 2.1: Crop from an image affected with barrel distortion. White dot shows

the centre of the original image, about which distortion is radially distributed.
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Distortion is a well known monochromatic aberration that affects both colour
and greyscale imaging devices. Its nature is a radial geometric displacement of
the light ray intersections with the image plane, but without loss of image qual-
ity. Physically, it arises from the fact that different portions of the lens have
different focal lengths and magnifications. Radial distortion is perceptually
categorised as barrel, as demonstrated in Fig. 2.1, or pincushion. Decenter-
ing distortion is historically related to the misalignments of individual lens
elements and generates both radial and tangential components. Naturally,
conducting accurate measurements over such distorted images is impossible

without knowing distortion compensation factors.

In a colour camera’s lens, polychromatic light is split into a set of rays or wave-
lengths. W hilst traversing the optical system light of different wavelengths will
follow slightly different paths. Upon reaching the image plane their misaligned
recombination introduces chromatic aberration. Chromatic aberrations are
moving out of the sub-pixel range with the advent of high resolution arrays,
giving rise to noticeable colour fringes at edges and high contrast areas. This
gives the overall impression of poor quality or definition. Many consumer cam-
eras display this aberration. For scientific applications, it is akin to the effects

of colour shifts and blurring, that contravene the imaging models.

This chapter is concerned with the mathematical modelling of distortion and
chromatic aberrations in images. A distortion model is derived from first prin-
ciples for both radial and decentering distortion with the aim of resolving the
confusion over the model usage. The theoretical relationships between this
model and alternative interpretations are formally defined, while their mod-
elling capabilities are experimentally investigated over a broad range of real
lens distortion levels. The derived model is shown to be a good general model,
outperforming alternative functions in displaying both stable and accurate

performance over the entire range of possible or practical distortion levels.

The absence of a suitable means to approximate lateral chromatic aberration in
images is also addressed, in the derivation of an appropriate parametric model.
Finally, the problem of determining the possible form of an inverse to the
distortion model is addressed. An approximate inverse function is subsequently

formulated, giving superior accuracy over existing approaches.
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2.1 Lens Distortion

On the image plane, ideal image points are denoted in Euclidian space as
p = (x,y)T while actual observed points are p = (x,y)T. Within the accuracy
of Gaussian optics or perfect projection p = p. Referring to Fig. 2.2, on the
plane of the exit pupil f and 7are x, y measurements related through a constant
of lateral magnification to the coordinates of P'. The aberration of the wave
elements as a consequence of the preceding optics, causes an optical ray other
than the prescribed gaussian one. The wave aberration can be expressed in
polynomial form, derived from Seidel perturbation eikonals as (Born and Wolf,
1980):

v = - Bp4- Cka- Dr2p2+ Er2n2+ Fp2n2, (2.1)

where r2= x2+ y2,p2 = £2+ rf and k2= + yrj. Each coefficient represents
a primary Seidel aberrations: spherical aberration (B), astigmatism (C), field
curvature (D), distortion (E) and coma (F). The aberration function is a series
approximation of the actual wavefront surface, and further terms can be added
to closer approximate the aberrations. Equation 2.1 shows a fourth order

approximation.

Fig. 2.2: Formation of an image in a general lens system.

In a general system containing a number of surfaces, the primary aberrations

equal the sum of the corresponding aberration coefficients associated with the

22



Chapter 2 - Geometric Aberration Modelling

individual surfaces of the system. By this reasoning aberrations are compen-
sated for optically, by the addition of appropriate extra lens elements. In a
two surface system, where (xi,yi) represent the space of the intermediately
formed image, the combined aberration function for the system is (Born and
Wolf, 1980):

0= + 4+ (z0- zi)(6 - 6) + (20 - yi)(v2 - vi)-

If decentering or misalignments of the surfaces is considered, subsequent image
deformation may be approximated by perturbing the intermediately formed

image by X\ —»X\ + Aand y\ —yi+ /i as demonstrated in Fig. 2.3. This leads

302

A . nd(fo o~ ' _pl = dn oo =
P=0i + 02 + Adxi H[Idyi , whtere £2- £1 e an@ 12 - Tiji dyx

Fig. 2.3: Introduction of decentering lens distortion through misalignments of

the optical surfaces.

As the primary interested in distortion aberration the additional aberrations
will be ignored. Considering only the distortion component of the wave aber-
ration equation, and replacing the arguments by their gaussian values, the
corresponding wave aberration for the combined surfaces to a fourth order

approximation is obtained:
0 = k\r2kK2+ \ki(fi(3x2-l-y2) + 2rjxy) + /jiki(r)(3y2 + x2) + 2£xy).
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The constant k\ = E\ 4-E2 is the sum of the individual lens contributions.
The combined decentering effects of multiple lens elements also sums in such
a linear fashion, as all arguments are evaluated using their gaussian values.
The altered wavefront is the root of all aberrations formed on the image by
distorting the ray projections. These ray aberrations are evaluated as the shift
from the predicted gaussian coordinates as Born and Wolf (1980):

AXx =x x =2 andA Ay =y —y =
<f y=y -y drj

Evaluating this using the sixth order approximation of 0, results in the com-

bined model for distortion in terms of Cartesian coordinates is:

2x(p,k) \ = 1 Ax
27,(pk) ) { Ay
( k\xr2+ k2xrd+ Xki(3x2+ y2) + 2[ik\xy + eee X
Alc2(5x4 + 6x2y2+ y4) + fik2(Ax3y + 4xy3)
kiyr2+ k2yrA+ 2Xkixy + [ilci(3y2+ x2) H-—--
\ Xk2(Ax3y + 4xy3) + fik2(hyA+ 6x2y2+ x4) )

Z>(p,k) =

(2.2)

where higher orders of A and jl are ignored. In general for most wide angle
lens imaging systems, radial distortion is the predominant observable distor-
tion. For this reason its profile can be more closely approximated by a higher
order wave aberration function. Taking a general high order wave aberration
approximation = k\r2K2 + k2r4k2 f /c3r6/"2 + ..., results in the general

lens distortion approximation:

( k\xr2+ k2xrA+ k3xr6+ ... \
kK\yr2+ k2yrA-l-k3yr64-... 23)
E>(p.k) +(pi(3x2+ y2) + 2p2xy)(l + p3r2+ ...) '

N +(2ptxy + p2(3y2+ x2))(I + p3r2+ ...) )

In this function the radial component is represented by k\, k2 and k3 while the
distortions introduced by decentering correspond to pi, p2 and p3. These are

combined into the parameter vector k = (&i, k2,k3,.. .pi,p2>e*-)T-

Result 1. The Forward model of distortion, derived from the wave aberration

equation is defined as afunction of gaussian or undistorted coordinates:

p=p+ £>(pk).

Proof. See equations 2.1 through 2.3. L]
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This model of lens distortion has the same form as the traditional one used by
Brown (1971) and many others. The important difference is that this model
is a function of gaussian points or ideal distortion free coordinates. It can
be expected that since each radial coefficient, &i, /c2... corresponds to a higher
order wave approximation, the dominating terms in the distortion model are

the low order coefficients.

The derived decentering model has the same form as that of Conrady (1919)
as promoted by Brown (1966). The actual level of decentering distortion in
currently used camera systems is questionable, with most works concluding
that it is of little significance. This is understandable as it is shown above
to be related to the actual misalignments and the level of radial distortion:
Pi = Xki and p2= /"i, where Aand ri are the approximations of the result-
ing x and y shifts. Thus if the radial distortion is small, then the expected
decentering distortion should also be small. Higher order approximations of
decentering distortion, using p3are unlikely to be required, and were not used
in Brown (1966). Note that the misalignments of lens elements also introduces
elements of other aberrations such as coma, also noted in Conrady (1919), but
these are not tracked through in the equations here. Decentering distortion is

investigated further in chapter 4.

2.2 Taylor Expansion

Consider the formation of a distorted image coordinates using the forward
model in Result 1. This relation is a function of unobservable data p, and
for some calibration methods such as those based on the straightness of lines,
where the location of the true line is absolutely unknown, it offers no direct

route to calibrate distortion * as an analytical inverse is not available.

However, taking the Taylor expansion of Result 1, about the known distorted

Ane indirect means of using this forward model in conjunction with a straight line
methodology, is to reformulate the problem in distorted space. This is possible (theoretically
at least) if for each distorted line its undistorted counterpart is parameterised, giving two
DOF. With one more DOF the exact location of the undistorted point may be solved in
order to correctly match the point in distorted space.
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locations, p gives:

p=p-D(pk)y+?22M (*-i) + - y) + HO.T. (2.4)
Taking the first term in this Taylor expansion gives:

Result 2. The Reverse model of distortion is defined as a function of dis-

torted coordinates as follows:

p=p-£>(p,k).

This is the commonly used approximation for distortion in terms of known
distorted coordinates and from now on is referred to as the reverse model. It
is theoretically possible that this polynomial will approximate the distortion
profile equally as well as its forward model counterpart. This is known from
the fundamental theorem of approximation theory, due to Weierstrass, which
states that on a finite interval, and given an error e > 0, there exists an

algebraic polynomial p for which
fF(x) -p(x)\ < £.

However, since the first and higher order terms of the Taylor expansion are
neglected, their contribution must be absorbed by the parameters in P(p,k).
Thus, it can be expected that the higher order coefficients, i.e. A2, /%,... will
assume ever increasing values when fit to a general distortion profile. These
large parameter values give rise to poor conditioning in the estimation equa-
tions, which in turn lead to sensitive estimates for the distortion coefficients k.
The estimated parameters then become increasingly sensitive to perturbations
in the raw calibration data, with different levels of either noise or location lead-
ing to different estimates for distortion. This situation is clearly undesirable.
This explains to some degree why calibration techniques such as Tsai (1987),
that use this reverse model of distortion, state that a high order model leads
to numerical instability. Finally, a special case is encountered with low levels
of distortion. In this scenario high order coefficients in the forward distortion
model will have little contribution. Therefore, the higher order terms in the
reverse model will also have little influence. The reverse model in this case can

be considered equally suitable as the forward model, and gives stable results.

In summary, regarding the polynomial approximation of lens distortion in

images, the forward model derived to Result 1 as a function of undistorted
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coordinates is theoretically capable of approximating all possible distortion
profiles. Its parameters are bounded making it conducive for use in estimation
schemes, giving robust parameter estimations. The alterative interpretation
of this model as a function of distortion coordinates (reverse model described
in Result 2) has been shown to be the first term in a Taylor expansion of the
forward model. Theoretically, it has equivalent fitting power, but the solution
becomes increasingly unstable with increasing distortion level. It is specific for
use only with low distortion levels. These results aim to dispel the confusion

over the two different interpretations.

2.2.1 Inverse approximation

Considering the forward model as an appropriate general distortion approxima-
tion, the alternative reverse model can be viewed as an inverse approximation
to this model. If more terms of the Taylor expansion (equation 2.4) are in-
cluded a better inverse approximation can be formulated. In this sense, the
inverse is formulated by an analysis of the forward model (which is itself only
an approximation), and not on the actual lens distortion profile. Such an in-
verse is useful for reconstructing undistorted points given the forward model as
in Heikkila and Silven (1997), and proves very useful for generating synthetic
data.

Taking the first two terms of the Taylor expansion (equation 2.4) and rear-

ranging:
X X+ axMP.k)
dx
. -Vyfak) - - 1)
y y+ . 3p.(pk)
1+ dy

Eliminating the unknown coordinates by mutual substitution gives:

-V xp, B=vx@ K)Np vy KD)Np

X=X dux@R , dv(pM) L dvx(SM) dVy(pM)_ dvx(p,k) dvy(ftK)
dx dy dx dy dy dx (2.5)
v ~vyP, K- k) AN +vxe, k) AN
y y+ = . at>,(p,k) , ap,(p,k) . aPx(P.k) ax>,(j>k) ax»v(p,k)

dx dy dx dy dy dx

Ignoring all products in equation 2.5, results in the model proposed in Heikkila
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(2000) as:

(2.6)

Specifically evaluating equation 2.5 with the distortion, P(p, k), approximated

radially to fifth order (i.e. k = (ki,k2)T) results in the following 2:

" Kixr2+ k2xrd4+ k\xrA+ 2k\k2xr &+ k\xr8
1-l-4/cir2+ 6/c2rd + 3/c2f4 + 8kik2r6 + 5/c2r8
kK\yf2+ k2yrd-I-k\yr4 + 2k\k2yrQ+ k”yr8
1+ 4k\r2+ 6/c2r4 -f 3/c2r4 + 8kik2r6 -f 5k~ rs

(2.7)

Equation 2.7 describes the possible form of an inverse approximation to the
forward model. However, in this state it is effectively a first order Taylor
approximation. In an effort to afford the function some freedom, in the hope
of including the influences of the previously ignored higher order terms, the

function is adjusted to be linear in parameters:

p =p-£>*(p,a),
p(air2+ a2rd+ a3r6+ a4r8) (2.8)
1+ 4a5r2+ 9a6r4+ 8a7r6+ 5agr8
This significantly improves the inverse accuracy, while also allowing the pa-
rameters to be linearly estimated. A slightly simplified version of this model,
where a7 and ag were not included in the denominator, was used directly on

distorted coordinates in Mallon and Whelan (2004) to calibrate distortion.

Given knowledge of the forward model parameters, the unknown parameters
are solved using a set of N undistorted tie-points p”~, spread equally over the

2Decentering distortion is not considered further in the inverse to simplify presentation
complexity. For completeness the evaluation of equation 2.5 including decentering distortion
with k = (k\, f2,pi,P2)T results in the addition of the following to the denominator of
equation 2.7:

ip= k3(8x+12kixr2+16k2xr4+4ks(3x2-y 2))+k4(+8y+12kiyr2+ 16/c2#rd+4fc4(3i/2-:12)),
with the following added to the numerators:

Vx = (&3 + 2kIx)(3x2+ y2) + 2kdxy(l + 2k\r2 + /2r4) + {kik3 + k2k3r2)(5x2 + y2)r2
+\8k3k$SxAy + 2k\x(x2- 3y2),

ipy = (fc4+ 2k\x)(2>y2 + x2) + 2k3xy(\ + 2k\r2 + k2r*) + (fci/c4 + k2k4r2)(5y2+ x2)r2
+18k3kAxy* -1 2k\x(y2 - 3x2).
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entire image surface, and a corresponding set of distorted points pN The
system of equations are formed as e = Ta, where e = (X\ —ii, y\ —jji,..., X{—

Vi~ Vueee xN - (tv,Vn ~ Vn)T and

txi = (xjf?, xtr-,xif®6, Stiff, 4exirf, 9exirf, 8exirf, 5exirf) T

tvi = (M i, Vi?t, Wi, Viff, 4eyif\, 9tyif\, 8eyirf, 5eyirf)T

T tyl, A, tyi, L. BXEE tyjy)

The parameter vector is now estimated in a least squares sense as:

a=(TTT) 1Tre. (2.9)

Finally, the further simplification of equation 2.7 by taking only the k\ terms
results in:

p/cir2

P=P 14 akirz’

and replacing the four in the denominator by one, the divisional model as
described in Fitzgibbon (2001) and Micusik and Pajdla (2003) is arrived at:
1—\/1 —4/Cir2 l(%mj\

p = P r,wi_t]h associated inverse p\)N: --------- . .
1+ kirl 2/cip

In summary, an inverse approximation to the forward model has been pro-
posed, based on the form of its Taylor expansion. This may be directly used on
distorted coordinates, but offers more potential in the generation of synthetic
images, as chapter 3 demonstrates. The relationship of an alternative model
proposed in Heikkila (2000) to the Taylor expansion of the forward model is
also presented. As a byproduct, the origins of the divisional distortion model

were also shown to be closely linked to this Taylor expansion.

2.3 Lateral Chromatic Aberration

Chromatic Aberration (CA) can be broadly classified as Axial Chromatic Aber-
ration (ACA) (also known as Longitudinal CA) and Lateral Chromatic Aber-
ration (LCA) (also known as Transverse CA). ACA arises from the longitudinal
variation of focal position with wavelength along the optical axis. LCA is the

variation of image size with wavelength or the vertical off-axis distance of a
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point from its prescribed point. In an image it is identified by a radially depen-
dent misalignment of the colour planes. Considering the modelling of LCA, it
can be specified from the contributions of two separate factors: the chromatic
variation of distortion and lateral colour distortion as outlined in Kingslake
(1978)

Monochromatic aberrations such as distortion, are in general not largely af-
fected by polychromatic light. The chromatic variation of distortion is however
detectable, especially on large pixel arrays. This distortion is lateral in nature
and can be modelled comprehensively by a simplified forward distortion model.

In many cases a significant decentering distortion is apparent.

In addition to the chromatic variation of distortion there is an additional lat-
eral colour distortion that is due to the refraction index variationof the lens
elements. The refraction index is quite linear within the visiblespectrum
(Kingslake, 1978), resulting in the addition of an extra first order term that
does not appear in the chromatic distortion equation. Deviations from linear
behaviour are naturally accounted for in the chromatic distortion equation.
Thus, the combined LCA for a specific frequency or colour plane (g), can thus
be modelled as a function of another frequency (/) by the addition of the

chromatic variation of distortion and the lateral colour distortion as:

CI(p/, cg)x = cixf + c2xfr) + ¢c3(Zx) + y2) + 2caxfyf
C3(Pf,cq)y = cxyf + c2yfrR + 2c3xfyf + c4(3y) + xB),

where ¢/ = (ci, ¢2,C3,cH)T is the parameter vector.

2.4 Experiments: Distortion Modelling Per-

formances

This section aims to evaluate the performance of various distortion modelling
functions. The performance and suitability of a particular model is charac-
terised by measuring its residual fitting error and examining its estimation
integrity by looking at the scale and uncertainty of the parameters. The mod-
els are fit to a sample set of increasingly distorted images, using the iterated
least square method of Levenberg-Marquardt (L-M) (Walter and Pronzato,

1997), with Jacobi estimated from finite differences. The models are fitted, as
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in chapter 4, using an image of a chessboard target, who’s ideal projection is si-
multaneously estimated. The residuals are then evaluated on separate images,
with the same camera settings. A selection of the calibration and evaluation

samples are illustrated in Fig. 2.4.

The chessboard intersections are calculated using edge intersections within
a small local neighborhood around the control point, (refer to chapter 3).
Sample numbers 1and 2 were taken with a Fuji FinePix 6900, with 6MegaPixel
resolution. Sample number 2 used an additional wide angle lens adaptor (Fuji
WL-FX9). Sample numbers 3 through 12 were taken with Nikon fish-eye
lens (FC-E8) attached to a Nikon Coolpix E4500 with 4MegaPixel resolution.

Distortion was varied by incremental zooming.

Only radial components are considered for fitting, while decentering modelling
is examined in conjunction with the centre of distortion in Chapter 4. The

radial distortion models considered in detail are the:

e Derived forward model of Result 1, for both four and five radial param-

eters.

* The reverse model of Result 2, estimated for four and five radial param-

eters

« A general fourth order polynomial function similar to Asari et al. (1999)
with the form: r = r+kir+kz*+kzr*+ktfr4,6 = 6, wherer = (x2+y2)1J2

and 6 = atan2(y, x).

e The divisional model of equation 2.10.

The estimation procedures proceed by defining a minimisation criterion for
each control point i as e*~ The control points are firstly pre-scaled by the
average of the image width and height. Parameter uncertainties are estimated

by calculating the Fisher information matrix as:

nt N nt
F(k) =V —H(ehk), where b2 = - Vo oe2
n*~np ti

and H(ei?k) is the Hessian matrix of the system upon convergence, with nt
the number of control points and npthe total number of estimated parameters.

The standard deviation of each parameter can be computed as:
ol = diag(*"FHKk))
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Full details of the estimation procedure for the forward model are described in
Chapter 4

Fig. 2.5 shows the parameter estimates and uncertainties for the forward model
with four parameters, when applied on the sample set of real distortion profiles.
This shows the higher order coefficients of the forward model increasing with
distortion. The associated parameter uncertainties however remain relatively
constant for all distortion values. This indicates that the system of equations
are non-singular, leading to stable estimation of the parameters. The magni-
tude of the parameters can therefore be considered bounded, depending only

on the pre-scaling applied on the control points.

The alternative reverse model parameter estimates and uncertainties are il-
lustrated in Fig. 2.6, also for a four parameter model. In contrast with the
forward model the magnitudes of the estimated parameters rapidly increase
with increasing distortion. The parameter uncertainties also steadily increase
to much greater magnitudes, indicating that the system of equations in this
case are likely to become unstable or singular. Indeed, this is the case for sam-
ple numbers ten through twelve where the estimation routine failed to properly

converge.
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(@ Sample number 1

(b) Sample number 6

(c) sample number 12

Fig. 2.4: The first, middle and last calibration and evaluation images used to

evaluate the various distortion models.
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Table 2.1: Estimated parameters for the forward and reverse models on two

sets of calibration data.
Forward Model

h k2 k3 k4 h
Image 1 -0.4207 0.2446 -0.1095 0.0290 -0.0033
Image 2 -0.4177 0.2365 -0.1014 0.0255 -0.0027
Difference -0.0030 0.0081 -0.0081 0.0035 -0.0006

Reverse Model

Image 1 0.4537 0.0922 0.7604 -0.8773 0.6308
Image 2 0.4737 0.0037 0.8985 -0.9075 0.5823
Difference -0.0200 0.0885 -0.1381 0.0303 0.0485

These practical differences are further illustrated in figures 2.7 and 2.8, where
the parameter vector is increased to five coefficients. The results are compiled
only for samples where the reverse model converged, i.e. samples one through
nine. The addition of the extra parameter causes the higher order reverse
model parameters and uncertainties to rapidly increase in value, as Fig. 2.8
shows. However, the addition of the extra parameter to the forward model

does not induce this instability, as demonstrated in Fig. 2.7.

The invariance of the forward and reverse model to changes in the location
of the control points is now investigated. Two images are taken from slightly
differing viewpoints as Fig. 2.9(a) shows. The models are estimated with
both sets of data and the respective variation in parameters are compared.
Table 2.1 shows the parameter estimates and differences, with the reverse
model parameters varying considerably in comparison with the forward model
parameters. Fig. 2.9(b) illustrates the effect of these parameter variations,
by comparing the respective distortion profiles. This shows that the reverse is
significantly more affected by slight changes in control points than the forward

model, making it less attractive for practical usage.

A general fourth order polynomial, similar to those proposed in Asari et al.
(1999) and Shah and Aggarwal (1996) is also evaluated for comparison pur-
poses in Fig. 2.10. This model is a function of distorted coordinates, with both
the parameter values and uncertainties steadily increasing with distortion. It
can be noticed that certain parameters contribute little to the modelling, e.g.
k\. The divisional model, having only one parameter exhibits good stability,

making it suitable for use with all distortion levels.
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Estimated parameter values

Estimated parameter SD

Fig. 2.5: Forward model parameters, k = (ki k2,k3,k4)T, and uncertainties
when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD

Tegn o o
w A oo

5 6 7 10 n

Distortion sample

Fig. 2.6: Reverse model parameters, k = (fci, k2, k™T, and uncertainties

when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD
[ t t r

1 2 3 4 5 6 7 8 9
Distortion sample

Fig. 2.7: Forward model parameters, k = (fci, k2, k3, kA /5)T, and uncertainties
when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD

Distortion sample

Fig. 2.8: Reverse model parameters, k = (fci, k2, k3, A4, A5)T, and uncertainties
when applied to sample set of increasingly distorted real images.
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@)

(b)

Fig. 2.9: Test for parameter invariance to calibration data locations. Two im-
ages taken with slightly differing viewpoints are shown in 2.9(a). The resulting
profile variations for the forward and reverse models are shown graphically in

2.9(b).
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Estimated parameter values

Estimated parameter SD

4Pt e b TR — 1 I IE— [— t

35 -

TO 1.5-
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Distortion sample

Fig. 2.10: General polynomial model parameters, k = (&, k2, "4)*, and
uncertainties when applied to sample set of increasingly distorted real images.
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The alternative models are now compared over the sample range by measuring
the residual distortion in the set of evaluation images. The parameter space for
all polynomial models is set to four. Fig. 2.11 shows the mean and standard
deviation (SD) of the residual distortion remaining in the evaluation images,
for the four models. The residuals are measured by taking a radially weighted
homography (as described in Appendix A) to the corrected evaluation image

3. The resulting Euclidean means and SD are then calculated.

The forward distortion model exhibits low mean and SD in residual distortion
over the sample range. The alternative reverse model also exhibits a similar
characteristic, however this model failed to converge for samples ten through
twelve. The general polynomial model shows erratic behaviour for the upper
range of distortion. This is due to the combined effects of the need for a
higher order polynomial, unnecessary parameters and parameter or system
instability. The divisional model shows good accuracy up to relatively high

distortion levels.

The divisional model offers a very good and robust approximation to a con-
stantly increasing distortion profile such as that observed in fish eye lenses.
Hence, the popularity of this model for use with such lenses, e.g. Brauer-
Burchardt and Voss (2001). However, many lenses that are optically compen-
sated for distortion display a complex distortion profile. For such cases, the
divisional model is unable to accurately model the lens nonlinearities. An ex-
ample of one such case is shown in Fig. 2.12, taken with a low focal length lens.
The divisional model residuals are compared to those of the forward model,
clearly highlighting the shortcomings of the divisional model in this case. For
this reason the divisional model cannot be considered as a general model if

high accuracy is required.

3This radially weighted homography is only suitable for application to very mild dis-
tortion, such as residual distortion, and in general may not be a very stable criterion for
measuring normal distortion levels or for its calibration
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Mean Euclidean residuals

Residual SD

Fig. 2.11: Comparison of the residual fitting error of four possible distortion

models.
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Hi

Forward Model Residuals Divisional Model Residuals

Fig. 2.12: Shows an image of a calibration pattern, with forward model and
divisional model residuals. The image is taken with a Kodak Megaplus digital
camera with a 3/4” CCD and fitted with a low cost Computar 6mm 1/2” lens
(Format size mismatch results in the dark rimming). Divisional model parame-

ter -0.284(pix)2and the first parameter of the forward model is -0.3741 (pix)3.
Residual vector plot scale is x 100.
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In summary, these results, demonstrate that the forward model is a more
appropriate approximation to radial lens distortion than the commonly used
reverse interpretation. It is a better general model, giving stable results up
to a very high level of distortion, see for example Fig. 2.4. The experiments
show that an increased quantity of parameters does not lead to instability. In
contrast, the reverse model is suited only for low levels of distortion, with high
distortion and/or number of parameters increasingly leading to instabilities.

These results agree with the theoretical investigation of these models.

The residual comparison between the parametric models show that the forward
and reverse models achieve roughly equal accuracy, as expected. The general
polynomial model fails to achieve this level of accuracy for larger distortion
values, due to the need for a higher order function. Finally, the divisional
model is shown to be a good model for constantly increasing distortion such
as fish-eye lenses, but fails to model more complex distortion nonlinearities as

present in many perspective lenses.

2.4.1 Inverse Performance

The accuracy of the proposed inverse (equation 2.8) is compared with two
alternative formulations. The technique referred to as Method 1, is taken from
Heikkila (2000)4 and is also described in equation 2.6. Method 2 is taken from
Heikkila and Silven (1997). 5 Method 1 is estimated using the iterative L-M
technique with finite difference Jacobian, while Method 2 is estimated linearly

as described in Heikkila and Silven (1997).

Separate sets of data are used for the parameter estimation and residual mea-
surements. Fig. 2.13(a) shows the 20 x 20 grid used for residual measurements,
completely covering the image window of 475 x 475 pixels. The estimation data
consists of a 30 x 30 grid with the same coverage. Distortion is simulated using
two radial parameters in the forward model with the ranges /ci = —2 —»2 and
k2 = —0.8/ci. The parameters, a, of the proposed inverse model are estimated
using the LS method of equation 2.9. Pixel coordinates are pre-scaled by 670

4This formulation originates from the inclusion of specific terms from the Taylor expan-

sion of the assumed forward model.
5This formulation has a similar form to that of Method 1 but originates from the step-

by-step refinement of a general firth order rational polynomial.
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with the distortion centre at the image centre. The extreme barrel distortion
of K\ = —2, k2 = 1.6 is simulated in Fig. 2.13(b), giving a visual impression

of the distortion levels considered.

(@) (b)

Fig. 2.13: Evaluation data, represented by the line intersections in undistorted
state 2.13(a), and in distorted state in 2.13(b) according with the forward
model with parameters k\ = —2, k2 = 1.6.

The results are shown in Fig. 2.14. including the mean and SD over the
considered range of distortion. These show the proposed inverse improves upon
the inverse accuracy by an average of roughly 5000 times smaller than Method
1 and 100 times smaller than Method 2. This is a significant improvement,
achieving a sub-pixel accuracy better than the lower bound of sub-pixel feature

detectors over the entire range of distortion levels, (see chapter 3).

A second experiment is conducted to clarify the smooth interpolation of the
inverse solution between the tie points. A uniformly distributed random set of
3000 points are generated to cover the image window of 475 x 475. These points
are then distorted by applying the forward model with parameters ki = —2
and k2 = 1.6, resulting in severe barrel distortion, as illustrated in Fig. 2.13(b).
Following application of the estimated inverse solution, the error magnitudes
are calculated and represented in the histograms of Fig. 2.15. These show
that the error for over 2500 of the 3000 points lie within the histogram bin of
+1 x 10-3 for both the x and y directions. A small quantity, < 20 samples
lie in the bins stretching from +(0.01 —»0.05). This inversion error naturally

reduces as the distortion becomes less severe.
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Mean residual inverse error

Distortion k1 ((pix)3

SD of residual inverse errors

Distortion k ((pix)3

Fig. 2.14: Inverse Residuals
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i05 -004 -0.03  -0.02 -O.Ql ) 0 0.01' 0.02
y-direction error (pix)

Fig. 2.15: Inverse Residuals

2.5 Discussion

This chapter is primarily concerned with the modelling of lens distortion in
images. No previous work was found in the literature that considers the ori-
gins of the assumed parametric models, while alternative interpretations of
the traditionally used model have led to a degree of confusion in some cases.
To resolve this issue, a lens distortion model is derived from the optic wave
equation, resulting in a model with the same form as the traditionally assumed
one. The derived model includes radial and decentering components, where
the decentering distortion is approximated by a simple displacement of the in-
termediately formed image. This model is a function of gaussian points, or in

image terms, undistorted coordinates, and is referred to as the forward model.

An analysis of this forward model for the dominant radial type distortion shows
that its Taylor expansion can be used to relate the alternative interpretation
of this model (as a function of distorted coordinates). A theoretical argument
is made that this model, referred to as the reverse model, will possibly match
the forward model in terms of residual fitting errors, but will suffer in terms of
stability as higher order coefficients will rapidly increase as distortion levels rise
(in contrast with the forward model where higher order coefficients are likely
to remain bounded). This increase in parameter magnitude subsequently led
to poor conditioning in the set of estimation equations. As a result the set of
equations become more sensitive to perturbations in location or noise content

of the control points used in the calibration process.
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This result is borne out in the experiments, where the reverse model parameters
significantly increase as the distortion level rises. The associated confidence
intervals in these parameters also increases indicating that the system of equa-
tion is less stable. Two manifestations of this instability are demonstrated,
one in the failure to reach convergence due to singularities in the co-factor ma-
trix for high distortion levels. The second example demonstrates the increased
sensitivity of the reverse model to a slight change in control point location, as
compared with the forward model relative invariance. The conclusion of this

investigation is that the derived forward model is experimentally validated.

Alternative distortion models are also considered. The divisional model is
shown to be related to the forward model, and shows good distortion mod-
elling up to relatively high levels. However, it is unable to precisely model cer-
tain complex distortion profiles, commonly encountered in perspective camera
lenses. A general polynomial model is also considered, but it is shown to be

suitable only for low levels of distortion.

A disadvantage of the forward model is its lack of an analytical inverse. The
form of such an inverse is also unknown, making the polynomial approximation
of such an inverse effectively a trial and error exercise. This issue is also
addressed in the formulation of an appropriate inverse approximation form.
This is based on the inclusion of extra terms from the Taylor expansion of the
forward model. A linear inverse function using this form is then proposed and
is compared with existing alternatives. These comparisons indicate that the
proposed solution improves the inversion accuracy by orders of magnitude over

the range of likely encounter-able distortion levels.

Finally, the lack of a parametric model for lateral chromatic aberration is ad-
dressed with the derivation of an appropriate function. This model is composed
of two elements, the chromatic variation of distortion and the lateral colour

distortion. This is further investigated in Chapter 5.
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Choosing a Calibration Pattern

There is an abundance of planar charts used within the realms of camera
calibration as sources of both 2D and 3D control points. These points are
generally constructed on a planar surface by means of some high contrast
pattern. In turn, the pattern also facilitates the recovery of the control point
projections on the image plane. Patterns such as squares, chessboards and
circles have become popular as they can be readily manufactured to a sufficient
precision, and their data points are recoverable through the use of standard

image processing techniques.

In real cameras, an image of the calibration pattern is likely to undergo two
types of transformation: a projective transformation as a consequence of rela-
tive 3D position, and a nonlinear transformation due to various lens distortions.
The control point invariance to errors resulting from these two transformations
is based on a combination of the pattern employed, and the detection method
used. As a consequence, for any theoretical combination of calibration pattern
and detection method, two possible sources of bias in control point recovery
have been identified, which are simply termed: Perspective bias and Distor-
tion bias. In practice, the presence of these bias sources is primarily governed
by the type of pattern used, which in turn dictates the appropriate detection
methods. This chapter considers two calibration patterns from the camera
calibration literature, each with two associated control point detection meth-
ods. These are the popular chessboard and circular patterns with respective
detection methods of edge intersections, corners, centroids and conic fitting.

The underlying biasing principles naturally extend to other similar patterns
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and detection methods. The importance of acquiring bias free data has often
been ignored in calibration articles, the result being that camera models and

accuracy are not reliably estimated.

The main aim is to establish which pattern offers the best precision in control
point recovery. The primary concern in this regard is to obtain bias free data,
as this is clearly essential for obtaining uncorrupted estimates from calibra-
tion algorithms. It is shown theoretically and experimentally, with both real
and simulated data, that circle centroid detected points are corrupted by both
perspective bias and distortion bias, with greater distortion bias magnitude
in a typical camera. However, only perspective bias compensation has been
considered in the literature, most prominently by Heikkila (2000), using ad-
justed conic centroids. It is shown that the compensation of distortion bias
from such circular pattern points is difficult, without knowledge of the true
distortion free image. Real cameras systems offer no information on this front.
As a consequence, the many calibration articles using such patterns, have their
claims of high accuracy significantly compromised by their choice of calibration

pattern.

The analysis is primarily conducted on simulated images with known ideal
control points as shown in Fig. 3.1. Images and control points are synthesised
with both nonlinear and projective transformations. Details of the image syn-
thesis precision is presented ensuring no additional errors are introduced from
this stage. The emphasis is on automatic point recovery where all points are
observable in the image. Two sub-pixel detection methods for each pattern are
described, each having unique bias invariant properties. The sources of biases
are theoretically identified for each pattern and are subsequently verified on
the simulated images. A comparative study of each method with respect to
blurring and noise serves to show that the biasing magnitudes are significantly
greater than the expected detection accuracy or noise floor. Finally, examples
of perspective and distortion bias in a real images are shown. Overall, this
chapter emphatically shows that the choice of pattern and detection technique
is much more important than previously realised to achieve bias free control

points for real cameras affected by lens distortion.
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Fig. 3.1: The two classes of patterns used for this study, chessboard and circles,
shown in their canonical form. Image dimensions are 2560 x 1920 pixels. 247
control points are synthesised. Chessboard squares have dimensions 85 x 85

pixels, while circle diameters are 51 pixels. The centre or principal point is at
(1280,960).

3.1 Pattern and control point synthesis

Two factors influence the recovery of control points: the camera lens effects
and the relative positioning of the calibration object. The error invariance
to these transformations is based on the type of pattern employed and the
detection methods used. Two popular patterns are chosen for this study, each
with sufficiently different characteristics to illustrate all the possible sources of
control point bias. Biasing aspects of other pattern types can be understood
by comparison with the principles introduced here. The chosen chessboard
and circular patterns are illustrated in canonical form in Fig. 3.1. The sizes
of the circles and chessboard squares, and the actual number of control points

are chosen as typical practical values. 1

In analysis each pattern is subjected to Gaussian blurring, additive gaussian
noise, pincushion and barrel distortion and random placements. The recov-
ered points are then be compared with their true locations. For the distortion
and positioning effects, both control points and the corresponding image must
be transformed. Geometric image re-sampling is carried out by mapping from

1The size of the patterns are chosen to nominally occupy a large portion of the central

image region. The circle diameters are chosen so as to give a reasonable spacing between

circles. The number of control points are chosen as over 200 which is recommended in
Section 4.3.1
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the transformed image to the original. This involves calculating for every pixel
in the transformed image, the corresponding pixel coordinate in the original
image, effectively requiring an inverse mapping. The transformed image in-

tensity is then calculated based on the standard bilinear interpolation around
this coordinate.

3.1.1 Pattern positioning

The image perception of various 3D positions of the control points, p =
(x,y,1)T, (in homogeneous form) are simulated using a pseudo randomly gen-
erated homography H, giving p = Hp, where p are the canonical representa-
tion of the control points. This homography is generated by a combination of a
3D rotation and translation, whose values are drawn randomly from a specific
range. This range limit ensures that the transformed image lies roughly within
the image window and that its apparent 3D position simulates a likely view
of the calibration object. The corresponding image re-sampling is calculated
using H*1 To quantify the effect of the homography the conditioning of its

Jacobian is taken at each control point:

( dx dx. \
g If).
dx dy /

The condition number in this case measures the distance from an orthogonal
transform, thus effectively quantifying the perspective element of the homog-
raphy. The mean of these values is taken as a measure of the net effect of the

perspective transform.

3.1.2 Simulating lens distortion

General radial lens distortion is approximated in an image according to the
forward model described in chapter 2 as:

p =p+ 2?2(p, k), where X>(p,k) = ( XMir +~2 A (3.1)

\ y{k\r + + 1))

where p = (x,y, 1)T are the undistorted image coordinates with r2= x24-y2
and p = (x, £, 1)T are the corresponding distorted coordinates. The distortion

parameter, (/ci), is used as an index, with values varying through * 2(pzx3),
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with /2 = —fci. These values are applied to pixel coordinates normalised by the
average of the image width and height, denoted by (pix). In order to re-sample
a distorted image an inverse of (3.1) is required. The approximate linear model
is used as proposed in chapter 2 equation 2.8. The parameters of this model
are linearly estimated using a dense collection of points covering the image
window. The inversion accuracy for the distortion range under consideration
is shown in Fig. 3.2. These residuals are orders of magnitude lower than
the precision of the sub-pixel point detection algorithms, (see Section 3.3),
ensuring that no additional source of error is introduced from the simulated

images.

Mean inverse error

SD inverse error

Fig. 3.2: Mean and SD inverse distortion residuals after the fitting of inverse
distortion approximation. Levels are orders of magnitude below that of the

control point detection accuracy, see Section 3.3
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3.2 Control point recovery

For each pattern, two sub-pixel detection methods are described. The circle
detection methods are based on the centroid extraction and ellipse fitting.
Square detection methods are based on edge intersections and refining an initial
corner solution with local surface fitting. It will be shown that the detection
methods are subject to two sources of biasing. It is theoretically shown how

they arise as a result of perspective viewing and lens distortion.

Centroid extraction methods are shown to be compromised by both perspective
bias and distortion bias. As is currently known, conic fitting techniques can be
adjusted to alleviate perspective bias only. Edge fitting techniques also suffer
from distortion bias, while only local surface fitting offers both perspective and

distortion bias free recovery of control points.

3.2.1 Circle pattern detection

Given an image of a circular pattern and following some basic image processing,

the centroids of the circles are simply calculated as:

C _ (1 . I f ('E.,«m*/om'(m»> £ ,,«m » [e'(I»> 1\Ir
© | E,ffiipri * E,ef/(P)

where /(pf) is the intensity at point Pf and F is the set of pixels deemed to
belong to the circle. It is known that if the calibration plane is not parallel

with the image plane, a bias is introduced into ccen-

Perspective bias

Considering a calibration plane in a general 3D position, a homography H can
be computed between the pixel coordinates of the control points and the ideal
canonical position as: p = Hp, where p are the locations of the control points
in the image, and p are the ideal canonical position of the control points. The
conic approximation to the edge points of the pattern, pedge, can be estimated
linearly as: P ~ eQPed5e (Hartley and Zisserman, 2003). The centre of the conic
is then calculated from the conic Q as: cconic = Q_1[0,0,1]T. For a general

3D position these centers transform to cGhic = HQ-1[0,0,1]T. However, in
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an image only the conic Q is available, but it may be related to Q through
Q = H TQH _1. Thus the unbiased estimates forthecenters of the conics

undergoing a general perspective transform H is given by:
Cconic = Q-1H-T[0,0,1]T (3.3)
The extent of this biasing influence is simulated in Fig. 3.3 for random

Centroid perspective bias

Fig. 3.3: Mean Euclidean error as a consequence of 1000 random positions of
the circular pattern. Orthogonal like homographies induce a low conditioning
(close to one) while the perspective bias increases with increasing conditioning.

The average diameter of the circles is around 50 pixels.

perspective views described in Section 3.1.1. In many algorithms, especially
when lens distortion is a factor, the value of H or equivalently, the elements of
the camera projection matrix, are not known exactly beforehand. This forces
the algorithm to iteratively update the estimates of the control points. This
re-estimation of the control points is an added complication, increasing the

number of iterations and degrading derivative information.

Distortion bias

The second major drawback of circle patterns and their detection methods,

is that they are also subject to bias from lens distortion. Lens distortion
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introduces a nonlinear shape warping to the area of the conic. This warping
subsequently biases the centre point of the conic. The extent of the bias is
dependent on the amount of lens distortion and the area or radius of the

conic, as illustrated in Fig. 3.4 and 3.5.

Distortion K1 ((pix)3)

Fig. 3.4: Simulated mean Euclidean distortion bias for circle pattern (circle dia
50 pix) over the considered range of distortion. The collineation error resulting

from Hp is actually reduced by the conic ill-fitting error.

This bias results from the combined effects of two error sources. Firstly, the
nonlinear nature of distortion warps the conic so that it is no longer a true
conic. Certain sections of the conic become elongated or compressed, all cul-
minating in the introduction of a bias from the eventual conic fitting. Tracking
the equations for only one term of distortion (&i) the second order least squares
conic fitting: pT p, is performed on a sixth order section. This leads to an
ill-fitting bias, the extent of which is illustrated in Fig. 3.4. The analytical
compensation for such bias is not possible without exact knowledge as to the

true undistorted state of the control points.

The second error source is from the distortion induced local perspective trans-
form, resulting from the conic fitting. Considering a general distortion free
conic Q, its least square counterpart in distorted space is calculated by min-
imising the algebraic expression: ~(p«, Q])Z, where Q”must be a real proper

conic. These two conics are related through a set of collineations or homo-
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Fig. 3.5: Simulated mean Euclidean distortion bias in patterns of various circle

radii, considered over a range of distortion levels.

graphies Hp that map Q to through HAQHp = . This collineation
may be found by taking the orthogonal matrices U and Y that diagonalise
Q and : UTQU = Aand T = , where A = diag(X\, A2, A3) and
“ = diag(Xi, \ 2,A3), and by choosing A0 = diag(y/\i/\u y% /% , ~A3/A3).
The collineation Hp is then formed as Hp = OU. However, the equation
H"rpQHp = is not unique as it provides only five of the necessary eight in-
dependent constraints. For simulation purposes a unique solution is obtained

in least square sense by minimising *(p», Hppj)2.

The homography Hp introduces a local perspective bias that we call the
collineation error. Compensation for this bias cannot be applied in real cam-
eras as the undistorted points are always unobservable. The contribution of
the collineation error source is simulated in Fig. 3.4, revealing that it is dom-
inant, and is actually reduced by the ill-fitting error. Naturally, distortion
bias is heavily dependent on the size of the feature. This is examined in Fig.
3.5 for a range of distortion levels and circle diameters. Compared with the
perspective bias simulated in Fig. 3.3, a typical low focal length lens, where
k\ is roughly in the region of —0.3 — —0.7pix3, distortion bias is likely to
be greater in magnitude than perspective bias. This is verified in Section 3.3.
Note also that distortion bias is not limited to conic fitting, and is present to

the same extent regardless of detection mode, centroids or conic fitting.
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3.2.2 Chessboard pattern detection

Given an image of a chessboard pattern, initial estimates of the location of the
intersections can be gathered using standard corner detection methods. These
estimates are generally within a few pixels of the true locations. We describe
two existing means of refining these initial solutions using edge information
(Willson, 1994), (Li and Lavest, 1996) and surface fitting (Lucchese and Mitra,
2002). Additionally, we address the filtering of initial corner estimates to
ensure they lie upon a square intersection, and the automatic ordering of these

coordinates to correspond with the canonical point representation.

Primary detection

Initial estimates for the location of chessboard type intersections are obtained
using standard corner detectors such as those described in Lucchese and Mitra
(2002), Whelan and Molloy (2000), Jain et al. (1995). For real situations where
the background scene registers candidate corners a further refinement step is
necessary to remove false hits. A small N x N region of interest, \E, centered
on the candidate corner is first thresholded using the mean gray level of 'I'' A

symmetry measure ty can then be calculated as:

'Hz,y) —*(N —x, N —vy)
** a if V
=2 ,2 , (a,?)),where 0(x,y) = < MNx,y) £ M(x,N -y)
2
b otherwise.

where a is positive and b is negative. We obtain good performance using a = 6
and b = —1 with N = 9. High values of the symmetry measure ty indicate

the corner is situated on a chesshoard intersection.

Edge intersections

A fitting function that models line intersections is formulated. In order to use
it with a chessboard pattern the edges or intensity derivatives in a medium
sized local region centered on the initial estimate are first calculated. The

function is then fit using the L-M non-linear iterative technique:

min 1/1le —22(C3—~5) cos h3+(y—#i6) sin /i3)2 | ~ e-h%((x-h5)sinh4+(y-h6)cosh4)2
h

-2h le-M (x~h5)2+y~h6,2) - 3<(x,y)||2
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where the intersection point is (/i5,/i6), hi is the height of the derivative pro-
file, h2is the width of the profile and h3 and hAare the edge directions. The
process is illustrated in Fig. 3.6. As lines project to lines under perspec-
tive transformations, this detection method is invariant to perspective bias.
However, under lens distortion, it is clear that lines project to curves, with
the result that this method is affected by distortion bias. Consequently, an

analytical proof is not perused.

Fig. 3.6: Control point refinement based on edge fitting. The first image shows
the selected ROI. The second image shows the detected edges. The third image
shows the edge image contours. The final image shows the function fit contours

from which the control point is calculated.

Corners

A category of sub-pixel refinement is based on surface fitting of intensity
around a corner point (Lucchese and Mitra, 2002). For each initial location
estimate, a small region of interest ~ is considered for fitting. Following blur-
ring, a quadratic function can be linearly fit to the resulting intensity profile,

as demonstrated in Fig. 3.6 by minimising:
min \\six2 + s2xy + s3y2+ s4x + sby + s6 - y)ll2.
S

The intersection point or saddle point is derived from this surface as the in-
tersection of the two lines 2s\x + s2y + s4 = 0 and s2x + 2s3y + s5= 0. The
process is illustrated in Fig. 3.7. In practice, the small patch ~ can effec-
tively be considered a single point, especially in light of the detection accuracy
and noise floor. As points project to points under both projective and lens
distortion transformations, this method has the desirable properties of being

invariant to both perspective and distortion bias.
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Fig. 3.7: The saddle refinement process. First the blurred ROl with marked
saddle point is shown. Middle image is a contoured image of the intensity
profile. Last image shows the intensity profile of the surface fit from which the

saddle point is calculated.

3.2.3 Ordering

After extraction, the coordinates of the control points need to be appropriately
ordered to ensure one-to-one correspondence with the arbitrary scaled canoni-
cal positions of the control points. For a pattern containing a matrix of control
points of N x M, the entire indexed set of points are collected into a three vec-
tor d(0...NxM) = [x\... xjstxm,Vi ===Vnxm, 1]t - For most of the analysis in this
thesis N = 13 and M = 19 giving a total of 247 points. Existing ordering tech-
niques in Lucchese (2005) require prior user initialisation. The fully automatic
algorithm described here has been extensively tested and performs successfully
for different distortion levels and resolutions. For severely distorted images,

such as fish-eye lenses, a prior rough un-distortion of d(0..jvxM) is required.

A brief description of the algorithm is as follows. For each row N , the topmost
left and right coordinates in d(0..ivxM) are found. For all but the most acute
angles of view, these points correspond to the top left and right points of the
calibration pattern. Their indexes i and j are found by: i = min(x x y) and
j = min(y/x). A line though these points is then computed as L = df /\d]j,
where /\ is the cross product. The M —2 most closest points to this line are
then found. Finally, these M points are ordered with increasing x coordinate,
and are not considered in further iterations. This is performed N times until

all the data has been ordered.

60



Chapter 3 - Choosing a Calibration Pattern

3.3 Experiments

Three sets of experiments are conducted on the synthesised test images de-
scribed in Section 3.1. Two of the experiments verify and quantify the per-
spective and distortion bias for each detection method and pattern. A side by
side accuracy evaluation for noise and blurring is presented, to give a bench-
mark from which to access the magnitude of both bias sources. Finally, real
examples of distortion and projective bias are presented, based on a combi-
nation pattern of circles and squares. For simplicity detection method labels
are shortened, circle centroids are referred to as centroids, conic centroids as
conics, chessboard edge intersections as edges and chessboard corner saddle

refinements are referred to as corners.

3.3.1 Noise and Blurring

The performance of each method is examined for a range of Gaussian blurring.
Fig. 3.8 shows the mean and standard deviation of the Euclidean errors com-
puted using the true locations. These test image patterns are also projectively
transformed so as conic based compensation can be accessed. This shows that
the expected detection errors remain relatively constant with respect to blur-
ring. Excluding bias corrupted centroids, these errors are roughly in the pixel

range of 0.02 —»0.04, and lower for the edge based method.

The robustness of the detection methods to noise is presented in table 3.1, for
additive normally distributed noise. The upper level, a = 20 (pix), represents
severe noise unlikely to be encountered in typical calibration shots. Typical

values for noise in images are in the range o = 5tocr = 10 pix.

3.3.2 Positioning Bias

The detection patterns and methods are examined for a range of nine differ-
ent projective transformations as shown in Fig. 3.9. The perspective bias of
centroid detection on circle patterns can be observed, and increases with per-
spective severity. These values correspond with their simulated counterparts
in Section 3.2.1. These basic statistics do not convey that these errors are not

randomly distributed, and are in fact biased. Fig. 3.10 shows one sample of
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Mean Standard deviation

Fig. 3.8: The mean and standard deviation for the four methods over a range
of gaussian blur levels. 1 =>edges, 2 => corners, 3 =» conics and 4 => centroids.

Images are subject to a perspective transform.

this circle centroid bias compared with bias free adjusted conic fitting.

3.3.3 Distortion Bias

The patterns and detection methods are evaluated without perspective warp-
ing over the range of distortion levels. External sources of simulation error
have been shown to have insignificant levels in Section 3.1.2. Fig. 3.11 shows

the mean Euclidean error of circle pattern detection methods steadily increases

Table 3.1: Euclidean errors (Mean & SD) with respect to additive gaussian

noises. Errors are compiled over one hundred independent trials and are con-

Centroids Conics Corners Edges
o 9§§af= Mean SD Mean SD Mean SD Mean SD
1 0 0 0.0281 0.0141 0.0051 0.0026 0.0014 0.0007
5 0.0012 0.0039 0.0369 0.0198 0.0144 0.0076 0.0067 0.0035
10 0.0220 0.0122 0.0541 0.0287 0.0279 0.0149 0.0134 0.0070
15 0.0355 0.0188 0.0657 0.0350 0.0420 0.0221 0.0200 0.0104
20 0.0447 0.0233 0.0841 0.0805 0.0568 0.0298 0.0265 0.0139
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Fig. 3.9: The mean Euclidean error for the four detection methods (1 =>
edges, 2 Z»corners, 3 => conics, 4 centroids) simulated over various degrees
of perspective transforms. Centroid bias is clearly shown by the large mean

Euclidean error.

with distortion level. This is in excellent agreement with the simulated dis-
tortion bias of Section 3.2.1. Edge based detection, because of its line fitting,
reduces distortion bias somewhat, more so for the pincushion variety due to
the fixed windowing size and distortion induced image expansion. Fig. 3.12
shows the distortion simulated images, each with associated detection method,

for one sample of distortion.
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Centroid Conic

Fig. 3.10: Sample of one perspective transformation (cond. = 1.25). Vector

plots reveal the centroid bias. Residual scale = x2000.

Mean error

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
Distortion k1pix3

Fig. 3.11: Illustrates the distortion induced bias in control points for four
detection methods.
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Fig. 3.12: Left column images show the circle pattern and associated detec-
tion method errors. Right column images show the chessboard and associated

methods. Distortion level is ki = —1.5pix3. Residual scale = x2000.
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3.3.4 Bias in real images

Real examples of distortion and perspective bias are shown, measured on a spe-
cial pattern that combines both circles and chessboards. This pattern, shown
in Fig. 3.13, consists of three greyscale levels from which the two types of
control points are extracted. Both the circle centroids and the square intersec-
tions are located at exactly the same locations. The circle control points are
formed by thresholding above the mid grey level, where the circle integrity is
ensured by the outer white rim. The square intersections are evaluated with

a small ROI using the original intensity profile.

Two different degrees of lens distortion are examined, both with and without
perspective bias. 2 Fig. 3.13 shows low level distortion bias, which is swamped
by perspective bias as shown in Fig. 3.14. Fig. 3.15 shows an increased
distortion bias that is dominant over perspective bias (Fig. 3.16) for an image
affected by a greater level of distortion. This comprehensively demonstrates
that such biases are not limited to the simulated case, and are equally prevalent

in real images.

2Camera placement is done manually, and undoubtedly some degree of perspective bias
is included.
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Fig. 3.13: Example of bias in real image (Fuji FinePix size: 2832 x 2128), eval-
uated using a specially designed pattern. Circle dia ~ 120 pix, with estimated
primary distortion term: k\ = —0.2. Vector plot shows Centroid and Corner

differences, revealing the distortion bias (scale is x500). Residual mean and

SD are 0.817(0.269).
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Fig. 3.14: Second example of bias in real image with the same camera and
settings as Fig. 3.13 (Fuji FinePix size: 2832 x 2128). Vector plot shows

Centroid and Corner differences, revealing the dominance of projective bias

over distortion bias (scale is x500). Residual mean and SD are 1.227(0.391).
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Fig. 3.15: Example of bias in real image (Nikon coolpix with FC-E8 lens size:
2272 x 1704). Circle dia ~ 110 pix, with estimated primary distortion term:
k\ = —1.2. Vector plot shows Centroid and Corner differences, revealing the

distortion bias (scale is x500). Residual mean and SD are 1.475(0.322).
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Fig. 3.16: Example of bias in real image with the same camera and settings as
Fig. 3.15 (Nikon coolpix with FC-E8 lens size: 2272 x 1704). Vector plot shows
Centroid and Corner differences, revealing the almost complete dominance of

distortion bias (scale is x500). Residual mean and SD are 1.272(0.2711).
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3.3.5 Chessboard detection noise

It is clear that a chessboard pattern with corner detection offers far superior
data than circular patterns and methods. Naturally, throughout this thesis,
control points are specified using a chessboard pattern. Of the two types of
detection methods considered for use with this pattern, only corner detection
offers bias free coordinates. However, as described in Section 3.2.2, the edge
based method described is based on a large region of interest around the rough
initial location. In practice, this region can be reduced to the same size as the
surface fitting corner method, thus reducing distortion bias to negligible lev-
els. This has the adverse consequences of making this line intersection method
more susceptible to noise. In experiments, it was found that this line intersec-
tion method was more robust to poor initial corner estimates and various lens
blurring. On the downside, the line based method in its current implementa-
tion is very much slower than the surface corner fitting. In experiments, each

method was utilised.

It is therefore useful to assess the levels of noise in control points recovered
with these two methods. The precision of the control points is also highly
dependent on the camera and lens system employed. Predominantly, three
digital cameras are used in this work, and are briefly described in table 3.23.
The recovered control point noise is assessed by taking multiple images of the
calibration pattern with varying lighting conditions. The results are presented
as a global noise measure for both small ROI line and corner detection methods

in Figs. 3.17, 3.18 and 3.19 for the Kodak, Nikon and Fuji cameras respectively.

The Kodak camera shows high point accuracy, though this is influenced some-
what by the lower camera resolution. The line based method shows slightly
better point localisation. Similarly for the Nikon camera, the edge based
method slightly outperforms the corner method. For the high resolution Fuji
camera, the line based method shows considerably lower noise. All errors

display a zero mean normal distribution.

The noise dependence on the control point position within the image is finally
examined, to access if the control point noise is random with respect to image
location. This is conducted by taking the mean x and y errors for each control

point over multiple images. The results are presented in vector format in Fig.

3These are the three cameras and various lens attachments that are available in the lab
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Table 3.2: Description of the three main cameras used for experiments in this

work,
Camera Type Resolution (pix) Lens system
Kodak MegaPlus 4.li 1312 x 1032 Computar 6mm 1/2”
Nikon CoolPix E4500 2272 x 1704 Nikon FC-EB8 fish eye
Fuji Finepix 6900 2832 x 2128 Fuji WL-FX9 wide converter

3.20, for all three cameras. These plots show that there is no location depen-
dent pattern observable for any of the cameras, and are henceforth considered

random.

Mean =2.75e-010 SD =0.04643 Mean =-1.69e-010 SD =0.0386

(a) Line Based Detection: Left &, Right Y

Mean =1.74e-011 SD =0.04 Mean =-8.62e-011 SD =0.03537

(b) Corner Based Detection: Left X, Right Y

Fig. 3.17: Histogram of noise in control points using Kodak camera as de-

scribed in table 3.2 for x and y directions including fitted normal distributions.
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Mean =-1.29e-011 SD =0.1156 Mean =-1e-010 SD =0.1267
0.4 -0.2 0 0.2 0.4 ol -0.6 -0.4 -0.2 0 0.2 04
Error (pixels) Error (pixels)

(@) Line Based Detection: Left X, Right Y

Mean =-1.74e-011 SD =0.1229 Mean =-1.14e-010 SD =0.1331

Error (pixels) Error (pixels)

(b) Corner Based Detection: Left X, Right Y

Fig. 3.18: Histogram of noise in control points using Nikon camera as described

in table 3.2 for x and y directions including fitted normal distributions.
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Mean =1.74e-010 SD =0.06417 Mean =2.78e-010 SD =0.08431

0.04
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Error (pixels) Error (pixels)

(@ Line Based Detection: Left X, Right Y

Mean =9.4e-011 SD =0.1259 Mean =2.39e-010 SD =0.1246
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0.035
£ 0.025
0.015
0005
Error (pixels) Error (pixels)

(b) Corner Based Detection: Left x, Right Y

Fig. 3.19: Histogram of noise in control points using Fuji camera as described

in table 3.2 for x and y directions including fitted normal distributions.
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(@) Kodak camera. Left: Line errors, Right: Corner errors

Image locations of errors Image locations of errors

(o) Nikon camera. Left: Line errors, Right: Corner errors

Image locations of errors Image locations of errors

() Fuji camera. Left: Line errors, Right: Corner errors

Fig. 3.20: Location dependence of control point errors for three cameras. Vec-

tors indicate the mean x and y noise magnitudes for multiple images. Vector
scale = x 1000.
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3.4 Discussion

This chapter deals with control point recovery from planar calibration charts,
by investigating if the choice of pattern can improve the overall detection
precision. This accuracy is examined with respect to perspective transforma-
tions and lens distortion. Initially, pattern synthesis issues are detailed, in
particular the generation of accurate lens distortion in images. Two repre-
sentative types of patterns are considered: circles and chessboards, each with
two common methods of control point recovery: centroids, conic fitting, edge
approximation and corner points. We show theoretically and experimentally
that compensated conic fitting, edge approximation and corner points are in-
variant to perspective bias, while only corner points are invariant to distortion
bias. Simulated and real results indicate that distortion induced bias has a
significant magnitude. Even for low distortion levels, roughly +0.3(pia:3), the
biasing influence of distortion is greater than the noise/blur floor, and is more
significant than the likely perspective bias encountered with normal calibration
views. Thus, the compensation for perspective bias only with large conic area,
is clearly not sufficient to acquire bias free control points. This has important

implications for the field of high accuracy camera calibration.

It is clearly demonstrated that chessboard patterns are superior to circular
type patterns in the generation of bias free control points. Therefore, through-
out this thesis chessboard patterns are used this purpose. For the selection of
cameras used, the control point noise from the chessboard detection methods
is presented. It is very important to note that this study primarily considers
a nominal pixel conic diameter of 50 pixels. It can be noticed throughout
that for lower conic diameters the influence of biasing is significantly reduced.
For example, a conic diameter of 10 pixels will induce negligible bias in com-
parison with the expected detection accuracy. Indeed, this diameter is the
recommended rule of thumb for use of use of circular patterns in order to
avoid incurring their biasing potential. The conclusions for this chapter must

be regarded with this in mind.

Finally, some external factors that influence the precision of control points are
not considered in this chapter. These factors relate to the manufacture of the
calibration target, in terms of its planarity and the spatial precision of the par-

ticular pattern. The chessboard calibration target used in this thesis is fixed
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to a glass substrate, while the black and white pattern was precisely manu-
factured using a high resolution xy table. Consequently, the errors introduced
from the pattern imprecision are considered negligible. Chapter 4 further ex-

amines the influence of errors in the pattern precision, on the calibration of

distortion.



Chapter 4

Distortion Calibration

Lens distortion is a thorn in the side of many relatively straightforward image
analysis tasks. It comprehensively degrades the accuracy of measurements
made in real images, where pixels in a normal perspective camera with a
low focal length may move up to 30 pixels. In terms of the removal of such
distortions, it is clear that, currently, the only precise means of calibrating
and removing distortion is in conjunction with a full calibration of the internal
and external parameters. The importance of distortion in this regard has seen
the utter dominance of these more complicated algorithms at the expense of
those that do not consider distortion. Despite this, many applications do not
require the full complement of internal camera parameters and the relative
orientation in relation to some calibration target. Selections of these, such as
multiple view geometry estimation, in cases prefer to explicitly include lens

distortion factors at the expense of extra complexity.

Algorithms for internal and external camera calibration, multiple view geom-
etry estimation, etc. are rendered considerably simpler by the lack of lens
distortion. However, despite the long term existence of non-metric calibration
techniques to enact this removal of distortion, they have not been adopted.
This can only be due to the poor performance of such methods, their limited
circumstances of usage, and their own relatively complex practical implemen-
tation. This chapter comprehensively addresses the issue, in the description of
an easy to use and highly precise method for calibrating lens distortion of all

levels in perspective cameras.
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The algorithm advanced in this chapter can be considered non-metricl as no
internal or external camera parameters are explicitly available. The method
exploits two geometric priors on the planarity of the control points and their
known structure up to an arbitrary scale. Using a single view of this calibra-
tion pattern, an error function is formed in distorted space using the general
distortion model. The necessary undistorted coordinates are simultaneously
estimated through a general projective transform. The partial derivatives of
the quadratic cost function are computed for all estimated parameters, allow-
ing the closed-form computation of the cost gradients for minimisation. The
re-sampling of an aberration free image is interpreted as a function in dis-
tortion free coordinate space, hence the calibrated forward distortion model
may be applied directly. Lastly, automatic re-scaling is applied to balance the

creation and loss of pixels in this re-sampling.

In comparison with the current benchmark for calibrating distortion through
full camera calibration, the proposed approach has numerable advantages.
Only one input image is required for the calibration, ideally taken in a roughly
fronto parallel position. The distortion and associated parameters are esti-
mated in a closed-form solution2 with full partial derivatives, giving a com-
putational advantage over current numerical techniques. The accuracy of the
proposed method matches and surpasses that of complete calibration methods
in many cases, while this accuracy is offered over a general coverage of all
possible distortion levels in perspective cameras. It also offers an alternative
means of dealing with distortion for the many tasks that do not require the full
complement of camera parameters. Additionally, the subsequent calibration
of internal and/or external camera parameters becomes much simpler in the

absence of lens distortion.

A least square solution to the calibration problem is described in Section 4.1
through the description of the undistorted coordinates by a unique error ho-
mography. Full partial derivatives are given for use in a Gauss-Newton iterative
solution described in Section 4.1.1. Section 4.1.2 describes a novel means of
minimising the introduction of extra local pixel distortions in the generation of

INon-metric in this context referrers to the unavailability of any internal or external

camera parameters or orientations.
2Closed-form in this sense referrers to the direct geometric relationship between the

criterion and the underlying model. This means that it is absolutely correct at all times not
just upon convergence conditions.
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an undistorted image. A comprehensive examination of the proposed method
is given in Section 4.2 including comparisons with two popular full calibration
techniques and one non-metric method. These comparisons are conducted on
simulated and actual data over a extensive range of distortion. The calibration
requires the input of at least one view of a calibration pattern. The depen-
dence of the proposed method on this control data is examined in Section 4.3.
Included is an description of the required quantity of control points for suc-
cessful calibration in Section 4.3.1 which is extended to a multiple view variant
of the algorithm. Two geometric priors are assumed on this calibration target,
that of planarity and of known (up to an arbitrary scale) canonical coordinates
for the pattern defined control points. The impact of violations of these con-
straints are investigated in Section 4.3.2. Additionally, it is assumed that the
image projection of this calibration pattern has been detected free of distor-
tion and projective bias (refer to chapter 3). The influence of bias is further
examined for distortion calibration in Section 4.3.3. A comprehensive analysis
of decentering distortion with the proposed technique is presented in Section
4.4, Lastly, variable lens parameters that influence the observed distortion are
examined in Section 4.5 for the fundamental lens functions of focusing and

aperture settings.

4.1 Least squares simultaneous calibration

The calibration technique pursued here requires one view of a calibration pat-
tern. Two geometric priors are assumed on this calibration target, that of
planarity and of known (up to an arbitrary scale) canonical coordinates for
the pattern defined control points. Additionally, it is assumed that all control
points are observable within the image window and are appropriately ordered

as described in chapter 3.

Considering the bias free detection of chessboard intersections with image co-
ordinates ¢ = (u,v,I)T and units of pixels (pix), a transform is required to
convert these measurements into the lens centered coordinate space. The lens
centric coordinate system can be thought of as the actual metric measurements
of the ray intersections with the surface of the sensor pickup (e.g. CCD ar-
ray), centered on the optical axis of the lens. As most sensors are not aligned

accurately with respect to the lens, the centre of the sensor array cannot be
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assumed to contain the optical axis. Indeed it is unclear if lens distortion is
actually centered on the optical axis or not. Additionally, the actual physical
size and resolution of the array is variable from camera to camera. Fortunately,
the precise metric values of the ray intersections are not required since they

only influence the scale of the distortion parameters as follows:

Result 3. Arbitrary scaling of lens centric coordinates, or equivalently varying
sensor resolution, causes the parameter values of distortion to change, not the

number of parameters:

A(p-p) = A2?(p,k)=P(Ap kA, (4.1)

where A is the scaling factor and kA s the scaled parameter vector.

Proof
AE>(p,k) = £>(Ap,kA,
_ ki\2xr2-f /2Adxr2 + ...
) kK\\2yr2+ k2X4yr2 + ...
= AZ>(p,k),
as kAabsorbs the scaling factors as: k\ = (A2&i, Ad/c2,.. )T L]

As a consequence, the recovered control points ¢ are normalised roughly to
unit length by the average of the image width and height, ¢ = (u)v,w)T, to
standardise the scaling of the distortion parameters and improve the condi-

tioning of the estimation equations. The required lens centric transform is

then defined as:

s 0 —uQ
p= 0 1 -vQ v = Ac (4.2)
\0 0 1 \w 1

where s is the applied compensation for non-square pixels and the symmetrical
centre of distortion ist = (UQvQ 1)T. These parameters need to be estimated

in the calibration. The units of p are normalised pixels, (pix).

Given the normalised coordinates, c, of an arbitrarily orientated planar tar-
get, a planar transform or homography (Hartley and Zisserman, 2003) can be
computed as shown in Fig. 4.1 by ¢ = Hdw, where w = (x,y, 1)T are the

arbitrarily scaled 2D coordinates of the planar data points. It follows that:
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Fig. 4.1: A graphical interpretation of the formation of a distorted image and

its undistorted counterpart.

Result 4. The true (distortion free) projections of planar points, viewed from
an arbitrary position, can be related to their distorted counterparts through the

application of a general projective transform He:

min £ (c,H ec)2 giving ¢ = Hec (4.3)

Proof c and c are equivalent in a Least Squares sense, giving rise to equivalent

He with the alternate objectives:
min £ ( CGHec)2= min”~ (¢, Hec)2,

since ¢ = Hdw, where Hd originates from min ~(c, Hdw)2, and w are the

canonical coordinates of the control points with unknown scale. O

This represents the key element in expressing distortion in a closed-form solu-
tion, enabling the recovery of the previously unavailable data c, through the
simultaneous estimation of He. Without loss of generality, He is scaled so that
/i3 is one. In practice, no further constraints are available on He as the esti-
mate of Hd is corrupted due to noise. A general form for He is then required

to absorb these inaccuracies.
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For each observed control point ¢* the following error function can be formed

using the general forward distortion model (Result 1, Chapter 2):
ei(ci, &) = Heci + X>(Heci5k) - A o (4.4)

where the full parameter vector is $ = (ftn,ft12, ..., fc32,s, %0, vO0, fci, f2, .. )T
with $ e RT.

4.1.1 Solving the problem

A parameter counting exercise reveals that for a parameter vector of length n$
a minimum of m = ceil(n$/2) control point observations are required, where
ceil() is a rounding towards +oo. Given at least n > m observations a Least

square solution is obtained by:

mm (4.5)
=1

This problem is nonlinear in parameters particularly due to V (H eCi, k) requir-

ing a nonlinear optimisation solution. One way of solving this is to linearise

equation 4.5 with some initial parameter value of 3>0, resulting in an iterative

Gauss-Newton scheme (Walter and Pronzato, 1997) which can be solved using

many robust least square techniques (Golub and Loan, 1996):

Sk+i = i asT dsT

where A < 1 ensures a decrease in cost at each step. The full partial deriva-
tives are given in Appendix B. It has been shown in Section 3.3.5 that the
data covariances are equal, so no covariance matrix is required in this solution

(covariance is effectively equal to an identity matrix).

An initial estimate for the parameters of A are s = 1, uQ= mx and vQ= my
where mx and my are the normalised coordinates of the image centre. An
initial estimate for the parameters /in, /i2 and k\ may be obtained directly

from the linear solution of:
(xi  Xif\n Lu\-m x

Vi Y\ Vi—my
{hdiag, k if = T+b, where T — . b= (4.7)

\\h Vnfl] Yvn uiyd
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where X = U —mx,y = v —my, r2= x2+ y2and (.)+ denotes the pseudo
inverse. The parameter vector including three terms for radial distortion is

then initialised at:

A (hdiag) 0? 05 hdiagi yi 0?15 Ay 050) = (~-™)
An overview of the algorithm is now presented.

Algorithm 1 The algorithm for estimating general lens distortion based on

one view of a calibration pattern
Objective

Given n > m control points with image coordinates ¢, from a single view of a
planar calibration target with known structure, w, determine the parameters
of the forward lens distortion model.

Outline

1. Normalisation Observed image coordinates ¢ are normalised by the av-
erage of the image width and height giving c. A least square homography

Hd is formed giving: ¢ = Hdw

2. Initialisation Parameter vector is initialised (equation 4.8) by directly

solving equation 4.7.

3. Minimisation Distortion parameters are estimated by minimising equa-
tion 4.5 through the iteration of equation 4.6 until convergence. Addi-

tionally the undistorted coordinates are recovered as: p = HeH dw.

4.1.2 Balancing pixel warping

Resampling or image warping computes new samples on a target image from
original samples on the source image. Two frequently used and well known
interpolation filters are nearest neighbor and bilinear interpolation (Keys, 1981,
Heckbert, 1989). The formation of a new undistorted image J(x) can be formed

knowing the forward distortion model parameters from the original image J(x)

I(x) =7e(i(x + X>(x,K)) , (4.9)

where 7Z(.) is the interpolation method. Throughout this thesis standard bi-

linear interpolation is used, which is available in many image processing such
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as Intel Image Processing Library (IPL, 2000). This formulation has the im-
portant advantage that the calibrated forward distortion model can be used
directly, without need for an inverse function as is required in Heikkila and
Silven (1997) and Heikkila (2000).

One problem with the modelling of distortion according to equation 4.4 is
that it does not consider the optimal formation of a new distortion free image.
Thus, for barrel distortion, image warping according to equation 4.9 results in
the stretching of central pixels to occupy the viewing window, and hence the
loss of outer perimeter pixels. The reverse case is noticed in the literature,
such as Micusik and Pajdla (2003) and Fitzgibbon (2001), where the new
image is compressed into the viewing window, due to the use of an inverse
distortion model in the re-sampling. This image stretching effectively results
in a reduction of window size, as illustrated in Fig. 4.2, which rises two issues.
Firstly, there is a reduction in the effective field of view or angle of view.
This is counter productive as wide angle lenses are chosen for their wide angle
of view. Secondly, there is an increase in noise and a degradation of image
quality in comparison to the original image, due to the creation of new pixels

by zooming-like action of the warping.

To address this issue, the image warping of equation 4.2 is modified, by taking
into account local pixel distortions. These pixel distortions are the result of the
increasing pixel area warping, radially from the centre of the lens distortion.
By introducing the ability to compress pixels in the resampling process, the
overall pixel distortions can be balanced or minimised. This is accommodated

by introducing an appropriate scaling matrix S into the resampling:
(4.10)

where the scaling matrix contains one variable Si as:

ksi B swo—a0y
S = 0 si SiVo - Vo »
and (00,v0) is the estimated distortion centre.

A measure of the local pixel distortion can be compiled by taking the Jacobian

of the local area around point p as:
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This gives the the size ratio of the newly created pixel at the location p to
its original location p. Letting Ai and A2 be the eigenvalues of J(p) then
the net measure of the local pixel distortion may be obtained by taking its
determinant as det(J(p)) = AiIA2. Since the eigenvalues of an orthogonal
transform are equal to one, the ideal value of the determinant causing no net
size change is also one. A compression of pixel size results in a determinant of

less than one, while the enlarging of pixel size results in a determinant greater

than one.

Pixel distortion can therefore be minimised by choosing a scaling parameter

Si that minimises:

n
min£(det(SH2x2I(Pi)) - 1)2¢ (4.12)

!
As det(AB) = det(A)det(B) A,B e Mmxm and det(sil2x2) = s\ this

minimisation can be solved for linearly as follows:

Sl={ 1 E"=idetJ(Pi)r (413)

The point set p* may be chosen as a grid covering the entire image area. The

density of this grid has a very minor influence on the overall scaling parameter

This improved resampling, by considering the local pixel distortions, is illus-
trated in Fig. 4.2. It can be observed that the scaling solution avoids including
peripheral areas of the original image as these areas would induce large pixel
distortion after image warping. The balance that is reached is a clear improve-
ment in terms of the resulting field of view over the original unsealed method.
Note, that this formulation assumes that the new image dimensions are the
same as the original. An alternative means of implementing the same effective
field of view is to enlarge the destination image. The optimal enlargement in

this case is again described by the scaling matrix S solved with equation 4.13.
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Fig. 4.2: Top: Original distorted image, and resampled image according to
equation 4.9. Bottom image, adjusted resampling according to equation 4.10,

showing the larger field of view.
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4.2 Accuracy assessment

The proposed algorithm is compared with similar alternatives from the lit-
erature that take similar input data. The assessment is conducted in terms
of evaluating how accurate the estimated parameters are in describing lens
distortion throughout the image. In general it is not enough to merely find
the best value for the parameters with respect to the objective criteria. It is
also important to evaluate the uncertainty attached to this result, taking into
account the uncertainty in the data. Three methods are taken from the litera-
ture for comparison purposes. These include two full calibration methods and
one truism based method. The proposed algorithm is referred to as Method 1

throughout.

From a least squares or nonlinear least squares estimation problem the residual
error vector may be calculated. However, instead of calculating this residual
an alternative one is compiled directly using new data. Under the assumption
that data error has a zero mean normal random distribution A/"(0, <2) (see
chapter 3 for detection patterns and methods that violate this assumption),
the estimation algorithm is asymptotically efficient, implying that with enough
data points the exact solution may be recovered. The parameter uncertainty

can be estimated from the Fisher information matrix:

(4.14)

F *(#) is then used to characterise the uncertainty in the parameters, by
forming an estimate of the associated Standard Deviation (SD) as the square

root of the ith diagonal element as:

(4.15)
In the special case where all the cr2’s are equal and possibly unknown:
(4.16)
i=1
F($) is then approximated by:
(4.17)
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4.2.1 Comparison Methods

W ith the proposed algorithm referred to as Method 1, the initial comparison
technique is referred to as Method 2, which is taken from the popular tech-
nique of Zhang (1998, 2000), and available on the web at (Zhang, 2005). This
full calibration technique takes multiple views of a planar pattern as input.
Although distortion calibration is not the main focus of this technique (no
decentering and a low order radial (2 parameters) model is used), it provides
a useful comparison for lower distortion levels. It is not expected to be highly
accurate for larger distortion levels. The method estimates distortion by the
numerical solution of the back projection problem in n views with m con-
trol points in each view. The available implementation does not return the

parameter standard deviations.

Method 3 is also a full calibration method, taken from Heikkila (2000) and
available in a Matlab implementation on the web at (Heikkila, 2005). This
method also requires multiple views of a planar calibration object, though 3D
coordinates with one image can also be used. Distortion is given prominent
focus in this implementation, with the reverse model assumed including de-
centering distortion. A simplified approximation of its Taylor expansion is
used as an inverse (see chapter 2 for a full description of this model). The

implementation returns the parameter SD’s.

Method 4 is a truism based method, similar to that described in Haneishi et al.
(1995), and others such as Asari et al. (1999) and Devernay and Faugeras
(2001), where the estimation is based on the criterion that straight lines in
object space must be imaged as straight lines. The input data is formed from
the collinear coordinates of the chessboard pattern similarly with Haneishi
et al. (1995) and Asari et al. (1999). This method is implemented by first

calculating the lines joining the horizontal chessboard intersections as follows:

e Initialise the principal point, and 4 parameters of the reverse distortion

model.

« A moment matrix is formed representing the algebraic line fit to the
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input data as
/ : - .
B B3 eiu”
ELifct Ha# EH &
E"=i/&< ELIV n |/
» Calculate the LS line fit from the eigenvector associated with the smallest

eigenvalue.
» Using this line and the input data form the error criterion.

* Minimise this using the L-M method for the sum of all lines.

Parameter SD’s are available upon convergence. A summary of the different
properties of each method is given in table 4.2.1. The majority of these meth-
ods do not include decentering distortion. In order to compare like-with-like
decentering distortion is not included in the distortion model of the proposed
algorithm, Method 1. An detailed analysis of decentering distortion is made

in Section 4.4.

Table 4.1: Properties of the proposed algorithm (Method 1) in comparison to
three alternative techniques.
Criteria Method 1 Method 2 Method 3 Method 4

# of Views 1 Multi M ulti 1
View Data Planar Planar Planar Line
Solution Closed Numerical Numerical Numerical
Dist. Model Forward Forward Reverse Reverse
Cam. Cai. X / / X
Param. SD / X / /
Online — / / X

4.2.2 Comparisons on Simulated data

Comparisons on simulated data are made with respect to varying control point
locations and increasing levels of control point noise. Distortion is simulated
using a non-standard formulation in order that the resulting profile does not
exactly match with any of the calibration models. Considering the divisional

model as presented in chapter 2, extra nonlinear terms can be added as follows:
c

c = _ (4.18)
1—kir2 —k2r4’
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where ¢ = (u,v,1)T are the undistorted points, c are the distorted counterparts
and r2= (u- uQ2+ (v—vQ?2. The centre of distortion t = (u0,vQ 1)T is fixed
at uQ= 732.33 and vQ= 812.21. Distortion parameter k\ is varied in the range
of —2 — 1.4 with k2 specified as k2 = —fci/2, representing a wide range of
barrel and pincushion distortions. The lowest level of distortion is kx = 0.01,

effectively showing on the graphs as zero.

The calibration data is comprised of a 10 x 10 planar grid of equally spaced
points (spacing = 100 (pix)). Random positions of these points are simulated
as in Chapter 3 using a 3D rotation randomly drawn from a specific range of
rotation angles, with limited translation. Noise is added to these control points
with a normal distribution Af(0, cr2), where a2 is in the range 0 —1 (pix), well
in excess of the expected noise range (see Section 3.3). The evaluation data

consists of a 20 x 20 grid (grid spacing = 75 (pix)) covering the entire image

window.

Random control point positions

The proposed algorithm is compared with the three alternative methods for
robustness to control point positions. One hundred random control point po-
sitions are generated for each distortion level and the accuracy and stability of
each method is evaluated. Accuracy is measured using the estimated param-
eters on the evaluation data set. The stability of each estimated parameter is

quantified by it variance throughout the one hundred samples.

The accuracy of the four methods are compared in Fig. 4.3. The ability to
correctly model distortion is primarily linked with the underlying distortion
model. As Fig. 4.3 shows the reverse model in Method 3 and 4 is more
unstable than the forward model used in Method 1 and 2 . This follows
from the analysis in chapter 2 of the properties of these models. Method 4 is
shown to be highly dependent on the location of the control points. Method 1
outperforms all other methods with much lower distortion residuals, indicating
that the proposed algorithm is not dependent on the the location of control
points and its use of a higher order model than Method 2 does not lead to

instabilities.

Each method involves estimating the distortion centre. Fig. 4.4 shows the

x and y errors for the estimated centre point for the four methods over 100
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random placements of the calibration data and subject to varying distortion.
This shows that the centre point in the line based method is quite sensitive
to the location of the calibration data. The performance of Method 2 and 3
are roughly similar (excluding the peak errors at k\ = 0.01 for Method 3).
The proposed, method shows a very low centre point error in comparison.
This demonstrates the high stability of the algorithm and the high accuracy

afforded by the use of an appropriate distortion model.

The parameter values and standard deviations of each method are shown in
Figs. 4.5 - 4.8. These show the variation of the parameters with distortion and
their integrity with respect to varying control point positions. As expected the
methods using the forward distortion model (Methods 1 and 2) show bounded
parameter values. In contrast the parameter values for methods using the
reverse model are much larger. The line based method shows large parameter
and SD values, indicating in conjunction with its poor residual accuracy that

this algorithm fails to converge for many of the position samples.
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Fig. 4.3: Mean and SD errors for 4 methods computed over 100 random posi-
tions of control points.
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Method 2

Distortion k (pix) Distortion k1 (pix)

Method 3 Method 4

EFQOOX

Distortion k1 (pix) Distortion kt (pix)

Fig. 4.4: Illustrates the mean estimated distortion centre less the ideal value,

for 4 methods over the range of distortion.

Method 1 Estimated parameter SD

-2 -15 -1 -0.5 0 05 1 °-2 -15 -1 -0.5 0 05 1
Distortion k1 ((pix)) Distortion k1 ((pix))

Fig. 4.5: Mean and SD of parameter values for Method 1 over the 100 randomly

chosen control point locations.
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Method 2 Estimated parameter SD

Distortion k1 ((pix)) Distortion k1 ((ptx))

Fig. 4.6: Mean and SD of parameter values for Method 2 over the 100 randomly

chosen control point locations.

Method 3 Estimated parameter SD

Fig. 4.7: Mean and SD of parameter values for Method 3 over the 100 randomly

chosen control point locations.

Method 4 Estimated parameter SD

Fig. 4.8: Mean and SD of parameter values for Method 4 over the 100 randomly
chosen control point locations.

95



Chapter 4 - Distortion Calibration

Random noise in control points

The proposed algorithm is compared with the three alternative methods for
robustness to noise in control point positions. The 3D position of the control
points are fixed throughout. For each simulated distortion level, noise with
a distribution of A/*(0,a2) is added for 100 samples. The noise variance a2 is
then varied through 0 —»1 (pix). As this generates a significant quantity of
data, only the residual distortion is presented, for the range of barrel distortion

only.

The residual errors are presented in tables 4.2 - 4.5. Table 4.2 present the
residual results for the proposed method, (Method 1). It can be noted from
these results that for zero distortion levels, a larger residual error is induced
than for the other distortion levels. This is due to the incorrect classification of
noise in the data as actual distortion. This issue of low distortion is investigated
further in Section 4.2.4. Excluding this zero level distortion the residual SD
increases in direct proportion with the induced noise. All residuals remain
in the subpixel range. It can be confidently concluded that the proposed

algorithm copes successfully with noise.

In comparison, Method 2 shows a larger residual error. As this method also
uses the forward model of distortion, its increase in error is proportional with
the increase in noise variance. Method 3 uses the reverse model of distortion,
and the results in table 4.4 show that the residual error is larger than that of
Method 2. However, in terms of robustness to noise, the algorithm appears
to cope successfully. The final line based method, Method 4, also uses the
reverse model, but to a higher order. As the high order reverse model has
been previously shown to have instability tendencies in Chapter 2, it is no
surprise that the increase in noise levels induces a large increase in residual
error. Indeed for some samples the algorithm failed to converge (nc), while

convergence is questionable in some other cases.



fci / a2
0
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8

kIl / 02

-0.2
-0.4
-0.6
-0.8

-1.2
-1.4
-1.6
-1.8
-2

0
0(0)

0.0004 (0.0007)
0.0033 (0.0057)
0.0113 ( 0.0196)
0.0263 (0.0466)
0.0499 (0.0901)
0.0826 (0.1530)
0.1248 ( 0.2372)
0.1762 (0.3445)
0.2361 (0.4759)

0
0.0025 (0.0016)
0.1121 (0.0785)
0.4181 (0.2926)
0.8721 (0.6176)
1.4332 (1.0378)
2.0662 (1.5455)
2.7427 (2.1389)
3.4406 (2.8204)
4.143 (3.5953)
4.8384 (4.47)
5.336 (6.7399)

Table 4.2: Residual errors for Method 1 in mean(SD) format.

0.2
0.2358 (0.2202)
0.2207 (0.1993)
0.2039 (0.1715)
0.1773 ( 0.1591)
0.1848 (0.1855)
0.1833 (0.1913)
0.1803 (0.2138)
0.1821 (0.2901)
0.2234 (0.3605)
0.2687 (0.5049)

0.4
0.5061 ( 0.4798)
0.4007 (0.3500)
0.4246 (0.3671 )
0.3546 (0.3709)
0.3558 (0.3197)
0.3257 (0.3662)
0.3262 (0.3651)
0.3137 (0.3756)
0.3437 (0.4360)
0.3326 (0.4851)

0.6
0.8739 (0.8051)
0.6144 (0.5485)
0.6096 (0.5305)
0.5482 (0.5126)
0.5494 (0.5390)
0.5350 (0.5250)
0.4948 (0.5114)
0.483 (0.4655)
0.4798 (0.5407)
0.4739 (0.6025)

0.8
1.5543 (1.0397)
0.9469 (0.8381)
0.7837 (0.7404)
0.7843 (0.7370)
0.7712 (0.6792)
0.7027 (0.6526)
0.6774 (0.6311)
0.6680 (0.6826)
0.6200 (0.7346)
0.5936 (0.7165)

Table 4.3: Residual errors for Method 2 in mean(SD) format.

0.2
0.1526 (0.1198)
0.1815 (0.147)
0.4264 (0.3242)
0.8904 (0.6345)
1.4383 (1.0536)
2.0657 (1.5471)
2.7477 (2.1405)
3.4373 (2.8374)
4.1414 (3.5914)
4.8398 (4.4729)
5.3365 (6.7389)

0.4
0.3297 (0.2589)
0.2912 (0.234)
0.4594 (0.3658)
0.8861 (0.6883)
1.4341 (1.0654)
2.0639 (1.5758)
2.7282 (2.1498)
3.4266 (2.8337)
4.1349 (3.5985)
4.8404 (4.4859)
5.3557 (6.7436)

0.6
0.5066 (0.3979)
0.4473 (0.3451)
0.5329 (0.4435)

0.925 (0.724)
1.4801 (1.096)
2.0765 (1.614)
2.7617 (2.2101)
3.4349 (2.84)
4.1594 (3.6123)
4.8372 (4.4832)
5.3478 (6.7374)

0.8
0.7312 (0.5524)
0.575 (0.4306)
0.6743 (0.5251)
0.9884 (0.7998)
1.4469 (1.1413)
2.0903 (1.6185)
2.7334 (2.1747)
3.4473 (2.8369)
4.1526 (3.629)
4.8528 (4.4594)
5.3728 (6.7714)

1
2.3643 (1.4354)
1.0401 (0.9469)
1.0038 (0.9216)
0.9144 (0.8469)
0.8102 (0.8446)
0.8904 (0.8558)
0.7748 (0.8862)
0.7415 (0.8500)
0.7337 (0.8322)
0.7481 (0.8524)

1
0.8521 (0.6454)
0.7237 (0.5438)
0.7927 (0.6187)
0.9729 (0.7942)
1.4627 (1.1953)
2.0906 (1.6943)
2.7651 (2.2068)
3.4424 (2.8875)
4.1353 (3.6114)
4.8579 (4.5038)
5.3571 (6.7408)
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Table 4.4: Residual errors for Method 3 in mean(SD) format.

0.2
0.1919 (0.1468)
0.2847 (0.229)
0.8419 (0.5923)
1.3625 (0.969)
1.5795 (1.2214)
1.1225 (1.2612)
0.6356 (0.9737)
3.0391 (1.3077)
7.2639 (2.9396)

0.4
0.2644 (0.2165)
0.3948 (0.3118)
0.8771 (0.6841)
1.3911 (1.0212)
1.5728 (1.2878)
1.1614 (1.281)
0.7598 (1.0423)
3.0691 (1.3832)
7.3176 (3.0208)

fci / a2 0
0 0.1908 (0.1231)
-0.2 0.2701 (0.1806)
-0.4 0.8474 (0.5649)
-0.6 1.4005 (0.9605)
-0.8 1.5987 (1.2166)
-1 1.127 (1.2317)
-1.2 0.583 (0.948)
-1.4 3.0758 (1.2845)
-1.6 7.2372 (2.9217)
-1.8 13.2071 (5.4237)
-2 19.2323 (8.4785)
Table 4.5:
ki / a2 0
0 0.0841 (0.0343)
-0.2 1.4546 (0.5785)
-0.4 2.6048 (1.0238)
-0.6 3.7093 (1.4552)
-0.8 4.9811 (1.9633)
-1 6.5494 (2.6018)
-1.2 8.422 (3.3727)
-1.4 10.4553 (4.2195)
-1.6 12.3429 (5.0315)
-1.8 13.6184 (5.6291)
-2 12.4561 (5.4377)

0.2
55.4104 (9.1837)
1.7232 (1.0687)
2.478 (1.4911)
3.6468 (2.0818)
4.8992 (2.7498)

55.4478 (52.3379)

8.2952 (4.7627)
10.0689 (5.2757)
11.7013 (5.5733)
12.8806 (5.8626)
12.6685 (6.3563)

13.2457 (5.4568)
19.2652 (8.5073)

13.2545 (5.4956)
19.4367 (8.6819)

0.4
nc
2.5774 (1.8105)
3.5198 (2.2741)
4.0407 (2.7672)

12.1224 (11.0923)
38.7723 (35.1774)

9.4199 (6.9322)
10.4045 (7.0633)
10.587 (6.9299)
9.4004 (5.4976)
13.6445 (7.9549)

0.6
0.3791 (0.3083)
0.5356 (0.4345)
0.9321 (0.754)
1.3634 (1.0931)
1.4801 (1.3207)
1.2035 (1.3069)
0.9992 (1.0914)
3.2173 (1.5767)
7.5021 (3.2005)
13.3984 (5.599)
19.522 (8.7784)

0.6
26.7411 (6.019)
3.4364 (2.4439)
4.6648 (3.2089)
5.8312 (4.0605)
14.9092 (12.64)

29.9265 (26.8411)
13.0092 (9.9833)
11.1341 (8.1748)

9.719 (6.9631)
8.837 (6.6854)

16.1739 (9.8614)

0.8
0.4921 (0.3912)
0.6672 (0.5251)
1.0319 (0.8708)

1.38 (1.1461)
1.6442 (1.4604)
1.3363 (1.4139)
1.2612 (1.2694)
3.3565 (1.7272)
7.4749 (3.3129)

1
0.7031 (0.501)
0.8367 (0.6663)
1.1468 (0.9374)
1.5862 (1.3061)
1.6977 (1.4215)
1.5164 (1.4935)
1.4331 (1.327)
3.4087 (1.8816)
7.8262 (3.5051)

13.7115 (5.8024)
19.6985 (9.048)

Residual errors for Method 4 in mean(SD) format, nc = no convergence.

0.8
128.5432 (15.6178)
5.3523 (3.7368)
6.1555 (4.4794)
nc
12.6745 (9.6749)
nc
17.7393 (13.4921)
nc
14.3564 (10.7096)
10.8022 (8.1776)
20.3563 (12.8011)

13.8121 (6.0262)
19.9261 (9.2825)

1
nc
6.3437 (4.433)
8.7572 (6.2686)
nc
38.743 (15.412)
nc
19.7825 (15.228)
nc
15.7847 (12.1106)
10.7765 (8.2311)
28.1754 (15.7858)
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Discussion

The comparison of the proposed technique with the line based method, shows
a very considerable improvement. The line based method fails to reach this
performance despite using a high order model. This is mainly due to the fact
the that no geometric relationship exists between the objective error and the
distortion. The ill conditioning induced by the reverse model at high distortion
levels hampers its performance further, all culminating in the tendency to lodge
in local minima and in some cases fail to converge due to singularities in the
estimation moment or co-factor matrix. The poor estimation performance
can be additionally observed in the widely varying estimates for the centre of

distortion. It is not suitable for larger distortion levels.

In comparison with the full calibration technique of Method 3, the proposed
technique shows a significant performance increase. This method used the
reverse model and hence fails to achieve comparable residual results. This
algorithm is restricted to low levels of distortion as an increase in distortion
model order would lead directly to increased sensitivity and ultimately poorer
performance. The side-by-side analysis with the full calibration technique of
Method 2, primarily indicates the proposed method achieves smaller residual
error. This may be expected as both techniques use the forward distortion
model, only to a higher order in Method 1. Despite the use of this higher
order model, no adverse consequences arise from its use such as instabilities in
the estimation problem. In fact, the comparisons on the recovered centers of
distortion show that the proposed method achieves far superior stability in its

estimation than Method 2.

The experiments conducted on simulated data clearly show that the pro-
posed algorithm outperforms the comparison techniques on an accuracy front.
Though this improvement in accuracy may be attributed to the use of an ap-
propriate distortion model, the estimation algorithm still performs equally as
well as the methods that require multiple input of data points. The simu-
lations also show that the proposed algorithm at least matches the stability
of full calibration methods, and surpasses them in many cases such as in the
estimation of the distortion centre. In summary it is shown to be suitable for
distortion levels of all kinds, with good invariance to control point location

and noise.
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Table 4.6: Real distortion samples, including the number of iterations for each
method where available, (nc) = no convergence
Sample Camera Resolution M. 1 M. 3 M. 4
1 Fuji + WL-FX9 2832 x 2128 11 11 18
2 Nikon E4500 4- FC-E8 (FL 32mm) 2272 x 1704 8 15 35
3 Kodak Megaplus -I- 6mm Computar 1312 x 1032 16 1 24
4 Nikon E4500 + FC-E8 (FL 24mm) 2272 x 1704 9 20 27
5 Nikon E4500 + FC-E8 (FL 21.5mm) 2272 x 1704 9 71 25
6 Nikon E4500 + FC-E8 (FL 17.8mm) 2272 x 1704 13 nc 24
7 Nikon E4500 + FC-E8 (FL 14.6mm) 2272 x 1704 15 nc 140

4.2.3 Comparisons on Real images

Comparisons on real data are compiled with seven different samples of distor-
tion, arranged in increasing order. Table 4.6 gives a brief description of the
camera type and image resolution of each sample. Three images were input
into the full calibration techniques of Methods 2 and 3, while the first of these
was used in the single image methods. As an example, sample number 5 from
this data set is shown in Fig. 4.9. One additional image is used for the resid-
ual distortion evaluation of all four methods. These residuals are compiled,
with one exception, by undistorting the evaluation image and estimating a
radially weighted homography (described in appendix A) on this data. The
residuals for the line based Method 4 are compiled directly by undistorting
the data. A radially weighted homography is then computed on these coor-
dinates. This avoids the addition of extra inaccuracies through the use of
an inverse approximation to undistort the image. All chessboard intersection
points are estimated from an initial guess using the nonlinear line intersection
method described in chapter 3 with a small local support in order to avoid the

introduction of distortion bias.

The number of iterations required for each method to converge are also pre-
sented in table 4.6. This shows that there is a less computational overhead
with the proposed method. It should also be noted that no optimisation is
conducted within the Gauss-Newton method (used by Method 1), unlike the
comparison methods which use a combination of a Gradient Decent and Gauss-

Newton (LM) to speed up convergence.

Firstly, each method is examined for the residual distortion remaining after
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Fig. 4.9: Sample No. 5. Three calibration images and one evaluation image

(bottom right).

Sample
1

2
3
4
5
6
7

Table 4.7: Distortion residuals on real examples (pix).

Method 1
0.3164 (0.3362)
0.4569 (0.3323)
0.2646 (0.2566)
0.5556 (0.7865)
0.8690 (0.6615)
1.8964 (1.6195)
4.6403 (3.5282)

Method 2
0.4088 (0.3402)
0.5868 (0.9809)
0.2673 (0.2650)
1.4319 (0.8993)
2.4142 (1.5129)
9.3508 (7.7634)
32.625 (26.973)

101

Method 3
10.356 (8.6270)
0.9490 (0.7739)
0.4456 (0.4318)
16.4172 (8.7168)
21.724 (11.311)

nc

nc

Method 4
0.3667 (0.3111)
11.8077 (8.0165)
0.3121 (0.3217)
3.9692 (2.7197)
0.8294 (2.0553)
2.0041 (1.6612)
5.9567 (7.3236)



Table 4.8: Comparison of Method 1 and 2 both using the same distortion

Chapter 4

model (i.e two parameter radial model) (pix).

Sample Method 1 Method 2
1 0.3734 (0.3200) 0.4088 (0.3402)
2 0.3578 (0.2839) 0.5868 (0.9809)
3 0.2629 (0.2836) 0.2673 (0.2650)
4 1.5406 (1.0859) 1.4319 (0.8993)
5 2.6919 (1.9254) 2.4142 (1.5129)
6 7.6891 (6.8891) 9.3508 (7.7634)
7 16.535 (13.799) 32.625 (26.973)

Distortion Calibration

correction. These residuals are presented in Table 4.7 in mean (SD) format,
with pixel units. This shows that the proposed method achieves a lower resid-
ual error than any of the comparison methods. Method 3 and 4 again show
slightly erratic performances. As the improvement in performance of the pro-
posed method may be attributable to the higher order model used, an extra
comparison was conducted using a two parameter distortion model in Method
1. This is the same model as used in Method 2. The results are presented
in table 4.8 for comparison with those of Method 2. These results show that
the proposed method still achieves an overall lower residual error. This comes
despite the fact that Method 2 uses three times the amount of input data
than Method 1 in these experiments. The undistorted images for Sample 5 are
shown in Fig. 4.10. A residual distortion is observable in the image undistorted

with Method 3.

The values and uncertainties of each estimated parameter is presented for
Methods 1-4 in Figs. 4.11 - 4.14 respectively. Method 4 shows as expected
large parameter values and uncertainty for larger distortion levels. Method 3,
using a two parameter version of the reverse model exhibits a similar trend,
only with a lower magnitude. Method 2, using a two parameter version of the
forward model, shows bounded values. Method 1 also shows bounded param-
eter magnitudes with small error bands. This confirms the results obtained on
simulated data, and indicates the suitability of a high order forward model for

distortion calibration.

The estimates of the distortion centre for each method are presented in table

4.9. These show that Method 1 recovers the centre point very close to that
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(@) Method 1

(b) Method 2

(c) Method 3

Fig. 4.10: Corrected evaluation image of Sample No. 5.
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Method 1

Sample Number

Fig. 4.11: Method 1 parameters with scaled 95 % uncertainty bound. kAwas

included to illustrate its bounded magnitude.
Method 2

Sample Number

Fig. 4.12: Method 2 parameters.
q Method 3

Fig. 4.13: Method 3 parameters with scaled 95 % uncertainty bound.
o} Method 4

Sample Number

Fig. 4.14: Method 4 parameters sca’e(l 95 % uncertainty bound.
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Table 4.9: Centre point estimates form each method (pix)

Sample Method 1 Method 2 Method 3 Method 4
X 1374.7 (1.41) 1382.0 1378.2 (0.72) 1360.8 (3.21)
' 1063.2 (1.01) 1062.5 1052.3 (1.18) 1065.3 (0.62)
. 1100.2 (0.70)  1107.6  1117.5 (0.91) 693.1 (25.1)
y 887.8 (0.50) 890.3 883.0 (0.89)  910.8 (1.39)

o 618.3 (1.52) 618.2 615.6 (0.23) 617.3 (0.493)
501.0 (0.58) 501.8 502.6 (0.22)  503.1 (0.23)

. 1113.3 (0.43) 11157  1148.4 (2.75) 1193.3 (9.06)
879.7 (0.31) 881.8 864.8 (3.29)  883.4 (0.48)

1114.3 (0.41) 11154  1101.6 (3.45) 1117.4 (5.39)

° 878.1 (0.29) 878.2 852.8 (4.27)  878.5 (0.28)
fi 1117.6 (0.37) 1134.3 ne 1129.7 (3.75)
873.2 (0.26) 870.1 ne 871.4 (0.28)

L7 1120.3 (0.34) 1093.4 ne 1123.5 (1.81)
y 873.1 (0.26) 861.4 ne 873.2 (0.21)

of the full calibration Method 2. This indicates a close relationship between
the centre point of distortion and the principal point (as recovered by Method
2). This relationship is examined further in Section 4.4.1. Method 3 recovers
a similar principal point except in the samples where the distortion is poorly
modelled, e.g. sample no. 5. Method 4 shows much more volatile centre point
estimation, caused by the instability that afflicts this method. On the contrary,
Method 1, also employing only one input image, consistently recovers a robust
distortion centre, as demonstrated by the small uncertainties associated with

these estimates.

Discussion

Following the results obtained with simulated data, the experiments with real
images aim to confirm these findings. In this sense Method 4 is again shown to
have erratic accuracy and a tendency for high uncertainty in its parameters. In
comparison, Method 1 significantly improves upon the performance of Method
3, from a distortion removal point of view. As in the simulated case there
is also a clear improvement in the accuracy of Method 1 in comparison with

Method 2.
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It was slightly unclear if the proposed algorithm would match the performance
of Method 2 using a lower order distortion model. This was investigated with
the comparison of both methods using the same distortion model. It revealed
that on average Method 1 achieved a slightly lower distortion residual. This
indicates the robustness of the proposed approach, considering that Method
2 uses, in this case, three times the amount of input data. The centre point
is reliably estimated, with very similar locations to that of the full calibration
techniques that require more than one image for its recovery. However, this is
not the case for the line based Method 4, which shows unreliable centre point

estimates.

In conclusion, the experiments with real and simulated data clearly demon-
strate that the proposed method outperforms all comparison methods in terms
of accuracy in calibrating and removing distortion. This level of accuracy is
achieved while using less input data, requiring only one view. The parameter
estimates are shown to be reliable, and lend themselves to a well conditioned
problem. Additionally, the real experiments show that there is less computa-
tional overhead than the comparison methods. These factors in combination
with the more accessible closed form solution, appropriate distortion modelling
and unique minimisation of pixel distortions in resampling, make this method
a highly suitable non-metric method for removing lens distortion of all levels

in perspective cameras.

4.2.4 Low distortion lenses

As seen in the experiments with simulated data, the accuracy of the proposed
algorithm is weakest for very low distortion levels with noisy control points.
The performance of the algorithm is now evaluated with a selection of large
focal length lenses to assess both the levels of distortion in these lenses and

the behaviour of the proposed technique in such circumstances.

The unknown affine transform A may be equated with the scaled internal cam-
era parameter matrix (assuming zero skew), where a minimum of two views
are required to solve for three unknowns (Zhang, 1998). It is important there-
fore to highlight that these parameters are solely dependent on the distortion
present in the image, where t is the apparent centre of distortion and bears

no direct relationship with the principal point. Any frame grabber stretching
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Table 4.10: Low distortion lens details. All are C-Mount lenses and are at-

tached to a Kodak MegaPlus digital camera.

Sample ID Make Focal Length Distortion

a Cosmicar 25mm Pincushion
b Computar 25mm Barrel
c Computar 50mm Pincushion
d Computar 50mm Barrel
e Computar  55mm Tele Pincushion

of the x o1 y coordinate pixels, or non-square pixels are accounted for by the

variable s.

Five lenses are tested for, with a typical distortion of less than one pixel. These
lenses are described in table 4.10 with the accompanying type of distortion.
They are all C-Mount lenses and are attached in turn to a Kodak MegaPlus
digital camera. Due to the mounting, it is unlikely that the centre of distortion
resides near the centre of the image array. Each image is calibrated using the
proposed method, with a three parameter model for distortion. The distortion
residuals before and after calibration are presented in table 4.11. This shows
that there is an appreciable reduction in lens nonlinearities following calibra-
tion. A selection of the distortion residuals before and after calibration are
shown in Figs. 4.15 and 4.16. These results show that the proposed technique

does indeed correctly converge to model distortion, even to very small levels.

The estimated variance in the recovered distortion centers are presented in
table 4.12. As expected due to the very low distortion levels, its location has
an associated increase in uncertainty. However, overall these levels are low in
relation to the image size (1312 x 1032).
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Fig. 4.15: Left column: Sample a.
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Right column Sample b. Both are 25 mm

lenses. Sample a contains pincushion distortion, while sample b contains barrel

distortion. Black dot represents the estimated distortion centre.

fields of distortion are scaled x50.
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Fig. 4.16: Left column: Sample c. Right column Sample d. Both are 50 mm
lenses. Sample ¢ contains pincushion distortion, while sample d contains barrel
distortion. Black dot represents the estimated distortion centre. The vector

fields of distortion are scaled x50.
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Table 4.11: Residuals before and after calibration for low distortion samples

(pix) -
Sample Before Calibration After Calibration
Mean SD Mean SD
a 1.0577 0.9685 0.0823  0.0712
b 1.1208 1.0975 0.0837  0.0742
c 0.4358 0.3898 0.0819  0.0711

d 0.8715 0.8313 0.0814  0.0707
e 0.6099 0.6252 0.0786  0.0698

Table 4.12: Estimated centre point uncertainties (SD) (pix)

Coordinate a b c d e
X 47062 6.2169 11.1108 7.7288 6.6478
y 3.6325 5.1892 15.0059 6.0099 5.9465

The proposed algorithm is based on the premise that at least some level of
distortion is present in an image. This is generally easily satisfied using normal
general purpose lenses. The behaviour of the technique with very low distortion
lenses is thus investigated to determine its stability under such conditions. It
is shown for a selection of low distortion lenses, roughly in the sub-pixel range,
the algorithm successfully models the distortion which in turn improves the

linearity of the image following distortion compensation.

4.3 Dependence on control points

The proposed algorithm is based on some assumptions on the geometry of
the calibration target and the reliable detection of this target in an image.
This section investigates these constraints, to assess the impact of their non

compliance on the calibration and removal of distortion in images.

The issue of bias free control point detection in an image has largely been
addressed in Chapter 3, while the robustness of the proposed distortion cali-
bration to random error in pixel coordinates has been investigated in Section
4.2.2. This section now examines the necessary quantity of control points re-
qguired for successful calibration. It is subsequently shown that this quantity

is directly related to a multi-image input variation of the proposed algorithm.
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The constraints on the calibration target are that of planarity and precision in
the chessboard pattern. For general usage, the calibration pattern might only
be manufacturable to a specific precision, using (for example) a laser printer,
which can result in the introduction of errors. The dependence of the calibra-
tion technique on these errors is investigated. It is also possible that in general
usage, the pattern may not be exactly planar. This results in a systematic type
error, for which the errors resulting from the proposed technique are quanti-
fied. Finally, the mis-calibration resulting from bias inducing patterns such as

circular type features is highlighted.

4.3.1 Number of control points required

In Section 4.1.1 it was shown that a minimum of m control points are required
to solve the system of equations, where m = ceil(n$/2) and n<>is the length of
the parameter vector. For the basic radial distortion model with two parame-
ters at total of eight control points are required, where each control point yields
two constraints. According to the principal of Maximum-Likelihood there is
an exponential relationship between the convergence to the true solution and
the quantity of calibration data, assuming normally distributed data errors.
The aim now is to outline the number of control points required to converge
sufficiently close to the optimum solution, under varying noise conditions. It
has previously been shown in Section 4.2.2 that the algorithm is sufficiently

invariant to the location of these control points.

This investigation is primarily conducted with simulated data, where lens dis-
tortion is simulated as in Section 4.2.2. The number of control points n are
varied from 8 up to 500. Their locations are chosen from a uniform random
distribution covering the entire image window, while the residuals are compiled
over 100 independent trials of these locations. The residuals are computed with
the usual regular grid covering the image window. Only samples where the
algorithm has converged are included, the majority of these non-convergence
situations naturally occurring with low numbers of control points. As shown in
Section 3.3.5 the expected control point noise is less than a = 0.15 (pix) with a
normal distribution. The control points are thus corrupted with normal noise
with excessive standard deviations of cr = 0.15, 0.3 and 0.5 pixels to estimate

a worst case senecio.
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Fig. 4.17 shows the error convergence with increasing number of control points
for three levels of distortion. In all these examples, there is a rapid increase in
performance up to 100 control points, at which point the error begins to level
off. From 200 onwards the improvement in error is negligible. The level of
distortion primarily effects the final error level, but does not drastically alter
the convergence shape. The increase in noise levels naturally slows the rate of
convergence, but again becomes insignificant after 200 control points. In this
light, the calibration pattern used in this work yields 247 control points which
in conjunction with noise levels lower than a = 0.15, provides ample data for

correct convergence.

Multiple Input Images

An alternate means of increasing the quantity of data, without increasing the
density of control points on the calibration pattern, is to use multiple input
images. Considering g images with n control points each, the objective error
function of equation 4.4 can be modified as:

q n

min V]V 'eij(c ,<j)2 with
=i i=i (4.19)

enj(cjj, ")) + T)(HejCij, k) Acyj,

where for every additional image, the dimensions of the parameter space in-
creases by eight. A solution to avoid this increase was sought by finding the
relationship between the entries in He with Hd and the distortion function.
However, an analytical solution was not found, nor practical, due to the poor

estimation of Hd-

The effective equivalence of using fewer control points on multiple images, and
the use of single images of higher point density, is demonstrated by experiments
on real images. Seven input images, each with 35 control points 3are compared
to the performance of one planar view (image number 1 of 7) with the full
complement of 247 control points. For evaluation purposes the noise in the
detected control points (maximum expected SD= 0.15) is amplified by adding
Gaussian noise of SD= 0.55 pixels. The residual errors are measured with a

separate image using the full complement of 247 control points and the usual

3The subset of 35 control points are taken from the 19 x 13 chessboard pattern by taking
every third point.
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Fig. 4.17: Convergence properties of proposed algorithm with respect to the

number of control points.
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Number of input images

Fig. 4.18: Errors for multiple input images with 35 control points per image,
including standard deviation error bands (red trace). Noise was synthetically-
added to real point coordinates to amplify the errors for comparison. The
green reference line shows the mean error from a single input image with 247
control points with noise added. The black reference line represents the noise

free solution error.

weighted homography approximation (Appendix A). Fig. 4.18 shows the drop
in error (Red trace) and SD as the point count and image number increases.
Upon reaching 245 control points (from 7 images) the error converges to the
single image level (Green line), evaluated with 247 points. Due to the amplified
noise content, this level is slightly larger than the solution obtained without
the additional noise (Black line). This examination demonstrates that the
addition of extra input images gives an equivalent performance to a similar
increase in the quantity of control points in a single view, save for the enlarged

parameter space dimensions.
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4.3.2 Errors in calibration target

In the above sections, and in chapter 3, it is assumed that the calibration
pattern is both perfectly planar, with a very high spatial accuracy for the
chessboard intersections. The calibration model is then simply specified up to
scale as an equally spaced matrix of points. To best satisfy these requirements a
chessboard pattern is manufactured using an high precision xy table originally
designed for PCB board manufacture. Black and white layers are formed
with a very thin black vinyl sheet attached to a sheet (1.5mm) of white PVC.
Using a knife attachment with the xy table, a series of horizontal and vertical
slits are made on the black vinyl. The contrast pattern is formed by removing
alternative squares of the black vinyl to reveal the white PV C backing. Finally,
the PVC sheet is adhered to a glass backing plate to ensure planarity. For

evaluation purposes, such high precision is necessary,

For general usage however, it is significantly easier to use a conventional printer
to print the chessboard pattern, and fix it to a wall or table. Most printers have
a habit of not sucking the paper in perfectly straight or at exactly the same
velocity (worn roller slippage, friction resistance), resulting in non co-linearity
of the chessboard rows and columns. Considering these errors as random
deviations from the assumed model, knowledge of the expected performance
of the algorithm in such circumstances is useful. Although sheet glass is cheap
and readily available, it is useful to assess the performance of the algorithm
where the planarity constraint is not fully met. This is examined for a slightly

cylindrical calibration target.

Random noise in calibration pattern

This experiment is carried out using real data. Model imprecision is simulated
by adding zero mean Gaussian noise with standard deviation ranging from
0.01 to 1mm. The size of the each calibration square is 14 x 14 mm so this
signifies a considerable error. For each noise level 100 trials were conducted,
and the average and SD values for the radial distortion parameters are com-
puted. These variations are shown in Fig. 4.19. Naturally, the variation of
the distortion parameters increases with increasing noise. The corresponding
mean Euclidean and SD errors are shown in Fig. 4.20. These results show

that there is roughly a one-to-one transfer in error. Note that it is possible
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to improve the performance if considerable random errors are expected in the
calibration target, using a Total Least Square (TLS), or Error in Variables

(EIV) technique such as Lavest et al. (1998).

Systematic errors in calibration pattern

Non-planarity of the calibration target is now considered. Since the calibration
target is a sheet, e.g. printed on a sheet of hard paper, it has a natural tendency
to bend along either its horizontal or vertical axis, giving rise to a cylindrical
type shape. It is unusual to encounter significant bending in both directions
as this causes the material to kink. A cylindrical shape can be simulated by
displacing the z coordinate of the calibration model as w = (x,y, 1+ px2)T,
where p dictates the degree of bending. The extent to which this displacement
is picked up by the camera depends on its distance from the target and the focal
length, e.g. a camera very far away with a large focal length may be considered
as having parallel projection where the z displacements are invisible, while
the opposite situation is encountered with a fish-eye lens. This experiment
is conducted as before with a wide angle lens at approximately 200mm from
the 250 x 170 mm calibration chart and a pixel resolution of 2830 x 2128.
The cylindrical distortion observed for varying levels of p is then used in the
distortion calibration. Fig. 4.21 shows the induced error from this bending,
measured as the maximum deviation from the planar position. Roughly, a
one-to-one proportional increase in error is again observed. Bending in excess
of Imm is generally visible to the eye, and may be alleviated by the user. The
planarity induced errors in lower focal length lenses will be lower than this

level.
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Noise variance in model points (mm)

Noise variance in model points (mm)

Noise variance in model points (mm)

Fig. 4.19: The estimated parameter mean (Red trace) and SD bounds for

random noise in the calibration target.
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Noise variance in model points (mm)

Fig. 4.20: The mean Euclidean and SD errors for increasing noise in the cali-

bration pattern points.
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Fig. 4.21: The mean Euclidean errors for increasing cylindrical bending of the

calibration chart.
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Sample No.

Fig. 4.22: The mean and SD errors resulting from the calibration of distortion
with multiple samples of a laser printed pattern. This is compared to the mean

level(0.42 pix) achieved using the precisely manufactured pattern (green line).

Low accuracy printed patterns

As a high quality calibration pattern is not always available, it is useful to
investigate how well the calibration can be achieved using a pattern printed
on an A4 sheet using a standard office laser printer4. To this end, the distor-
tion calibration for 33 separate printed patterns is compared to that obtained
with the high accuracy pattern. The relative positions of the camera is fixed
throughout. A Fiji FinePix 6900 is used with a wide angle lens (displaying
mild distortion) and a pixel resolution of 2832 x 2128. The intersections of
the chessboards are extracted using the saddle point refinement method. This
data is then used in the calibration routine, from which the residuals are com-
piled using the radially weighted homography. The results are shown in Fig.
4.22 in comparison with the mean error obtained using the high accuracy pat-
tern. It can be seen that an average error of over 2.1 pixels is incurred if low
quality printed patterns are used. Although these results are linked to the
particular camera and indeed laser printer used, it gives a strong indication of

the expected calibration accuracy for printed patterns.

4L aser printer in this experiment is HP LaserJet 6mp, feeding standard 80 g/ M2 paper.
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Fig. 4.23: Input image used to compare distortion calibration with circular

control points and square intersection control points.

4.3.3 Biasing influence of circular calibration patterns

The calibration of distortion with circular control points is compared with
that of square chesshoard type control points to quantify the influence distor-
tion bias has on the removal of lens distortion. The hybrid pattern is again
used as shown in Fig. 4.23, from which the centroids and chessboard inter-
sections are extracted. Following calibration, the estimated parameters are
used to correct an image of the standard chessboard pattern. These points
are then approximated using a radially weighted homography, from which the
residual distortion is estimated. These residuals are shown in Fig. 4.24 for
circular correction, and in Fig. 4.25 for the square correction. These vec-
tor plots clearly show the underestimation of radial distortion using circular
control points. The mean and standard deviation of the circular and square
residuals are 0.8939(0.6993) and 0.3996(0.3101) respectively. The estimated
parameters for radial distortion are kc = (—0.5773,0.4463, —0.1941)T and
ks = (—0.5808,0.4491 —0.1937)T for circular and square type control points

respectively.
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Fig. 4.24: Residual distortion following correction with parameters estimated

using circular control points of Fig. 4.23
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Fig. 4.25: Residual distortion following correction with parameters estimated
using square intersection control points of Fig. 4.23.
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4.3.4 Discussion

This section investigates, among other things, the degree to which the as-
sumptions on the geometry of the calibration chart must be satisfied. These
assumptions relate to the planarity of the calibration target and known rela-
tive 2D coordinates of the pattern up to an arbitrary scale. Errors in these
2D locations are simulated by adding random noise of varying degrees. The
results, evaluated on a high resolution sensor, indicate that there is roughly a
direct transfer from these errors, in millimeters, to distortion errors in pixels.
Systematic errors such as non-planarity are investigated, with the results indi-
cating that the algorithm performs similarly to the pattern imprécisions, with
Imm bending inducing a little less than a mean 1 pixel error. Lastly, the mis-
calibration of distortion from circular control points corrupted with distortion
bias is investigated. This demonstrates for the example considered, that there
is a considerable induced error compared with the square based control point
calibration. In the light of other error sources, it equates to roughly 1mm
bending or 1mm of imprecision in the control pattern. Such a pattern would

represent a fairly poorly manufactured calibration target.

Additionally, this section also demonstrates that there is no advantage gained
by using multiple images for distortion calibration over single image calibra-
tion, assuming roughly equal numbers of control points in each data set. A
sufficient data set size has been identified as containing roughly 200 or more
control points, considering normal levels of noise. Thus, single view calibration
with a sufficiently sized data set, and accurate bias free detection, will lead to

optimal distortion calibration.

In summary, the following observations can be made regarding the practical

implementation of this algorithm:

e To reach an optimal estimation for distortion, the minimum number of
control points required is roughly in the region of 200. This is largely
independent of the level of distortion, and does not assume very precisely

detected control points, (up to the region of SD=0.5 pixels).

« Multiple images may be used to generate extra control points but they

offer no further advantages.
* The requirements for precision in the 2D pattern and its planarity are
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roughly equal, with an approximate one-to-one transfer between millime-

ter inaccuracies and pixel errors.

e Circular control points, susceptible to distortion bias, lead to a significant

underestimation for distortion, equivalent to a very poorly manufactured
chart.

4.4 Decentering Distortion

Thus far all experimentation was carried out using a model that excludes
decentering distortion. This facilitated the side by side comparison with alter-
native methods that in the majority do not consider its inclusion. Also, since
radial distortion is clearly the dominant distortion type, the performance of

the algorithm was investigated with respect to it only.

The remaining residuals following the inclusion of decentering distortion model,
as presented in Section 2.1, into the distortion calibration equations are now
investigated. The comparisons are made on real lenses (a selection of those
in Section 4.2.3, table 4.6) and compared with the performance of the decen-
tering free models in Section 4.2.3. These results are presented in table 4.13,
showing that, surprisingly, there is no overall improvement in the residuals. In-
vestigating this further for a low cost lens that is known to contain misaligned
elements, i.e. sample 3, the residual vector fields after calibration with and
without decentering are shown in Fig. 4.26. This shows that vector field in-
cluding decentering distortion displays a larger decentering type residual field
than the vector field that does not consider its modelling. These results at

first glance are at odds with the expected behaviour.

An investigation of the decentering parameter values pi and reveals that
they have large associated uncertainties, in some cases the uncertainty is
greater than the actual value. The values and uncertainties are presented
in table 4.14 for the samples considered. The main assumption for calibrating
distortion is that the functional model correctly models the real distortion ef-
fects. Since the addition of decentering distortion does not serve to reduce the
residuals, it may be assumed that the decentering distortion is either not there
or has been accounted for by a combination of other parameters. Considering

that modern lenses are mass produced, cheap and of small format, it is unlikely
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VN ftte*e*e 1\

Fig. 4.26: Residuals for sample number 3. Images show uncorrected and cor-
rected images. Left vector plot depicts the residuals following distortion re-
moval without the explicit consideration of decentering distortion. Right vector
plot show the residuals remaining following calibration with the inclusion of

decentering distortion.
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Table 4.13: Comparison of remaining distortion residuals following calibra-
tion with and without the explicit inclusion of decentering distortion models.

Residuals without decentering are taken direct y from table 4.7.
Sample no. Without decentering W ith decentering

1 0.3164 (0.3362) 0.3264 (0.3225)
2 0.4569 (0.3323) 0.4158 (0.3636)
3 0.2646 (0.2566) 0.3194 (0.2921)
4 0.5556 (0.7865) 0.5029 (0.4886)
5 0.8690 (0.6615) 0.8795 (0.6602)

Table 4.14: Decentering parameter values and associated uncertainties for re-
sults on real images.
Sample px x10-4 SD pi xl0-4 p2 xl0-4 SD p2 xl0O"4

1 -4.1567 1.4226 7.3960 1.8937
2 1.0257 2.1559 8.8403 3.7863
3 -31.1631 1.2181 3.6948 1.2933
4 11.6121 1.1331 -10.124 2.1927
5 0.3762 1.2660 5.4786 1.7113

that decentering distortion is not a factor. Therefore, this distortion must be

accounted for by some combination of the other parameters.

It is very useful to look at the correlations between the estimated parame-

ters. These correlations may be obtained directly from the covariance matrix

resulting from the iterated estimation procedure upon convergence. Again

considering the Fisher information matrix in equation 4.17, an approximate
correlation coefficient between the zth and /cth parameters is given by:

(F-1)*

(F-i)f(F

where 1< cift< L (4.20)

Decentering distortion is historically linked with the estimation of the princi-
pal point or the intersection of the optical axis with the image surface. The
correlation coefficients also indicate a strong link between these parameters.
The correlation between the decentering parameters and the centre point for a
typical example, i.e. sample 3, are p\ ~ 0.8379 ~ cx and p»o~ 0.9536 ~ Cy. In-
deed it has been shown by Stein (1993) that a variable principal point induces

decentering like elements through the standard radial distortion model.

Considering that the error homography He may, at least, introduce a variable
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centre point by the simple adjustment of h3 —=h3+ Ax and h6 —/i6 + Ay,

resulting in the following:

Result 5. >l translation of the undistorted points induces decentering distor-

tion and a small residual through the radial distortion functional:

p(p+A,k) =p(p,k)+ I k\fx(3x2+ §/2;+ ZkéAV’_y oo ]+e
\2KiAxxy + k2Ay(3y + X )H y

Proo/. Considering the formulation of distortion as P (H ec, k) = P(p, k), and
introducing a pure translation into Heresults in the shifting: x —»x + Ax and

y —y + Ay. The two parameter radial distortion model then becomes:

BXx(p + A, k) =kxxr2+ k2xrd+ fdA x(3x2+ y2) + 2kxA yxy+
k2A X (5x4 + 6x2y2 + 24) + [2A2(4x3y + 4xy3)+
h ((3A2+ A2)x + 2AXAyy + AXAQ+ A*) +
k2 (BAX+ 6A2A2+ Al)x + (4ANAY + 4AXAR)y +
AX+ 2AXAY + AXAg+ ...)

and similarly for the y component of the distortion equation. Radial distortion
is modelled as before, while fciAx, fciAy, k2A x and k2Ay exactly match the de-
centering terms derived from the wave aberration equation 2.2 in Section 2.1.
The basic introduction of a translation element into He thus models decen-
tering distortion with the additional introduction of a small residual E. This
residual may additionally be approximated by a small affine transformation
E = A Hp. O

Therefore the objective error e may be re-written, implicitly modelling decen-

tering distortion as:
e(c,$) = Hec+ P(Hec,k) + AHHec - Ac (4.21)

In the least square estimation, the small decentering residual A HHec is ab-
sorbed by a combination of He and A in the search for a global minimum.
It should also be remembered that these equations are only approximations
to the actual lens distortion, so such small adjustments are likely to have a

negligible impact.

The effectiveness of this formulation in modelling decentering distortion is

demonstrated by simulating radial and decentering distortion, and using this
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data for calibration with the proposed method. Recalling from Section 2.1,
that decentering parameters must be considered in conjunction with the radial
distortion parameters, ie. px = kiAx and p2 = kiAy. Thus to increase the
effects of decentering a relatively low radial distortion level is chosen at k\ =
—0.1. The radial distortion level is set relatively low in order to induce the
effect of larger decentering distortion. The decentering parameters are varied
within the range p\ = p2 = —0.01 —0.01. Considering a normal 10mm square
CCD element, this equates to an maximum misalignment of an individual lens
element by 1mm which is fairly significant, for example, a small C-Mount lens
may have an entire lens diameter of 20mm. Following calibration, the residuals
are measured as before with a radially weighted homography and are shown
in Fig. 4.27. This shows that there is a small pixel residual over the entire
range of simulated decentering levels. When considered with respect to the
the typical noise in the detected pixels if a = 0.15 (pix) this residual becomes
insignificant. Fig. 4.28 shows the decentering residuals when control point

detection noise is included.

The advantage of using a perspective transform to model decentering distor-
tion through the normal radial distortion equations is now investigated. A
comparison is made with the formulation given by Stein (1993), which uses
only a variable centre point for modelling decentering distortion. In this solu-
tion the reverse distortion model is used, which may be used in the following

objective error to calibrate distortion:
e(c,$) =c+D(p+ A k)- Hec (4.22)

Using the same simulation data as in Fig. 4.27, the residuals resulting from this
formulation are measured. These are shown in Fig. 4.29, demonstrating that
this method is much less effective at modelling decentering distortion compared
to the proposed one, which utilises a perspective transform. Significantly, the

errors are much greater than the typical control point noise.
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Fig. 4.27: The decentering residuals following calibration with the proposed
method. Original data is simulated with radial and decentering distortion.
The calibration model is radial only. The residual distortion (pix) is shown for

the estimate.

Fig. 4.28: The decentering residuals following calibration with the proposed
method. Typical control point detection noise is added to the simulated radial
and decentering data. Following calibration the small decentering distortion

residual in Fig. 4.27 is negligible in comparison.
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Fig. 4.29: The decentering residuals following calibration with the method pro-
posed by Stein (1993), where decentering is approximated solely by a variable

centre point.

4.4.1 Distortion centre and the principal point

It has been proposed, for example in Ahmed and Farag (2001), that the inclu-
sion of decentering distortion parameters will compensate for an error in the
centre point. This idea may be used to fix the centre point, say at the image
centre, thus removing the necessity to estimate it. This idea has been shown
to be flawed by Clarke et al. (1998) through simple experiments. It is slightly
curious why, if a variable centre point accounts for decentering distortion to a
high degree, does decentering distortion not properly compensate for a fixed

centre point?

Considering the objective error € with a fixed centre point that is displaced
from the true centre point by A = (AXx,Ay)T the objective function can be

written as:
e(c+ A, *) =Hec+ A + VR{Hec + A, k) - Ac - A,

where V R(.) refers to the radial distortion component. The decentering com-
ponent is likewise concisely referred to as Decentering distortion is

explicitly added to compensate for the the miscalculation of the radial distor-
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tion at the incorrect centre point as:
e(c+ A, $) = Hec + £5*(Hec + A, k) - P~M(Hec + A, k) - Ac.
Using Result 5 this gives:
e(c+ A, *) « Hec+ P*(Hec, k) + PD(Hec, k) - PD(Hec + A, k) - Ac.

Clearly, the decentering distortion terms do not properly cancel each other,
with one being evaluated at a different location. Thus with an increase in
the centre point error A, there is a corresponding rise in the modelling error.
This trend is shown in experiments with real images. The centre point is fixed
at various intervals with a £40 pixel distance from the true location on an
image size of 1312 x 1032 pixels. The calibration is then carried out with
this fixed centre point with and without the inclusion of decentering terms.
Fig. 4.30 shows the distortion residual resulting from the calibration without
decentering elements. A larger error is accumulated due to the mis-calibration
of radial distortion about an incorrect centre. The residuals resulting from the
calibration with decentering terms are shown in Fig. 4.31 showing a decrease
in error. However, the remaining residual is unacceptable, except for very
small displacements of the centre point. In reality, such accurate placement is

not possible.

To assess the likely magnitude of decentering distortion in some of the lenses
used, the distortion centre point is compared with the estimated principal
point, computed using the method proposed in Sturm and Maybank (1999).
A maximum of nine images of the calibration pattern are taken from differ-
ent locations, from which the principal point is estimated incrementally, for
example, for image number five, five homographies are input in the internal
calibration algorithm and so on. The centre point is estimated independently
for each sample, with the proposed method. The results are shown in Fig.
4.32. For the integral Fuji lens, the x coordinate overall assumes slightly lower
values, indicating that there is a slight negative x directional decentering dis-
tortion or a negative p\ parameter. This corresponds with the approximations
in table 4.14. For the integral Nikon lens, there is also a negative x directional
distortion and a very slight negative y element. Finally, for the 6mm lens that
was known to have decentering elements, a large negative x or px direction
value is observed, with relatively constant distortion in the y or p2 direction.

This is again in good agreement with the estimates in table 4.14.
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Fig. 4.30: Residual distortion errors following calibration without the ex-
plicit inclusion of decentering distortion. The ideal centre point is located

at (1116,878) with +40 pixel displacement of the centre point.

Fig. 4.31: Residual distortion error following calibration with a fixed centre
point and the inclusion of decentering terms to help compensate for the centre

point errors.
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(@) Fuji (Sample no. 1)

(b) Nikon (Sample no. 2)

(c) Kodak (Sample no. 3)

Fig. 4.32: Comparison between principal point and distortion centers.
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In summary, the proposed method of calibrating lens distortion implicitly in-
cludes decentering distortion. It is effectively calibrated by the LS process,
through the use of projectively adjusted points in the standard radial distor-
tion equations. This explains why the addition of decentering distortion did
not improve the distortion residuals, with the redundant parameters reflected
in the high correlations. Also, it clarifies the reason why the centre point is
likely to be indeterminable if decentering distortion elements are explicitly in-
cluded as reported in (Brown, 1971). From the simulated results it has been
shown that the proposed method models decentering to a higher accuracy than
the previous approximation in Stein (1993). Crucially, this precision is better

than the typical noise in the detected control points.

The relationship between the distortion centre, and decentering distortion is
examined further. It is shown theoretically and experimentally that the in-
clusion of decentering distortion parameters does not compensate for a fixed
and erroneous centre point. An extra illustration of the modelling of decen-
tering distortion by a variable centre point is given by comparing it with the
estimated principal point using an alternative method. This shows that the
integral lenses on the digital cameras used show relatively little decentering
distortion. The magnitude of decentering distortion in a low cost 6mm lens is
demonstrated by the large shift in the distortion centre in comparison to the

principal point.

4.5 Focusing variation of distortion

So far this study has been dealing with entirely fixed lenses. Most basic lenses
allow the facility to alter the focusing distance and the aperture opening. The
focusing is implemented by a relative movement between the lens elements
and/or the sensor. It is known that changing the focusing distance will impact
on the distortion content. This section aims to identify the nature and magni-
tude of the distortion variation resulting from the variable focusing distance.

The influence of the aperture variation of the lens is also examined.

It is known from Brown (1971) that there is a variation of distortion with

object focusing distance. Considering s as the distance of a focusing plane,
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the distortion variation at another distance s' may be interpolated with:
Z>(p,k)ss = lls’hr3+ 7t'h r 5+ 76sfc3r7 + eee | (4.23)

where 73S = with / as the focal length of the lens. By calibrating dis-
tortion for at least two different focus settings, the distortion at other locations

may be approximated using equation 4.23

The variation of distortion is investigated with three different lenses, a 6mm
Computar and a Fuji 6.8mm lens that were used before and described in table
4.6, and a Nikon 7.85mm lens. From Chapter 3 it has been shown that the
edge based intersection method is quite invariant to blurring. This allows the
extraction of control points at a number of different focusing distances, while
the calibration pattern distance remains fixed. These control points are then
used in the calibration routine. Unfortunately, it is not possible to get a mean-
ingful measure of the focusing distance. The Fuji camera allows the manual
manipulation of the focusing distance, which was stepped through with equal
spacing from far to near. The Nikon camera uses a motorized focusing adjust-
ment, though the individual step increments are not available. It is stepped
from near to far. Finally, the 6mm lens uses a screw adjustment, which was
again varied linearly from near to far. The distortion parameter variations over
the focusing samples are presented in Fig. 4.33. This shows that distortion
parameters for the far to near focus variations follow a form similar to equation
4.23, where the negative k\ and /c3 parameters becomes more negative while
the positive /2 parameter increases, and the opposite for the near to far exam-
ples. The Fuji example increases most for the final sample, indicating that the
dial and the focusing distance are not that linearly connected. Excluding the
fourth sample, the Nikon camera distortion variation shows a smooth variation
in parameters. The 6mm lens displays the greatest magnitude in parameter
variation while also showing a steady parameter variation. These variations in

parameters are now examined in pixel terms throughout the image.

To quantify the actual pixel manifestation of these variations, the first and
last focusing positions for each camera are compared. The vector fields in
Fig. 4.34 show these variations throughout the image field. The Fuji example
shows a radial field, with a slight decentering influence. The Nikon field is
predominantly radial, while the 6mm lens exhibits a considerable decentering
element. This x direction decentering content has previously been identified

as shown in Fig. 4.32.
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Focus Sample

(a) Fuji 6.2mm

Focus Sample

(b) Nikon 7.8mm

Focus Sample

(c) Computar 6mm)

Fig. 4.33: Variation of distortion parameters with focus position.
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Mean = 1.4 SD = 1.284

(a) Fuji 6.2mm

Mean = 0.735 SD =0.5891

(b) Nikon 7.8mm

Mean = 1.05 SD =0.9243

() Computar 6mm)

Fig. 4.34: Vector plot showing the variation of distortion between the first

position and last focus positions. Residual scale is xIOO throughout.
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4.5.1 Aperture variation of distortion

In Section 2.1, it was assumed that the aperture plane was fixed. Most lenses
allow the aperture to be varied, controlling the amount of light entering the
lens. With an increasingly open aperture, there is direct increase in the light
rays intersecting the CCD array. Altering this quantity will thus theoretically
affect the distortion content as these rays traverse different portions of the
lens. To what extent this happens is unclear however. Thus, this subsection

experimentally investigates the actual variation of lens distortion with aperture
setting.

The same cameras and lenses that were utilised in Section 4.5 are again em-
ployed. On this occasion the lens focal lengths and the camera positions were
fixed, while the aperture was varied manually. The digital cameras allow the
F-stops to be changed, but no such quantities are generally marked for low
cost C-Mount lenses. Thus, the exposure time was used as a base for com-
parison, taken from the EXIF tags for the digital camera images, and from
the acquisition software for the C-Mount lens images. The distortion is again
calibrated using the proposed method, including two distortion parameters for

simplicity in the presentation of results.

Fig. 4.35 traces the variation of the distortion parameters for the three dif-
ferent lenses as the aperture is altered. Clearly, there is an aperture related
variation in the image distortion. The Fuji and Nikon lens distortions increase
steadily and slightly trail off toward the closed aperture position. The C-
Mount lens distortion rapidly increased up to 50 ms exposure time, and then
settles off. The variations are lower than that encountered for the variable
focus experiments. In terms of the pixel manifestation of these differences, the
maximum distortion variations are chosen for comparison in Fig. 4.36. This
worst case scenario shows that the aperture variation in pixel terms is less
than the focus variation differences. Indeed for the Nikon lens, the difference
in the distortion profiles is close to the normal observed control point noise,
effectively rendering it insignificant. Again the larger distortion lens displays

a greater tendency for aperture influenced distortion variance.

In summary, the focusing distance alters the lens distortion profile. As an
example, a high resolution image showed a mean pixel difference of 1.4 over

the considered focusing range. However, since the focusing distance or indeed
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Fuji Lens

Nikon Lens

Computar Lens

Fig. 4.35: Variation of distortion parameters with aperture position, described

in terms of exposure time.
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Fig. 4.36: Vector plot showing the variation of distortion between the maxi-
mum parameter variations over the range of aperture positions. Residual scale

is x 100 throughout.
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any other meaningful focus measure is unavailable in most basic lenses, the
variation equation 4.23 can not be used. Higher distortion lenses naturally
show a greater variation than low distortion lenses. High distortion is generally
encountered in wide angle lenses which tend to be used as fixed focus lenses
in many applications. The extreme fish-eye lenses are usually fixed at infinity
focus. The aperture setting also influences the image lens distortion profile,
but to a lesser degree than the change in focusing. In the same high resolution
example, the distortion varied by a mean of 0.45 pixels over the range of

aperture settings. Ofcourse, in many applications the aperture setting remains

constant.

4.6 Discussion

This chapter has detailed a non-metric technigque to compensate for geometric
lens distortion in images. It is based on a single view of a calibration target,
from which an appropriate distortion model is calibrated by exploiting two
geometric constraints on the targets planarity and known pattern distribution.

The calibration procedure advances the following contributions.

e The use of the forward distortion model in calibration, in comparison to
existing non-metric approaches which cannot avail of its advantages (see
Chapter 2).

 The parameter estimation problem presented as a closed-form system of

equations, with full partial derivatives included.

« A novel means of linearly identifying a new image scaling to minimise the
local distortion of pixels in the compensation of distortion in the image

array.

An extensive set of experiments are conducted on the proposed method, while
its performance is compared with respect to three alternative techniques for
calibrating distortion. The comparisons are conducted on both simulated and
real data and demonstrate that the proposed method is highly accurate, and
stable. It is shown to at least match, and often surpass the performance of
the full camera calibration techniques, and consistently outperforms other non-

metric methods. Its application to potentially problematic sub-pixel distortion
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lenses revels that the algorithm retains its stability and accuracy, allowing
such images to be further improved. The dependence of the proposed method
on the planar calibration target is comprehensively addressed. For reliable
calibration at least 200 control points are recommended. It is shown that
multiple input views offer no advantage save in the supply of additional control
points. The degree to which the two geometric constraints on the calibration
target must be satisfied is also examined. Regarding the required precision of
the pattern, it is shown that for the 250 x 170 mm sized pattern used, there is
roughly a direct transfer of error from millimeters to pixels with a 6MegaPixel
camera resolution. Concerning the required planarity of the pattern, a similar
relationship is found, where roughly 1mm bending of the chart will induce a
mean of 1 pixel error, again for a 6MegaPixel resolution. Out of interest, the
use of circular type patterns is shown to induce a similar 1 pixel error. Finally,
the influence of lens focusing and aperture settings on the distortion profile is
examined. This shows that the maximum mean distortion variations due to
focusing, for example in a 6MegaPixel camera, is 1.4 pixels and roughly 0.5
pixels for the maximum aperture variation. Without readily available measures
of the focusing distance or the aperture, compensations for these variations

cannot be applied.

In conclusion, the proposed approach has the inherent advantage of being
generally applicability to all levels of lens distortion, from very mild up to fish-
eye. It implicitly incorporates quite an effective means of modelling decentering
lens distortion, which adjusts as required. Lastly, it is straightforward to
implement and use, overall offering an attractive and viable alternative to

current distortion calibration and removal solutions.



Chapter 5

Lateral Chromatic Aberration
Removal

An optical instrument is required to faithfully produce a geometrically con-
sistent image of a given object. The departure of practical optical systems
from this ideal (Gaussian or first order) behaviour is due to aberrations. In
general it is impossible to design a system which is free from all aberrations.
This leads lens manufacturers to consider aberration compensation as an op-
timisation between different types. This chapter is concerned with chromatic
aberrations that have recently become more amplified due to the higher res-
olution sensors currently employed in many consumer and scientific cameras.
By compensating for these aberrations as a post process in the image array,

higher quality images can be produced without recourse to expensive optics.

In a colour camera’s lens, polychromatic light is split into a set of rays or wave-
lengths. Whilst traversing the optical system light of different wavelengths will
follow slightly different paths. Upon reaching the image plane their misaligned
recombination introduces chromatic aberration. Chromatic Aberration (CA)
can be broadly classified as Axial Chromatic Aberration (ACA) (also known
as Longitudinal CA) and Lateral Chromatic Aberration (LCA) (also known as
Transverse CA). ACA arises from the longitudinal variation of focal position
with wavelength along the optical axis. LCA is the variation of image size with
wavelength or the vertical off-axis distance of a point from its prescribed point.
In an image it is identified by a radially dependent misalignment of the colour

planes. Chromatic aberrations are moving out of the sub-pixel range with
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the advent of high resolution arrays, giving rise to noticeable colour fringes
around edges and high contrast areas. This gives the overall impression of
poor quality or definition. Many consumer cameras display this aberration.
For scientific applications, it is akin to the effects of colour shifts and blur-
ring, that contravene the imaging models. The digital compensation of LCA
through image warping is considered here. There are two main aspects of dig-
ital compensation in images: determining what quantity of warp to apply, and
the actual implementation of the warp. The main contribution deals with the
former problem, which has currently not been addressed, by considering the

modelling and model calibration of LCA in images.

The proposed compensation is achieved by realigning the colour planes through
image warping. Using the LCA model derived in Section 2.3, a more precise
and concise means of extending the aberration, measured over a limited set
of control points, to every pixel in the colour plane is facilitated. LCA is
initially measured by extracting the intersections of a chessbhoard pattern on
each colour plane. No special planarity constraints or canonical representa-
tion of the pattern is required and it can be imaged without knowing its 3D
position. Measurement errors are filtered by non-linear least square fitting
of the proposed LCA model. The partial derivatives of the quadratic cost
functions are given allowing the closed-form computation of the gradients and
Hessian matrices used by the optimisation algorithms. This gives a computa-
tional advantage over numerical estimation techniques. Detailed results clearly
demonstrate the successful compensation of LCA for test images and for real

scenes.

5.1 Geometrical Theory of Aberrations

Onptically, aberrations are compensated for by adding lens elements with appro-
priate properties. Chromatic aberration is typically eliminated for two selected
wavelengths, but only at the centre and some zonal region. These lenses are
known as achromatised. Lenses corrected for three different wavelengths are
known as apochromatic while superachromatic lenses are corrected for four
wavelengths. Of interest are the the remaining chromatic aberrations, known
as the secondary spectrum. No distinctions are made between types of cor-

rected lenses, as the derived model is generally applicable. Willson (1994) and
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Willson and Shafer (1991) show that chromatic aberrations can be compen-

sated in an image by re-alignments of the colour channels.

As described in Section 2.3 Lateral Chromatic Aberration can be considered
as the sum of two aberrations: lateral colour distortion due to the refraction
index of the lens elements and the chromatic variation of distortion (Kingslake,
1978). An appropriate model for the chromatic variation of distortion in one

colour plane g may then be described relative to another colour plane / as:

cff(P/> cs)X = cixf + c2xfr2+ c3(3x2 + y)) + 2cAxfyf
(5.1)

C5(p/, Ca)y

C\Vj + cayfre + 2c3xfyf + c4(3y2+ x2),

where c/ = (ci, c2,¢3,c4)T ¢ R4 is the parameter vector and p/ = (Xf,yi, 1)T

are the homogeneous lens centric coordinates in the / colour plane.

5.2 Model Calibration

Lateral chromatic aberration is modelled for a specific frequency according to
equation 5.1. The actual secondary spectrum is difficult to exactly quantify,
but manifests itself by misalignments in the colour planes as demonstrated
by Willson (1994). These planes typically match the RGB filters of a typical
colour sensor, though other colour representations can be used, as the methods
are general. If one colour plane is taken as a reference, chromatic aberration
can be compensated for by realigning the other planes with this reference. This
reference colour is chosen as the Green (G) channel, as it is midway within the
visible spectrum and is dominant in the standard Bayer array used in digital

camerasl.

5.2.1 Measuring lateral chromatic aberrations

Chromatic aberration has been previously measured by Kuzubek and Matula
(2000) using florescent dyed beads. These are then imaged in 3D, when their
centroids are estimated. From these centroids the LCA and ACA are measured.

This approach is only suited to fluorescent microcopy, but the measured LCA

IrThe impact of correlations between the colour channels due to the interpolation of the
raw sensor data is not addressed in this work.
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exhibits a similar profile to the results obtained using the proposed approach.
Willson (1994), measures chromatic aberration by comparing the location of
edges detected on three colour planes. In this chapter lateral chromatic aber-
ration is again measured by detecting the intersections of a chessboard pattern
for each of the colour planes. These are automatically extracted by the two

stage process of initial detection and sub-pixel refinement as outlined in Section
3.2.2.

5.2.2 Chromatic parameter estimation

The pattern intersection points are represented in pixel coordinates as C/ =
(uf,vf, 1)T for a certain colour plane /. Given the average of the image
width and height as w, the intersection coordinates are normalised by scaling
Cf = (Uf,Vf,w)T = (Uf,Vf, 1)T. This does not affect the chromatic distortion
calibration, following from Result 3. The required transform taking the points

Cf to the lens centric coordinates p/ is then defined as:

is 0 Uqg
10 9 1y v

where s is the applied compensation for non-square pixels and the unknown
symmetrical centre of the aberration is t/ = (u0)v0,1)T. These parameters
need to be estimated in the calibration. The units of p/ are normalised pix-
els, (pix). It should be noted that Result 5, regarding the modelling of the
decentering distortion with a variable centre point, may not be used in this
case. This is due to the extra radial term C, which under an incorrect centre
point gives rise to a directional bias. Thus the centre point and the decentering

elements must be explicitly estimated.

The lateral misalignments between the red and green planes are modelled as

a function of the green plane, following equation 5.1 as:

C’XPg, O)*\ _ / CiXg + c2xgrg + c3{3x8 + yg) + 2c4xgyg)\
(5.3)
Cr(p9,cr)J I Clyg+ c2ygr2+ 2c3xgyg + c4(3y2+ x2) |

and similarly for the difference between the blue and green planes. For each

detected intersection point, two equations are formed. It is sufficient to follow
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these equations with respect to the red/green planes only:

AX(PrIP~N)y ~rp) A c (p”™5Cr)x XLy

e(pripg,$r) = (5-4)

ey(prip™,~r) A+ Cr(pp,cr)3 ur '

where the parameter vector to be estimated is 3> = (u0,vds, ci, ¢2,c3,c)T,
where $ r ¢ M7.

A parameter counting exercise reveals that a minimum of 4 control points are
required to solve this system of equations. Given at least n > 4 observations

a least square solution is obtained by:

(5.5)
=]

This quadratic cost function may be linearised by performing a first order
expansion of the error around the last iterative estimate resulting in a

Gauss-Newton scheme that can be iterated utilising many robust least square
techniques (Golub and Loan, 1996):

(5.6)

where A < 1 ensures a decrease in cost at each step. The partial derivatives

used in the closed-form calculation are given as:

(dex{& )\ (M **) de,(**) dex(&)
de($f kST dun ' dvn * ds ,9° Ss’ 9 29 90
<98T dey(&) 8e,(**) &,(*>) 3«,(4«) 20 . 9.2 i 2
Ny * N
\ d$T / \ du, > ,y9.,ygrg™ xgyg,*y9 xg/
with
dex{ &)\ /
dua _ O+ c2(X2+ %)+ 6C3a9+ 2049
dey(&) \ 2c2xgyg + 2c3yg + 2cAxg
\ du, /
dex(& )\ /
dva 2c2xgyg + 2c3yg + 2c4xg
dey(&) | o+ c2{xg+ 3y2) + 2c3xX9+ 6cdyg
dv0o )
( dex{& )\ /
ds _ " cwg + 3c2xaug + Beaxgug T 2040900
dey(&) \ 2¢3ygug + 2c4x gug
Vods
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Table 5.1: Description of the cameras used for the experiments

Make and Model Focal Resolution
Cam 1 Nikon E4500 7.8mm 2272 x 1704
Cam 2 Fuji FinePix 6900 7.8mm 2832 x 2128

Cam 3 Fuji FinePix 6900 + WL-FX9 6.2mm 2832 x 2128

Equation 5.6 is iterated until 4>fctl —$ k falls below a preset threshold. The
parameter vector can be simply initialised as = (—5, —5,1,0,0,0,0)T. Fol-
lowing calibration the colour planes are realigned using bilinear interpolation

as described in equation 4.9.

5.3 Experiments

Chessboard patterns and real images are used to measure the effects of LCA
compensation. Three different commercial digital cameras are used to capture
the test images, briefly described in table 5.1. The pattern used for calibration
is shown in Fig. 5.1. No canonical coordinates are required for calibration,
hence no precise constraints are needed on the planarity or precision of the
pattern. A second lower density chessboard pattern (test image), shown in
Fig. 5.1, is used for independent validation of the proposed LCA model and
the resulting realignments. Parameter uncertainties are also investigated, while
shots of an outdoor scene are used to demonstrate the typical improvement in

image quality following LCA compensation.

Calibration Image Test Image

Fig. 5.1: Chessboard patterns used for calibration (calib image) and testing

(test image) taken with cam 1, see tables 5.2 and 5.3.
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Fig. 5.2: Histogram of sub-pixel detection errors for three different cameras

with their fitting with Rayleigh PDF. Errors are estimated using multiple shots

of the calibration pattern.
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Table 5.2: Colour plane misalignments (in pixels) before calibration in mean

(SD) format for three different cameras. R/G and B/G are the red and blue

Cam 1 Cam 2 Cam 3
Calib R/G 0.5707 (0.2113) 0.5496 (0.2308) 1.1834 (0.4125)
Image B/G 0.4110 (0.2635) 0.7374 (0.6361) 0.5665 (0.3848)
Test R/G 0.5355 (0.2225) 0.5413 (0.2035) 0.9729 (0.2866)
Image B/G 0.4877 (0.2925) 1.1630 (0.8971) 0.8378 (0.7956)

The intersections of the chessboard patterns are firstly determined for each
colour plane. The typical sub-pixel detection accuracy of the techniques out-
lined in Section 3.2.2 are shown in Fig. 5.2 for the three cameras used in the

experiments.

5.3.1 Evaluation with real images

The colour plane misalignments before calibration for the two chessboard pat-
terns are presented in table 5.2. Following calibration, the known LCA models
are used to warp the colour planes so as to register the red and blue colour
planes with the green channel. The Euclidean registration residuals remaining
following this re-registration are presented in table 5.3, showing a significant
decrease in misalignments. These residuals are of a similar magnitude to the
sub-pixel detection accuracy, thus validating both the proposed LCA model

and the effectiveness of the proposed calibration algorithm.

The contribution of the decentering LCA component is now evaluated. The re-
sults presented in table 5.4 show the Euclidean registration residuals following
compensation based on a model without decentering elements. The increase
in these residuals compared with those of the full calibration model indicated
that although radial chromatic aberration is predominant, there is a varying
element of decentering aberration depending on the lens employed. The inclu-
sion of decentering elements in the LCA description gives a more general and

accurate model of lateral chromatic aberration in an image.

More details of the colour plane misalignments before and after calibration are

presented for one example (Cam 1) from table 5.2 and 5.3. Fig. 5.3 shows
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Table 5.3: Colour plane misalignments (in pixels) following calibration and

colour plane warping in mean (standard deviation) format for three different

cameras.
Cam 1 Cam 2 Cam 3
Calib R/G 0.1202 (0.0636) 0.1401 (0.0733) 0.1846 (0.0722)
Image B/G 0.1376 (0.0734) 0.1658 (0.0947) 0.1543 (0.0925)
Test R/G 0.1788 (0.1062) 0.1625 (0.0784) 0.2044 (0.1149)
Image B/G 0.1879 (0.1110) 0.3092 (0.2146) 0.3202 (0.2419)

Table 5.4: Colour plane misalignments (in pixels) following calibration and

warping using a model without tangential elements in mean (standard devia-

tion) format for three different cameras.

Cam 1 Cam 2 Cam 3
Calib R/G 0.1828 (0.0904) 0.1615 (0.0858) 0.2196 (0.1208)
Image B/G 0.2131 (0.1117) 0.1805 (0.1087) 0.1507 (0.0754)
Test R/G 0.1864 (0.1110) 0.2022 (0.1019) 0.1886 (0.1449)
Image B/G 0.2071 (0.1334) 0.3670 (0.3070) 0.3761 (0.3029)

the distribution of colour plane misalignments before and after compensation
for LCA for the calibration pattern in Fig. 5.1. The corresponding Euclidean
vector representation of these misalignments for the test image, before and
after compensation, are illustrated in Fig. 5.4. These show that the remaining
misalignments are random in nature (with magnitude similar to the detection

noise), indicating the successful modelling and compensation of LCA.

Model parameter analysis

To determine the suitability of the model, in terms of redundant parameters,
and its stability, it is useful to look at the parameter uncertainties and the
parameter correlations. These measures may be computed directly from the
iterative estimation scheme as described in equations 4.17 and 4.20. In order
to concisely describe these results two extreme examples are taken from the
calibration data in Section 5.3.1. These are the red/green alignments in Cam
1 and Cam 3. The parameter values and uncertainties are presented in table
5.5. The parameter ci, related to the lateral colour distortion, takes a large

role in the calibration in Cam 1. However, in all estimations its estimated
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Red green LCA Red green LCA

Euclidean error (pixels) Euclidean error (pixels)

Fig. 5.3: Histograms of Euclidean misalignments computed for chessboard
intersections on the calibration image with Cam 1. Left column shows the
R/G and B/G differences before compensation, while the right column shows

those detected following calibration with fitted Rayleigh PDF’s.

uncertainty value remains low indicating a stable system of equations. Param-
eter C, related to the chromatic variation of distortion proves useful for all
calibrations and also exhibits low uncertainties. The decentering parameters
C3 and c4 play a variable role, clearly related to the camera or lens employed.

The centre point estimates and uncertainties are presented for completeness.

In lens distortion calibration, it was found that there was a high correlation
between the centre point and decentering parameters. It was argued that this
relationship does not exist to the same extent when using the chromatic aber-
ration model due to its additional lower order term. This is easily investigated
experimentally by looking at the correlations between these parameters. Ta-
ble 5.6 shows the extreme values of these correlations, where Cam 1 shows a
reasonable to strong link between the parameters. From table 5.5 it is noted
that there was little use made of the decentering terms so this is not unusual.
Cam 3 on the other hand shows complete independence between the decen-
tering and centre point parameters. The correlations are thus more camera
related, and it can be assumed that these parameters are independent, unlike

the analogous lens distortion case.
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Fig. 5.4: Euclidean vector plots of colour plane misalignments before (left
column) and after (right column) LCA compensation, evaluated on the test

chessboard pattern with Cam 1.

Table 5.5: Parameter values and uncertainties for the selection of reg/green

calibration with Cam 1 and Cam 3

Parameter Cam 1 Cam 3

ci XIO-3 82.730 (0.0094) 2.021 (0.0152)

C2 X10-3 -11.164 (0.0142)  -4.970 (0.1023)

c3 x10"4 -0.0693 (0.0252) 2.188 (0.0633)

4 XI10“ 4 -0.0716 (0.0349) 1.111 (0.0891)
Uo 1163 (5.33) 1335 (4.13)
Vo 903 (5.38) 1074 (4.18)

Table 5.6: Parameter correlations for decentering and centre point parameters.

uo Vo uo Vo
c3 -0.666 -0.012 @ -0.0717  0.012
¢4 -0.009 -0.702 c4  -0.008  -0.340
uo 1 0.004 Uo 1 0.0001
vo  0.004 1 vo 00001 1
(@ Cam 1 (b) Cam 3
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5.3.2 Examples

To access the improvement in image quality a selection of examples are shown
for each camera referred to in tables 5.2 and 5.3. For each camera a region
of interest (ROI) is selected in the test image and an outdoor scene image.
Images taken with Cam 1 are presented in Figs. 5.5 and 5.6, Cam 2 in Figs.
5.7 and 5.8, while Cam 3 examples are presented in Figs. 5.9 and 5.10. The
associated colour histograms for the test RO’ of Figs. 5.5, 5.7 and 5.9 show
that for the uncorrected image, two colour paths exist between the black and
white squares of the test pattern. This is due to the additional colour fringing
introduced by the LCA around regions of high contrast. The colour histograms
for the corrected images show that following compensation there is only one
colour path between dark and bright squares, indicating the successful removal
of LCA from these images. The real examples of Figs. 5.6, 5.8 and 5.10 show a
similar behaviour. Additional colour paths can be seen in the original images,
while following calibration and compensation these extra colors are removed.
These results clearly indicate that the proposed method of automatically cal-
ibrating and removing LCA in images leads to a significant increase in image

quality.
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Fig. 5.5: Test image for Cam 1. Top row shows crop with associated colour histogram before compensation. Two additional colour paths
are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.6: Outdoor image for Cam 1. Top row shows crop with associated colour histogram before compensation. Additional colour paths
are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has been

removed.
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Fig. 5.7: Test image for Cam 2. Top row shows crop with associated colour histogram before compensation. Two additional colour paths
are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.8: Outdoor image for Cam 2. Top row shows crop with associated colour histogram before compensation. Additional colour paths
are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has been

removed.
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Fig. 5.9: Test image for Cam 3. Top row shows crop with associated colour histogram before compensation. Two additional colour paths
are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.10: Outdoor image for Cam 3.
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Top row shows crop with associated colour histogram before compensation. Additional colour

paths are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has

been removed.
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5.4 Discussion

This chapter proposes a new model based method of compensating for lat-
eral chromatic aberration in images, offering a usable alternative to active lens
control techniques and data interpolation methods. The main contributions
are in the derivation of lateral chromatic aberration models and their subse-
guent parameter estimation techniques. The chromatic calibration technique
is easy to use, based on a single view of a chessboard pattern without any
strict geometric constraints. This fully automated method is presented in a
closed-form allowing faster and simpler estimation. Compensated images are
formed by re-sampling the originals based on these calibrated models gener-
ating higher quality aberration free images. Model validation is carried out
indicating strong global agreement with detected LCA. Examples on selections
of real images demonstrate the higher quality achievable with such aberration
removal. These show that the additional colours that LCA introduces are re-
moved following compensation with the proposed methods, ultimately giving

superior quality colour images.



Chapter 6

Distortion Minimisation In

Planar Rectification

Rectification is known to be a useful step in stereoscopic analysis. The aligning
of epipolar lines allows subsequent algorithms to take advantage of the epipo-
lar constraint, reducing the search space to one dimension. It is known and
easily demonstrated that the rectilinear mechanical alignment of two cameras
is prohibitively difficult. The method developed in this chapter aims to simu-
late rectilinear images from those of arbitrarily placed cameras. This involves
subjecting the images to a two dimensional projective transformation or pla-
nar homography, while simultaneously minimising projective distortions. This
work has been published in Mallon and Whelan (2005).

There are obvious advantages to specifying transformations that minimise the
introduction of distortions, or equivalently maximise the similarities between
the original image and the transformed one. Recall from Section 4.1.2, that a
unique scaling was applied to the new undistorted image in order to globally
minimise the local pixel distortions. This idea is now expanded to 2D projective

rectifying transformations who’s solutions are not fully constrained.

This work follows on from Hartley (1999), where a rigid transformation is de-
rived from the Fundamental Matrix. In this uncalibrated case the resulting
depth reconstruction is determined up to a projective transformation (Hartley
and Zisserman, 2003). Many applications requiring such relative depth mea-
sures exist, including view synthesis (Ng et al., 2002) and robotic navigation

(Faugeras and Luong, 2001). The homographies are calculated solely from
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an analysis of the Fundamental Matrix, to re-orientate the epipolar projec-
tions parallel to the horizontal image axis. Undetermined parameters of the
homographies operating on the x coordinate are then specified to maximise
viewpoint similarities between the original and rectified images, thus reduc-
ing distortional effects of the homographies and improving stereo matching.
The rectification is therefore described by a reprojection onto two planes with

relative degrees of freedom about the vertical axis only.

The main contribution of this chapter is the proposal of a novel technique to
reduce rectification distortions for the maximisation of viewpoint similarities
between the original and rectified images. Previous distortion interpretations
have included orthogonality of image corners and maximising image content
over the view window (Faugeras and Luong, 2001). Loop and Zhang (1999)
consider distortion by attempting to force affine qualities on the homographies.
As skew and aspect ratio are invariant to affine transforms, they make extra
constraints upon the homographies to reduce these types of distortion. Their
approach is not optimal as only one local region of the image is considered.
The proposed approach in contrast considers all regions of the image, enforc-
ing first order orthogonal qualities in a natural way through Singular Value

Decomposition.

This chapter also presents an improved method for the computation of ro-
bust matching homographies, from a real Fundamental Matrix estimated from
noise affected points. This results in a rectification error equal to that of
the Fundamental Matrix error, significantly improving upon the alignment of
epipolar lines compared to similar methods such as Hartley (1999), Hartley

and Zisserman (2003), Al-Shalfan et al. (2000) and Loop and Zhang (1999).

6.1 Epipolar geometry

Given two images of a scene, let m and m' be the projections of some 3D point
M in images 1 and T respectively. The intrinsic projective geometry between

the two views is defined as:

m'TFm = 0, (6.1)

where the Fundamental Matrix F (Faugeras and Luong, 2001, Hartley and
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Zisserman, 2003, Armangue and Salvi, 2003) is a 3 x 3 matrix of rank 2. Given
at least 8 point matches it is possible to determine the matrix (Hartley, 1997).
The Fundamental Matrix maps points in X to lines inJ', Fm = 1 upon which
corresponding points lie. The image in X of the camera centre, c', is termed

epipole e = (eu,e,, i)T and similarly for X the image of c ise' = (€u,ev)i)T:
Fe = 0= FTe"

The epipoles e and e’ can be simply computed from the Singular Value Decom-
position of F = Udiag(0, <7i,cr2)VT where U = (e',ui,u2), V = (e,vi,v2),
Oi and a2 are the typically non-zero singular values. All the epipolar lines in
the respective images pass through the epipoles. In this chapter it is assumed
that the Fundamental Matrix has been found, which requires at least 8 point
matches for linear estimation. In addition the origin of the images is considered

to be (0,0), generally the top left corner.

6.2 Rectification

Image rectification is the process of re-aligning corresponding epipolar lines to
become collinear and parallel with the x axis as illustrated in Fig. 6.1. For a
stereo sensor, mechanical adjustments of this calibre are difficult to achieve.
However, given a description of the projective geometry between the two views,
projective transformations can be applied resulting in rectified images. The
projective transformations are uniquely chosen to minimise distortions and
maintain as accurately as possible the structure of the original images. This
helps during subsequent stages, such as matching, ensuring local areas are not

unnecessarily warped.

Rectification can be described by a transformation that sends the epipoles to
infinity, hence the epipolar lines become parallel with each other. Additionally,
it is ensured that corresponding points have the same y coordinate by mapping
the epipoles in the direction e = (i,0,0)T or equivalently e = (ew,0, 0)T. The

Fundamental Matrix for such a rectified pair of images is:

/0 0 0~
F 0 0-1
V1 0 /
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(@) Left view. (b) Right view.

(c) Rectified left. (d) Rectified right.

Fig. 6.1: Example of the rectification procedure. The original images are
shown in 6.1(a) and 6.1(b) overlaid with their respective epipolar lines. After
rectification these lines become collinear and parallel with the image x axis,
as shown 6.1(c) and 6.1(d).

The desired homographies give new image coordinatesas m = Hm and m' =
H'm'. It follows from equation (6.1) that m/TFm = 0 and m/TH/TFHm =0

resulting in a set of constraints relating H to H7:

HtFH = F (6.2)

The homographies satisfying equation (6.2) are not unique, but similarly to

Hartley Hartley (1999) H is chosen to transform the epipole e to infinity:

1 0 0 1 0 o\
H = /U 1 0 " 10 (6.3)
N _\Jeu 0 ly 31 0 1

The determinant of the Jacobian, det(H) 1/(1 —x/eu), gives an indication
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of the changes or warping of local areas. At the origin the transformation
appears orthogonal (det(H) = 1), while in general eu is large in comparison to

the image size. This ensures H does not cause severe perspective distortion.

6.2.1 Matching Homography

Considering equation (6.2), it is clear that for an ideal Fundamental Matrix
there are no applicable constraints on the first row of H'. Thus the matching

transformation H' is specified with the form:

/"1 o o\
H'=" 21 2 23
N3l 32 ¢33

Evaluating equation (6.2), it is now proposed to estimate the entities of H' by
the elementary comparison of entries in equation (6.4), where a represents the

(optional) arbitrary scale difference. The constraints on H' are:

(21731 —3™N21) 31 -h'y fu /12 f\3 ~
(621632 “ ¢31722) 432 &2 =a /2l T2 123 (6.4)
A (421733 :31423) ¢33 -h'g /31 132 133 J

Assuming an imperfect F matrix1, the solution for H' can be robustly found
in a least squares sense from equation (6.4) by the SVD of Bp = 0, where
P = (¢21»¢22’ 235312325 ¢ 33)ot)T. Computing H' in a least square sense using
all the entries of F significantly improves the rectification accuracy in contrast
with Hartley (1999) solution H' = H([e]xF + ee/T), and others (see Section
6.4).

6.3 Reducing Rectification Distortions

The application of H and H 7does indeed rectify the images as required. How-

ever, as can be noted above, the first rows of the homographies are undeter-

IF matrix computed with a limited set of noisy points.
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mined. This results naturally from the Fundamental Matrix, which does not
encapsulate any information about the position of the x coordinate. Weng
et al. (1993) shows that only one component of the image position of a point
is used by the epipolar constraint. The projective transformations in gen-
eral introduces distortions in the rectified images, specifically skewness and
aspect/scale distortions. However, it is possible to specify the first rows of
both homographies without invalidating the constraints used to compute them,

AHe = He, and similarly for the primed counterparts giving:
H'tAtFAH = KtFK = F, (6.5)

where K = AH. A and A' are transformations of affine form:

N\ N\
&1 OU &l3

0 1 0

\' 0 0 1/
The creation and loss of pixels as a result of the application of transformation

K, can be quantified in the local area of point p by any norm of the Jacobian:

gx gx
J(K.p)="% dj)I/
dx dy

Let (ji(J) and 02 (J) be the non zero singular values of J in descending order.
Ideally, an orthogonal transform that neither creates or destroys pixels will
have singular values equal to one. In general <7i(J) > 1 for a transformation
that overall creates extra pixels, and (j@ < 1for an overall compression of

pixels within a local region.

The search for the best compromise of the affine pair an and au to maintain
orthogonality and perspective of the original image can thus be expressed by
searching for the singular values that are closest to one. The Wielandt-Hoffman
theorem (Golub and Loan, 1996) for singular values states that if A and E are

matrices in Mmxn with m > n, then:

n
5> HA+E)-afA)2<|[E|f,
k=1
where ||E||F is the Frobenius norm of E. This indicates that if A is perturbed
by E, the corresponding perturbation in any singular value of A will be less
than that of the Frobenius magnitude of E. This means that the relationship
between entries in a matrix and its singular values is a smooth function, making

them very suitable for iterative search techniques.
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6.3.1 Minimisation

The search is conducted by evaluating the singular values of the Jacobian at
various points over the image. These points, p* can be simply specified as a
grid covering the image area or as the corners of the image. The function to
be minimised is then expressed as:

n
f(an,dl2) = X >i(J (K ,Pi) - D2+ (a2(J(K,Pi) - 2. (6.6)

=l
This functional is minimised using the Nelder and Mead simplex search method
which converges, on average, after 50 iterations. Finite derivative methods can
also be applied as the function inherently has smooth derivatives. Since ai3
is an x direction shift it does not introduce any distortion. It can be chosen
automatically to centre the rectified image in the old image window if desired.
The same procedures equally apply to the primed counterpart image. The
rectification is determined solely on the estimate of the F matrix. This has
the advantage that no point correspondences are explicitly needed. Thus the
rectification is invariant to the location or quantity of the point set, which

overall tends towards a more consistent result.

6.4 Experiments

A selection of nine real examples are presented 2. The performance of the pro-
posed rectification is quantified using various metrics, and compared side-by-
side with two popular methods from the literature, Hartley (1999), Hartley and
Zisserman (2003) and Loop and Zhang (1999). The examples feature a range
of Fundamental Matrix accuracy levels, and requiring various transformation
complexity. The images were taken with a digital camera with 640 x 480 pixel
resolution, over random unknown baselines. The lens parameters remained un-
changed throughout and lens distortion has been removed using the method
outlined in chapter 4. The images are of indoor and outdoor scenes with rel-
atively low and high depth of scene respectively. The Fundamental Matrix
was calculated using the linear normalised eight point method (Hartley, 1997)

ZThese real images are used as opposed to those in the literature for two reasons. Firstly,

the availability of suitable data sets is limited, and secondly the relative simple geometry of
some of these examples.
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using manually matched points. The examples are available at the VSG code
archive web page, http://www.eeng.dcu.ie/~vsl/vsgcode.htm | including
data.

6.4.1 Error Metrics

The rectification technique is based solely on the estimation of the Funda-
mental Matrix. Therefore, and according to equation (6.5), the rectifica-
tion performance is directly related with the integrity of the Fundamental
Matrix. A direct evaluation of the accuracy of the Fundamental Matrix is
given by the perpendicular distance from a point to its epipolar line. Con-
sidering the corresponding points m = (u,v, i)T and m' = (ul,v',i)T, the
epipolar line in 1 is given by 1 = FTm' = (laJbJc)Te The perpendicu-
lar line through m is: 11 = (/& —la, (lav —Ibu))T and the intersection point:
pl =1AI1 = (ux,v+,i)T, where A is the cross product. The Fundamental
M atrix error is the distance Ef = ((ul —u)2+ (vl —v)2)%. The rectification

precision is then evaluated as: Er = |[|[(Km )2 —(K'm")"||-

In general, it is not possible to avoid all distortions in a perspective transfor-
mation. Distortions in this case are defined as departures from the original
image structure, such as skewness and relative scale changes. These factors
can be quantified by measuring the proportional sizes and orthogonality of the
transformed images. Thus a = (w/2,0,1)T, b= (u>h/2,1)T,c= (wW/2,/, 1T
and d = (0,/i/2,1)T are defined as four cross points of the image where w
and h are the image width and height. These points are then transformed,
whereupon the vectors x = b—d and y = ¢ —a are formed. The orthogonality
is then given as the angle of the upper left corner between the x and y vectors
(ideally 90°). This angle is: EQ0 = cos-1 The aspect ratio can be used
to measure the relative size of the image. Taking the corner to corner length
ratio by redefining the points a = (0,0,1)T, b= (w, 0,1)T, ¢c = (w,/i, 1)T and

d = (0,/i, 1)T, the vectors x and y are formed as before. The aspect ratio

(ideally unity) is then defined as: Ea = 2-
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Table 6.1: Presents the error metrics described in Section 6.4.1 for nine differ-
ent real world samples. The errors are presented in mean (standard deviation)
format where applicable. Orthogonality is ideally 90° while the ideal aspect
ratio is 1. The results are compared with two alternative techniques of Hartley
(1999), Hartley and Zisserman (2003) andLoop and Zhang (1999), (nc) = no
convergence. A selection of examples (Boxes, Roof, Yard and Drive) are shown
in figures 6.2 6.3 6.4 and 6.5.

F Mat. Ef i : I
Sample Method Ortr?ogonahty EO Aspect Ratio Ea Rectification Er
Mean (SD) H H H H Mean D
Proposed  89.87 . , _ . _
b g s 8001 09960 09835 445 241
2.732) P

Hartley  99.07 9656 11635 11111 23.02 4.53
Proposed  88.78 8933 09785 09889 0.44 0.33
Loop 97.77 9569 11279 10900 4.35 9.20
Hartley  86.56 9499 09412 10846 33.36 8.65
Proposed  89.12 89.13 09852 09855 0.9 0.56
Loop 37.29 3715 02698 02805 114 3.84
Hartley  89.96 8854 10000 09769 227 5.18
Proposed  90.78 91.62 10233 10274 011 0.32
Loop (nc)

Boxes* 0.5068
(0.3630)

Slates 0.5987
(0.4593)

Junk 0.3437

(0.2832)
Harley 10267 9960 13074 12466 1433 851
Proposed 9000 9003 10003 10006 181 139
Hell 1.9829 LEO 0114 9158 10194 10271 4% 240
(1.2124) P ' ' ' ‘ ' '

Hartley 10256 9048 12353 10081 259 2.75
Proposed  88.35 88.23 11077 09700 1.96 2.95
Loop 69.28 87.70  0.6665 10497 0.84 11.01
Hartley 12277 80.89 1525 08552 11.89 1815
Proposed  91.22 9026 10175 10045 022 0.33
Loop 95.40 98.94 10991 11662 1313 20.63
Hartley 10074 9305 12077 10546 3921 1385
Proposed  89.91 90.26  0.9987 10045 0.53 0.54
Loop 13362 13427 21477 24045 891 13.19
Hartley 10195 9191 12303 10335 4819 1149
Proposed  90.44 90.12 10060 1.0021 0.18 091
Loop 98.73 10142 11541 12052 1041 3.24
Hartley 10766  90.87 13491  1.015 3.57 343

RooF 16422
(1.7085)

Arch 0.3244
(0.3123)

Yard* 06365
(0.4776)

Drive* 05684
(0.7568)
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6.4.2 Rectification Performance

The rectification performance is concerned with quantifying only the y or row
alignment of corresponding points over the images. Referring to table 6.1, of
interest is the Fundamental Matrix error Ef, which is sufficiently characterised
by its mean and standard deviation. As the rectification is only based on the
Fundamental Matrix, its error Ef represents the minimum expected rectifica-
tion error Er. The Fundamental error Ef ranges from 4.8(2.7) to 0.32(0.31)
pixels in the examples. This is matched in every instance by the method

proposed here, where Er ranges from 4.5(2.4) to 0.11(0.32).

In comparison, the Hartley (1999) technique fails to match any of these results3,
with Er ranging from 48.2(11.4) to 2.6(2.7) (see table 6.1). It stems from a lack
of robustness in the method used to match the homographies. In comparison
to Loop and Zhang (1999) methods, for some cases this rectification did not
converge (nc), while convergence is questionable for the Arch example. As
this technique is scale invariant, suitable scaling for each example was chosen
manually. Disregarding the non-convergence cases the rectification error Er
ranges from 10.4(3.2) to 1.4(3.8). The poor alignment for these alternative
techniques can additionally be seen in the figures 6.2, 6.3, 6.4, and 6.5. It can
be seen that the rectification process described here significantly outperforms
the comparison techniques. Its convergence to the minimum error Ef in every
case demonstrates good robustness.

theoretically Hartleys method guarantees horizontal epipolar lines. From an examina-
tion of the experiments in Figs. 6.2 to 6.5 it can be concluded that the right image satisfies
this constraint, but not the left image. The left image is rectified by the matching transform
H', which is computed in Hartley (1999) according to H' = (I + HeaT)HM. This simplifies
to H' = HM ifaT = (1,0,0). From Result A4.4 and 9.14 in Hartley and Zisserman (2003),
M is defined as M = [e]xF or equivalently M = [e]xF + evT for any vector v. However,
the constraint on M that Me7= e is not well satisfied in practice. This may be due to the
normal epipole inaccuracies, i.e. that Fe = 0 is generally not exactly 0. The specific reason
as to why the matching homography H does not entirely match (thus yielding horizontal

epipolar lines) is unclear, though it must be as a result of the effects of these aforementioned
inaccuracies.
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6.4.3 Distortion Reduction

The rectification process introduces a necessary distortion to the images that
realigns them horizontally relative to each other. It is possible to specify the x
position of pixels with an affine shearing transform that leaves the rectification
unaffected. To this end the aim is to preserve, as much as possible, the original
viewpoint of each camera in order to avoid introducing unnecessary distortions.
The distortion reduction criteria of equation (6.6) therefore strives to minimise
local pixel warping throughout the image. Table 6.1 and figures 6.2, 6.3, 6.4,
and 6.5 show the performance on the set of test images. The orthogonality EO
and aspect ratio Ea are of interest and are calculated for both homographies.
Orthogonality gives a intuitive measure of the distortion level. Taking the
examples in table 6.1, the average absolute orthogonal angle error for the

proposed method is 0.8° for both H and H".

In comparison Hartley (1999), Hartley and Zisserman (2003) method intro-
duces a significant quantity of distortion. This is expected as distortion is not
considered, except to minimise disparity. As the results show, this can intro-
duce serious warping. The average absolute orthogonal angle error for H and
H' from table 6.1 is 4.2° and 12°. Loop and Zhang’s methods Loop and Zhang
(1999) explicitly consider distortion, defined in a similar way to the proposed
method, by preserving perpendicularity and aspect ratio. The results in ta-
ble 6.1 show that their method at no point matches our results. The average
absolute orthogonal angle error for this method is 18° and 20° for H and H".
This is because their criteria is defined only for the midpoint of the image. An
optimal estimate for one point does not mean it will be optimal for all image
points, and indeed this is the case. In contrast, our method considers the local

areas over the entire image to preserve orthogonality giving superior results.

The rectification detailed above is based on the application of planar 2D pro-
jective transformations. As evident from Section 6.2, these techniques are not
applicable for configurations where the epipole is within an image. In this
case it is possible to cause severe image distortions, even splitting connected
regions by their application. In general, the geometry that results in such un-
desirable situations, such as forward translation, is not generally encountered

in a stereo-like setup.
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(@ Originals for Boxes example, Left and Right

(b) Proposed Rectification Method

(©) Loop and Zhang (1999) Method

(d) Hartley (1999) Method

Fig. 6.2: Boxes example including epipolar lines, see table 6.1 for more details.
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(@ Originals for Roof example, Left and Right

(b) Proposed Rectification Method

(©) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.3: Roof example including epipolar lines, see table 6.1 for more details.
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(@) Originals for Yard example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.4: Yard example including epipolar lines, see table 6.1 for more details.
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(@ Oiriginals for Drive example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.5: Drive example including epipolar lines, see table 6.1 for more details.
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6.5 Discussion

This chapter describes a robust method for uncalibrated planar rectification
for a pair of stereo images taken from distinct viewpoints. It is simple to
implement and based solely on the estimated Fundamental Matrix. A much
improved method is given for the computation of matching perspective trans-
formations, with experimental results showing that the rectification accuracy,
or epipolar alignment, is equal to the error in the Fundamental Matrix esti-
mation. A novel technique is described to reduce the inevitable perspective
distortions. This ensures that the rectified images resemble the originals as
closely as possible, virtually eliminating unnatural skews and scaling. This
has clear advantages for subsequent processing steps. The distortion min-
imisation is carried out by searching through a SVD for the best first order
approximation of an orthogonal-like transform throughout the image window.
Detailed comparison results clearly indicate much improved performance for

both the rectification process and the distortion reduction techniques.



Chapter 7

Conclusion and Future Work

A typical CCD sensor easily produces well in excess of over one million 8-
bit measurements every time an image is acquired, while in comparison, the
required quantity of information is typically much less. However, depending
on the application, this information is generally encoded throughout the image
array and often over multiple images. On top of this decoding problem, extra
complexity is added by the fact that most optical systems naturally distort
the imaged geometry of the scene. This means that an objects geometry is

warped depending on the viewing location or position within an image.

Two types of such errors are considered in this thesis, lens distortion and chro-
matic aberration. The compensation of lateral chromatic aberration, through
the realignment of the image colour planes, may influence some specific high
precision colour applications, but currently its main practical usage pertains
to image enhancement in digital photography. Lens distortion removal or com-
pensation is currently used extensively in the many applications requiring the
measurement of pixel or object locations. The introduction of a method for
the sole calibration of distortion, as outlined in this thesis, potentially allows
much greater access to distortion calibration, without encountering the over-
heads associated with more traditional calibration methods. The method also
incorporates a unique means of balancing the unavoidable compression and
expansion effects following the pixel relocations. This is mindful of the overall
end applications for which the images may be used. Naturally, good image
quality is universally beneficial. This idea is not limited to one specific case,

and is further extended to minimising projective distortions in a planar rec-
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tification application. Again this considers the bigger picture including the
further applications, in this case typically stereo which depends on the simi-

larities between local areas over multiple images.

It can be seen from the literature that accurate, but easy to use, techniques
prove more popular than equally accurate but complex methods, and indeed
the lack of such methods was part of the original motivation behind this the-
sis. The calibration of optical and further projective distortions is thus carried
out within a framework of low complexity, general applicability and high accu-
racy. This chapter presents an outline of the findings and contributions of this
thesis. A list of the publications which have resulted from this work is also
included, as well as some auxiliary work and presentations. Finally, a brief
discussion is included, highlighting some specific extensions and directions for

future research in this area.

7.1 Summary of contributions

The main findings and contributions resulting from this thesis are identified

and summarised below.

7.1.1 Aberration modelling

Previous works in lens distortion calibration give little reason for the choice of
distortion models. Consequently, a degree of confusion has arisen in some cases,
as to the appropriate model usage and the benefits thereof. Chapter 2 aims
to redress this situation, wherein the origins and form of the distortion models
are derived, and the relationships between different alternative interpretations
are highlighted. The benefits of each model are compared on real data in
terms of accuracy and stability. The result is that the forward model offers
the most general applicability and suitability for distortion estimation schemes.
The alternative reverse model shows greater instability, ultimately manifesting
itself with increased sensitivity in calibration, such as sensitivity to a change
or error in the input data. This shows that there are significant advantages to

be obtained with the use of the appropriate model.
The origins and performance of alternative models are also considered, includ-
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ing the popular divisional model. This model is shown to perform well for
fish-eye type distortion, but cannot capture the nonlinearities often encoun-
tered in perspective camera lenses. A high accuracy linear inverse approxima-
tion to the forward model is also described, as outlined in Mallon and Whelan
(2004). Lastly, this chapter proposes a parametric model for modelling lateral

chromatic aberration in images.

7.1.2 Calibration patterns

Chapter 3 also addresses another neglected, but important aspect in camera
calibration, that of generating control points. Two popular types of planar
patterns, circles and chessboards, are considered to determine if the choice
of pattern and in turn the detection method, influences the precision of the
detected control points. It is clearly demonstrated that chessboard patterns
are superior to circular type patterns in the generation of bias free control

points.

The respective accuracies are examined with regard to perspective transforma-
tions and lens distortion. For each pattern two types of detection methods are
compared: centroids, conic fitting, edge approximation and corner points. It
is shown theoretically and experimentally that compensated conic fitting, edge
approximation and corner points are invariant to perspective bias, while only
corner points are truly invariant to distortion bias. Simulated and real results
indicate that distortion induced bias has a significant magnitude. Even for low
distortion levels the biasing influence of distortion is likely to be greater than
the noise/blur floor, and is more significant than the likely perspective bias
encountered with normal calibration views. Thus, the current compensations
for perspective bias only, are clearly not sufficient to acquire bias free control
points. Ultimately, it is demonstrated that the choice of pattern and detection
method will significantly impact on the overall accuracy of any control point

based calibration procedure.

7.1.3 Calibration of lens distortion

Using this high accuracy data, high accuracy distortion calibration is addressed

in Chapter 4. A non-metric technique (no other camera parameters are directly
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available) using a single view input is proposed. It uses the forward distortion
model in a closed-form least squares solution to accurately calibrate lens dis-
tortion of all levels. Additionally, a method to linearly estimate a transform to
minimise the introduction of distortions in the re-sampling of distortion free
images is also introduced. The method is straightforward to implement and

use and offers a viable alternative to current distortion calibration solutions.

An exhaustive set of experiments are conducted on the proposed method with
real and simulated data. These are conducted to fully characterise the method
and position itself with regard to potential application areas. In comparisons
with existing non-metric and full calibration methods, the proposed method
at least matches, and often surpasses, the best of these methods. The method
is shown to be stable for very severe distortion, right down to sub-pixel lev-
els. The dependence of the proposed method on the planarity and accuracy
of the calibration chart is investigated. This shows that the relationship be-
tween the calibration accuracy and errors in the calibration chart are roughly
proportional. Naturally, the rate depends on the pattern size and the camera
resolution. As an example, for a 6MegaPixel resolution camera and a 250 x 170
mm pattern, the induced error from 1 mm imprécisions in planarity or pattern
precision is roughly 1 pixel. It is shown that the use of bias corrupted control
points from a circular pattern induces a similar level of error. For successful
calibration, it is recommended that at least 200 control points are present.
Multiple input views may be used to attain this quantity, but they offer no
further advantage. The variable lens parameters which violate the distortion
calibration are also investigated. The extent of the distortion variations with
the basic lens variables of focusing and aperture setting are shown. Addition-
ally, the modelling of decentering distortion by a variable projective transform,
through the radial distortion equation, is shown to surpass previous approxi-

mations and naturally accommodates this type of distortion as required.

7.1.4 Compensation for lateral chromatic aberrations

Chapter 5 proposes a model based method for compensating lateral chromatic
aberration in colour images. This compares with active lens control and rough
image interpolation methods, offering a much more usable alternative. It is
based on a single view of a chessboard pattern, but without any geometric or

model constraints. The chromatic model is calibrated in a closed-form least

180



Chapter 7 - Conclusion

squares fashion, from which the colour planes are re-aligned to negate the
effects of the aberration. A selection of examples before and after compensation
show the superior quality images achievable with such aberration removal. It
is not limited to image quality concerns, and also offers a contribution in the

powerful but possibly slightly under-used area of colour vision systems.

7.1.5 Distortion minimisation in rectification

Finally, Chapter 6 describes a direct, self-contained methods for planar rectifi-
cation of stereo pairs with particular focus on minimising projective distortions.
The method, presented in Mallon and Whelan (2005), is based solely on an
examination of the Fundamental Matrix, where an improved method is given
for the derivation of two rectifying transforms. A approach to uniquely opti-
mised each transform in order to minimise perspective distortions is proposed.
This ensures that the rectified images resemble the originals as closely as pos-
sible. Detailed results show that the rectification precision exactly matches
the estimation error in the Fundamental Matrix calculation. In tests, the re-
maining perspective distortions are shown to be much less than alternative
methods that also consider their minimisation. This means that for follow on
applications such as stereo matching, the rectified images maintain, as much
as possible, the structure of the original images to leave the local matching

regions virtually invariant.

7.2 Publications arising

The following list of publications stem directly from the work conducted during
this project, including background work on robotics, external presentations and

submitted work. All papers are full length and peer reviewed.

Calibration and Removal of Lateral Chromatic Aberration in Images

J. Mallon and P.F. Whelan Pattern Recognition Letters, (Accepted)

Projective Rectification from the Fundamental M atrix J. Mallon and
P.F. Whelan Image and Vision Computing, Volume 23, Issue 7, pp 643-650,
2005.
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Precise Radial Un-distortion of Images J. Mallon and P.F. Whelan In

Proc. ICPR2004 - 17th International Conference on Pattern Recognition,
Cambridge, UK, pp 18-21, August 2004.

Robust 3-D Landmark Tracking using Trinocular Vision J. Mallon, 0.

Ghita and P.F. Whelan In Proc. SPIE OPTO-Ireland, Galway, Ireland, 2002.

An Integrated Design Towards the Implementation ofan Autonomous
Mobile Robot J. Mallon, O. Ghita, P. F. Whelan In Proc. OPTIM 2002
- 8th International Conference On Optimization of Electrical and Electronic

Equipment, Brasov, Romania, 2002.

Epipolar line extraction using feature matching O. Ghita, J. Mallon and
P.F. Whelan In Proc. Irish Machine Vision and Image Processing Conference,
Maynooth, Ireland, pp 87-95, 2001.

Comoputational approach for depth from focus O. Ghita, P. F. Whelan
and J. Mallon, Journal of Electronic Imaging Volume 14 issue 2, pp 1-8, 2005

Mobile robotics and trinocular vision J Mallon, Presentation to Aus-
tralian Centre for Field Robotics University of Sydney, Australia, January
2003.

' 1
W hich Pattern? Biasing Aspects of Planar Calibration Patterns and

Detection Methods J. Mallon and P.F. Whelan Pattern Recognition, (Under
review: Submitted July 12, 2005)

7.3 Direction for future research

Several extensions and related topics to this work are worthy of further inves-

tigation. This section proposes a few directions for future research.

1AL the time of writing these are under review

182



Chapter 7 — Conclusion

7.3.1 Chessboard detection

Considering the popularity of planar calibration targets in many applications,
including the calibration of distortion as presented in this thesis, there is a
need for dedicated methods for automatically extracting accurate estimates,
and ordering, of control points from these targets. It has been proven in this
thesis that chessboard targets give much higher quality data than alternative
patterns. Thus, the detection methods should be focused on these types of pat-
terns. The detection consists of three subproblems, initial estimation, accurate

refinement, and data ordering.

It was found during the experimentation, that in the presence of image blur,
large lens distortion or acute pattern positions, that the regular corner de-
tectors failed to register all the intersections of the chessboard squares. This
problem can be overcome by taking into account the known intensity struc-
ture around a intersection point. False hits can be filtered as described in this
thesis, Section 3.2.2.

It was also found that the saddle point refinement process is fast but very
dependent on the level of blurring, distortion and the initial location guess.
Conversely, the edge based approach is quite computationally expensive, but
accurate when applied with a relatively small ROI, regardless of blurring, dis-
tortion or initial location 2. A new technique is required that combines the
benefits of each of these methods. It should be fast, invariant to image blur-
ring and distortion and able to cope with poor initialisation. It should also be
possible to return a confidence measure regarding the accuracy to which the

intersection point is detected.

Lastly, for many calibration methods, a comparison with a calibration model
is required, invariably requiring the ordering of the detected data to form the
correct correspondences. A basic method is outlined in Section 3.2.3, but
only works unaided for relatively low distortion. For higher levels an initial
estimate of distortion is required to undistort the points. It may be possible
to automate this process regardless of distortion level for example using a

Delaunay triangulation.

2Within reason, at maximum of a few pixels in difference is typical
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7.3.2 Axial chromatic aberration

Chapter 5 described the compensation of lateral chromatic aberration only. As
mentioned there is also a axial component to this aberration that introduces
a similar radially and colour dependent blurring. Although the correction
for lateral chromatic aberration gives a significant improvement, the complete
chromatic aberration would represent another step forward. There is no reason
that it cannot be modelled using the same model as its lateral cousin, and may
also be measured using the chessboard pattern. Considering that the location
of the intersection points of the chessboard are already detectable, the axial
chromatic aberration introduces a sort of radial smearing of the intensity with
the result that the local intensity area is not balanced. This imbalance may
be measured, directly corresponding with the axial chromatic aberration. Its
image compensation may not be so straightforward, requiring a programmable
de-blurring filter with a variable origin. The compensation for all chromatic
aberrations may facilitate more colour applications, for example in underwater
imaging, where additional chromatic aberrations are introduced due to the
extra medium (water-glass-air). For general image enhancement, the successful
compensation of chromatic aberrations offers significant improvements in the

perceived image quality.

7.3.3 Model based image warping

Currently the image re-sampling process is carried out based on the known
distortion function using bilinear interpolation to calculate the new pixel in-
tensity. This method is point-wise correct, but because of the use of supporting
pixel intensities is not area-wise correct. The interpolation area should not be
based on a regular patch, instead it should be based on a distortion warped
patch that transforms into a regular patch in the corrected image. This may
be addressed by either using the distortion function in order to manipulate the
interpolation patch or through a distortion based biasing of the regular shaped

patch intensities.
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7.3.4 Optimal image rectification

The method outlined in chapter 6 optimally estimates the undetermined pa-
rameters of a planar rectifying transform. However, the actual rectifying com-
ponent, based on Hartley (1999), only considers the optimal formation of one
of these rectifying pairs. This indeed may not even be the most optimal for-
mation. Alternative methods such as Loop and Zhang (1999) are unstable,
while their motives of imposing affine qualities are not optimal either. There
is a need for a formulation that will also lead to the formation of rectifying
transforms that specifically minimise perspective distortions. It may also be
beneficial to bypass the explicit computation of relative geometry, i.e the Fun-

damental Matrix or trifocal tensor.

7.4 Concluding remarks

The techniques presented in this thesis have a broad scope and influence for
many tasks that at least require some consideration of distortions. However,
the evaluations are carried out independently of such applications as it is con-
sidered that a stand alone investigation effectively allows the extrapolation
of performance for any potential application. As an example, the rectification
procedure is evaluated using specific metrics that demonstrate satisfactory rec-
tification, without recourse to stereo algorithms and their inherent drawbacks.
Similarly, the aberration modelling and calibration pattern contributions have
a broader scope than what they were used for in this thesis. These were not
explicitly investigated, but their benefits may be appreciated in light of the

detailed investigations presented.
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Appendix A

Radially Weighted Homography

Following the calibration of geometric distortions in an image, a meaningful
measure of the residual aberration is required to assess the success of the pro-
cedure. This primarily refers to the aberration models’ fitting ability. A useful
means of generating data to carry out this evaluation, is to use corrected im-
ages of planar calibration patterns. The points recovered from these corrected

images are referred to as ¢ = (u,v, 1)T.

Ideally, the exact residuals would be formed by the difference between these
points and the perfect projection points. In the clear absence of such ideal
projections, an approximation is required. One such approximation can be
formed by taking a homography between the canonical model of the calibration
pattern, w = (xw,yW 1)T 1, and the recovered points ¢, by minimising the
algebraic distance, *(c,Hw ). This results in a least square fit to the points
¢, with the effect of minimising the resulting residuals. Thus, the true residuals

are guaranteed to be greater or equal to these.

A better approximation of the true projected points can be obtained by noting
that geometric aberrations are radially dependent about the optical axis. Thus,
it can be safely assumed that points close to the optical axis will exhibit
less residual magnitude than outer points. By appropriately weighting the
data in favour of central points, giving less influence to outer points, a better
approximation of true residuals can be gleaned. A Gaussian type weighting
is applied over the image window as shown in Fig. A.l by minimising the

IThe calibration pattern is assumed to have a high degree of planarity with high spacial
measurement accuracy.
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Weighting distribution for image window

2500

Fig. A.l: Central weighting of an image window of dimensions 2500 x 2000

algebraic quantity2:

Hwj)2, where C, = exp NN

(cx,cy) is the optical axis or image centre, s is the spread and n is the number

of points. Good values for s are around 0.15 times the image width.

Following a data normalisation procedure that scales both sets of data within a
unit circle centered at the origin, the solution is obtained by stacking the equa-
tions in the form AXx = b, where X = (h\, h2, «hg)T with h9 = 1. Rearranging,

including the weighting, the solution is obtained as:

x = (ATCA)-1A TCb.

The appropriateness of this measure is demonstrated by evaluating on a range
of synthetic residuals, generated by simulating with very small distortion values
as shown in Fig. A.2. The dominant distortion is high order i.e. (k2) with
k\ = .5k2. As can be seen, the weighted Homography serves to approximate

the actual residuals much better than the regular un-weighted version.
2A tradeoff between robustness and accuracy is made here. The data is first pre-scaled
to lie within a unit circle centered at the origin to improve conditioning. As is known this

improves the precision of the estimate, while maintaining the robustness and speed of a
closed form estimation.
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Mean residual error
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Fig. A.2: Euclidean means and SD of residuals computed with regular Homog-
raphy estimation (Blue) and Weighted Homography estimation (Red). Simula-
tions are carried out with low levels of distortion. Results show that Weighted
homography estimation significantly improves the approximation of true resid-

uals in comparison with the regular Least Square (LS) method (Green).
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Closed-form estimation of
distortion

This appendix computes the partial derivatives for use in the iterative estima-
tion of distortion in chapter 4. Each control point ¢c*= 1)T contributes

to the formation of the following objective function which must be minimised:
ei(ci, $) = Hec{+ T>(Heciyk) - Ac*. (B.1

where the parameter vectoris $ = (/in, ¢12,..., ¢32,5,uQvQhi, /2,... >Pi,P2)T
Performing a first order expansion of the error e(c, 3>) around the last esti-
mate results in a Gauss-Newton scheme that can be iterated utilising many
robust least square techniques (Golub and Loan, 1996):

/ deT(c, 3k) de(Cj ~"k)\  de(c,$k)

Sk+i = §1 I d$ d$T | gg7 @< (B.2)

If the forward distortion model D (p, k) is computed with three radial distortion
parameters 1 where p = Hec are the estimated lens centric coordinates of the

ideal projections. The derivatives are given exactly as:

(ex(c, 8K\ dex,, £) emfi
oe(c, $ k) dsT dHe’ (B.3)
ds$T ey(c, k) dty |

0,0,1,yr2,yf4,yf6
dsT 7 \ 8He’ ey

1Decentering distortion is automatically included in this formulation due to the variable
projective transformation He, as described in Section 4.4.1.
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where
( dex\ N dx
fc, 1 (3x2+ y1 + 2
dne ( y )dH. Xy<H
dey dy . qx A
\d n j \dH +k||2>r§]y.— — + (x2+ 3y2)dw, +

k2 ((5i4+ 6i2y2+ y4)é_|— + (4x3y + 4iy3)<"}|

fo (418¢y A 4iy3) VU + (id+ 6x2y2+ 5y4) ~
(487 4iy3) W + ( 2+ 5y4) &

dx
h f(7i6+ 15idy2+ 9x2y4+ + (6x5y + 12x3y3+ 6iy5) ~

- *\ dx + (f6+ 9iY + 15i2¢4+ 77%) ~
I3 ((6iBy + 19x%y3+ B%yg)SH’ ate//

where

[ dx \
X,y,1,0,0,0,-xx,-xy

’ 0,0,0,x,y, 1,-yy, -xy ha\x + h32y + 1
\dH j
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