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M odelling and Removal of D istortions in Images

John Mallon

Abstract

This thesis investigates the compensation and minimisation of distor­
tions in images. Various forms of non-linear lens distortions are modelled 
and removed. Projective linear distortions are further minimised to give 
the closest ideal projection from erroneous cameras. Traditional cam­
era calibration treats lens distortion simultaneously with camera pose 
and lens scaling factors. This often leads to complex algorithms with 
multi-image requirements, while alternative so called non-metric meth­
ods such as straight line techniques, lack ready usability and insufficient 
precision. Considering the calibration and compensation of non-idealitys 
separately, allows greater access to error free projections while consid­
erably simplifying subsequent calibrations. The major contributions of 
this thesis are the precise calibration and removal of lens distortions and 
the minimisation of perspective distortions. A simple to use technique 
is proposed for the closed-form calibration of lens distortion based on a 
single view of a planar calibration chart. Detailed examinations show 
its accuracy and suitability for all levels of lens distortion. A related 
method is proposed for the removal of lateral chromatic aberrations in 
images. Distortion models and approximate inverses are derived to give 
precise accuracy over all distortion levels including fish-eye lenses. An 
analysis of calibration patterns is conducted to determine if the choice of 
pattern can influence the accuracy of the calibration. It is revealed that 
only specific patterns offer truly bias free control points. Distortion free 
images are optimally regenerated to minimise pixel scale distortions. 
This technique is further developed to uniquely minimise perspective 
distortions, with application to stereo rectification.
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Chapter 1

Introduction

An optical in strum en t is required to  faithfully produce a geom etrically con­

sisten t im age of a given object, where each point of the la tte r  is im aged as a 

point in the  image. T he image is generally formed in accordance w ith  some 

predefined im aging model, which in th is case is assum ed to  be a projective 

cam era. In th is thesis, two related  factors th a t serve to  degrade the  geom etric 

in tegrity  and quality  of an image are considered.

Firstly, th e  d epartu re  of practical optical system s from ideal behaviour, leads to  

the  in troduction  of aberrations in the  resulting images. Two categories of such 

optical errors are addressed, lens d istortion  and la teral chrom atic aberration. 

Lens d isto rtion  is a well known m onochrom atic aberration , and is thus present 

in b o th  colour and greyscale im aging devices. Its  na tu re  is predom inantly  a ra­

dial geom etric displacem ent of pixels giving a barrel or a pincushion effect bu t 

w ithou t loss of image quality. Its  chrom atic relation, la teral chrom atic aber­

ration , arises from the  polychrom atic n a tu re  of light, as it is sp lit into a set 

of rays or wavelengths upon entering a colour cam eras lens. W hilst traversing 

the  optical system  light of different w avelengths will follow slightly different 

paths. U pon reaching th e  im age plane the ir m isaligned recom bination in tro­

duces chrom atic aberration . T he focus point of the w avelengths varies bo th  

la terally  and axially, prom pting  the  distinctions of la teral and axial chrom atic 

aberrations. Lateral chrom atic aberra tion  is considered in th is work and is 

characterised  by colour dependent shifts in the  image plane.

T he second source of error arises from the local pixel d isto rtions introduced 

following aberra tion  removal, and indeed in m any im age w arping applications
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Chapter 1 — Introduction

such as p lanar stereo rectification. These d istortions are akin to  local stre tch­

ing or w arping of pixels, and culm inate in bo th  th e  loss of original image pixels 

and th e  degradation  of existing ones, th rough  th e  enlargem ent or com paction 

of pixels in the  re-sam pled image. In addition  to  poor im age quality, geom et­

ric d istortions m ay also be introduced. Unlike lens aberra tions th is form of 

d isto rtion  can, in general, only be minimised.

O ptical aberra tions form th e  foundations of th is work, from which a selection 

of rela ted  problem s are addressed. T hrough the  use of m athem atical models, 

th e  aberra tions, m easured a t relatively few locations, m ay be extended to  all 

pixels in the  image. To th is end, models of these nonlinear optical aberra­

tions are derived from first principles, while the ir relationship  to  alternative 

approxim ations are shown. A com parison between the  derived and existing 

m odels is m ade under the  criteria  of accuracy and stability. Model inverses 

are also derived for the  specific in ten t of generating sim ulation d a ta  of high 

integrity. T he aberra tions in an image are m easured w ith the  aid of p lanar 

p a tte rn s. A lternative p a tte rn  types are analysed to  determ ine which type gives 

the  best quality  m easurem ent da ta . It is found th a t certain  types of pa tte rn s 

and detection  m ethods in troduce biasing errors in th e  recovered image loca­

tions. W ith  an appropria te  p a tte rn , the m easured coordinates are then  used 

to  calib ra te  the  aberra tion  models w ithin a least square framework. This cal­

ib ra tion  is specifically focused on being easy to  use and im plem ent, exploiting 

two geom etric priors on the  calibration p a tte rn . Using only a single view, a 

closed-form estim ation  problem  is derived, including full partia l derivatives. 

For lens d isto rtion  a  com prehensive analysis and com parison of th e  proposed 

m ethod is carried out. As the  aberra tion  models give no consideration to  the 

optim al form ation of new images, a unique m eans of m inim ising local pixel 

d isto rtion  is developed. This idea is subsequently  expanded to  address the 

unavoidable d istortions in p lanar rectification algorithm s.

1.1 B ackground and M otivation

T his section aim s to  give a brief background to  the  origins of th is work. It 

also sum m aries some earlier work th a t was carried out during th is project, bu t 

which is no t the  m ain focus of th is thesis.
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Chapter 1 -  Introduction

This work originates from work carried out in the  area of mobile robotics. A 

mobile vehicle or platform  is a fundam ental tool for research and applications in 

th is area. Therefore, a general purpose indoor mobile platform  nam ed M obius 

(Mobile Vision A utonom ous System ), shown in Fig. 1.1, was designed and 

built. In itia l design details m ay be found in M allon (2001) and subsequently 

in M allon e t al. (2002a). I t was designed to  sustain  agile movem ent around an 

indoor labora to ry  environm ent using a com bination of sensors including m ulti­

cam era system s. T he design strives to  cap ture  the  essence of autonom y by 

ensuring all necessary resources for high level operations are contained onboard 

the rig. The two m ost dem anding resources, power and com putational sources, 

are included onboard w ith an additional payload overhead. T he drive system  

com prises of a  skid steer system  as shown in Fig. 1.2 w ith  encoders for m otion 

control and  tracking. Local m otion control is effected by two independent 

m icro-controllers w ith  a program m able pole-zero com pensator, whose digital 

o u tp u ts  are directly  interfaced to  the s tepper m otors via digital frequency 

converters.

Similarly, w ith  all o ther mobile robot system s the  in tegration  based odom etric 

tracking system  could not be relied upon for an extended period of time. In 

an a tte m p t to  address th is problem , additional 3D sensors, including a stereo 

vision system , were employed to  bo th  help in the fundam ental navigation and 

generate m ore precise localisation. In a prim ary study  on binocular stereo sys­

tem s in G h ita  et al. (2001), it was found th a t for m any real situations a unique 

m atching solution could not be applied. This forced an increasing dependency 

on several heuristic constrain ts to  discover plausible m atching. Following the 

add ition  of a th ird  cam era an ex tra  geom etric constrain t was in troduced to  re­

duce th e  influence of heuristics. T he system , reported  in M allon et al. (20026) 

uses a linear configuration of th ree equally spaced cam eras, m echanically ar­

ranged in an effort to  align the respective epipolar lines. A feature based 

m atching technique is then  applied to  calculate a lim ited set of 3D measures.

It becam e abundan tly  clear th a t there were two large problem s w ith th is ap­

proach. T he first was th e  v irtua l im possibility of exactly  m echanically position­

ing two (or one for th a t m a tte r) cam eras relative to  the  th ird  in the  trinocular 

system . T his was further com pounded by the  slight variations between the 

th ree  lenses. Secondly, as a broad field of view is required for po ten tia l tasks

1.1.1 M obile robots
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Chapter 1 -  Introduction

Fig. 1.1: M obius, showing its trinocu lar cam era system  and payload, (M onitor 

and optical table)

such as navigation, the  use of low focal length lenses w ith  large and variable 

lens distortions were effectively unavoidable. This d istortion  effectively re­

moved the possibility of getting  any m atching points away from th e  centre of 

the  images. Hence, a  journey  in cam era calibration began.

1.1.2 Calibration: Rectification and D istortion

W ithou t w anting to  expend tim e and resources on the  m anufacture of precise 

calibration objects, p lanar calibration routines based on th e  work in Zhang 

(1998), using m ultiple shots of p lanar p a tte rn s  offered an a ttrac tiv e  a lte rna­

tive to  trad itiona l m ethods. This offered th e  correction of lens d isto rtion  and 

an estim ate for the  cam era projection m atrices. By decom posing these pro-

4



Chapter 1 -  Introduction

Fig. 1.2: T he drive system  design of Mobius, viewed from underneath . S tepper 

m otors are coupled to  the  drive shafts th rough bevel gears. A too thed  belt 

ro ta tes  auxiliary  shafts w ith  increm ental encoders attached .

jection  m atrices, rectifying transform ations could be obtained, for exam ple 

using th e  m ethod  proposed in Fusiello e t al. (2000). However, th is rectifi­

cation  perform ed poorly, often giving worse alignm ents th a n  the  mechanical 

setup. As m etric rectification was not dem anded by th e  intended application, 

uncalib ra ted  rectification based on decom positions of the Fundam ental M atrix  

were investigated. Again, using the  m ethod proposed in H artley  (1999), the 

rectification still perform ed poorly. Additionally, b o th  the  calibrated  rectifi­

cation and its uncalib rated  relation had a tendency to  in troduce severe image 

warping, such as shearing into the  new images. Consequently, during the 

correlation based feature m atching or stereo m atching phase, th e  local areas 

around a poin t of in terest were quite dissim ilar, resulting in very few detected 

correspondences. Regarding the lens d istortion  removal, it was noticed th a t 

the new re-sam pled images actually  contained a d isto rtion  residual of a few 

pixels.

T his thesis details a thorough investigation of these, and related  problems. 

Briefly, these include the uncovering of some useful refinem ents and simpli­

fications regarding th e  calibration of distortion. T he uncalib ra ted  rectifica­

tion perform ance is improved, u ltim ately  m atching th e  level of th e  noise in
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Chapter 1 -  Introduction

the  control points. T he unavoidable projective d istortions were also uniquely 

m inim ised to  enhance th e  m ulti-im age correlation algorithm s. From this point 

some fu rther im p o rtan t issues are addressed and rela ted  extensions were devel­

oped and tested . These broadly include aberra tion  m odelling, the  specification 

of control points for calibration, and the  removal of chrom atic aberrations in 

colour images.

1.2 L iterature R eview

U nderstandably , a large am ount of effort has been directed a t these prob­

lems. Some of the  m ain publications relevant to  th is thesis are highlighted, 

listed under subheadings corresponding to  the  m ain chapters. These cover 

the  m odelling of optical aberra tions in images, calibration  m ethods for these 

aberrations, th e  specification of p lanar control points, chrom atic aberration  

com pensations and finally rectification m ethods and distortions.

1.2.1 Aberration M odels

Initially, th e  photogram m etric com m unity developed m ethods for modelling 

and rem oving lens d istortion. Slam a (1980) describes th e  work of D uane C. 

Brown in m odelling lens d isto rtion  in arial m apping cam eras as the com bina­

tion of two d istinct com ponents, still used and referred to  today  as radial and 

decentering lens d istortion. These models are functions of th e  ‘p late coordi­

n a te s ’ or observed pixel locations in digital term s. T he decentering com ponent 

of th is m odel was fu rther justified by Brown (1966) wherein he advocated the 

replacem ent of th e  th in  prism  m odel by a  (until then) lesser known model of 

C onrady  (1919) derived by exact ray trac ing  means. In Brown (1971), formu­

lae for th e  variation  of d istortion  w ith focusing distance are revealed. Fryer 

and Brown (1986) describes some slight m odifications to  th e  decentering lens 

d isto rtion  variation  w ith  focus distance. These focus variation  m odels are how­

ever no t used in com puter vision as they  require the  focusing distance to  be 

known in order to  correctly select the  d istortion  profile.

T he lens d isto rtion  model presented in Slam a (1980) has becom e the  accepted 

m odel in m any cases, especially if only low disto rtion  is present. C am era
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Chapter 1 — Introduction

m odels for com puter vision began including lens d isto rtion  factors in an effort 

to  im prove accuracy. Tsai (1987) proposed a popular im plem entation th a t 

used only th e  radial selection of the  trad itiona l m odel as presented in Slam a 

(1980). He com m ented th a t a more elaborate  m odel th a n  a  plain radial one 

would no t only fail to  improve accuracy, b u t would lead to  num erical instability. 

This was fu rther verified in experim ents by Wei and M a (1994). Truism  based 

m ethods, generally using stra igh t lines, for example: P resco tt and McLean

(1997), Sw am inathan  and N ayar (2000) and D evernay and Faugeras (2001), are 

forced to  use th is m odel as the  only d a ta  available are the  d isto rted  projections.

D espite the  apparen t w idespread adoption of the  trad itiona l model, its lack of 

an analy tical inverse makes its use in some calibration techniques awkward. As 

a  consequence its precise form varies from being a  function of d isto rted  coordi­

nates (as was originally m ooted) to  a function of und isto rted  coordinates. In 

works such as W eng e t al. (1992), lens d isto rtion  is presented as a  function of 

und isto rted  coordinates. Because the  und isto rted  coordinates are unknown, an 

approxim ation  is m ade by replacing the  und isto rted  coordinates w ith  d istorted  

ones. He justifies th is replacem ent by reasoning th a t th e  re-estim ation, carried 

ou t w ith  d isto rted  d a ta , will fit equally well. Wei and M a (1994) also present 

the  trad itio n a l m odel as an approxim ation of th e  true  one. However, for sim­

plicity, a  general th ird  order rational polynom ial m odel is adopted  instead. 

Heikkila and Silven (1997) likewise present the  m odel of lens d istortion  as a 

function of und isto rted , or in optical term s, G aussian projections. In Heikkila

(2000) th e  reverse s itua tion  is presented, and w ithout any justification, where 

the  sam e d isto rtion  function is now presented as a function of d isto rted  coor­

dinates. Considering the  m any o ther conflicting in terp re ta tions such as Zhang 

(1998, 2000), w here lens d isto rtion  is presented as a  function of undistorted  

da ta , and Lucchese and M itra  (2003) where it is presented as a function of 

d is to rted  d a ta , and it is little  wonder th a t in some quarters there  is a cer­

ta in  degree of confusion as to  the  correct in terp re ta tion  of th e  lens d istortion 

m odel and  the  benefits thereof. Tam aki e t al. (2002) identifies th is confusion, 

labelling th e  models: D isto rted-to -U ndisto rted  and U ndistorted-to-D istorted .

A lternative functions have been proposed to  m odel lens d istortion. In the 

polynom ial approxim ation vein, Asari et al. (1999) use a  general fourth  order 

polynom ial to  m odel d isto rtion  in endoscopic images, b u t no analysis of the 

efficiency of such a m odel is presented. Shah and A ggarwal (1996) also presents 

a sim ilar polynom ial m odel including bo th  radial and decentering elements,

7



Chapter 1 -  Introduction

while a  m ore general model has been suggested in K annala  and B rand t (2004). 

M a et al. (2003) propose a sim ilar model to  the trad itional one, b u t to  a lower 

radial order. T he advantage gleaned is th a t a set of inversion solutions become 

available. A ra tional polynom ial has also been proposed in Heikkila (2000) 

based on the  assum ption th a t d istortion  follows the trad itional form.

R ational m odels w ith  analytical inverses have also been proposed. Fitzgibbon

(2001) presents a  single param eter model he calls the  divisional model. It 

offers a good approxim ation to  m ost d isto rtion  profiles, and has been used for 

high d isto rtion  applications in B arreto  and Daniilidis (2004), and w ith slight 

m odifications for fish-eye lenses in Y ing and Hu (2004), B rauer-B urchard t and 

Voss (2001) and M icusik and P a jd la  (2003) all reporting  adequate perform ance. 

T he disadvantage of th is m odel is th a t it cannot m odel nonlinearities w ithin 

the d isto rtion  profile. Specific fish-eye m odels have also been proposed. Basu 

and Licardie (1995) describes a  log based model called the Fish-eye transform , 

which is com pared w ith  a  polynom ial approxim ation. A hybrid stereographic 

pro jection  and equisolid angle m odel has also been proposed for general fish- 

eye m odelling, achieving a  sub-pixel fit. However, these m odels are unsuitable 

for use w ith  norm al perspective cam era lens distortion.

M odel Inverses

As already described, the  lack of an analytical inverse for trad itiona l type 

d isto rtion  models, (bo th  as a  function of d isto rted  and undisto rted  points) is a 

draw back in m any calibration m ethods. These inverses are required for image 

or d a ta  correction depending on the m odel assum ptions adopted, while also 

having a im po rtan t role in the  sim ulation of distortion.

Wei and M a (1994) propose to  use an im plicit th ird  order rational polynom ial. 

T he resort to  such a general model is a direct consequence of the unknown 

form th a t a  possible inverse m ight take. Heikkila and Silven (1997) partially  

address th is problem  using a fifth order version of th is ra tional polynom ial, 

which is subsequently  trim m ed of redundan t param eters to  give a m ore likely 

solution form. G ood accuracy is presented, b u t only for very low distortion 

levels. Its  ability  to  accurately  cope outside th is range is unknown. A similar 

form of a  su itab le  inverse approxim ation has been proposed in Heikkila (2000) 

based on th e  inclusion of some term s of a  first order Taylor expansion w ith
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the  assum ed forward d istortion  model. This m odel is again tested  only for low 

d isto rtion  levels.

D ecentering distortion

T he practical value of including decentering d isto rtion  in the  modelling of 

lens d isto rtion  is questionable. M any im plem entations neglect to  model it, 

seem ingly w ithou t any adverse consequences. Those th a t do, find th a t the 

associated param eters are very small. Historically, cam era calibration au thori­

ties in th e  1950’s had refined the ir techniques producing accurate estim ates for 

th e  principal point, b u t to  the ir dism ay discovered th a t some lenses exhibited 

an asym m etrical d istortion. This was due to  slight m isalignm ents of the lens 

elem ents and becam e known as decentering distortion. Initially, a th in  prism  

m odel was used to  model th is distortion. W ith  th e  increase of film resolution 

and m easurem ent accuracy, Brown (1966) was able to  show th a t  the prism  

m odel was in exact agreem ent w ith the  tangen tia l com ponent of decentering 

d isto rtion  b u t a t variance by a factor of th ree  w ith  regard to  the  radial com­

ponent. He proposed an a lternative m odel based on previous work of C onrady 

(1919). Considering th a t th e  aerial lenses th a t were being calibrated  could 

occupy several hundreds of cubic centim eters, were m eticulously assembled 

and extrem ely expensive, it is unlikely th a t curren t low cost, m ass produced 

and sm all form at (e.g C-M ount) are m anufactured and assembled to  a degree 

w here decentering d isto rtion  is negligible.

T he am biguity  in the  use of decentering d isto rtion  originates from the neces­

sity  to  sim ultaneously estim ate the location of the  d isto rtion  centre a n d /o r  the 

principal point, w ith  d istortion. In th e  plum b line m ethod  of Fryer and Brown 

(1986) ad justab le  param eters are carried for the  centre point. T hey found th a t 

these param eters were inherently  indeterm inate  if decentering d istortion  was 

included in the  d isto rtion  model. Slam a (1980) also offered the  opinion th a t 

“decentering coefficients also in teract to  a m oderate degree” w ith the princi­

pal po in t estim ation. However, very precise estim ates for th e  principal point 

were available from the  fiducial m arks or th rough  laser collim ation, allowing 

inform ed com parisons to  be carried out, e.g. (Brown, 1966). For m odern cam ­

eras there  is no requirem ent on m anufactures to  align th e  lens w ith  th e  sensor 

array. T hus w ithou t resort to  laser collim ators the principal poin t is entirely 

unknown.
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By sim ultaneously carrying a  variable d istortion  centre point, it was noted by 

Stein (1993) th a t  a shift in the distortion  centre induces decentering like term s 

in the  rad ial d isto rtion  model. This principal is used by m any to  exclude 

the  explicit m odelling of decentering distortion. However, it is unclear how 

valid th is approxim ation  is w ith increasing decentering d istortion. Assuming 

the existence of decentering distortion , the  recovered centre poin t will thus not 

m atch  th e  ideal principal point. T he opposite argum ent is m ade in Ahm ed and 

Farag (2001) were the centre point is assum ed fixed, while decentering elements 

are included to  account for its inevitable m isplacem ent. However, C larke et al.

(1998) showed by experim ent th a t th is idea is flawed. He s ta tes  th a t the 

inclusion of decentering can only com pensate to  a  “surprisingly sm all ex ten t” 

for shifts in th e  principal point. Finally, an a lternative selection of m ethods to  

calculate the  principal point are described in W illson and Shafer (1994), while 

the  im portance of its estim ate in cam era calibration is investigated in H artley 

and K aucic (2002) w ith  respect to  the estim ated  focal length.

1.2.2 Calibration M ethods

In add ition  to  d isto rtion  m odelling work, D uane C. Brown also proposed an 

im p o rtan t m ethod for determ ining lens d istortion  based on the tru ism  th a t 

s tra igh t lines m ust be im aged as stra igh t lines. T his technique, published in 

(Brown, 1971), and  w ith  extensions in (Fryer and Brown, 1986), becam e known 

as th e  ‘plum b line’ m ethod, where initially fine w hite th read  was stretched  by 

plum b bobs which were stabilised in an oil bath . A com prehensive historical 

review is given in Clarke and Fryer (1998). This technique was adopted by the 

m achine vision com m unity where simplified versions of the  plum b line m ethod 

are presented, e.g. P resco tt and M cLean (1997). Haneishi et al. (1995) and 

A sari e t al. (1999) describe a  sim ilar tru ism  based correction for th e  correction 

of endoscope d istortion , using images of co-linear points. Similar, high level 

d isto rtion  is considered in B rauer-B urchard t and Voss (2001), however the real 

exam ple shown, w ith  a quoted residual d isto rtion  of ± 0 .7  pixels, resembles a 

qu ite benign d isto rtion  level. Since these m ethods only estim ate  distortion, 

there  are som etim es loosely referred to  as non-m etric calibration.

An intrinsic problem  for these m ultiple line based m ethods is th a t it becomes 

in trac tab le  to  form geom etric relationships between a d isto rted  line segm ent 

and its tru e  projection. An a lte rna ting  approach is thus employed, as in Dev-

10
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ernay and Faugeras (2001), which iteratively  ad justs th e  d isto rtion  param eters 

in order to  minim ise the  line fitting  to  the d isto rted  line segm ents. No m ean­

ingful geom etric relationship  exists between th is objective error and the dis­

to rtio n  param eters, hence no analytical derivatives are available. This results 

in slow convergence and  can becom e unstab le  for elevated d isto rtion  levels, 

unless special steps are taken, as in Sw am inathan and N ayar (2000). In this 

non-m etric approach Sw am inathan and N ayar (2000) reform ulate the objec­

tive function in d isto rted  space instead of the  usual und isto rted  space. This 

is done by perform ing a fu rther search a t each alternation  to  find the location 

of a po in t closest to  the  considered d isto rted  point, b u t th a t lies exactly on 

the  line fitted  to  th e  curren t und isto rted  point estim ates. T he reported  re­

sults show im proved robustness to  noise for sim ulated d a ta  b u t no meaningful 

perform ance is reported  in the real case. A sem i-related m ethod has been sug­

gested in A hm ed and Farag (2001) where the curvature of detected  lines are 

used to  estim ate  the  param eters of th e  derivative d isto rtion  equation. How­

ever, as m ay be expected, the  sim ulation results show abysm al perform ance in 

the  presence of noise, while the  real results lack a  qualita tive evaluation.

A m ore s tan d ard  m eans of calibrating  d istortion  is w ith  th e  sim ultaneous esti­

m ation  of a  cam eras extrinsic and intrinsic param eters. T sa i’s m ethod (Tsai, 

1987) involves sim ultaneously estim ating, via an iterative num erical optim i­

sation  scheme, the  single d isto rtion  param eter and some in ternal param eters 

such as focal length, given th e  3D position of a  set of control points. The ex­

terna l param eters or position of the cam era is already com puted in a previous 

step. T he disadvantage of th is approach is th a t it requires known 3D control 

points and in re tu rn  offers relatively low accuracy for all b u t simple distor­

tion  profiles. A lgorithm ic variations on th is principal have been proposed by 

many, including W eng e t al. (1992) and Wei and M a (1994) using more ap­

propria te  m odels for lens distortion. These m ethods also require known 3D 

control points. T he generation of d istortion  corrected images is investigated in 

H eikkila and  Silven (1997), while Heikkila (2000) describes a  sim ilar technique 

th a t requires 3D control points or m ultiple image sets of 2D control points. An 

a lternative  m ethod also based on m ultiple sets of 2D control points has been 

advanced in Zhang (1998, 2000) and S turm  and M aybank (1999). This tech­

nique addresses d isto rtion  through an a lte rna ting  linear least-squares solution 

which is then  iteratively  ad justed  in a num erical m inim isation including all 

estim ation  param eters. Of course the  relative com plexity of these techniques

11
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is significantly increased by the  inclusion of lens d istortion.

On th e  o ther hand  there  are m any situations w here only d istortion  removal 

is required, no t th e  full com plem ent of intrinsic and extrinsic param eters. A 

good exam ple is in the  estim ation  of m ultiple view geom etry in real images, 

w here techniques have been specifically developed to  accom m odate lens dis­

tortion . Zhang (1996) investigates the  possibility of sim ultaneously estim ating 

d isto rtion  param eters and the Fundam ental M atrix. T he results conclude th a t 

this is possible if noise is low and d istortion  is high. F itzgibbon (2001), Mi- 

cusik and P a jd la  (2003) and B arreto  and Daniilidis (2004) use an alternative 

models for d istortion , leading to  a polynom ial eigenvalue problem  and a more 

reliable estim ation  of d isto rtion  and geometry. S tein (1997) takes the  reverse 

approach and  uses the  error in Fundam ental M atrix  estim ation  as an objective 

error to  estim ate d isto rtion  param eters.

A lternative m ethods of d isto rtion  calibration exist, where control points corre­

spondences are abandoned in favour of d istortion  free scenes. These scenes are 

then  im aged by th e  cam era system , w hereupon an im age alignm ent process 

is conducted to  correct for distortion. Lucchese and M itra  (2003) describes 

such a technique, where the  d isto rted  im age is w arped until it registers (in 

in tensity  term s) w ith the  reference image. A sim ilar technique using a coarse 

to  fine reg istra tion  is described in Tam aki (2002) while Sawhney and K um ar

(1999) describes a reg istra tion  technique th a t does not require an undistorted  

reference image. Instead, m ultiple images are registered for the generation of 

a mosaic, and  d isto rtion  is sim ultaneously estim ated. These techniques have 

a very high com putational overhead, w ith tw enty m inutes quoted in Tam aki 

(2002).

A final class of non-m etric calibration m ethods are based on d istortion  induced 

high-order correlations in th e  frequency dom ain. Farid and  Popescu (2001) 

describes such a  technique, however its perform ance is poor in com parison 

w ith regular cam era calibration techniques and it also appears to  be slightly 

dependent on th e  im age content. Yu (2004) fu rther develops th is approach w ith 

a lternative  d isto rtion  models and reports accuracy approaching th a t achieved 

w ith regular cam era calibration if the  source im age is of a  regular calibration 

ta rge t.

12
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T here is an abundance of p lanar charts used w ithin the  realm s of cam era 

calibration  as sources of bo th  2D and 3D control points. These points are 

generally constructed  on a  p lanar surface by m eans of some high contrast 

p a tte rn . In tu rn , th e  p a tte rn  also facilitates the recovery of the  control point 

projections on th e  im age plane. For exam ple, p a tte rn s  such as squares in 

Zhang (1998), W eng et al. (1992), chessboards in Lucchese and M itra  (2002) 

and circles in Heikkila (2000), Asari et al. (1999) have becom e popular as they 

can be readily m anufactured  to  a sufficient precision, and their d a ta  points are 

recoverable th rough  the  use of s tan d ard  image processing techniques.

N aturally, m any studies in cam era calibration  have focused specifically on 

achieving high calibration accuracy and stability. These works are prim ar­

ily founded on high precision control points of either 2D or 3D variety, and 

the accurate detection of their projections. Linear least-square techniques for 

calibration  are im proved upon by Tsai (1987) and W eng et al. (1992), who con­

cen tra te  on im proving the calibration accuracy by com prehensively modelling 

lens d isto rtion  and fu rther iteratively  optim ising the  param eters. A com par­

ative s tu d y  is presented in Salvi et al. (2002). P lana r calibration techniques 

have been proposed by S turm  and M aybank (1999) and Zhang (1998) th a t 

place th e  world coordinate system  on th e  calibration object and thus require 

only arb itra rily  scaled 2D coordinates. These m ethods, requiring less arduous 

control po in t specifications, have con tribu ted  largely to  the  com mon adoption 

of p lanar calibration  targets.

All these works assum e th a t the  detected  image points have zero-m ean gaussian 

d istribu tions in order to  correctly converge to  the  optim al solution through 

bundle ad justm ent. Indeed sub-pixel detection m ethods have been designed 

for use w ith  specific calibration  p a tte rn s  to  give im proved accuracy. Peuchot 

(1992) outlines a m ethod for determ ining line intersections, while Lucchese and 

M itra  (2002) describes a  local sub-pixel refinem ent based on surface fitting. 

T he la tte r  is experim entally  shown to  have zero-m ean gaussian errors.

T he effects of errors in control points have been investigated in K opparapu  and 

Corke (1999) where th e  dependence of cam era param eters to  inaccurately  de­

tec ted  control points are exam ined. Lavest et al. (1998) advances th is problem  

by considering the  error in m easured control points. This Error-in-V ariables or

1.2.3 Planar Calibration Targets
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T otal-Least-Squares approach requires th a t the  errors are random . This may 

not always be the  case. Heikkila (2000) describes a  calibration  technique using 

circular control points th a t are corrected for perspective bias to  improve the 

calibration  accuracy. Excluding th is one lim ited case, the  biasing influence of 

the  actual calibration  p a tte rn s  (squares, circles, etc.) and associated detection 

m ethods have not been addressed so far.

1.2.4 Chromatic Aberration

C hrom atic A berration  (CA) can be broadly classified as Axial C hrom atic A ber­

ration  (ACA) (also known as Longitudinal CA) and L ateral C hrom atic A ber­

ration  (LCA) (also known as Transverse CA) (Kingslake, 1978). ACA arises 

from th e  longitudinal variation of focal position w ith  w avelength along the  op­

tical axis. LCA is th e  variation of image size w ith  wavelength or the  vertical 

off-axis d istance of a point from its prescribed point.

C hrom atic aberra tions have been predom inately studied  w ith  respect to  image 

form ation in th e  areas of microscopy, pho togram m etry  and  com puter vision. 

W illson (1994) and W illson and Shafer (1991) considers an active lens con­

tro l system  to  com pensate for chrom atic aberra tion , by separately  adjusting 

th ree  RGB filter lenses to  m atch  the  colour planes. T heir work shows th a t 

chrom atic aberra tions can be com pensated in an image by re-alignm ents of 

the  colour channels. B oult (1992) form ulates th e  com pensation of LCA as an 

im age w arping problem . No aberra tion  m odels are employed, focusing solely 

on th e  w arping problem , and correcting based only on in terpolation  between 

control points. Jackowski et al. (1997) presents a  sim ilar s tudy  on geom etric 

and colour correction in images based on a com parison w ith  a well defined 

colour calibration  chart. T he m odels used are again surface approxim ations, 

which are far from optim al solutions, especially since only a lim ited num ber 

of control points are available to  estim ate the  surface param eters. C hrom atic 

aberra tions have been addressed by K uzubek and M atu la  (2000) where an 

algorithm  for the  com pensation of bo th  LCA and ACA in fluorescence mi­

croscopy is presented, however th is technique is not transferrab le  to  images 

acquired w ith regular im aging system s. G eneral usage m ethods, sim ilar to 

those cu rren tly  existing for lens d istortion, are not available for th e  calibration 

of chrom atic aberrations.
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R ectification is known to  be a necessary step  in stereoscopic analysis. The 

aligning of epipolar lines allows subsequent algorithm s to  take advantage of 

the  epipolar constrain t, reducing the  search space to  one dim ension. However, 

th e  rectilinear m echanical alignm ent of two (or more) cam eras is prohibitively 

difficult, leading to  th e  developm ent of im age w arping algorithm s to  sim ulate 

rectilinear im ages from those of a rb itra rily  placed cam eras. In the uncalibrated  

case each im age can be subjected  to  a two dim ensional projective transform a­

tion  or p lanar homography. T he hom ographies can be calculated solely from 

an analysis of the  Fundam ental M atrix, to  re-orientate th e  epipolar projections 

parallel to  the  horizontal image axis.

P ro jective rectification has m any degrees of freedom. Among these is the prob­

lem of finding a  rectification th a t minimises the  in troduction  of d istortion  in 

the  rectified images. H artley  (1999), H artley  and Zisserm an (2003) describes 

a technique where a  rigid rectifying transform ation  is derived from the Funda­

m ental M atrix. This m eans th a t to  first order, a points neighborhood undergos 

ro ta tio n  and  transla tion  only, hence the original and re-sam pled images look 

sim ilar. T his criteria  is only applied to  one of the  rectifying hom ographies, 

w ith  the  resu lt th a t  th e  second rectified im age often contains severe d istor­

tions. A related  technique has been proposed by Al-Shalfan e t al. (2000). 

Loop and Zhang (1999) consider a stratified  decom position of bo th  rectifica­

tion hom ographies in order to  m inimise projective distortions. This is done by 

a ttem p tin g  to  force affine qualities on the  hom ographies. As image skew and 

aspect ra tio  are invariant to  affine transform s, they  make ex tra  constraints 

upon th e  hom ographies to  reduce these distortions. T heir approach is not 

optim al considering only one local region of th e  image. I t is also prone to  

instab ilities when working w ith  real images. O ther d isto rtion  in terpre ta tions 

have included orthogonality  of im age corners and m axim ising im age content 

over th e  view window (Faugeras and Luong, 2001).

Pollefeys e t al. (1999) describe an a lternative approach w here rectification 

is considered as a  reprojection onto a cylindrical surface instead  of a plane, 

su itab le  for configurations when the epipole is w ith in  or close to  an image. 

P apad im itriou  and  Dennis (1996) present an approach for convergent stereo 

geom etry, while Isgro and Trucco (1999) consider rectification directly  from 

poin t correspondences w ithou t explicitly determ ining th e  F undam ental M atrix.

1.2.5 R ectification distortions
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These m ethods however are not focused on the reduction of distortions.

A dditionally, the  actual rectification perform ance of m any existing p lanar recti­

fication m ethods th a t consider the  in troduction  of d istortion, such as (Hartley, 

1999, Loop and Zhang, 1999) is often very insufficient when dealing w ith real 

images w ith  noisy point correspondences.

1.3 M ath em atica l n otation

Points and vectors are represented by lower case bold symbols, k  =  ( k i , kn)T , 

w ith  entries h\,  /c2, etc. Point coordinates are predom inantly  represented in 

homogeneous form by 3 dim ensional vectors, e.g c =  (u , v , w )T . If w ^  0 

then  th is represents the points in M2 expressed in Euclidean coordinates as 

( u / w , v / w )T. W hen the scale has been fixed, i.e. c =  (u /w ,  v / w ,  1)T, these 

are known as affine points. If w =  0, the  points are knows as points a t oo 

or directions. Points are scale invariant in th a t c =  a c  (a  ^  0). Lines are 

sim ilarly represented by 3 dim ensional colum n vectors, e.g. 1 =  (la, k J c ) T - 

Transform s are 3 x 3  m atrices of bold uppercase, e.g T , formed of columns 

T  =  [ t i , t 2, t 3] w ith  entries i n ,  t u , ¿33-

C ontrol points detected  in a  d istortion  free image are denoted by c =  (¿¿, v, 1)T , 

where th e  origin is located in the  top  left corner of the image. Following 

a norm alisation, these points are referred to  as c =  (u ,^ , 1)T to  reflect the 

norm alisation. T he lens centric representation  of these points are referred to 

as p  =  (x, y , 1)T, where the  origin is located around the  intersection of the 

optical axis and the  im age array.

T he d isto rtion  affected coun terparts  of these points are denoted using a  breve, 

e -g P =  (£>#> 1)T- 2D canonical coordinates of th e  calibration  model are 

referred to  as w . T he results of fitting  the d isto rted  points, c to  these model 

points are referred to  as c, to  distinguish th a t they  do no t equal the  und isto rted  

points c. Lastly  th e  un its  of detected  points are in pixels, referred to  as (pix). 

T he un its  of the  norm alised control points are referred to  as {pix).
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1.4 C ontributions

In assessing the  research described in th is thesis, the  m ost im portan t aspects 

have been identified. T he body of work which represents the  core of the re­

search effort in th is thesis is highlighted. R elated  work, of lesser im pact, bu t 

still representing advances in the field are also outlined.

Each of the  following topics are addressed in the  following chapters and form 

the backbone contribu tions of th is thesis.

•  T he m odels of radial and decentering d isto rtion  in an image are derived 

from fundam ental optic equations. In doing so, the  apparen t conflicting 

usage of a lternative  distortion  models is resolved. T he benefits accruing 

from its appropria te  usage are identified and dem onstrated , in com pari­

son w ith  a lternative  in terpreta tions.

•  R egarding the  generation of control points for calibration, it is shown 

theoretically  and experim entally  th a t the popular circular type p a tte rn  

generates an unrecoverable d istortion  induced bias in th e  detected  control 

points. This problem  has not been previously identified in any of the 

m any calibration  articles.

•  A highly accurate, non-m etric and closed-form calibration m ethod for 

th e  calibration  of lens d istortion  is proposed. In con trast w ith  existing 

m ethods, it is su itab le for use w ith  all levels of lens d istortion, is easy to  

use and im plem ent and requires only a  single view of a  p lanar calibration 

p a tte rn .

•  A m odel based m ethod for th e  calibration of la teral chrom atic aberra­

tion is proposed for its com pensation. It represents a  considerably more 

accessible m ethod th an  the  few existing approaches.

•  A technique is proposed to  minim ise th e  projective d istortions introduced 

in p lanar rectification. It uniquely optim ises each transform  in order th a t 

th e  rectified images resemble the  original images as closely as possible.

T he auxiliary  contributions are now outlined, which are in terspersed th rough­

ou t th e  thesis.
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•  An inverse lens d istortion  m odel is derived, displaying m uch improved 

accuracy over existing models.

•  A m odel of la teral chrom atic aberra tion  is proposed.

•  A linear m ethod  for com puting an affine transform  to  optim ally  form a 

new und isto rted  im age is described.

•  An im proved m ethod is described for th e  robust decom position of the 

F undam ental M atrix  to  generate two rectifying projective transform s.

1.5 T hesis O utline

T he chapters which follow th is in troduction  are arranged as follows. C hapter 

2 describes the  origins and the forms of all the  aberra tion  m odels considered. 

A dditionally, an inverse for these functions is proposed. The various models are 

theoretically  and experim entally  analysed on real da ta , highlighting subtleties 

in the ir usage.

C hap ter 3 aim s to  investigate if th e  choice of calibration  p a tte rn , and in tu rn  

th e  detection  m ethod employed, has any effect on th e  overall accuracy w ithin 

calibration. I t is found th a t circular pa tte rn s , and those of a sim ilar type, 

induce a d isto rtion  based bias in the detected  control points. This comes in 

add ition  to  a  perspective bias. D etailed sim ulated results confirm the rela­

tionship  between lens d isto rtion  and th is bias source, while its m agnitude is 

com pared w ith  th a t of the expected noise and blurring w ithin an image. This 

bias is finally shown in some real exam ples, th rough  the use of a hybrid pattern .

C hap te r 4, utilising bias free control points, proceeds w ith  the  calibration of 

the  lens d isto rtion  m odels presented in chapter 2. A non-m etric type solution 

is proposed to  solve the  problem , uniquely expressed in a  closed-form system. 

An approach for the  generation of d istortion  free images, using th is calibrated 

lens d isto rtion  m odel, is advocated whereby local pixel d istortions are m in­

imised. Com prehensive com parisons between the  proposed m ethod and other 

m ethods are described, bo th  on extensive sim ulated d a ta  and w ith  real im­

ages. T he dependence of the  m ethod on the  assum ed geom etric constrain ts is 

then  investigated, considering random  and system atic errors in the m anufac­

tu re  of the  calibration  p a tte rn . An analysis is included regarding th e  num ber
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of control poin ts required for successful calibration, in add ition  to  the  mis- 

calibration  resulting from th e  usage of a bias effected circular type pattern . 

T he accom m odation of decentering d istortion  w ithin  th e  calibration process 

is highlighted, w ithou t recourse to  its specific inclusion w ith in  th e  d istortion 

model. Finally, th is chapter highlights the  violations of a  calibrated  distortion 

profile, resu lting  from the basic lens variables of focusing and apertu re  settings.

C hap ter 5 extends the calibration of lens d istortion  to  the  calibration of la t­

eral chrom atic aberrations. An efficient m eans of estim ating  its presence is 

described. Following calibration  and image correction an evaluation w ith real 

images is conducted, clearly identifying the  im provem ent in im age quality.

C hap ter 6 extends the  m inim isation of d istortions during re-sam pling idea, 

first encountered in chapter 4, to  the problem  of p lanar rectification of stereo 

pairs. T he approach uniquely optim ises each transform  to  ensure the  rectified 

images resemble the originals as closely as possible. A dditionally, an improved 

m ethod for the  decom position of th e  Fundam ental M atrix  into two rectifying 

transform s is described. T he m ain body of the  thesis is closed in C hapter 7, 

w here a  sum m ary of the  research work conducted and a review of the  results 

achieved are presented. A list of the  publications stem m ing from this work is 

also provided.
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Chapter 2

G eom etric Aberration  

M odelling

All lens system s in troduce a  degree of optical error in an image. T he departu re  

of p ractical optical system s from ideal behaviour is known as aberrations. The 

aberrations affecting images are broadly segregated by th e  na tu re  of light the 

lenses are designed to  capture. M onochrom atic aberrations bo th  deterio rate  

the  image quality  (spherical aberration , coma, astigm atism ) and deform the 

image, for exam ple d istortion. Colour system s are additionally  affected by 

chrom atic aberration , arising from the  fact th a t refracting is a function of 

frequency or colour. In general is is im possible to  design a system  which is 

free from all aberrations. This leads lens m anufacturers to  consider aberration  

com pensation as an optim isation between different types.

Fig. 2.1: Crop from an im age affected w ith barrel distortion. W hite  dot shows 

the centre of the  original image, abou t which d istortion  is radially  d istribu ted .
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D istortion  is a  well known m onochrom atic aberra tion  th a t affects bo th  colour 

and greyscale im aging devices. Its  n a tu re  is a radial geom etric displacem ent of 

th e  light ray intersections w ith  th e  im age plane, b u t w ithou t loss of image qual­

ity. Physically, it arises from th e  fact th a t different portions of th e  lens have 

different focal lengths and magnifications. R adial d isto rtion  is perceptually  

categorised as barrel, as dem onstrated  in Fig. 2.1, or pincushion. D ecenter­

ing d isto rtion  is historically related  to  the  m isalignm ents of individual lens 

elem ents and  generates bo th  radial and tangen tia l com ponents. N aturally, 

conducting accurate  m easurem ents over such d isto rted  images is impossible 

w ithou t knowing d isto rtion  com pensation factors.

In a  colour cam era’s lens, polychrom atic light is split into a set of rays or wave­

lengths. W hilst traversing the  optical system  light of different wavelengths will 

follow slightly different paths. U pon reaching th e  image plane the ir misaligned 

recom bination introduces chrom atic aberration . C hrom atic aberrations are 

moving ou t of the  sub-pixel range w ith  the  advent of high resolution arrays, 

giving rise to  noticeable colour fringes a t edges and high con trast areas. This 

gives th e  overall im pression of poor quality  or definition. M any consum er cam ­

eras display th is aberration . For scientific applications, it is akin to  the  effects 

of colour shifts and blurring, th a t contravene the  im aging models.

This chap ter is concerned w ith the  m athem atical m odelling of d istortion  and 

chrom atic aberra tions in images. A d istortion  m odel is derived from first prin­

ciples for b o th  radial and decentering d istortion  w ith  th e  aim  of resolving the 

confusion over the  model usage. T he theoretical relationships between this 

m odel and  alternative  in terp re ta tions are formally defined, while the ir m od­

elling capabilities are experim entally  investigated over a  broad range of real 

lens d isto rtion  levels. T he derived m odel is shown to  be a  good general model, 

outperform ing a lternative functions in displaying bo th  stab le and accurate 

perform ance over the  entire range of possible or practical d isto rtion  levels.

T he absence of a su itab le  m eans to  approxim ate la teral chrom atic aberra tion  in 

images is also addressed, in the  derivation of an appropria te  param etric  model. 

Finally, th e  problem  of determ ining th e  possible form of an inverse to  the 

d isto rtion  m odel is addressed. An approxim ate inverse function is subsequently 

form ulated, giving superior accuracy over existing approaches.
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2.1 Lens D istortion

O n th e  im age plane, ideal im age points are denoted in Euclidian space as 

p  =  (x, y )T while ac tual observed points are p  =  (x, y )T . W ith in  th e  accuracy 

of G aussian optics or perfect projection p  =  p. Referring to  Fig. 2.2, on the 

plane of th e  exit pupil f  and 77 are x, y m easurem ents rela ted  th rough  a constant 

of la teral m agnification to  th e  coordinates of P '.  T he aberra tion  of the wave 

elem ents as a  consequence of th e  preceding optics, causes an optical ray other 

th a n  th e  prescribed gaussian one. T he wave aberra tion  can be expressed in 

polynom ial form, derived from Seidel p ertu rb a tio n  eikonals as (Born and Wolf, 

1980):

<pw  = - B p 4 -  C ka -  D r 2p2 +  E r 2n2 + F p 2n2, (2.1)

where r 2 =  x 2 +  y 2, p2 =  £2 +  r f  and k 2 =  + yrj. Each coefficient represents

a prim ary  Seidel aberrations: spherical aberra tion  (B), astigm atism  (C), field 

curvature (D), d isto rtion  (E) and com a (F). T he aberra tion  function is a  series 

approxim ation  of the  actual wavefront surface, and fu rther term s can be added 

to  closer approxim ate the  aberrations. E quation  2.1 shows a  fourth  order 

approxim ation.

Fig. 2.2: Form ation of an image in a general lens system .

In a general system  containing a  num ber of surfaces, th e  p rim ary  aberrations 

equal th e  sum  of the  corresponding aberra tion  coefficients associated w ith the

22



C h a p t e r  2 -  G e o m e t r ic  A b e r r a t io n  M o d e l l in g

individual surfaces of the  system . By th is reasoning aberra tions are com pen­

sated  for optically, by the  addition  of appropria te  ex tra  lens elements. In a 

two surface system , where ( x i , y i )  represent th e  space of the  interm ediately 

form ed im age, th e  com bined aberra tion  function for th e  system  is (Born and 

Wolf, 1980):

0 = + <fr2 + (zo -  zi)(6 -  6)  + (2/0 -  yi)(v2 -  vi)-

If decentering or m isalignm ents of th e  surfaces is considered, subsequent image 

deform ation m ay be approxim ated  by pertu rb ing  the interm ediately  formed 

im age by X\ —► X\ +  A and  y\  —> y i +  /i as dem onstrated  in Fig. 2.3. This leads

A  A  , A  . \ d ( f o  ■ ^  "U *  i  d ( h  A  302<P =  0 i +  02 +  A -  h [i—— , where £2 -  £1 =  and r]2 -  rji =  — .
d x i  dyi  d x x d y x

Fig. 2.3: In troduction  of decentering lens d isto rtion  th rough  m isalignm ents of 

th e  optical surfaces.

As th e  p rim ary  in terested  in d isto rtion  aberra tion  the  add itional aberrations 

will be ignored. Considering only the  d isto rtion  com ponent of th e  wave aber­

ra tion  equation, and replacing the  argum ents by the ir gaussian values, the 

corresponding wave aberra tion  for th e  com bined surfaces to  a  fourth  order 

approxim ation  is obtained:

0  =  k \ r 2K2 +  \ k i ( f i (3 x 2 -I- y 2) +  2rjxy) +  /jiki(r)(3y2 +  x 2) +  2£xy).
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T he constan t k\ =  E \  4- E 2 is the  sum  of the  individual lens contributions. 

T he com bined decentering effects of m ultiple lens elem ents also sum s in such 

a  linear fashion, as all argum ents are evaluated using the ir gaussian values. 

T he altered  wavefront is th e  roo t of all aberrations formed on the  image by 

d isto rting  the  ray projections. These ray aberra tions are evaluated as the shift 

from the  pred icted  gaussian coordinates as Born and Wolf (1980):

A x  = x -  ^  A  A  -x  =  —  and A y = y — y =
<9£ drj

E valuating th is using th e  six th  order approxim ation of 0, results in th e  com­

bined m odel for d isto rtion  in term s of C artesian  coordinates is:

Z>(p,k) =

(2.2)

Z>x(p ,k )  \  =  /  A x 

2?„(p ,k) )  {  A y

(  k \ x r 2 +  k2x r 4 +  Xki (3x2 +  y 2) +  2[ik\xy  +  • • • ^

A/c2(5x4 +  6x2y 2 +  y 4) +  f ik2(Ax3y  +  4 x y 3)

k i y r 2 +  k2y r A +  2Xkixy  +  /i/ci(3y2 +  x 2) H-----

\  Xk2(Ax3y  +  4x y 3) +  f ik2(hyA +  6x2y 2 +  x 4) )

where higher orders of A and ¡jl are ignored. In general for m ost wide angle 

lens im aging system s, radial d istortion  is the  predom inant observable d istor­

tion. For th is reason its profile can be more closely approxim ated  by a higher 

order wave aberra tion  function. Taking a  general high order wave aberration  

approxim ation  =  k \ r 2K2 +  k2r 4K2 -f- /c3r 6/̂ 2 +  . . . ,  results in the  general 

lens d isto rtion  approxim ation:

£>(p,k)

(  k \ x r 2 +  k2x r A +  k3x r 6 +  . . .  \

k \ y r 2 +  k2y r A -I- k3y r 6 4- . . .

+ (p i(3 x 2 +  y 2) +  2p2x y ) ( l  + p 3r 2 +  . . . )

^ + (2 p txy  +  p 2(3y2 +  x 2) ) ( l  +  p3r 2 +  . . . )  )

(2.3)

In th is function th e  radial com ponent is represented by k \ , k2 and k3 while the 

d isto rtions in troduced by decentering correspond to  p i, p2 and p3. These are 

com bined into th e  param eter vector k  =  (&i, k2, k3, .. . p i , p 2> • • -)T-

R e s u l t  1. The F o r w a r d  model of  distortion, derived f rom  the wave aberration 

equation is defined as a func tion of  gaussian or undistorted coordinates:

p  =  p  +  £>(p,k).

Proof. See equations 2.1 th rough  2.3. □
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This m odel of lens d isto rtion  has the  sam e form as the  trad itio n a l one used by 

Brown (1971) and m any others. T he im portan t difference is th a t th is model 

is a  function of gaussian points or ideal d isto rtion  free coordinates. I t can 

be expected th a t since each radial coefficient, &i, /c2... corresponds to  a higher 

order wave approxim ation, the  dom inating term s in th e  d isto rtion  model are 

the  low order coefficients.

T he derived decentering m odel has the  same form as th a t of C onrady (1919) 

as prom oted  by Brown (1966). T he actual level of decentering d istortion  in 

curren tly  used cam era system s is questionable, w ith  m ost works concluding 

th a t  it is of little  significance. This is understandab le  as it is shown above 

to  be rela ted  to  the  actual m isalignm ents and th e  level of radial distortion: 

Pi =  Xki and p2 =  / ^ i ,  where A and f i  are th e  approxim ations of the  resu lt­

ing x and  y shifts. Thus if th e  rad ial d isto rtion  is small, then  th e  expected 

decentering d isto rtion  should also be small. Higher order approxim ations of 

decentering d istortion , using p3 are unlikely to  be required, and were not used 

in Brown (1966). Note th a t the  m isalignm ents of lens elem ents also introduces 

elem ents of o ther aberra tions such as coma, also noted in C onrady (1919), bu t 

these are not tracked th rough  in the  equations here. D ecentering distortion  is 

investigated fu rther in chapter 4.

2.2 Taylor E xpansion

Consider th e  form ation of a  d isto rted  im age coordinates using the  forward 

m odel in R esult 1. This relation is a function of unobservable d a ta  p , and 

for some calibration  m ethods such as those based on the  straightness of lines, 

where th e  location of the  tru e  line is absolutely unknown, it offers no direct 

rou te  to  ca lib rate  d isto rtion  *, as an analytical inverse is no t available.

However, tak ing  the  Taylor expansion of R esult 1, ab o u t th e  known distorted

^ n e  indirect means of using this forward model in conjunction with a straight line 
methodology, is to reformulate the problem in distorted space. This is possible (theoretically 
at least) if for each distorted line its undistorted counterpart is parameterised, giving two 
DOF. With one more DOF the exact location of the undistorted point may be solved in 
order to correctly match the point in distorted space.
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locations, p  gives:

p  =  p  -  D ( p , k )  +  ? 2 M ( * - i )  +  -  y)  +  H.O.T .  (2.4)

Taking the  first te rm  in th is Taylor expansion gives:

R e s u l t  2. The Reverse model o f  distortion is defined as a func tion of  dis­

torted coordinates as follows:

p  =  p - £ > ( p , k ) .

T his is th e  com m only used approxim ation for d istortion  in term s of known 

d isto rted  coordinates and from now on is referred to  as th e  reverse model. It 

is theoretically  possible th a t th is polynom ial will approxim ate the  distortion 

profile equally as well as its forward model counterpart. This is known from 

the fundam ental theorem  of approxim ation theory, due to  W eierstrass, which 

s ta tes  th a t on a  finite interval, and given an error e > 0 , there exists an 

algebraic polynom ial p  for which

If ( x )  - p ( x ) \  < £.

However, since the  first and higher order term s of the  Taylor expansion are 

neglected, the ir con tribu tion  m ust be absorbed by th e  param eters in P ( p , k ) .  

Thus, it can be expected th a t the higher order coefficients, i.e. A:2, /%, . . .  will 

assum e ever increasing values when fit to  a general d isto rtion  profile. These 

large param eter values give rise to  poor conditioning in th e  estim ation  equa­

tions, which in tu rn  lead to  sensitive estim ates for th e  d isto rtion  coefficients k. 

T he estim ated  param eters then  becom e increasingly sensitive to  pertu rba tions 

in th e  raw calibration da ta , w ith  different levels of e ither noise or location lead­

ing to  different estim ates for d istortion. This s itua tion  is clearly undesirable. 

T his explains to  some degree why calibration techniques such as T sai (1987), 

th a t use th is reverse m odel of d istortion , s ta te  th a t a high order m odel leads 

to  num erical instability. Finally, a special case is encountered w ith  low levels 

of d istortion . In th is scenario high order coefficients in the  forward d istortion 

m odel will have little  contribution. Therefore, the  higher order term s in the 

reverse m odel will also have little  influence. The reverse model in th is case can 

be considered equally su itab le as the  forward model, and  gives stab le results.

In sum m ary, regarding th e  polynom ial approxim ation of lens d istortion  in 

images, th e  forward model derived to  R esult 1 as a  function of undistorted
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coordinates is theoretically  capable of approxim ating all possible d istortion 

profiles. Its param eters are bounded m aking it conducive for use in estim ation 

schemes, giving robust param eter estim ations. T he altera tive  in terp reta tion  

of th is m odel as a function of d istortion  coordinates (reverse m odel described 

in R esult 2) has been shown to  be the  first te rm  in a  Taylor expansion of the 

forw ard model. Theoretically, it has equivalent fitting power, b u t th e  solution 

becom es increasingly unstab le  w ith  increasing d isto rtion  level. It is specific for 

use only w ith  low d isto rtion  levels. These results aim  to  dispel the  confusion 

over the  two different in terpreta tions.

2.2.1 Inverse approximation

Considering the  forward model as an appropria te  general d isto rtion  approxim a­

tion, th e  alternative  reverse model can be viewed as an inverse approxim ation 

to  th is model. If m ore term s of the  Taylor expansion (equation 2.4) are in­

cluded a b e tte r  inverse approxim ation can be form ulated. In th is sense, the 

inverse is form ulated by an analysis of th e  forward m odel (which is itself only 

an approxim ation), and not on the  actual lens d isto rtion  profile. Such an in­

verse is useful for reconstructing und isto rted  points given th e  forward model as 

in Heikkila and Silven (1997), and proves very useful for generating synthetic 

da ta .

Taking th e  first two term s of th e  Taylor expansion (equation 2.4) and rear­

ranging:

-Vx(p,k) - - y)
x  x +  axMP.k)

dx

„ - V y f a k )  -  -  t )
y y +  , 3p„(p,k)

1 + dy

E lim inating  the  unknow n coordinates by m utual substitu tion  gives:

- V x(p, k) - V x(p, k)^p + v y(p, k)^jp
X  =  X  + 1 dVx(f>,k) , dVy(pM) , dVx($M) dVy(pM) _  dVx(p,k) dVy(ft.k)

dx dy dx dy dy dx

„ ~ V y(P, k) - k)^^ + V X(P, k)^^
y  y +  -■ . a t> ,(p ,k )  , a p „ ( p ,k )  . a P x (P .k )  ax>„(j>,k) ax»v (p ,k )

dx dy dx dy dy dx

(2 .5)

Ignoring all p roducts in equation 2.5, results in the  m odel proposed in Heikkila
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( 2 0 0 0 )  a s :

(2 .6 )

Specifically evaluating equation 2.5 w ith the  d istortion, P ( p ,  k ), approxim ated 

radially  to  fifth order (i.e. k  =  ( k i , k 2)T) results in th e  following 2:

_  „ k i x r 2 +  k2x r 4 +  k \ x r A +  2k \k2x r & +  k \ x r 8

E quation  2.7 describes th e  possible form of an inverse approxim ation to  the 

forward model. However, in th is s ta te  it is effectively a first order Taylor 

approxim ation. In an  effort to  afford the function some freedom, in the  hope 

of including th e  influences of the  previously ignored higher order term s, the 

function is ad justed  to  be linear in param eters:

T his significantly improves the  inverse accuracy, while also allowing the pa­

ram eters to  be linearly estim ated. A slightly simplified version of th is model, 

where a 7 and  ag were not included in the  denom inator, was used directly  on 

d isto rted  coordinates in M allon and W helan (2004) to  calibrate distortion.

Given knowledge of the  forw ard model param eters, the  unknow n param eters 

are solved using a set of N  und isto rted  tie-points p ^ ,  spread equally over the

2Decentering distortion is not considered further in the inverse to simplify presentation 

complexity. For completeness the evaluation of equation 2.5 including decentering distortion 

with k =  (k\,  fc2,p i,P 2)T results in the addition of the following to the denominator of 
equation 2.7:

ip =  k3( 8 x + l2 k i x r 2+ I6 k2x r 4 +4ks(3x2- y 2))+k4(+8y+12kiyr2+ 16/c2#r4+4fc4(3i/2- : r 2)),

with the following added to the numerators:

1 -I- 4/cir2 +  6/c2r 4 +  3/c2f 4 +  8 k ik 2r 6 +  5/c2r 8 
k \ y f 2 + k2y r 4 -I- k \ y r 4 +  2 k \k2y r Q +  k^yr8

(2.7)

1 +  4k \ r 2 +  6/c2r 4 -f 3/c2r 4 +  8 k ik 2r 6 -f 5k^rs

p  = p - £ > * ( p , a ) ,

p ( a i r 2 +  a 2r 4 +  a 3r 6 +  a 4r 8) (2 .8)

1 +  4a5r 2 +  9 a 6r 4 +  8 a 7r 6 +  5agr8

Vx =  (&3 +  2klx) (3x2 +  y2) +  2k4xy ( l  +  2k\ r2 +  /c2r 4) +  {kik3 +  k2k3r 2)(5x2 +  y2)r2

+ \§ k3k$xAy  +  2k \ x ( x 2 -  3y2),

ipy = (/c4 +  2k\x)(2>y2 +  x 2) +  2k3xy ( \  +  2k\r2 +  k2r*) +  (fci/c4 +  k2k4r2)(5y2 +  x 2)r2

+ l§ k3kAxy* -1- 2k \ x ( y 2 -  3x2).
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entire im age surface, and a  corresponding set of d isto rted  points p N The 

system  of equations are formed as e  =  T a, where e  =  (x\  — i i ,  y\  — j j i , . . . ,  X{ — 

Vi ~  Vu • • •, x N -  ¿tv, Vn  ~  Vn )T and

t xi =  (x jf? , xtr - , x i f 6t , Stiff, 4  exir f ,  9exirf,  8 exir f ,  5exir f ) T 

t  vi =  ( M i ,  Vi?t, W i ,  V iff, 4 eyif \ ,  9 t yif \ ,  8 eyir f ,  5eyir f )T 

T  , ty l , , tlXi, t  yi, . . . , t>Xft , tyjy)

T he param eter vector is now estim ated  in a least squares sense as:

a  =  (T TT ) _1T r e. (2.9)

Finally, th e  fu rther sim plification of equation 2.7 by tak ing  only the  k\ term s 

results in:

p /c ir2
P =  P 1 +  4k i r 2 ’

and replacing the  four in the  denom inator by one, th e  divisional model as 

described in F itzg ibbon (2001) and M icusik and P a jd la  (2003) is arrived at:

P -1 • W 1 — \ / l  — 4/Cir2 /o i n\
p  = ------ — r , w i t h  associated inverse p  = ---------   . (z.lUj

1 +  k \ r l 2/cip

In sum m ary, an inverse approxim ation to  the forward m odel has been pro­

posed, based on the  form of its Taylor expansion. T his m ay be directly  used on 

d isto rted  coordinates, b u t offers more po ten tia l in th e  generation of synthetic 

images, as chap ter 3 dem onstrates. T he relationship  of an alternative model 

proposed in Heikkila (2000) to  the  Taylor expansion of th e  forward model is 

also presented. As a  byproduct, the origins of the  divisional d istortion  model 

were also shown to  be closely linked to  th is Taylor expansion.

2.3 Lateral C hrom atic A berration

C hrom atic A berration  (CA) can be broadly classified as Axial C hrom atic A ber­

ra tion  (ACA) (also known as Longitudinal CA) and L ateral C hrom atic A ber­

ra tion  (LCA) (also known as Transverse CA). ACA arises from th e  longitudinal 

variation  of focal position w ith  w avelength along the  optical axis. LCA is the 

variation  of im age size w ith w avelength or the vertical off-axis d istance of a
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point from its prescribed point. In an im age it is identified by a  radially  depen­

dent m isalignm ent of the  colour planes. Considering th e  m odelling of LCA, it 

can be specified from the  contributions of two separate  factors: the  chrom atic 

variation  of d isto rtion  and la tera l colour d isto rtion  as outlined in Kingslake 

(1978)

M onochrom atic aberra tions such as d istortion, are in general no t largely af­

fected by polychrom atic light. T he chrom atic variation  of d isto rtion  is however 

detectab le, especially on large pixel arrays. T his d isto rtion  is la teral in natu re  

and can be m odelled com prehensively by a simplified forward d istortion  model. 

In m any cases a significant decentering d isto rtion  is apparent.

In addition  to  th e  chrom atic variation of d isto rtion  there is an additional la t­

eral colour d isto rtion  th a t is due to  th e  refraction index variation of the lens

elem ents. T he refraction index is quite linear w ithin the  visible spectrum

(Kingslake, 1978), resulting in the addition  of an ex tra  first order term  th a t 

does not appear in the  chrom atic d isto rtion  equation. D eviations from linear 

behaviour are na tu ra lly  accounted for in the  chrom atic d isto rtion  equation. 

Thus, th e  com bined LCA for a  specific frequency or colour plane (g ), can thus 

be m odelled as a function of ano ther frequency ( / )  by the  addition  of the 

chrom atic variation  of d istortion  and the  la teral colour d isto rtion  as:

C9(p / ,  Cg ) x =  C l X f  +  c2x f r )  +  c3( Zx)  +  y 2) + 2c4x f yf  

C3(P f , cg)y =  cxy f  +  c2y f r 2f  +  2 c3x f y f  +  c4(3 y)  +  x 2f ),

w here c /  =  (ci, c2, C3, c±)T is the  param eter vector.

2.4 E xperim ents: D istortion  M odelling  P er­

form ances

T his section aims to  evaluate th e  perform ance of various d isto rtion  modelling 

functions. T he perform ance and su itab ility  of a particu la r m odel is charac­

terised  by m easuring its residual fitting  error and exam ining its estim ation 

in tegrity  by looking a t the  scale and uncerta in ty  of th e  param eters. T he m od­

els are fit to  a  sam ple set of increasingly d isto rted  images, using the  itera ted  

least square m ethod  of Levenberg-M arquardt (L-M) (W alter and Pronzato , 

1997), w ith  Jacobi estim ated  from finite differences. T he m odels are fitted, as

C h a p t e r  2 — G e o m e t r ic  A b e r r a t io n  M o d e l l in g

30



C h a p t e r  2 -  G e o m e t r ic  A b e r r a t io n  M o d e l l in g

in chap ter 4, using an  im age of a  chessboard ta rge t, w ho’s ideal projection is si­

m ultaneously  estim ated . T he residuals are then  evaluated on separate  images, 

w ith  th e  sam e cam era settings. A selection of th e  calibration  and evaluation 

sam ples are illu stra ted  in Fig. 2.4.

T he chessboard intersections are calculated using edge intersections w ithin 

a small local neighborhood around the  control point, (refer to  chapter 3). 

Sam ple num bers 1 and 2 were taken w ith  a Fuji F ineP ix  6900, w ith  6M egaPixel 

resolution. Sam ple num ber 2 used an additional wide angle lens adap to r (Fuji 

W L-FX 9). Sam ple num bers 3 th rough  12 were taken  w ith Nikon fish-eye 

lens (FC-E8) a ttached  to  a  Nikon Coolpix E4500 w ith 4M egaPixel resolution. 

D istortion  was varied by increm ental zooming.

O nly rad ial com ponents are considered for fitting, while decentering modelling 

is exam ined in conjunction w ith  the centre of d istortion  in C hapter 4. The 

rad ial d isto rtion  m odels considered in detail are the:

• D erived forw ard m odel of R esult 1, for bo th  four and five radial param ­

eters.

•  T he reverse model of R esult 2, estim ated  for four and five radial param ­

eters

•  A general fourth  order polynom ial function sim ilar to  A sari e t al. (1999) 

w ith  the  form: r  =  r + k i r + k z ^ + k z r ^ + k t f r 4, 6 = 6, where r  =  (x 2+ y 2) lJ2 

and  6 =  a ta n 2 (y, x).

•  T he divisional m odel of equation 2.10.

T he estim ation  procedures proceed by defining a  m inim isation criterion for 

each control poin t i as e*. T he control points are firstly pre-scaled by the 

average of th e  image w idth  and height. P aram eter uncertain ties are estim ated 

by calculating the  F isher inform ation m atrix  as:
nt 1 1 nt

F (k )  =  V  — H (eh k ), where b 2 = ---------- V e 2
n* ~ n p t i

and H ( e i?k) is the  Hessian m atrix  of the  system  upon convergence, w ith n t 

th e  num ber of control points and np th e  to ta l num ber of estim ated  param eters. 

T he s tan d a rd  deviation of each param eter can be com puted as:

o l  =  d i a g ( ^ F H k ) )
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Full details of th e  estim ation  procedure for the  forward m odel are described in 

C hap ter 4

Fig. 2.5 shows th e  param eter estim ates and uncertain ties for the  forward model 

w ith four param eters, when applied on th e  sam ple set of real d isto rtion  profiles. 

T his shows th e  higher order coefficients of th e  forward m odel increasing w ith 

distortion . T he associated param eter uncertain ties however rem ain relatively 

constan t for all d isto rtion  values. This indicates th a t th e  system  of equations 

are non-singular, leading to  stab le  estim ation  of the  param eters. T he m agni­

tude  of th e  param eters can therefore be considered bounded, depending only 

on th e  pre-scaling applied on th e  control points.

T he a lternative  reverse m odel param eter estim ates and uncertain ties are il­

lu s tra ted  in Fig. 2.6, also for a four param eter model. In con trast w ith the 

forward m odel th e  m agnitudes of th e  estim ated  param eters rapidly  increase 

w ith increasing d istortion. T he param eter uncertain ties also steadily  increase 

to  much greater m agnitudes, indicating th a t the  system  of equations in this 

case are likely to  becom e unstab le  or singular. Indeed, th is  is th e  case for sam ­

ple num bers ten  th rough  twelve where the  estim ation  routine failed to  properly 

converge.
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(a) Sample number 1

(b) Sample number 6

(c) sample number 12

Fig. 2 .4 : The first, middle and last calibration and evaluation images used to

evaluate the various distortion models.
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Table 2.1: E stim ated  param eters for the  forward and reverse models on two 

sets of calibration  data .
Forward Model

Image 1 

Image 2 

Difference

h k2 k3 k4 h
-0.4207

-0.4177

-0.0030

0.2446

0.2365

0.0081

-0.1095

-0.1014

-0.0081

0.0290

0.0255

0.0035

-0.0033

-0.0027

-0.0006

Reverse Model

Image 1 

Image 2 

Difference

0.4537

0.4737

-0.0200

0.0922

0.0037

0.0885

0.7604

0.8985

-0.1381

-0.8773

-0.9075

0.0303

0.6308

0.5823

0.0485

These p ractical differences are fu rther illustra ted  in figures 2.7 and 2.8, where 

the  param eter vector is increased to  five coefficients. T he results are compiled 

only for sam ples where th e  reverse m odel converged, i.e. sam ples one through 

nine. T he add ition  of th e  ex tra  param eter causes the  higher order reverse 

m odel param eters and uncertain ties to  rapidly  increase in value, as Fig. 2.8 

shows. However, th e  addition  of th e  ex tra  param eter to  th e  forward model 

does no t induce th is instability, as dem onstrated  in Fig. 2.7.

T he invariance of th e  forward and reverse m odel to  changes in the  location 

of th e  control points is now investigated. Two images are taken  from slightly 

differing view points as Fig. 2.9(a) shows. T he m odels are estim ated  w ith 

b o th  sets of d a ta  and the respective variation in param eters are com pared. 

Table 2.1 shows the  param eter estim ates and differences, w ith  the  reverse 

m odel param eters varying considerably in com parison w ith  th e  forward model 

param eters. Fig. 2.9(b) illustrates th e  effect of these param eter variations, 

by com paring th e  respective d istortion  profiles. This shows th a t th e  reverse is 

significantly m ore affected by slight changes in control points th a n  th e  forward 

m odel, m aking it less a ttrac tiv e  for practical usage.

A general fourth  order polynom ial, sim ilar to  those proposed in Asari et al. 

(1999) and Shah and Aggarwal (1996) is also evaluated for com parison pur­

poses in Fig. 2.10. This m odel is a function of d isto rted  coordinates, w ith both  

the  param eter values and uncertain ties steadily  increasing w ith  distortion. It 

can be noticed th a t  certain  param eters con tribu te  little  to  th e  m odelling, e.g. 

k\ .  T he divisional model, having only one param eter exhibits good stability, 

m aking it su itab le  for use w ith  all d isto rtion  levels.
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Estimated parameter values

Estimated parameter SD

Fig. 2.5: Forward model parameters, k  =  (k i ,k2,k3,k4)T, and uncertainties

when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD

5.
O  5cn ü
k .0
E 4 00 k_
CO

û - 3

□  K 3

1
5 6 7

Distortion sample
10 11

Fig. 2.6: Reverse model parameters, k  =  (fci, k2, k^)T, and uncertainties

when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD
1 i I I---------------1---------------1---------------r

1 2 3 4 5 6 7 8 9
Distortion sample

Fig. 2.7: Forward model parameters, k =  (fci, k2, k3, kA, /c5)T, and uncertainties

when applied to sample set of increasingly distorted real images.
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Estimated parameter values

Estimated parameter SD

Distortion sample

Fig. 2.8: Reverse model parameters, k  =  (fci, k2, k3, A:4, A:5)T, and uncertainties

when applied to sample set of increasingly distorted real images.
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(a)

(b)

Fig. 2.9: Test for param eter invariance to  calibration d a ta  locations. Two im­

ages taken w ith  slightly differing viewpoints are shown in 2.9(a). T he resulting 

profile variations for the  forward and reverse m odels are shown graphically in 

2.9(b).
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Estimated parameter values

Estimated parameter SD
4 P “ i— ' i— ----- 1----- i ----------1-----  1----------r—--------1  1---------~r-------~ r -------t

3.5 -

3 -

Ero
TO 1 .5 -

c l

1 -

Distortion sample

Fig. 2.10: General polynomial model param eters, k  =  (&i, k2, ^4)^, and

uncertainties when applied to sample set of increasingly distorted real images.
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T he a lte rna tive  m odels are now com pared over the  sam ple range by m easuring 

the  residual d isto rtion  in th e  set of evaluation images. T he param eter space for 

all polynom ial m odels is set to  four. Fig. 2.11 shows th e  m ean and s tandard  

deviation (SD) of th e  residual d istortion  rem aining in th e  evaluation images, 

for th e  four models. T he residuals are m easured by tak ing  a  radially  weighted 

hom ography (as described in A ppendix A) to  the  corrected evaluation image 

3. T he resulting  Euclidean m eans and SD are then  calculated.

T he forw ard d isto rtion  m odel exhibits low m ean and SD in residual d istortion 

over th e  sam ple range. T he a lternative reverse m odel also exhibits a  similar 

characteristic , however th is m odel failed to  converge for sam ples ten  through 

twelve. T he general polynom ial model shows erra tic  behaviour for the  upper 

range of d istortion. This is due to  the  com bined effects of th e  need for a 

higher order polynom ial, unnecessary param eters and  param eter or system  

instability. T he divisional m odel shows good accuracy up to  relatively high 

d isto rtion  levels.

T he divisional m odel offers a  very good and robust approxim ation  to  a con­

s tan tly  increasing d isto rtion  profile such as th a t observed in fish eye lenses. 

Hence, th e  popu larity  of th is m odel for use w ith  such lenses, e.g. Brauer- 

B u rchard t and Voss (2001). However, m any lenses th a t are optically com pen­

sated  for d isto rtion  display a  com plex d isto rtion  profile. For such cases, the 

divisional m odel is unable to  accurately  m odel th e  lens nonlinearities. An ex­

am ple of one such case is shown in Fig. 2.12, taken  w ith  a  low focal length lens. 

T he divisional m odel residuals are com pared to  those of the  forward model, 

clearly highlighting the  shortcom ings of the  divisional m odel in th is case. For 

th is reason th e  divisional m odel cannot be considered as a general model if 

high accuracy is required.

3This radially weighted homography is only suitable for application to very mild dis­
tortion, such as residual distortion, and in general may not be a very stable criterion for 
measuring normal distortion levels or for its calibration
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Mean Euclidean residuals

Residual SD

Fig. 2.11: Com parison of the residual fitting error of four possible d istortion  

models.
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Hi

Forward Model Residuals Divisional Model Residuals

Fig. 2.12: Shows an image of a calibration p a tte rn , w ith  forward m odel and 

divisional model residuals. T he image is taken w ith  a K odak M egaplus digital 

cam era w ith a 3 /4 ” CCD and fitted  w ith  a low cost C om putar 6mm 1 /2 ” lens 

(Form at size m ism atch results in the dark  rim m ing). Divisional model param e­

te r -0 .2 8 4 (pix)2 and the  first param eter of th e  forward model is -0 .3741  (p ix)3. 

Residual vector plot scale is x 100.
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In sum m ary, these results, dem onstra te  th a t  th e  forward m odel is a more 

app rop ria te  approxim ation  to  radial lens d isto rtion  th a n  th e  com m only used 

reverse in terp re ta tion . I t is a b e tte r  general model, giving stab le  results up 

to  a very high level of d istortion, see for exam ple Fig. 2.4. T he experim ents 

show th a t an increased quan tity  of param eters does not lead to  instability. In 

con trast, th e  reverse m odel is su ited  only for low levels of d istortion , w ith high 

d isto rtion  a n d /o r  num ber of param eters increasingly leading to  instabilities. 

These results agree w ith  th e  theoretical investigation of these models.

T he residual com parison between the  param etric  m odels show th a t the  forward 

and  reverse m odels achieve roughly equal accuracy, as expected. T he general 

polynom ial m odel fails to  achieve th is level of accuracy for larger distortion 

values, due to  th e  need for a higher order function. Finally, the  divisional 

m odel is shown to  be a good m odel for constan tly  increasing d isto rtion  such 

as fish-eye lenses, b u t fails to  m odel m ore com plex d isto rtion  nonlinearities as 

present in m any perspective lenses.

2.4.1 Inverse Performance

T he accuracy of the  proposed inverse (equation 2.8) is com pared w ith  two 

a lternative  form ulations. T he technique referred to  as M ethod 1, is taken from 

H eikkila (2000)4 and is also described in equation 2.6. M ethod 2 is taken from 

H eikkila and  Silven (1997). 5 M ethod 1 is estim ated  using the  iterative L-M 

technique w ith  finite difference Jacobian, while M ethod 2 is estim ated  linearly 

as described in Heikkila and Silven (1997).

S eparate sets of d a ta  are used for th e  param eter estim ation  and residual m ea­

surem ents. Fig. 2.13(a) shows the  20 x 20 grid used for residual m easurem ents, 

com pletely covering the  image window of 475 x 475 pixels. T he estim ation  d a ta  

consists of a  30 x 30 grid w ith th e  sam e coverage. D istortion  is sim ulated using 

two rad ia l param eters in th e  forward m odel w ith the  ranges /ci =  —2 —► 2 and 

k2 = —0.8/ci. T he param eters, a , of the  proposed inverse m odel are estim ated 

using th e  LS m ethod  of equation 2.9. Pixel coordinates are pre-scaled by 670

4This formulation originates from the inclusion of specific terms from the Taylor expan­
sion of the assumed forward model.

5 This formulation has a similar form to that of Method 1 but originates from the step-
by-step refinement of a general firth order rational polynomial.
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w ith  th e  d isto rtion  centre a t th e  im age centre. T he extrem e barrel distortion 

of k\  =  —2, k 2 =  1.6 is sim ulated in Fig. 2.13(b), giving a  visual im pression 

of the  d isto rtion  levels considered.

(a) (b)

Fig. 2.13: E valuation d a ta , represented by th e  line intersections in und isto rted  

s ta te  2.13(a), and in d isto rted  s ta te  in 2.13(b) according w ith  th e  forward 

m odel w ith  param eters k\ =  —2, k2 =  1.6.

T he resu lts are shown in Fig. 2.14. including th e  m ean and SD over the 

considered range of distortion. These show the  proposed inverse improves upon 

the  inverse accuracy by an average of roughly 5000 tim es sm aller th a n  M ethod 

1 and  100 tim es sm aller th a n  M ethod 2. T his is a  significant im provem ent, 

achieving a  sub-pixel accuracy b e tte r  th a n  th e  lower bound of sub-pixel feature 

detectors over the  entire range of d isto rtion  levels, (see chapter 3).

A second experim ent is conducted to  clarify the  sm ooth  in terpolation  of the 

inverse solution between the  tie points. A uniform ly d is tribu ted  random  set of 

3000 points are generated  to  cover the  im age window of 475 x 475. These points 

are then  d isto rted  by applying th e  forward m odel w ith  param eters ki =  — 2 

and k2 =  1.6, resulting  in severe barrel d istortion, as illu stra ted  in Fig. 2.13(b). 

Following application  of th e  estim ated  inverse solution, the  error m agnitudes 

are calculated  and represented in the  histogram s of Fig. 2.15. These show 

th a t  th e  error for over 2500 of the 3000 points lie w ith in  the  h istogram  bin of 

± 1  x 10-3 for bo th  th e  x  and y  directions. A sm all quantity , <  20 samples 

lie in th e  bins s tretch ing  from ± (0 .01  —► 0.05). T his inversion error natu ra lly  

reduces as th e  d isto rtion  becom es less severe.
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Mean residual inverse error

Distortion k1 ((pix)3)

SD of residual inverse errors

Distortion k ((pix)3)

Fig. 2.14: Inverse Residuals
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¡05 -004 -0.03 -0.02 -0.01 0 0.01 0.02
y-direction error (pix)

Fig. 2.15: Inverse Residuals

2.5 Discuss ion

T his chap ter is prim arily  concerned w ith the  m odelling of lens d istortion  in 

images. No previous work was found in th e  lite ra tu re  th a t considers the ori­

gins of th e  assum ed param etric  models, while a lternative  in terp re ta tions of 

th e  trad itiona lly  used m odel have led to  a  degree of confusion in some cases. 

To resolve th is issue, a lens d istortion  m odel is derived from th e  optic wave 

equation, resulting in a m odel w ith  the  sam e form as th e  trad itionally  assumed 

one. T he derived m odel includes rad ial and decentering com ponents, where 

the  decentering d isto rtion  is approxim ated by a  simple displacem ent of the in­

te rm edia tely  form ed image. This m odel is a  function of gaussian points, or in 

im age term s, und isto rted  coordinates, and is referred to  as th e  forward model.

An analysis of th is  forward m odel for the  dom inant radial type distortion  shows 

th a t its Taylor expansion can be used to  relate the  alternative in terp reta tion  

of th is m odel (as a  function of d isto rted  coordinates). A theoretical argum ent 

is m ade th a t  th is model, referred to  as the  reverse model, will possibly m atch 

th e  forward m odel in term s of residual fitting  errors, b u t will suffer in term s of 

s tab ility  as higher order coefficients will rapidly  increase as d isto rtion  levels rise 

(in con trast w ith  th e  forward m odel where higher order coefficients are likely 

to  rem ain bounded). T his increase in param eter m agnitude subsequently  led 

to  poor conditioning in the  set of estim ation  equations. As a  result the  set of 

equations becom e m ore sensitive to  p ertu rba tions in location or noise content 

of th e  control points used in th e  calibration process.
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This resu lt is borne ou t in the  experim ents, where th e  reverse m odel param eters 

significantly increase as the  d istortion  level rises. T he associated confidence 

intervals in these param eters also increases indicating th a t  th e  system  of equa­

tion  is less stable. Two m anifestations of th is in stab ility  are dem onstrated , 

one in th e  failure to  reach convergence due to  singularities in th e  co-factor m a­

trix  for high d isto rtion  levels. T he second exam ple dem onstrates th e  increased 

sensitiv ity  of th e  reverse m odel to  a  slight change in control point location, as 

com pared w ith  th e  forward m odel relative invariance. T he conclusion of this 

investigation is th a t  the  derived forward model is experim entally  validated.

A lternative d isto rtion  models are also considered. T he divisional model is 

shown to  be rela ted  to  th e  forward model, and shows good distortion  m od­

elling up to  relatively high levels. However, it is unable to  precisely model cer­

ta in  com plex d isto rtion  profiles, com m only encountered in perspective cam era 

lenses. A general polynom ial model is also considered, b u t it is shown to  be 

su itable only for low levels of distortion.

A disadvantage of the  forward model is its lack of an  analy tical inverse. The 

form of such an inverse is also unknown, m aking the  polynom ial approxim ation 

of such an inverse effectively a  tria l and error exercise. This issue is also 

addressed in the  form ulation of an appropria te  inverse approxim ation form. 

T his is based on the  inclusion of ex tra  term s from the  Taylor expansion of the 

forw ard model. A linear inverse function using th is form is then  proposed and 

is com pared w ith  existing alternatives. These com parisons indicate th a t the 

proposed solution improves the inversion accuracy by orders of m agnitude over 

th e  range of likely encounter-able d isto rtion  levels.

Finally, th e  lack of a param etric  m odel for la teral chrom atic aberration  is ad­

dressed w ith  the  derivation of an appropria te  function. T his m odel is composed 

of two elem ents, th e  chrom atic variation of d isto rtion  and the  la tera l colour 

d istortion . T his is fu rther investigated in C hap ter 5.

48



Chapter 3

Choosing a Calibration Pattern

T here is an abundance of p lanar charts used w ith in  th e  realm s of cam era 

calibration as sources of bo th  2D and 3D control points. These points are 

generally constructed  on a p lanar surface by m eans of some high contrast 

p a tte rn . In tu rn , th e  p a tte rn  also facilitates the  recovery of the  control point 

projections on th e  im age plane. P a tte rn s  such as squares, chessboards and 

circles have becom e popular as they  can be readily m anufactured to  a  sufficient 

precision, and  the ir d a ta  points are recoverable th rough  the  use of standard  

im age processing techniques.

In real cam eras, an  im age of th e  calibration  p a tte rn  is likely to  undergo two 

types of transform ation: a projective transform ation  as a  consequence of rela­

tive 3D position, and a nonlinear transform ation  due to  various lens distortions. 

T he control po in t invariance to  errors resulting from these two transform ations 

is based on a  com bination of th e  p a tte rn  employed, and th e  detection m ethod 

used. As a  consequence, for any theoretical com bination of calibration p a tte rn  

and detection  m ethod, two possible sources of bias in control point recovery 

have been identified, which are sim ply term ed: Perspective bias and D istor­

tion  bias. In practice, the  presence of these bias sources is p rim arily  governed 

by th e  type of p a tte rn  used, which in tu rn  d ic tates th e  appropria te  detection 

m ethods. This chap ter considers two calibration p a tte rn s  from the  cam era 

calibration  litera tu re , each w ith  two associated control poin t detection m eth­

ods. These are th e  popular chessboard and  circular p a tte rn s  w ith  respective 

detection  m ethods of edge intersections, corners, centroids and conic fitting. 

T he underly ing biasing principles na tu ra lly  extend to  o ther sim ilar pa tte rn s
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and detection  m ethods. T he im portance of acquiring bias free d a ta  has often 

been ignored in calibration  articles, the  result being th a t cam era m odels and 

accuracy are not reliably estim ated.

T he m ain aim  is to  establish which p a tte rn  offers th e  best precision in control 

point recovery. T he prim ary  concern in th is regard is to  ob ta in  bias free data , 

as th is is clearly essential for ob tain ing  uncorrup ted  estim ates from calibra­

tion  algorithm s. It is shown theoretically  and experim entally, w ith  bo th  real 

and  sim ulated  d a ta , th a t circle centroid detected  points are corrupted  by bo th  

perspective bias and d isto rtion  bias, w ith  g reater d isto rtion  bias m agnitude 

in a  typical cam era. However, only perspective bias com pensation has been 

considered in the  litera tu re , m ost prom inently  by Heikkila (2000), using ad­

ju sted  conic centroids. I t is shown th a t the  com pensation of d istortion  bias 

from such circular p a tte rn  points is difficult, w ithou t knowledge of the  true  

d isto rtion  free image. Real cam eras system s offer no inform ation on th is front. 

As a consequence, th e  m any calibration articles using such pa tte rn s , have their 

claims of high accuracy significantly com prom ised by the ir choice of calibration 

p a tte rn .

T he analysis is prim arily  conducted on sim ulated images w ith  known ideal 

control points as shown in Fig. 3.1. Images and control points are synthesised 

w ith  bo th  nonlinear and projective transform ations. D etails of th e  image syn­

thesis precision is presented ensuring no additional errors are in troduced from 

th is stage. T he em phasis is on au tom atic  point recovery where all points are 

observable in the  image. Two sub-pixel detection m ethods for each p a tte rn  are 

described, each having unique bias invariant properties. T he sources of biases 

are theoretically  identified for each p a tte rn  and are subsequently verified on 

th e  sim ulated  images. A com parative s tudy  of each m ethod w ith  respect to  

b lurring  and  noise serves to  show th a t the  biasing m agnitudes are significantly 

g reater th a n  the  expected detection  accuracy or noise floor. Finally, exam ples 

of perspective and d isto rtion  bias in a real images are shown. Overall, th is 

chap ter em phatically  shows th a t th e  choice of p a tte rn  and detection  technique 

is m uch m ore im po rtan t th a n  previously realised to  achieve bias free control 

points for real cam eras affected by lens distortion.
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Fig. 3.1: T he two classes of p a tte rn s  used for th is study, chessboard and circles, 

shown in the ir canonical form. Im age dim ensions are 2560 x 1920 pixels. 247 

control points are synthesised. C hessboard squares have dim ensions 85 x 85 

pixels, while circle diam eters are 51 pixels. T he centre or principal point is a t 

(1280,960).

3.1 P a ttern  and control point syn thesis

Two factors influence the  recovery of control points: th e  cam era lens effects 

and  th e  relative positioning of th e  calibration object. T he error invariance 

to  these transform ations is based on the  type of p a tte rn  employed and the 

detection  m ethods used. Two popular p a tte rn s  are chosen for th is study, each 

w ith  sufficiently different characteristics to  illu stra te  all th e  possible sources of 

control po in t bias. B iasing aspects of o ther p a tte rn  types can be understood 

by com parison w ith  th e  principles in troduced here. T he chosen chessboard 

and circular p a tte rn s  are illu stra ted  in canonical form in Fig. 3.1. T he sizes 

of the circles and chessboard squares, and the  actual num ber of control points 

are chosen as typical practical values. 1

In analysis each p a tte rn  is subjected  to  G aussian blurring, additive gaussian 

noise, pincushion and barrel d isto rtion  and random  placem ents. T he recov­

ered points are then  be com pared w ith  the ir tru e  locations. For th e  d istortion 

and  positioning effects, b o th  control points and the  corresponding image m ust 

be transform ed. G eom etric im age re-sam pling is carried ou t by m apping from

1The size of the patterns are chosen to nominally occupy a large portion of the central 
image region. The circle diameters are chosen so as to give a reasonable spacing between 
circles. The number of control points are chosen as over 200 which is recommended in 
Section 4.3.1
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the  transform ed im age to  th e  original. This involves calculating for every pixel 

in the  transform ed image, the  corresponding pixel coordinate in th e  original 

image, effectively requiring an inverse m apping. T he transform ed image in­

tensity  is then  calculated based on th e  s tan d ard  bilinear in terpolation  around 

th is coordinate.

3.1.1 Pattern positioning

T he im age perception of various 3D positions of the  control points, p  =  

(x, y , 1)T, (in homogeneous form) are sim ulated using a  pseudo random ly gen­

era ted  hom ography H , giving p  =  H p , where p  are the  canonical representa­

tion  of th e  control points. This hom ography is generated  by a  com bination of a 

3D ro ta tio n  and transla tion , whose values are draw n random ly from a specific 

range. This range lim it ensures th a t the  transform ed image lies roughly w ithin 

th e  im age window and th a t its apparen t 3D position sim ulates a  likely view 

of the  calibration  object. T he corresponding im age re-sam pling is calculated 

using H “ 1. To quantify  th e  effect of the  hom ography th e  conditioning of its 

Jacobian  is taken  a t each control point:

( dx dx \
g If) .
dx dy /

T he condition num ber in th is case m easures th e  d istance from an orthogonal 

transform , thus effectively quantifying th e  perspective elem ent of the  homog­

raphy. T he m ean of these values is taken as a  m easure of th e  net effect of the 

perspective transform .

3.1.2 Simulating lens distortion

G eneral rad ial lens d isto rtion  is approxim ated  in an im age according to  the 

forw ard m odel described in chapter 2 as:

p  =  p  +  2?(p, k ), w here X>(p, k) =  (  X^ i r  +  ^  ^  , (3.1)
\  y{k \ r  +  + 1) )

w here p  =  (x,y,  1)T are the  und isto rted  im age coordinates w ith  r 2 =  x 2 4- y 2 

and p  =  (x, £/, 1)T are the  corresponding d isto rted  coordinates. T he d istortion 

p aram eter, (/ci), is used as an  index, w ith values varying th rough  ± 2(pzx3),
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w ith  /c2 =  — fci. These values are applied to  pixel coordinates norm alised by the 

average of th e  im age w id th  and height, denoted by (pix).  In order to  re-sam ple 

a d isto rted  im age an inverse of (3.1) is required. T he approxim ate linear model 

is used as proposed in chap ter 2 equation 2.8. T he param eters of th is model 

are linearly estim ated  using a dense collection of points covering the  image 

window. T he inversion accuracy for the  d isto rtion  range under consideration 

is shown in Fig. 3.2. These residuals are orders of m agnitude lower th an  

th e  precision of th e  sub-pixel point detection algorithm s, (see Section 3.3), 

ensuring th a t  no additional source of error is in troduced from the  sim ulated 

images.

Mean inverse error

SD inverse error

Fig. 3.2: M ean and SD inverse d isto rtion  residuals after th e  fitting of inverse 

d isto rtion  approxim ation. Levels are orders of m agnitude below th a t of the 

control po in t detection  accuracy, see Section 3.3
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3.2 C ontrol point recovery

For each p a tte rn , two sub-pixel detection m ethods are described. The circle 

detection  m ethods are based on the  centroid ex traction  and ellipse fitting. 

Square detection  m ethods are based on edge intersections and refining an initial 

corner solution w ith local surface fitting. I t will be shown th a t  the  detection 

m ethods are sub ject to  two sources of biasing. I t is theoretically  shown how 

they  arise as a resu lt of perspective viewing and lens d istortion.

C entroid ex traction  m ethods are shown to  be com prom ised by bo th  perspective 

bias and  d isto rtion  bias. As is currently  known, conic fitting  techniques can be 

ad justed  to  alleviate perspective bias only. Edge fitting techniques also suffer 

from d isto rtion  bias, while only local surface fitting  offers bo th  perspective and 

d isto rtion  bias free recovery of control points.

3.2.1 Circle pattern detection

Given an im age of a  circular p a tte rn  and following some basic im age processing, 

the centroids of the  circles are sim ply calculated as:

c  _ ( I  „  l f _  ( ' £ . , « ■ * / • ■ ' ( ■ » >  £ , , « ■ » / • ' ( ! » >  1\ r . .

  ' I  E „ ff  i ip r i ’ E „ e f /(P,) I
w here / ( pf)  is the  in tensity  a t point Pf and F  is th e  set of pixels deemed to  

belong to  th e  circle. It is known th a t if th e  calibration  plane is not parallel 

w ith th e  im age plane, a  bias is in troduced into c ce n-

P e r s p e c t iv e  b ia s

Considering a  calibration  plane in a  general 3D position, a  hom ography H  can 

be com puted  betw een th e  pixel coordinates of the  control points and  the ideal 

canonical position  as: p  =  H p , where p  are the  locations of th e  control points 

in the  image, and p  are th e  ideal canonical position of th e  control points. The 

conic approxim ation  to  the  edge points of the  p a tte rn , p edge, can be estim ated  

linearly as: P ^ eQPed5e (H artley and Zisserm an, 2003). T he centre of the  conic 

is th en  calculated from the  conic Q  as: cconic =  Q _1[0,0 , 1]T. For a general 

3D position  these centers transform  to  cCOnic =  H Q -1 [0 ,0 ,1]T. However, in
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an im age only th e  conic Q  is available, b u t it m ay be rela ted  to  Q  through

Q  =  H  TQ H _1. T hus th e  unbiased estim ates for th e  centers of the  conics

undergoing a  general perspective transform  H  is given by:

Cconic =  Q -1 H - T [0,0 , 1]T (3.3)

T he ex ten t of th is biasing influence is sim ulated in Fig. 3.3 for random

Centroid perspective bias

Fig. 3.3: M ean Euclidean error as a  consequence of 1000 random  positions of 

the  circular p a tte rn . O rthogonal like hom ographies induce a low conditioning 

(close to  one) while the  perspective bias increases w ith increasing conditioning. 

T he average d iam eter of th e  circles is around 50 pixels.

perspective views described in Section 3.1.1. In m any algorithm s, especially 

when lens d isto rtion  is a factor, the  value of H  or equivalently, th e  elem ents of 

the  cam era pro jection  m atrix , are not known exactly  beforehand. This forces 

the  algorithm  to  iteratively  upd a te  the  estim ates of th e  control points. This 

re-estim ation  of th e  control points is an  added com plication, increasing the 

num ber of itera tions and degrading derivative inform ation.

D is to r t io n  b ia s

T he second m ajor draw back of circle p a tte rn s  and the ir detection  m ethods, 

is th a t  they  are also sub ject to  bias from lens d istortion. Lens d istortion
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introduces a nonlinear shape w arping to  the  area of th e  conic. This w arping 

subsequently biases the centre point of th e  conic. T he ex ten t of th e  bias is 

dependent on the  am ount of lens d istortion  and the  area or radius of the 

conic, as illustrated  in Fig. 3.4 and 3.5.

C h a p t e r  3  -  C h o o s in g  a  C a l ib r a t io n  P a t t e r n

Distortion k1 ((pix)3)

Fig. 3.4: Sim ulated m ean Euclidean d istortion  bias for circle p a tte rn  (circle dia 

50 pix) over the  considered range of distortion. T he collineation error resulting 

from H p  is actually  reduced by the  conic ill-fitting error.

This bias results from the  com bined effects of two error sources. Firstly, the  

nonlinear na tu re  of d istortion  warps th e  conic so th a t it is no longer a tru e  

conic. C ertain  sections of th e  conic becom e elongated or compressed, all cul­

m inating in the  in troduction  of a  bias from the  eventual conic fitting. Tracking 

the equations for only one te rm  of d istortion  (&i) th e  second order least squares 

conic fitting: p T p , is perform ed on a six th  order section. This leads to  an 

ill-fitting bias, the  ex ten t of which is illustra ted  in Fig. 3.4. T he analytical 

com pensation for such bias is not possible w ithout exact knowledge as to  the 

true  und isto rted  s ta te  of th e  control points.

T he second error source is from th e  d isto rtion  induced local perspective tran s­

form, resulting from the  conic fitting. Considering a  general d istortion  free 

conic Q, its least square coun terpart in d isto rted  space is calculated by m in­

imising the  algebraic expression: ^ ( p « ,  Qp i)2, where Q^must be a real proper 

conic. These two conics are rela ted  th rough  a  set of collineations or homo-
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Fig. 3.5: S im ulated m ean Euclidean distortion  bias in p a tte rn s  of various circle 

radii, considered over a range of d istortion  levels.

graphies H p  th a t m ap Q  to  th rough  H ^ Q H p  =  . This collineation
v/

may be found by taking the  orthogonal m atrices U  and th a t diagonalise 

Q  and : U TQ U  =  A and T =  , where A =  diag(X\,  A2, A3) and

“ =  diag(Xi, \ 2, A3), and by choosing A 0 =  d i a g ( y / \ i / \ u  y % / % ,  ^/A3/A 3). 

T he collineation H p  is then  formed as H p  =  0U . However, the  equation
rp V

H ^ Q H p  =  is not unique as it provides only five of the necessary eight in­

dependent constraints. For sim ulation purposes a unique solution is obtained 

in least square sense by m inim ising ^ ( p » ,  H p p j)2.

T he hom ography H p  introduces a  local perspective bias th a t we call the 

collineation error. C om pensation for th is bias cannot be applied in real cam ­

eras as the  undistorted  points are always unobservable. T he contribution  of 

the  collineation error source is sim ulated in Fig. 3.4, revealing th a t it is dom ­

inant, and is actually  reduced by the  ill-fitting error. N aturally, d istortion  

bias is heavily dependent on the  size of the  feature. This is exam ined in Fig. 

3.5 for a  range of d istortion  levels and circle diam eters. C om pared w ith  the 

perspective bias sim ulated in Fig. 3.3, a typical low focal length  lens, where 

k\  is roughly in the  region of —0.3 —» —0.7p ix 3, d istortion  bias is likely to  

be g reater in m agnitude th a n  perspective bias. T his is verified in Section 3.3. 

Note also th a t d istortion  bias is not lim ited to  conic fitting, and is present to  

th e  sam e ex ten t regardless of detection mode, centroids or conic fitting.
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3.2.2 Chessboard pattern detection

Given an im age of a  chessboard p a tte rn , in itial estim ates of th e  location of the 

intersections can be gathered  using s tan d ard  corner detection  m ethods. These 

estim ates are generally w ithin a few pixels of the  true  locations. We describe 

two existing m eans of refining these in itial solutions using edge inform ation 

(W illson, 1994), (Li and Lavest, 1996) and surface fitting  (Lucchese and  M itra, 

2002). A dditionally, we address the  filtering of in itial corner estim ates to  

ensure they  lie upon a  square intersection, and th e  au tom atic  ordering of these 

coordinates to  correspond w ith  the  canonical point representation.

P r im a r y  d e te c t io n

In itia l estim ates for th e  location of chessboard type intersections are obtained 

using s tan d ard  corner detectors such as those described in Lucchese and M itra 

(2002), W helan and Molloy (2000), Ja in  e t al. (1995). For real situations where 

th e  background scene registers cand idate  corners a fu rther refinem ent step  is 

necessary to  remove false hits. A sm all N  x  N  region of in terest, \£, centered 

on the  cand idate  corner is first thresholded using th e  m ean gray level of 'I'. A 

sym m etry  m easure t y  can then  be calculated as:

'H z , y) — ^ ( N  — x, N  — y)
*  *  a  if V

=  2 _ ,2 _ ,  (a;,?/), w here 0 ( x , y )  =  < ^ { x , y )  ±  ^ l ( x , N  - y )
y = 0  2=0

b otherwise.

w here a  is positive and b is negative. We ob ta in  good perform ance using a =  6 

and b =  — 1 w ith  N  = 9. High values of the  sym m etry  m easure ty  indicate 

th e  corner is s itu a ted  on a  chessboard intersection.

E d g e  in te r s e c t io n s

A fitting  function th a t m odels line intersections is form ulated. In order to  use 

it w ith  a chessboard p a tte rn  the  edges or in tensity  derivatives in a m edium  

sized local region centered on the  in itia l estim ate are first calculated. The 

function is then  fit using the  L-M non-linear iterative technique:

m i n  11 / l 1 e —̂ 2 (C37—̂ 5) cos h3+ (y —/i6) sin /i3)2 _|_ ^ e -h%((x -h5)s inh 4+ (y -h6)cosh4)2 
h

- 2 h 1e - h^ (x~h5)2+{y~h6',2) -  3<(x , y ) ||2
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where th e  in tersection point is (/i5, /i6), hi  is the  height of th e  derivative pro­

file, h2 is th e  w id th  of the  profile and h3 and hA are th e  edge directions. The 

process is illu stra ted  in Fig. 3.6. As lines p ro jec t to  lines under perspec­

tive transform ations, th is detection m ethod is invariant to  perspective bias. 

However, under lens d istortion , it is clear th a t lines pro ject to  curves, w ith 

the  result th a t  th is m ethod is affected by d istortion  bias. Consequently, an 

analytical proof is not perused.

Fig. 3.6: C ontrol poin t refinem ent based on edge fitting. T he first image shows 

the  selected ROI. T he second image shows the  detected  edges. T he th ird  image 

shows th e  edge im age contours. T he final image shows th e  function fit contours 

from which th e  control point is calculated.

C orners

A category of sub-pixel refinem ent is based on surface fitting  of intensity  

around a corner po in t (Lucchese and M itra, 2002). For each in itial location 

estim ate, a  sm all region of in terest ^  is considered for fitting. Following blur­

ring, a  quadratic  function can be linearly fit to  the  resulting in tensity  profile, 

as dem onstra ted  in Fig. 3.6 by minimising:

m in \ \six2 +  s2x y  +  s 3y 2 +  s4x  +  s5y  +  s6 -  y ) ||2.
s

T he in tersection poin t or saddle point is derived from th is surface as the in­

tersection  of th e  two lines 2 s \x  +  s 2y  +  s4 =  0 and s2x  +  2s3y  +  s5 =  0. The 

process is illu stra ted  in Fig. 3.7. In practice, th e  sm all patch  ^  can effec­

tively be considered a  single point, especially in light of th e  detection  accuracy 

and  noise floor. As points pro ject to  points under b o th  projective and lens 

d isto rtion  transform ations, th is m ethod has th e  desirable properties of being 

invariant to  b o th  perspective and d isto rtion  bias.
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Fig. 3.7: T he saddle refinem ent process. F irs t th e  b lurred  ROI w ith  marked 

saddle po in t is shown. M iddle image is a contoured im age of the  intensity  

profile. Last im age shows the  in tensity  profile of th e  surface fit from which the 

saddle po in t is calculated.

3.2.3 Ordering

A fter ex traction , th e  coordinates of th e  control points need to  be appropriately  

ordered to  ensure one-to-one correspondence w ith th e  a rb itra ry  scaled canoni­

cal positions of the  control points. For a  p a tte rn  containing a m a trix  of control 

points of N  x M , th e  entire indexed set of points are collected into a  three vec­

to r d(0. . . NxM)  =  [ x \ . . .  xj s txm, Vi  • • • Vn x m , 1 ] t - For m ost of the  analysis in th is 

thesis N  = 13 and M  =  19 giving a to ta l of 247 points. Existing ordering tech­

niques in Lucchese (2005) require prior user initialisation. T he fully au tom atic  

algorithm  described here has been extensively tested  and perform s successfully 

for different d isto rtion  levels and resolutions. For severely d isto rted  images, 

such as fish-eye lenses, a  prior rough un-d isto rtion  of d(0...j/vxM) is required.

A brief descrip tion of th e  algorithm  is as follows. For each row N , th e  topm ost 

left and right coordinates in d(0...iVxM) are found. For all b u t the  m ost acute 

angles of view, these points correspond to  the  top  left and right points of the 

calibration  p a tte rn . T heir indexes i and j  are found by: i =  m in(x  x y ) and 

j  = m in (y /x ) . A line though  these points is then  com puted as L =  d f  / \ d j ,  

where / \  is the  cross p roduct. T he M  — 2 m ost closest points to  th is line are 

then  found. Finally, these M  points are ordered w ith  increasing x  coordinate, 

and are not considered in fu rther iterations. This is perform ed N  tim es until 

all th e  d a ta  has been ordered.
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3.3 E xp erim en ts

T hree sets of experim ents are conducted on the  synthesised te st images de­

scribed in Section 3.1. Two of the  experim ents verify and quantify  the per­

spective and d isto rtion  bias for each detection m ethod and pa tte rn . A side by 

side accuracy evaluation for noise and blurring is presented, to  give a  bench­

m ark  from which to  access the m agnitude of b o th  bias sources. Finally, real 

exam ples of d isto rtion  and projective bias are presented, based on a combi­

n ation  p a tte rn  of circles and squares. For sim plicity detection m ethod labels 

are shortened, circle centroids are referred to  as centroids, conic centroids as 

conics, chessboard edge intersections as edges and chessboard corner saddle 

refinem ents are referred to  as corners.

3.3.1 Noise and Blurring

T he perform ance of each m ethod is exam ined for a range of G aussian blurring. 

Fig. 3.8 shows th e  m ean and  stan d ard  deviation of th e  Euclidean errors com­

pu ted  using the  tru e  locations. These te s t image p a tte rn s  are also projectively 

transform ed so as conic based com pensation can be accessed. T his shows th a t 

th e  expected detection  errors rem ain relatively constan t w ith  respect to  b lur­

ring. Excluding bias corrupted  centroids, these errors are roughly in the  pixel 

range of 0.02 —► 0.04, and lower for th e  edge based m ethod.

T he robustness of the  detection m ethods to  noise is presented in tab le  3.1, for 

additive norm ally d is tribu ted  noise. T he upper level, a  =  20 (pix), represents 

severe noise unlikely to  be encountered in typical calibration shots. Typical 

values for noise in images are in the  range cr =  5 t o c r  =  10 pix.

3.3.2 Positioning Bias

T he detection  p a tte rn s  and m ethods are exam ined for a  range of nine differ­

ent projective transform ations as shown in Fig. 3.9. T he perspective bias of 

centroid detection  on circle p a tte rn s  can be observed, and increases w ith per­

spective severity. These values correspond w ith  the ir sim ulated coun terparts  

in Section 3.2.1. These basic s ta tis tics  do not convey th a t  these errors are not 

random ly d istribu ted , and are in fact biased. Fig. 3.10 shows one sam ple of
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Mean Standard deviation

Fig. 3.8: T he m ean and s tan d ard  deviation for the  four m ethods over a  range 

of gaussian blur levels. 1 => edges, 2 => corners, 3 =» conics and 4 => centroids. 

Images are sub ject to  a perspective transform .

th is circle centroid bias com pared w ith bias free ad justed  conic fitting.

3.3.3 D istortion Bias

T he p a tte rn s  and detection  m ethods are evaluated w ithou t perspective warp­

ing over th e  range of d isto rtion  levels. E x ternal sources of sim ulation error 

have been shown to  have insignificant levels in Section 3.1.2. Fig. 3.11 shows 

the  m ean Euclidean error of circle p a tte rn  detection m ethods steadily  increases

Table 3.1: Euclidean errors (M ean & SD) w ith  respect to  additive gaussian 

noises. E rrors are com piled over one hundred independent tria ls  and are con-

II
<D̂—v
.22 x 
°’3<b

Centroids Conics Corners Edges

Mean SD Mean SD Mean SD Mean SD

1 0 0 0.0281 0.0141 0.0051 0.0026 0.0014 0.0007

5 0.0012 0.0039 0.0369 0.0198 0.0144 0.0076 0.0067 0.0035

10 0.0220 0.0122 0.0541 0.0287 0.0279 0.0149 0.0134 0.0070

15 0.0355 0.0188 0.0657 0.0350 0.0420 0.0221 0.0200 0.0104

20 0.0447 0.0233 0.0841 0.0805 0.0568 0.0298 0.0265 0.0139
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Fig. 3.9: T he m ean Euclidean error for the  four detection  m ethods (1 => 

edges, 2 =*► corners, 3 => conics, 4 centroids) sim ulated over various degrees 

of perspective transform s. C entroid bias is clearly shown by th e  large mean 

Euclidean error.

w ith d isto rtion  level. This is in excellent agreem ent w ith  th e  sim ulated dis­

to rtion  bias of Section 3.2.1. Edge based detection, because of its line fitting, 

reduces d isto rtion  bias som ew hat, more so for th e  pincushion variety due to  

th e  fixed windowing size and d isto rtion  induced im age expansion. Fig. 3.12 

shows th e  d isto rtion  sim ulated images, each w ith  associated detection m ethod, 

for one sam ple of distortion.
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Centroid Con ic

Fig. 3.10: Sample of one perspective transform ation  (cond. =  1.25). Vector 

plots reveal the  centroid bias. Residual scale =  x2000.

Mean error

-2  -1.5 -1 -0.5 0 0.5 1 1.5 2
Distortion k1 pix3

Fig. 3.11: Illustrates the distortion induced bias in control points for four
detection methods.
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Fig. 3.12: Left column images show th e  circle p a tte rn  and associated detec­

tion m ethod errors. R ight column images show the  chessboard and associated 

m ethods. D istortion level is ki =  —1.5p ix 3. Residual scale =  x2000.

65



C h a p t e r  3 -  C h o o s in g  a  C a l ib r a t io n  P a t t e r n

3.3.4 Bias in real images

Real exam ples of d isto rtion  and perspective bias are shown, m easured on a  spe­

cial p a tte rn  th a t combines bo th  circles and chessboards. This p a tte rn , shown 

in Fig. 3.13, consists of th ree  greyscale levels from which th e  two types of 

control poin ts are ex tracted . B oth  the  circle centroids and th e  square intersec­

tions are located  a t exactly  th e  sam e locations. T he circle control points are 

form ed by thresholding above th e  mid grey level, where th e  circle in tegrity  is 

ensured by th e  outer w hite rim. T he square intersections are evaluated w ith 

a sm all ROI using the  original in tensity  profile.

Two different degrees of lens d isto rtion  are exam ined, b o th  w ith  and w ithout 

perspective bias. 2 Fig. 3.13 shows low level d istortion  bias, which is swamped 

by perspective bias as shown in Fig. 3.14. Fig. 3.15 shows an increased 

d istortion  bias th a t is dom inant over perspective bias (Fig. 3.16) for an image 

affected by a  g reater level of distortion. This com prehensively dem onstrates 

th a t such biases are not lim ited to  the  sim ulated case, and are equally prevalent 

in real images.

2 Camera placement is done manually, and undoubtedly some degree of perspective bias 
is included.
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Fig. 3.13: Exam ple of bias in real image (Fuji F ineP ix  size: 2832 x 2128), eval­

uated  using a specially designed pa tte rn . Circle d ia ~  120 pix, w ith  estim ated  

prim ary d istortion  term : k\ =  —0.2. Vector plo t shows Centroid and Corner 

differences, revealing the  d istortion  bias (scale is x500). Residual m ean and 

SD are 0.817(0.269).
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Fig. 3.14: Second exam ple of bias in real image w ith  th e  sam e cam era and 

settings as Fig. 3.13 (Fuji F ineP ix  size: 2832 x 2128). Vector p lo t shows 

C entroid and Corner differences, revealing th e  dom inance of projective bias 

over d isto rtion  bias (scale is x500). Residual m ean and SD are 1.227(0.391).
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Fig. 3.15: Exam ple of bias in real image (Nikon coolpix w ith  FC-E8 lens size: 

2272 x 1704). Circle dia ~  110 pix, w ith estim ated  prim ary  d isto rtion  term : 

k\ =  —1.2. Vector plot shows Centroid and C orner differences, revealing the  

d istortion  bias (scale is x500). Residual m ean and SD are 1.475(0.322).
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Fig. 3.16: Exam ple of bias in real im age w ith  th e  sam e cam era and settings as 

Fig. 3.15 (Nikon coolpix w ith FC-E8 lens size: 2272 x 1704). Vector plot shows 

C entroid and C orner differences, revealing the  alm ost com plete dom inance of 

d istortion  bias (scale is x500). Residual m ean and SD are 1.272(0.2711).
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3.3.5 Chessboard detection noise

It is clear th a t  a  chessboard p a tte rn  w ith  corner detection  offers far superior 

d a ta  th a n  circular p a tte rn s  and m ethods. N aturally, th roughou t th is thesis, 

control points are specified using a chessboard p a tte rn . O f the  two types of 

detection  m ethods considered for use w ith  th is p a tte rn , only corner detection 

offers bias free coordinates. However, as described in Section 3.2.2, the  edge 

based m ethod  described is based on a  large region of in terest around the  rough 

in itial location. In practice, th is region can be reduced to  the  sam e size as the 

surface fitting  corner m ethod, thus reducing d isto rtion  bias to  negligible lev­

els. This has the  adverse consequences of m aking th is line intersection m ethod 

m ore susceptible to  noise. In experim ents, it was found th a t th is line intersec­

tion  m ethod was m ore robust to  poor in itia l corner estim ates and various lens 

blurring. O n th e  downside, th e  line based m ethod in its curren t im plem enta­

tion is very m uch slower th a n  th e  surface corner fitting. In experim ents, each 

m ethod was utilised.

It is therefore useful to  assess th e  levels of noise in control points recovered 

w ith these two m ethods. T he precision of the  control points is also highly 

dependen t on the  cam era and lens system  employed. Predom inantly , three 

d ig ital cam eras are used in th is work, and are briefly described in tab le  3.23. 

T he recovered control po in t noise is assessed by tak ing  m ultiple images of the 

calibration  p a tte rn  w ith  varying lighting conditions. T he results are presented 

as a global noise m easure for b o th  sm all ROI line and corner detection m ethods 

in Figs. 3.17, 3.18 and  3.19 for the  K odak, Nikon and Fuji cam eras respectively.

T he K odak cam era shows high poin t accuracy, though th is is influenced some­

w hat by th e  lower cam era resolution. T he line based m ethod shows slightly 

b e tte r  po in t localisation. Sim ilarly for th e  Nikon cam era, th e  edge based 

m ethod slightly outperform s the  corner m ethod. For the  high resolution Fuji 

cam era, th e  line based m ethod shows considerably lower noise. All errors 

display a  zero m ean norm al d istribution .

T he noise dependence on the  control po in t position w ith in  th e  im age is finally 

exam ined, to  access if the  control point noise is random  w ith respect to  image 

location. T his is conducted by tak ing  the  m ean x  and  y  errors for each control 

po in t over m ultiple images. T he results are presented in vector form at in Fig.

3These are the three cameras and various lens attachments that are available in the lab
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work,__________________________________________________________________
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Camera Type Resolution (pix) Lens system

Kodak MegaPlus 4.li 

Nikon CoolPix E4500 

Fuji Finepix 6900

1312 x 1032 

2272 x 1704 

2832 x 2128

Computar 6mm 1/2” 

Nikon FC-E8 fish eye 

Fuji WL-FX9 wide converter

3.20, for all th ree  cam eras. These plots show th a t there  is no location depen­

dent p a tte rn  observable for any of the  cam eras, and are henceforth considered 

random .

Mean = 2.75e-010 SD = 0.04643 Mean = -1.69e-010 SD = 0.0386

(a) Line Based Detection: Left a;, Right y

Mean = 1.74e-011 SD = 0.04 Mean =-8.62e-011 SD = 0.03537

(b) Corner Based Detection: Left x, Right y

Fig. 3.17: H istogram  of noise in control points using K odak cam era as de­

scribed in tab le  3.2 for x  and y  directions including fitted  norm al d istributions.
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Mean = -1.29e-011 SD = 0.1156 Mean = -1e-010 SD = 0.1267

0.4 -0.2 0 0.2 0.4 0.I
Error (pixels)

-0.6 -0.4 -0.2 0 0.2 0.4
Error (pixels)

(a) Line Based Detection: Left x, Right y

Mean = -1.74e-011 SD = 0.1229 Mean =-1.14e-010 SD = 0.1331

Error (pixels) Error (pixels)

(b) Corner Based Detection: Left x, Right y

Fig. 3.18: H istogram  of noise in control points using Nikon cam era as described 

in tab le  3.2 for x  and y  d irections including fitted  norm al d istribu tions.
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Mean = 1.74e-010 SD = 0.06417 Mean = 2.78e-010 SD = 0.08431

0.04

-0 .2  -0 .1 5  -0.1 -0 .0 5  0 0.05 0.1 0.15 0.2
Error (pixels) Error (pixels)

(a) Line Based Detection: Left x, Right y

Mean = 9.4e-011 SD = 0.1259 Mean = 2.39e-010 SD = 0.1246

0.045

0.035

£  0.025

0.015

0 005

Error (pixels) Error (pixels)

(b) Corner Based Detection: Left x, Right y

Fig. 3.19: H istogram  of noise in control points using Fuji cam era as described 

in tab le  3.2 for x  and y  d irections including fitted  norm al d istribu tions.

74



C h a p t e r  3 -  C h o o s in g  a  C a l ib r a t io n  P a t t e r n
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(a) Kodak camera. Left: Line errors, Right: Corner errors

Image locations of errors Image locations of errors

(b) Nikon camera. Left: Line errors, Right: Corner errors

Image locations of errors Image locations of errors

(c) Fuji camera. Left: Line errors, Right: Corner errors

Fig. 3.20: Location dependence of control point errors for th ree  cam eras. Vec­

tors indicate the  m ean x  and y  noise m agnitudes for m ultiple images. Vector 

scale =  x 1000.
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3.4 D iscu ssion

T his chap ter deals w ith  control point recovery from p lanar calibration  charts, 

by investigating if the  choice of p a tte rn  can im prove th e  overall detection 

precision. T his accuracy is exam ined w ith  respect to  perspective transform a­

tions and lens d istortion. Initially, p a tte rn  synthesis issues are detailed, in 

particu la r th e  generation of accurate lens d isto rtion  in images. Two repre­

sentative types of p a tte rn s  are considered: circles and chessboards, each w ith 

two com m on m ethods of control point recovery: centroids, conic fitting, edge 

approxim ation  and corner points. We show theoretically  and experim entally 

th a t com pensated conic fitting, edge approxim ation and corner points are in­

varian t to  perspective bias, while only corner points are invariant to  d istortion 

bias. S im ulated and real results indicate th a t d isto rtion  induced bias has a 

significant m agnitude. Even for low disto rtion  levels, roughly ±0.3(pia:3), the 

biasing influence of d isto rtion  is g reater th a n  the  no ise /b lu r floor, and is more 

significant th an  the  likely perspective bias encountered w ith  norm al calibration 

views. Thus, the  com pensation for perspective bias only w ith  large conic area, 

is clearly no t sufficient to  acquire bias free control points. This has im portan t 

im plications for th e  field of high accuracy cam era calibration.

It is clearly dem onstrated  th a t chessboard p a tte rn s  are superior to  circular 

type p a tte rn s  in the  generation of bias free control points. Therefore, th rough­

out th is thesis chessboard p a tte rn s  are used th is purpose. For th e  selection of 

cam eras used, the  control poin t noise from the  chessboard detection m ethods 

is presented. I t is very im po rtan t to  note th a t th is s tudy  prim arily  considers 

a nom inal pixel conic d iam eter of 50 pixels. I t can be noticed throughout 

th a t for lower conic diam eters th e  influence of biasing is significantly reduced. 

For exam ple, a  conic d iam eter of 10 pixels will induce negligible bias in com­

parison w ith  th e  expected detection accuracy. Indeed, th is d iam eter is the 

recom m ended rule of thum b for use of use of circular p a tte rn s  in order to  

avoid incurring the ir biasing potential. T he conclusions for th is chapter m ust 

be regarded w ith  th is in mind.

Finally, some ex ternal factors th a t influence the  precision of control points are 

not considered in th is chapter. These factors relate to  th e  m anufacture of the 

calib ration  ta rg e t, in term s of its p lanarity  and the  spa tia l precision of the  par­

ticu lar p a tte rn . T he chessboard calibration ta rg e t used in th is thesis is fixed
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to  a  glass substra te , while th e  black and w hite p a tte rn  was precisely m anu­

factured  using a  high resolution xy table. Consequently, th e  errors introduced 

from th e  p a tte rn  im precision are considered negligible. C hap ter 4 further ex­

am ines th e  influence of errors in the p a tte rn  precision, on th e  calibration of 

d istortion.



Chapter 4

D istortion  Calibration

Lens d isto rtion  is a  tho rn  in th e  side of m any relatively straightforw ard image 

analysis tasks. I t com prehensively degrades th e  accuracy of m easurem ents 

m ade in real images, where pixels in a norm al perspective cam era w ith a 

low focal length  m ay move up to  30 pixels. In term s of th e  removal of such 

distortions, it is clear th a t, currently, th e  only precise m eans of calibrating 

and rem oving d isto rtion  is in conjunction w ith  a  full calibration  of the  in ternal 

and ex ternal param eters. T he im portance of d isto rtion  in th is regard has seen 

the  u tte r  dom inance of these m ore com plicated algorithm s a t th e  expense of 

those th a t  do not consider d istortion. D espite th is, m any applications do not 

require th e  full com plem ent of in ternal cam era param eters and th e  relative 

o rien tation  in relation to  some calibration  ta rge t. Selections of these, such as 

m ultiple view geom etry estim ation, in cases prefer to  explicitly include lens 

d isto rtion  factors a t th e  expense of ex tra  complexity.

A lgorithm s for in ternal and ex ternal cam era calibration, m ultiple view geom­

etry  estim ation , etc. are rendered considerably sim pler by th e  lack of lens 

d istortion . However, despite the  long te rm  existence of non-m etric calibration 

techniques to  enact th is  removal of d istortion, they  have not been adopted. 

This can only be due to  th e  poor perform ance of such m ethods, the ir lim ited 

circum stances of usage, and the ir own relatively com plex p ractical im plem en­

ta tion . T his chapter com prehensively addresses th e  issue, in the  description of 

an easy to  use and  highly precise m ethod  for calibrating  lens d isto rtion  of all 

levels in perspective cam eras.
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T he algorithm  advanced in th is chapter can be considered non-m etric1 as no 

in ternal or ex ternal cam era param eters are explicitly available. T he m ethod 

exploits two geom etric priors on the  p lanarity  of the  control points and their 

known s tru c tu re  up to  an a rb itra ry  scale. Using a  single view of th is calibra­

tion  p a tte rn , an error function is formed in d isto rted  space using the  general 

d isto rtion  model. T he necessary und isto rted  coordinates are sim ultaneously 

estim ated  th rough  a general projective transform . T he partia l derivatives of 

the  quadratic  cost function are com puted for all estim ated  param eters, allow­

ing th e  closed-form com putation  of the  cost gradients for m inim isation. The 

re-sam pling of an aberra tion  free im age is in terp re ted  as a function in dis­

to rtio n  free coordinate space, hence th e  calibrated  forward d isto rtion  model 

m ay be applied directly. Lastly, au tom atic  re-scaling is applied to  balance the 

creation and loss of pixels in th is re-sam pling.

In com parison w ith  the  curren t benchm ark for calibrating  distortion  through 

full cam era calibration, th e  proposed approach has num erable advantages. 

O nly one inpu t im age is required for the calibration, ideally taken in a roughly 

fronto parallel position. T he d istortion  and associated param eters are esti­

m ated  in a  closed-form solution2 w ith  full partia l derivatives, giving a com­

p u ta tio n a l advantage over curren t num erical techniques. T he accuracy of the 

proposed m ethod  m atches and surpasses th a t of com plete calibration  m ethods 

in m any cases, while th is accuracy is offered over a  general coverage of all 

possible d isto rtion  levels in perspective cam eras. I t also offers an alternative 

m eans of dealing w ith  d isto rtion  for th e  m any tasks th a t  do no t require the  full 

com plem ent of cam era param eters. Additionally, th e  subsequent calibration 

of in ternal a n d /o r  ex ternal cam era param eters becomes much sim pler in the 

absence of lens d istortion.

A least square solution to  th e  calibration problem  is described in Section 4.1 

th rough  th e  description of the  und isto rted  coordinates by a  unique error ho- 

m ography. Full partia l derivatives are given for use in a G auss-N ew ton iterative 

solution described in Section 4.1.1. Section 4.1.2 describes a  novel means of 

m inim ising the  in troduction  of ex tra  local pixel d istortions in th e  generation of

1 Non-metric in this context referrers to the unavailability of any internal or external

camera param eters or orientations.
2Closed-form in this sense referrers to the direct geometric relationship between the 

criterion and the underlying model. This means th a t it is absolutely correct a t all times not 

just upon convergence conditions.
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an und is to rted  image. A com prehensive exam ination of th e  proposed m ethod 

is given in Section 4.2 including com parisons w ith  two popular full calibration 

techniques and  one non-m etric m ethod. These com parisons are conducted on 

sim ulated  and  actual d a ta  over a extensive range of d istortion. T he calibration 

requires the  inpu t of a t least one view of a  calibration p a tte rn . The depen­

dence of th e  proposed m ethod on th is control d a ta  is exam ined in Section 4.3. 

Included is an  descrip tion of th e  required quan tity  of control points for suc­

cessful calibration  in Section 4.3.1 which is extended to  a  m ultiple view variant 

of the  algorithm . Two geom etric priors are assum ed on th is calibration target, 

th a t of p lanarity  and of known (up to  an a rb itra ry  scale) canonical coordinates 

for th e  p a tte rn  defined control points. T he im pact of violations of these con­

s tra in ts  are investigated in Section 4.3.2. A dditionally, it is assum ed th a t the 

im age pro jection  of th is calibration  p a tte rn  has been detected  free of distor­

tion and projective bias (refer to  chap ter 3). T he influence of bias is further 

exam ined for d isto rtion  calibration  in Section 4.3.3. A com prehensive analysis 

of decentering d isto rtion  w ith  the  proposed technique is presented in Section 

4.4. Lastly, variable lens param eters th a t influence the  observed distortion  are 

exam ined in Section 4.5 for th e  fundam ental lens functions of focusing and 

ap ertu re  settings.

4.1 Least squares sim ultaneous calibration

T he calibration  technique pursued here requires one view of a calibration p a t­

tern. Two geom etric priors are assum ed on this calibration target, th a t of 

p lanarity  and  of known (up to  an a rb itra ry  scale) canonical coordinates for 

the  p a tte rn  defined control points. A dditionally, it is assum ed th a t all control 

points are observable w ith in  the  image window and are appropria te ly  ordered 

as described in chap ter 3.

C onsidering th e  bias free detection of chessboard intersections w ith  image co­

ord inates c =  (u , v , l ) T and un its  of pixels (pix), a  transform  is required to  

convert these m easurem ents into the  lens centered coordinate space. T he lens 

centric coordinate  system  can be thought of as the actual m etric m easurem ents 

of th e  ray  in tersections w ith  th e  surface of th e  sensor pickup (e.g. CCD ar­

ray), centered on the optical axis of th e  lens. As m ost sensors are not aligned 

accurately  w ith  respect to  th e  lens, th e  centre of th e  sensor array  cannot be

8 0



C h a p t e r  4  - D i s t o r t i o n  C a l ib r a t io n

assum ed to  contain  th e  optical axis. Indeed it is unclear if lens d istortion  is 

actually  centered on th e  optical axis or not. A dditionally, th e  actual physical 

size and resolution of th e  array  is variable from cam era to  cam era. Fortunately, 

the  precise m etric values of the  ray intersections are not required since they 

only influence th e  scale of the  d isto rtion  param eters as follows:

R esult 3. Arbitrary scaling o f lens centric coordinates, or equivalently varying  

sensor resolution, causes the param eter values o f distortion to change, not the 

num ber o f parameters:

A ( p - p )  =  A 2 ? ( p ,k ) = P ( A p ,k A), 

where A is the scaling fa c to r and  k A is the scaled param eter vector.

(4.1)

P roof

A£>(p,k) = £>(Ap,kA),

k i \ 2x r 2 -f /c2A4x r 2 +  . . .  

k \ \ 2y r 2 +  k2X4y r 2 +  . . .

= AZ>(p,k),

as kA absorbs the  scaling factors as: k \  =  (A2&i, A4/c2, .. .)T

=  A

□

As a consequence, th e  recovered control points c are norm alised roughly to  

un it length  by th e  average of th e  image w idth  and height, c =  (u )v ,w ) T , to 

standard ise  th e  scaling of th e  d isto rtion  param eters and improve the  condi­

tioning of th e  estim ation  equations. T he required lens centric transform  is 

then  defined as:

P =

\

s 0 —u Q 

0 1 - v Q 

0 0 1

v

\ w 1

=  A c (4.2)

w here s is th e  applied com pensation for non-square pixels and th e  sym m etrical 

centre of d isto rtion  is t  =  (uQ) vQ, 1)T . These param eters need to  be estim ated  

in th e  calibration. T he un its of p  are norm alised pixels, (p ix).

Given th e  norm alised coordinates, c, of an  arb itra rily  o rien ta ted  p lanar ta r ­

get, a p lanar transform  or hom ography (H artley and  Zisserm an, 2003) can be 

com puted as shown in Fig. 4.1 by c =  H dw , where w  =  (x ,y ,  1)T are the 

arb itra rily  scaled 2D coordinates of the  p lanar d a ta  points. I t follows th a t:
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Fig. 4.1: A graphical in terp re ta tion  of th e  form ation of a d isto rted  im age and 

its undistorted  counterpart.

R e s u l t  4. The true (distortion free) projections o f planar points, viewed from  

an arbitrary position, can be related to their distorted counterparts through the 

application o f a general projective transform  He:

m in £ ( c , H e c)2 giving c =  Hec (4.3)

P roof c and c are equivalent in a Least Squares sense, giving rise to  equivalent 

He w ith the  a lte rn a te  objectives:

min £ ( C> Hec)2 =  m in ^ ( c ,  Hec)2,

since c =  H dw, where Hd originates from m in ^ (c ,  Hdw )2, and w  are the  

canonical coordinates of th e  control points w ith  unknown scale. □

This represents the  key elem ent in expressing distortion  in a closed-form solu­

tion, enabling th e  recovery of th e  previously unavailable d a ta  c, th rough  the  

sim ultaneous estim ation  of He. W ithou t loss of generality, H e is scaled so th a t 

/i33 is one. In practice, no further constrain ts are available on H e as the  esti­

m ate of Hd is corrupted  due to  noise. A general form for He is then  required 

to  absorb these inaccuracies.
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For each observed control point c* th e  following error function can be formed 

using the  general forw ard d istortion  m odel (Result 1, C hap ter 2):

ei(c i, &) =  H ec i +  X>(Heci5 k) -  A c (4.4)

where th e  full param eter vector is $  =  (ftn , ft12, . . . ,  fc32, s, ¿̂0, v0, fci, fc2, .. .)T 

w ith  $  e  R 71*.

4.1.1 Solving the problem

A param eter counting exercise reveals th a t for a param eter vector of length n$  

a  m inim um  of m  =  ce il(n$ /2 ) control point observations are required, where 

ceil() is a rounding tow ards +oo. Given a t least n  > m  observations a  Least 

square solution is ob ta ined  by:

m m
¿=1

(4.5)

T his problem  is nonlinear in param eters particu larly  due to  V ( H eCi, k) requir­

ing a  nonlinear optim isation  solution. One way of solving th is is to  linearise 

equation  4.5 w ith  some in itia l param eter value of 3>o, resulting in an iterative 

G auss-N ew ton scheme (W alter and P ronzato , 1997) which can be solved using 

m any robust least square techniques (Golub and Loan, 1996):

$ k + i =  $ i d $ T d $ T

w here A <  1 ensures a decrease in cost a t each step. T he full partia l deriva­

tives are given in A ppendix B. It has been shown in Section 3.3.5 th a t the 

d a ta  covariances are equal, so no covariance m atrix  is required in th is solution 

(covariance is effectively equal to  an identity  m atrix).

A n in itia l estim ate for th e  param eters of A  are s =  1, u Q = m x and vQ = m y 

w here m x and  m y are th e  norm alised coordinates of th e  im age centre. An 

in itia l estim ate  for the  param eters / in , /i22 and k\ m ay be obta ined  directly 

from th e  linear solution of:

{hdiag, k i f  =  T +b ,

( X i Xif\^ ! u \ - m x

w here T  —
Vi y \f \

, b =
v\ —m y

\ Vn Vnflj y V n  U l y  J

(4.7)
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w here x  =  u — m x , y  = v — m y, r 2 =  x 2 +  y 2 and (.)+ denotes th e  pseudo 

inverse. T he param eter vector including th ree  term s for rad ial d istortion  is 

then  initialised at:

^  ( h d i a g ) 0 ?  O5 h d i a g i  y i  0 ?  I 5  ^ y j  O5 0 )  • ( ^ - ^ )

An overview of th e  algorithm  is now presented.

A lg o r i th m  1 T he algorithm  for estim ating  general lens d isto rtion  based on

one view of a calibration  p a tte rn  
O b je c t iv e

Given n  > m  control points w ith  image coordinates c, from a single view of a 

p lanar calibration  ta rg e t w ith  known struc tu re , w , determ ine the  param eters 

of th e  forw ard lens d isto rtion  model.

O u t l in e

1. N o r m a l i s a t io n  Observed image coordinates c are norm alised by the av­

erage of the im age w idth  and height giving c. A least square hom ography 

H d is formed giving: c =  H dw

2. I n i t i a l i s a t io n  P aram eter vector is initialised (equation 4.8) by directly 

solving equation  4.7.

3. M in im is a t io n  D istortion param eters are estim ated  by m inim ising equa­

tion  4.5 th rough  th e  ite ra tion  of equation 4.6 until convergence. Addi­

tionally  th e  und isto rted  coordinates are recovered as: p  =  H eH dw.

4.1.2 Balancing pixel warping

Resam pling or im age w arping com putes new sam ples on a  ta rg e t image from 

original sam ples on the  source image. Two frequently  used and well known 

in terpo lation  filters are nearest neighbor and bilinear in terpo lation  (Keys, 1981, 

H eckbert, 1989). T he form ation of a  new und isto rted  im age J ( x )  can be formed 

knowing th e  forw ard d isto rtion  m odel param eters from th e  original image J (x )

I ( x )  = 7 e ( i ( x  +  X >(x,k))) , (4.9)

w here 7Z(.) is the  in terpo lation  m ethod. T hroughout th is thesis s tan d ard  bi­

linear in terpo la tion  is used, which is available in m any im age processing such

8 4
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as Intel Im age Processing L ibrary (IPL, 2000). This form ulation has the  im-

directly, w ithou t need for an  inverse function as is required in Heikkila and 

Silven (1997) and Heikkila (2000).

O ne problem  w ith  the  m odelling of d isto rtion  according to  equation  4.4 is 

th a t  it does no t consider the  optim al form ation of a  new d isto rtion  free image. 

Thus, for barrel d istortion , image w arping according to  equation  4.9 results in 

th e  s tre tch ing  of central pixels to  occupy th e  viewing window, and hence the 

loss of ou ter perim eter pixels. T he reverse case is noticed in the  literature, 

such as M icusik and P a jd la  (2003) and F itzg ibbon (2001), where the  new 

im age is com pressed into the  viewing window, due to  th e  use of an inverse 

d isto rtion  m odel in the  re-sam pling. This im age stretch ing  effectively results 

in a reduction  of window size, as illu stra ted  in Fig. 4.2, which rises two issues. 

F irstly, there  is a  reduction in th e  effective field of view or angle of view. 

This is counter productive as wide angle lenses are chosen for the ir wide angle 

of view. Secondly, there  is an increase in noise and a degradation  of image 

quality  in com parison to  th e  original image, due to  the creation  of new pixels 

by zooming-like action of th e  warping.

To address th is issue, th e  im age w arping of equation 4.2 is modified, by taking 

into account local pixel distortions. These pixel d istortions are th e  result of the 

increasing pixel area warping, radially  from the  centre of th e  lens distortion. 

By in troducing  th e  ability  to  com press pixels in the  resam pling process, the 

overall pixel d isto rtions can be balanced or minimised. This is accom m odated 

by in troducing  an appropria te  scaling m a trix  S into th e  resampling:

p o rtan t advantage th a t  th e  calibrated  forward d isto rtion  m odel can be used

(4.10)

where th e  scaling m a trix  contains one variable Si as:

/  n ~ \r Si 0 S\U0 — u0 }

S =  0 S i  S i V o  -  Vo  »

and  (û0,v 0) is th e  estim ated  d isto rtion  centre.

A measure of the local pixel distortion can be compiled by taking the Jacobian

of the local area around point p  as:
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T his gives th e  the  size ra tio  of the  newly created  pixel a t th e  location p  to  

its original location p . L etting  Ai and A2 be th e  eigenvalues of J (p )  then  

th e  net m easure of th e  local pixel d isto rtion  m ay be obta ined  by tak ing  its 

de term inan t as d e t(J (p ) )  =  Ai A2. Since the  eigenvalues of an  orthogonal 

transform  are equal to  one, the  ideal value of th e  determ inan t causing no net 

size change is also one. A com pression of pixel size results in a  determ inan t of 

less th a n  one, while the enlarging of pixel size results in a  determ inan t greater 

th a n  one.

Pixel d isto rtion  can therefore be m inim ised by choosing a scaling param eter 

Si th a t minimises:

n

m in £ (d e t (SlI2x2J(Pi)) -  l )2 • (4.12)
¿=1

As d e t(A B ) =  d e t(A )d e t(B )  A ,B  e  Mmxm and d e t ( s i l2x2) =  s \  th is 

m inim isation can be solved for linearly as follows:

Sl =  { l  E ”= id e t ( J (P i ) r  (413 )

T he po in t set p* m ay be chosen as a grid covering th e  entire im age area. The 

density  of th is grid has a  very m inor influence on the  overall scaling param eter

T his im proved resam pling, by considering th e  local pixel distortions, is illus­

tra te d  in Fig. 4.2. I t can be observed th a t the  scaling solution avoids including 

peripheral areas of the  original image as these areas would induce large pixel 

d isto rtion  after im age w arping. T he balance th a t  is reached is a  clear improve­

m ent in term s of th e  resulting field of view over the  original unsealed m ethod. 

Note, th a t th is form ulation assum es th a t the  new im age dim ensions are the 

sam e as th e  original. An a lternative m eans of im plem enting th e  same effective 

field of view is to  enlarge th e  destination  image. T he optim al enlargem ent in 

th is case is again described by the  scaling m atrix  S solved w ith  equation 4.13.

86



C h a p t e r  4  -  D i s t o r t i o n  C a l ib r a t io n

Fig. 4.2: Top: O riginal d isto rted  image, and resam pled im age according to  

equation 4.9. B ottom  image, ad justed  resam pling according to  equation 4.10, 

showing the  larger field of view.
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4.2 A ccuracy assessm ent

T he proposed algorithm  is com pared w ith  sim ilar alternatives from the lit­

e ra tu re  th a t  take sim ilar inpu t data . T he assessm ent is conducted in term s 

of evaluating how accurate  the  estim ated  param eters are in describing lens 

d isto rtion  th roughou t th e  image. In general it is no t enough to  m erely find 

the  best value for the  param eters w ith  respect to  the  objective criteria. It is 

also im p o rtan t to  evaluate the  uncerta in ty  a ttached  to  th is result, taking into 

account th e  uncerta in ty  in the  data . T hree m ethods are taken from the  litera­

tu re  for com parison purposes. These include two full calibration m ethods and 

one tru ism  based m ethod. T he proposed algorithm  is referred to  as M ethod 1 

th roughout.

From a least squares or nonlinear least squares estim ation  problem  the residual 

error vector m ay be calculated. However, instead  of calculating th is residual 

an alternative  one is com piled directly  using new data . U nder th e  assum ption 

th a t d a ta  error has a  zero m ean norm al random  d istribu tion  A/"(0, <72) (see 

chap ter 3 for detection p a tte rn s  and m ethods th a t v iolate th is assum ption), 

the  estim ation  algorithm  is asym ptotically  efficient, im plying th a t w ith enough 

d a ta  points th e  exact solution m ay be recovered. T he param eter uncertain ty  

can be estim ated  from th e  Fisher inform ation m atrix:

forming an estim ate of the  associated S tandard  D eviation (SD) as the  square 

roo t of th e  i th diagonal elem ent as:

(4.14)

F  * (# ) is then  used to  characterise th e  uncerta in ty  in the  param eters, by

(4.15)

In the  special case w here all th e  cr2’s are equal and possibly unknown:

(4.16)
i=  1

F ( $ )  is then  approxim ated  by:

(4 .17)
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4.2.1 Comparison M ethods

W ith  th e  proposed algorithm  referred to  as M ethod 1, th e  in itia l com parison 

technique is referred to  as M ethod 2, which is taken  from th e  popular tech­

nique of Zhang (1998, 2000), and available on th e  web a t (Zhang, 2005). This 

full calib ration  technique takes m ultiple views of a p lanar p a tte rn  as input. 

A lthough d isto rtion  calibration  is no t th e  m ain focus of th is technique (no 

decentering and a  low order radial (2 param eters) m odel is used), it provides 

a  useful com parison for lower d isto rtion  levels. It is no t expected to  be highly 

accurate  for larger d isto rtion  levels. T he m ethod estim ates d istortion  by the 

num erical solution of the  back projection problem  in n  views w ith  m  con­

tro l points in each view. T he available im plem entation does not re tu rn  the 

param eter s tan d ard  deviations.

M ethod 3 is also a  full calibration m ethod, taken  from H eikkila (2000) and 

available in a  M atlab  im plem entation on the  web a t (Heikkila, 2005). This 

m ethod also requires m ultiple views of a  p lanar calibration  object, though 3D 

coordinates w ith  one image can also be used. D istortion is given prom inent 

focus in th is im plem entation, w ith  the  reverse m odel assum ed including de­

centering d istortion . A simplified approxim ation of its Taylor expansion is 

used as an  inverse (see chap ter 2 for a  full description of th is m odel). The 

im plem entation  re tu rns  th e  param eter SD ’s.

M ethod 4 is a tru ism  based m ethod, sim ilar to  th a t described in H aneishi e t al. 

(1995), and o thers such as Asari e t al. (1999) and D evernay and Faugeras 

(2001), where th e  estim ation  is based on th e  criterion th a t stra igh t lines in 

object space m ust be im aged as stra igh t lines. T he inpu t d a ta  is formed from 

the  collinear coordinates of the  chessboard p a tte rn  sim ilarly w ith  H aneishi 

et al. (1995) and Asari e t al. (1999). T his m ethod is im plem ented by first 

calculating the  lines joining the horizontal chessboard intersections as follows:

•  Initialise th e  principal point, and 4 param eters of th e  reverse d istortion  

model.

•  A m om ent m a trix  is formed representing the  algebraic line fit to  the
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inp u t d a ta  as 

/ Er=i Er=i eiu ̂  
ELi fcft Efc=i # EH, &
E " = i Æ< E L i  Vi n  /

• C alcu late the  LS line fit from the eigenvector associated w ith  the  sm allest 

eigenvalue.

•  Using th is line and the  inpu t d a ta  form the  error criterion.

•  M inim ise th is using th e  L-M m ethod for th e  sum  of all lines.

P aram eter SD ’s are available upon convergence. A sum m ary of the  different 

properties of each m ethod is given in tab le  4.2.1. T he m ajority  of these m eth­

ods do not include decentering d istortion. In order to  com pare like-with-like 

decentering d isto rtion  is no t included in th e  d isto rtion  model of th e  proposed 

algorithm , M ethod 1. An detailed analysis of decentering d isto rtion  is m ade 

in Section 4.4.

Table 4.1: P roperties of th e  proposed algorithm  (M ethod 1) in com parison to  

th ree  a lternative  techniques.

C riteria M ethod 1 M ethod 2 M ethod 3 M ethod 4

#  of Views 1 M ulti M ulti 1

View D a ta P lanar P lanar P lanar Line

Solution Closed N um erical Num erical Num erical

Dist. M odel Forward Forward Reverse Reverse

Cam . Cai. X / / X

Param . SD / X / /

O nline — / / X

4.2.2 Comparisons on Simulated data

C om parisons on sim ulated d a ta  are m ade w ith  respect to  varying control point 

locations and increasing levels of control point noise. D istortion  is sim ulated 

using a non-standard  form ulation in order th a t  th e  resulting  profile does not 

exactly  m atch  w ith  any of the  calibration models. Considering th e  divisional 

m odel as presented in chap ter 2, ex tra  nonlinear term s can be added as follows: 
c

c  =
1 — k ir 2 — k2r 4 ’

(4.18)
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where c =  (u , v , 1)T are the  und isto rted  points, c are th e  d isto rted  counterparts 

and  r 2 =  (u -  u Q)2 +  (v — vQ)2. T he centre of d isto rtion  t  =  (u0, vQ, 1)T is fixed 

a t u Q =  732.33 and vQ =  812.21. D istortion param eter k\ is varied in the  range 

of —2 —> 1.4 w ith  k 2 specified as k 2 = — fci/2, representing a wide range of 

barrel and pincushion distortions. T he lowest level of d isto rtion  is k x =  0.01, 

effectively showing on the  graphs as zero.

T he calibration  d a ta  is com prised of a  10 x 10 p lanar grid of equally spaced 

points (spacing =  100 (pix)). R andom  positions of these points are sim ulated 

as in C hap ter 3 using a  3D ro ta tion  random ly draw n from a specific range of 

ro ta tio n  angles, w ith  lim ited translation . Noise is added to  these control points 

w ith  a  norm al d is tribu tion  A f(0, cr2), w here a 2 is in the  range 0 —> 1 (pix), well 

in excess of th e  expected noise range (see Section 3.3). T he evaluation d a ta  

consists of a  20 x 20 grid (grid spacing =  75 (pix)) covering th e  entire image 

window.

R a n d o m  c o n t ro l  p o in t  p o s it io n s

T he proposed algorithm  is com pared w ith  th e  th ree  a lternative  m ethods for 

robustness to  control poin t positions. One hundred  random  control point po­

sitions are generated  for each d istortion  level and th e  accuracy and stab ility  of 

each m ethod  is evaluated. A ccuracy is m easured using the  estim ated  param ­

eters on the  evaluation d a ta  set. T he stab ility  of each estim ated  param eter is 

quantified by it variance th roughou t th e  one hundred  samples.

T he accuracy of th e  four m ethods are com pared in Fig. 4.3. T he ability to  

correctly m odel d isto rtion  is prim arily  linked w ith  th e  underlying distortion 

model. As Fig. 4.3 shows the  reverse m odel in M ethod 3 and 4 is more 

unstab le  th a n  th e  forw ard m odel used in M ethod 1 and 2 . This follows 

from the  analysis in chap ter 2 of the  properties of these models. M ethod 4 is 

shown to  be highly dependent on the  location of the  control points. M ethod 1 

outperform s all o ther m ethods w ith  much lower d isto rtion  residuals, indicating 

th a t  th e  proposed algorithm  is no t dependent on th e  the  location of control 

points and its use of a higher order m odel th a n  M ethod 2 does not lead to  

instabilities.

Each m ethod  involves estim ating  th e  d istortion  centre. Fig. 4.4 shows the 

x  and  y  errors for th e  estim ated  centre point for the  four m ethods over 100
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random  placem ents of th e  calibration d a ta  and sub ject to  varying distortion. 

T his shows th a t the  centre point in the line based m ethod is quite sensitive 

to  th e  location of the  calibration data . T he perform ance of M ethod 2 and 3 

are roughly sim ilar (excluding the  peak errors a t k\ =  0.01 for M ethod 3). 

T he proposed, m ethod shows a very low centre point error in com parison. 

This dem onstrates th e  high stab ility  of the  algorithm  and th e  high accuracy 

afforded by the  use of an appropria te  d isto rtion  model.

T he param eter values and s tan d ard  deviations of each m ethod are shown in 

Figs. 4.5 - 4.8. These show th e  variation of the  param eters w ith  d istortion  and 

the ir in tegrity  w ith  respect to  varying control poin t positions. As expected the 

m ethods using th e  forward d istortion  model (M ethods 1 and 2) show bounded 

param eter values. In con trast th e  param eter values for m ethods using the 

reverse m odel are m uch larger. The line based m ethod shows large param eter 

and SD values, indicating in conjunction w ith  its poor residual accuracy th a t 

th is algorithm  fails to  converge for m any of th e  position samples.
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Fig. 4.3: Mean and SD errors for 4 methods computed over 100 random posi­
tions of control points.
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°-2 -1.5 -1 -0.5 0 0.5 1
Distortion k1 ((pix))

Method 2

Fig. 4.5: Mean and SD of parameter values for Method 1 over the 100 randomly

chosen control point locations.

X
Q.

&L
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Distortion k1 (pix)

Method 4

Fig. 4.4: Illustrates th e  m ean estim ated  d istortion  centre less the  ideal value, 

for 4 m ethods over the  range of distortion.

Method 1 Estimated parameter SD
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Method 2 Estimated param eter SD

Distortion k 1 ((p ix )) Distortion k1 ((p tx ))

Fig. 4.6: M ean and SD of param eter values for M ethod 2 over the  100 random ly 

chosen control point locations.

Method 3 Estimated param eter SD

Fig. 4.7: M ean and SD of param eter values for M ethod 3 over the  100 random ly 

chosen control point locations.

Method 4 Estimated parameter SD

Fig. 4.8: Mean and SD of parameter values for Method 4 over the 100 randomly
chosen control point locations.
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R andom  noise in control points

T he proposed algorithm  is com pared w ith  th e  th ree  alternative  m ethods for 

robustness to  noise in control point positions. T he 3D position of the control 

points are fixed th roughout. For each sim ulated d isto rtion  level, noise w ith 

a  d is tribu tion  of A/*(0, a 2) is added for 100 samples. T he noise variance a 2 is 

then  varied th rough  0 —► 1 (pix). As th is generates a  significant quan tity  of 

d a ta , only th e  residual d isto rtion  is presented, for th e  range of barrel d istortion 

only.

T he residual errors are presented in tab les 4.2 - 4.5. Table 4.2 present the 

residual results for th e  proposed m ethod, (M ethod 1). I t can be noted from 

these results th a t for zero d isto rtion  levels, a larger residual error is induced 

th a n  for th e  o ther d isto rtion  levels. This is due to  th e  incorrect classification of 

noise in the  d a ta  as actual distortion. This issue of low d istortion  is investigated 

fu rther in Section 4.2.4. Excluding th is zero level d istortion  the  residual SD 

increases in d irect p roportion  w ith  the  induced noise. All residuals rem ain 

in the  subpixel range. I t can be confidently concluded th a t the  proposed 

algorithm  copes successfully w ith  noise.

In com parison, M ethod 2 shows a larger residual error. As th is m ethod also 

uses the  forward m odel of d istortion, its increase in error is p roportional w ith 

the  increase in noise variance. M ethod 3 uses the  reverse m odel of distortion, 

and th e  results in tab le  4.4 show th a t  th e  residual error is larger th a n  th a t of 

M ethod 2. However, in term s of robustness to  noise, th e  algorithm  appears 

to  cope successfully. T he final line based m ethod, M ethod 4, also uses the 

reverse model, b u t to  a higher order. As th e  high order reverse model has 

been previously shown to  have instab ility  tendencies in C hap ter 2, it is no 

surprise th a t  th e  increase in noise levels induces a  large increase in residual 

error. Indeed for some sam ples the  algorithm  failed to  converge (nc), while 

convergence is questionable in some o ther cases.



Table 4.2: Residual errors for Method 1 in mean(SD) format.
fci /  a 2 0 0.2 0.4 0.6 0.8 1

0 0(0) 0.2358 (0.2202) 0.5061 ( 0.4798) 0.8739 (0.8051) 1.5543 (1.0397) 2.3643 (1.4354)

-0.2 0.0004 (0.0007) 0.2207 (0.1993) 0.4007 (0.3500) 0.6144 (0.5485) 0.9469 (0.8381) 1.0401 (0.9469)

-0.4 0.0033 (0.0057) 0.2039 (0.1715) 0.4246 (0.3671 ) 0.6096 (0.5305) 0.7837 (0.7404) 1.0038 (0.9216)

-0.6 0.0113 ( 0.0196) 0.1773 ( 0.1591) 0.3546 (0.3709) 0.5482 (0.5126) 0.7843 (0.7370) 0.9144 (0.8469)

-0.8 0.0263 (0.0466) 0.1848 (0.1855) 0.3558 (0.3197) 0.5494 (0.5390) 0.7712 (0.6792) 0.8102 (0.8446)

-1 0.0499 (0.0901) 0.1833 (0.1913) 0.3257 (0.3662) 0.5350 (0.5250) 0.7027 (0.6526) 0.8904 (0.8558)

-1.2 0.0826 (0.1530) 0.1803 (0.2138) 0.3262 (0.3651) 0.4948 (0.5114) 0.6774 (0.6311) 0.7748 (0.8862)

-1.4 0.1248 ( 0.2372) 0.1821 (0.2901) 0.3137 (0.3756) 0.483 (0.4655) 0.6680 (0.6826) 0.7415 (0.8500)

-1.6 0.1762 (0.3445) 0.2234 (0.3605) 0.3437 (0.4360) 0.4798 (0.5407) 0.6200 (0.7346) 0.7337 (0.8322)

-1.8 0.2361 (0.4759) 0.2687 (0.5049) 0.3326 (0.4851) 0.4739 (0.6025) 0.5936 (0.7165) 0.7481 (0.8524)

Table 4.3: Residual errors for M ethod 2 in m ean(SD ) form at.

k l /  o 2 0 0.2 0.4 0.6 0.8 1

0 0.0025 (0.0016) 0.1526 (0.1198) 0.3297 (0.2589) 0.5066 (0.3979) 0.7312 (0.5524) 0.8521 (0.6454)

-0.2 0.1121 (0.0785) 0.1815 (0.147) 0.2912 (0.234) 0.4473 (0.3451) 0.575 (0.4306) 0.7237 (0.5438)

-0.4 0.4181 (0.2926) 0.4264 (0.3242) 0.4594 (0.3658) 0.5329 (0.4435) 0.6743 (0.5251) 0.7927 (0.6187)

-0.6 0.8721 (0.6176) 0.8904 (0.6345) 0.8861 (0.6883) 0.925 (0.724) 0.9884 (0.7998) 0.9729 (0.7942)

-0.8 1.4332 (1.0378) 1.4383 (1.0536) 1.4341 (1.0654) 1.4801 (1.096) 1.4469 (1.1413) 1.4627 (1.1953)

-1 2.0662 (1.5455) 2.0657 (1.5471) 2.0639 (1.5758) 2.0765 (1.614) 2.0903 (1.6185) 2.0906 (1.6943)

-1.2 2.7427 (2.1389) 2.7477 (2.1405) 2.7282 (2.1498) 2.7617 (2.2101) 2.7334 (2.1747) 2.7651 (2.2068)

-1.4 3.4406 (2.8204) 3.4373 (2.8374) 3.4266 (2.8337) 3.4349 (2.84) 3.4473 (2.8369) 3.4424 (2.8875)

-1.6 4.143 (3.5953) 4.1414 (3.5914) 4.1349 (3.5985) 4.1594 (3.6123) 4.1526 (3.629) 4.1353 (3.6114)

-1.8 4.8384 (4.47) 4.8398 (4.4729) 4.8404 (4.4859) 4.8372 (4.4832) 4.8528 (4.4594) 4.8579 (4.5038)

-2 5.336 (6.7399) 5.3365 (6.7389) 5.3557 (6.7436) 5.3478 (6.7374) 5.3728 (6.7714) 5.3571 (6.7408)



Table 4.4: Residual errors for Method 3 in mean(SD) format.
fci /  a 2 0 0.2 0.4 0.6 0.8 1

0 0.1908 (0.1231) 0.1919 (0.1468) 0.2644 (0.2165) 0.3791 (0.3083) 0.4921 (0.3912) 0.7031 (0.501)

-0.2 0.2701 (0.1806) 0.2847 (0.229) 0.3948 (0.3118) 0.5356 (0.4345) 0.6672 (0.5251) 0.8367 (0.6663)

-0.4 0.8474 (0.5649) 0.8419 (0.5923) 0.8771 (0.6841) 0.9321 (0.754) 1.0319 (0.8708) 1.1468 (0.9374)

-0.6 1.4005 (0.9605) 1.3625 (0.969) 1.3911 (1.0212) 1.3634 (1.0931) 1.38 (1.1461) 1.5862 (1.3061)

-0.8 1.5987 (1.2166) 1.5795 (1.2214) 1.5728 (1.2878) 1.4801 (1.3207) 1.6442 (1.4604) 1.6977 (1.4215)

-1 1.127 (1.2317) 1.1225 (1.2612) 1.1614 (1.281) 1.2035 (1.3069) 1.3363 (1.4139) 1.5164 (1.4935)

-1.2 0.583 (0.948) 0.6356 (0.9737) 0.7598 (1.0423) 0.9992 (1.0914) 1.2612 (1.2694) 1.4331 (1.327)

-1.4 3.0758 (1.2845) 3.0391 (1.3077) 3.0691 (1.3832) 3.2173 (1.5767) 3.3565 (1.7272) 3.4087 (1.8816)

-1.6 7.2372 (2.9217) 7.2639 (2.9396) 7.3176 (3.0208) 7.5021 (3.2005) 7.4749 (3.3129) 7.8262 (3.5051)

-1.8 13.2071 (5.4237) 13.2457 (5.4568) 13.2545 (5.4956) 13.3984 (5.599) 13.7115 (5.8024) 13.8121 (6.0262)

-2 19.2323 (8.4785) 19.2652 (8.5073) 19.4367 (8.6819) 19.522 (8.7784) 19.6985 (9.048) 19.9261 (9.2825)
00

Table 4.5: Residual errors for M ethod  4 in m ean(SD ) form at, nc =  no convergence.

ki /  a 2 0 0.2 0.4 0.6 0.8 1

0 0.0841 (0.0343) 55.4104 (9.1837) nc 26.7411 (6.019) 128.5432 (15.6178) nc

-0.2 1.4546 (0.5785) 1.7232 (1.0687) 2.5774 (1.8105) 3.4364 (2.4439) 5.3523 (3.7368) 6.3437 (4.433)

-0.4 2.6048 (1.0238) 2.478 (1.4911) 3.5198 (2.2741) 4.6648 (3.2089) 6.1555 (4.4794) 8.7572 (6.2686)

-0.6 3.7093 (1.4552) 3.6468 (2.0818) 4.0407 (2.7672) 5.8312 (4.0605) nc nc

-0.8 4.9811 (1.9633) 4.8992 (2.7498) 12.1224 (11.0923) 14.9092 (12.64) 12.6745 (9.6749) 38.743 (15.412)

-1 6.5494 (2.6018) 55.4478 (52.3379) 38.7723 (35.1774) 29.9265 (26.8411) nc nc

-1.2 8.422 (3.3727) 8.2952 (4.7627) 9.4199 (6.9322) 13.0092 (9.9833) 17.7393 (13.4921) 19.7825 (15.228)

-1.4 10.4553 (4.2195) 10.0689 (5.2757) 10.4045 (7.0633) 11.1341 (8.1748) nc nc

-1.6 12.3429 (5.0315) 11.7013 (5.5733) 10.587 (6.9299) 9.719 (6.9631) 14.3564 (10.7096) 15.7847 (12.1106)

-1.8 13.6184 (5.6291) 12.8806 (5.8626) 9.4004 (5.4976) 8.837 (6.6854) 10.8022 (8.1776) 10.7765 (8.2311)

-2 12.4561 (5.4377) 12.6685 (6.3563) 13.6445 (7.9549) 16.1739 (9.8614) 20.3563 (12.8011) 28.1754 (15.7858)
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D iscussion

T he com parison of the  proposed technique w ith  th e  line based m ethod, shows 

a very considerable im provem ent. T he line based m ethod fails to  reach this 

perform ance despite using a  high order model. This is m ainly due to  the fact 

th e  th a t no geom etric relationship  exists between th e  objective error and the 

d istortion . T he ill conditioning induced by the  reverse m odel a t high distortion 

levels ham pers its perform ance further, all culm inating in th e  tendency to  lodge 

in local m inim a and in some cases fail to  converge due to  singularities in the 

estim ation  m om ent or co-factor m atrix . T he poor estim ation  perform ance 

can be additionally  observed in the  widely varying estim ates for the  centre of 

d istortion. It is no t su itab le for larger d istortion  levels.

In com parison w ith  th e  full calibration technique of M ethod 3, the  proposed 

technique shows a  significant perform ance increase. This m ethod used the 

reverse m odel and  hence fails to  achieve com parable residual results. This 

algorithm  is restric ted  to  low levels of d isto rtion  as an increase in d istortion 

m odel order would lead directly  to  increased sensitiv ity  and u ltim ately  poorer 

perform ance. T he side-by-side analysis w ith  th e  full calibration  technique of 

M ethod 2, p rim arily  indicates the proposed m ethod  achieves sm aller residual 

error. T his m ay be expected as bo th  techniques use the  forward d istortion 

model, only to  a higher order in M ethod 1. D espite th e  use of th is higher 

order model, no adverse consequences arise from its use such as instabilities in 

the  estim ation  problem . In fact, the  com parisons on the  recovered centers of 

d isto rtion  show th a t the  proposed m ethod achieves far superior stab ility  in its 

estim ation  th a n  M ethod 2.

T he experim ents conducted on sim ulated d a ta  clearly show th a t the  pro­

posed algorithm  outperform s the  com parison techniques on an accuracy front. 

T hough th is im provem ent in accuracy m ay be a ttr ib u ted  to  th e  use of an ap­

p ropria te  d isto rtion  model, the  estim ation  algorithm  still perform s equally as 

well as th e  m ethods th a t  require m ultiple inpu t of d a ta  points. T he simu­

lations also show th a t the  proposed algorithm  a t least m atches the  stab ility  

of full calibration  m ethods, and surpasses them  in m any cases such as in the 

estim ation  of th e  d isto rtion  centre. In sum m ary it is shown to  be su itable for 

d isto rtion  levels of all kinds, w ith  good invariance to  control point location 

and noise.
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Table 4.6: Real d isto rtion  sam ples, including th e  num ber of itera tions for each 

m ethod w here available, (nc) =  no convergence
Sample Camera Resolution M. 1 M. 3 M. 4

1 Fuji +  WL-FX9 2832 X  2128 11 11 18

2 Nikon E4500 4- FC-E8 (FL 32mm) 2272 X  1704 8 15 35

3 Kodak Megaplus -I- 6mm Computar 1312 X  1032 16 11 24

4 Nikon E4500 +  FC-E8 (FL 24mm) 2272 X  1704 9 20 27

5 Nikon E4500 +  FC-E8 (FL 21.5mm) 2272 X  1704 9 71 25

6 Nikon E4500 +  FC-E8 (FL 17.8mm) 2272 X  1704 13 nc 24

7 Nikon E4500 +  FC-E8 (FL 14.6mm) 2272 X  1704 15 nc 140

4.2.3 Comparisons on Real images

Com parisons on real d a ta  are com piled w ith  seven different sam ples of distor­

tion, arranged in increasing order. Table 4.6 gives a  brief description of the 

cam era type and im age resolution of each sample. T hree im ages were input 

into th e  full calibration  techniques of M ethods 2 and 3, while th e  first of these 

was used in th e  single im age m ethods. As an exam ple, sam ple num ber 5 from 

this d a ta  set is shown in Fig. 4.9. One additional image is used for the resid­

ual d is to rtion  evaluation of all four m ethods. These residuals are compiled, 

w ith  one exception, by und isto rting  the  evaluation im age and estim ating a 

radially  w eighted hom ography (described in appendix  A) on th is data . The 

residuals for the  line based M ethod 4 are com piled directly  by undistorting  

the  da ta . A radially  w eighted hom ography is then  com puted on these coor­

dinates. T his avoids th e  addition  of ex tra  inaccuracies th rough  the  use of 

an  inverse approxim ation to  und is to rt the  image. All chessboard intersection 

points are estim ated  from an in itia l guess using th e  nonlinear line intersection 

m ethod described in chapter 3 w ith  a sm all local suppo rt in order to  avoid the 

in troduction  of d isto rtion  bias.

T he num ber of iterations required for each m ethod to  converge are also pre­

sented in tab le  4.6. T his shows th a t there is a  less com putational overhead 

w ith  th e  proposed m ethod. I t should also be noted th a t  no optim isation is 

conducted w ithin  th e  G auss-N ew ton m ethod (used by M ethod 1), unlike the 

com parison m ethods which use a  com bination of a G rad ien t D ecent and Gauss- 

N ew ton (LM) to  speed up convergence.

Firstly, each method is examined for the residual distortion remaining after
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Fig. 4.9: Sam ple No. 5. T hree calibration images and one evaluation image 

(bo ttom  right).

Table 4.7: D istortion  residuals on real exam ples (pix).
Sample Method 1 Method 2 Method 3 Method 4

1 0.3164 (0.3362) 0.4088 (0.3402) 10.356 (8.6270) 0.3667 (0.3111)

2 0.4569 (0.3323) 0.5868 (0.9809) 0.9490 (0.7739) 11.8077 (8.0165)

3 0.2646 (0.2566) 0.2673 (0.2650) 0.4456 (0.4318) 0.3121 (0.3217)

4 0.5556 (0.7865) 1.4319 (0.8993) 16.4172 (8.7168) 3.9692 (2.7197)

5 0.8690 (0.6615) 2.4142 (1.5129) 21.724 (11.311) 0.8294 (2.0553)

6 1.8964 (1.6195) 9.3508 (7.7634) nc 2.0041 (1.6612)

7 4.6403 (3.5282) 32.625 (26.973) nc 5.9567 (7.3236)
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Table 4.8: C om parison of M ethod 1 and 2 bo th  using th e  sam e d istortion 

m odel (i.e two param eter radial m odel) (pix).

Sam ple M ethod 1 M ethod 2

1 0.3734 (0.3200) 0.4088 (0.3402)

2 0.3578 (0.2839) 0.5868 (0.9809)

3 0.2629 (0.2836) 0.2673 (0.2650)

4 1.5406 (1.0859) 1.4319 (0.8993)

5 2.6919 (1.9254) 2.4142 (1.5129)

6 7.6891 (6.8891) 9.3508 (7.7634)

7 16.535 (13.799) 32.625 (26.973)

correction. These residuals are presented in Table 4.7 in m ean (SD) form at, 

w ith  pixel units. This shows th a t the proposed m ethod achieves a lower resid­

ual error th a n  any of th e  com parison m ethods. M ethod 3 and 4 again show 

slightly erra tic  perform ances. As the  im provem ent in perform ance of the pro­

posed m ethod m ay be a ttr ib u tab le  to  th e  higher order m odel used, an ex tra  

com parison was conducted using a two param eter d isto rtion  m odel in M ethod 

1. T his is th e  sam e m odel as used in M ethod 2. T he results are presented 

in tab le  4.8 for com parison w ith  those of M ethod 2. These results show th a t 

th e  proposed m ethod  still achieves an overall lower residual error. This comes 

despite the  fact th a t M ethod 2 uses th ree  tim es th e  am ount of inpu t d a ta  

th a n  M ethod 1 in these experim ents. T he und isto rted  images for Sample 5 are 

shown in Fig. 4.10. A residual d isto rtion  is observable in th e  image undistorted  

w ith  M ethod 3.

T he values and  uncertain ties of each estim ated  param eter is presented for 

M ethods 1-4 in Figs. 4.11 - 4.14 respectively. M ethod 4 shows as expected 

large param eter values and uncerta in ty  for larger d isto rtion  levels. M ethod 3, 

using a two param eter version of the  reverse m odel exhibits a  sim ilar trend, 

only w ith  a lower m agnitude. M ethod 2, using a two param eter version of the 

forward m odel, shows bounded values. M ethod 1 also shows bounded param ­

eter m agnitudes w ith sm all error bands. This confirms th e  results obtained on 

sim ulated d a ta , and  indicates the  su itab ility  of a  high order forward model for 

d isto rtion  calibration.

T he estim ates of the  d isto rtion  centre for each m ethod  are presented in table 

4.9. These show th a t  M ethod 1 recovers the  centre poin t very close to  th a t
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(a) Method 1

(b) Method 2

(c) Method 3

Fig. 4.10: C orrected evaluation im age of Sam ple No. 5.
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Method 1

Sample Number

Fig. 4.11: M ethod 1 param eters w ith scaled 95 % uncertain ty  bound. kA was 

included to  illu stra te  its  bounded m agnitude.
Method 2

Sample Number

Fig. 4.12: M ethod 2 param eters.

q  Method 3

Fig. 4.13: M ethod 3 param eters w ith  scaled 95 % uncerta in ty  bound.
o  Method 4

Sample Number

Fig. 4.14: Method 4 parameters sca ê(l 95 % uncertainty bound.
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Table 4.9: C entre point estim ates form each m ethod (pix)

Sam ple M ethod 1 M ethod 2 M ethod 3 M ethod 4

1
X 1374.7 (1.41) 1382.0 1378.2 (0.72) 1360.8 (3.21)

y 1063.2 (1.01) 1062.5 1052.3 (1.18) 1065.3 (0.62)

0
X 1100.2 (0.70) 1107.6 1117.5 (0.91) 693.1 (25.1)

y 887.8 (0.50) 890.3 883.0 (0.89) 910.8 (1.39)

X 618.3 (1.52) 618.2 615.6 (0.23) 617.3 (0.493)
O

y 501.0 (0.58) 501.8 502.6 (0.22) 503.1 (0.23)

4
X 1113.3 (0.43) 1115.7 1148.4 (2.75) 1193.3 (9.06)

t:
y 879.7 (0.31) 881.8 864.8 (3.29) 883.4 (0.48)

X 1114.3 (0.41) 1115.4 1101.6 (3.45) 1117.4 (5.39)
o

y 878.1 (0.29) 878.2 852.8 (4.27) 878.5 (0.28)

fi X 1117.6 (0.37) 1134.3 ne 1129.7 (3.75)
u

y 873.2 (0.26) 870.1 ne 871.4 (0.28)

7
X 1120.3 (0.34) 1093.4 ne 1123.5 (1.81)

1
y 873.1 (0.26) 861.4 ne 873.2 (0.21)

of the  full calibration  M ethod 2. This indicates a  close relationship  between 

the centre poin t of d isto rtion  and the  principal point (as recovered by M ethod 

2). T his relationship  is exam ined further in Section 4.4.1. M ethod 3 recovers 

a sim ilar principal poin t except in th e  sam ples where the  d isto rtion  is poorly 

m odelled, e.g. sam ple no. 5. M ethod 4 shows m uch m ore volatile centre point 

estim ation , caused by the  instab ility  th a t afflicts th is m ethod. On th e  contrary, 

M ethod 1, also em ploying only one inpu t image, consistently  recovers a robust 

d isto rtion  centre, as dem onstrated  by the  small uncertain ties associated w ith 

these estim ates.

D iscussion

Following the  results obtained  w ith sim ulated d a ta , th e  experim ents w ith real 

im ages aim  to  confirm these findings. In th is sense M ethod 4 is again shown to 

have erra tic  accuracy and a  tendency for high uncerta in ty  in its param eters. In 

com parison, M ethod 1 significantly improves upon th e  perform ance of M ethod 

3, from a d isto rtion  removal poin t of view. As in th e  sim ulated  case there 

is also a  clear im provem ent in the  accuracy of M ethod 1 in com parison w ith 

M ethod 2.
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It was slightly unclear if the  proposed algorithm  would m atch  th e  perform ance 

of M ethod 2 using a lower order d istortion  model. This was investigated w ith 

the  com parison of b o th  m ethods using th e  sam e d isto rtion  model. It revealed 

th a t on average M ethod 1 achieved a slightly lower d isto rtion  residual. This 

indicates th e  robustness of the  proposed approach, considering th a t M ethod 

2 uses, in th is case, th ree  tim es the am ount of inpu t data . T he centre point 

is reliably estim ated , w ith  very sim ilar locations to  th a t of the  full calibration 

techniques th a t require m ore th an  one image for its recovery. However, this is 

not the  case for the  line based M ethod 4, which shows unreliable centre point 

estim ates.

In conclusion, the  experim ents w ith  real and sim ulated d a ta  clearly dem on­

s tra te  th a t th e  proposed m ethod outperform s all com parison m ethods in term s 

of accuracy in calibrating  and removing distortion. This level of accuracy is 

achieved while using less inpu t da ta , requiring only one view. T he param eter 

estim ates are shown to  be reliable, and lend them selves to  a  well conditioned 

problem . A dditionally, the  real experim ents show th a t there is less com puta­

tional overhead th a n  the  com parison m ethods. These factors in com bination 

w ith th e  m ore accessible closed form solution, appropria te  d isto rtion  modelling 

and  unique m inim isation of pixel d istortions in resam pling, make th is m ethod 

a highly su itab le  non-m etric m ethod for rem oving lens d isto rtion  of all levels 

in perspective cam eras.

4.2.4 Low distortion lenses

As seen in th e  experim ents w ith  sim ulated d a ta , the  accuracy of the  proposed 

algorithm  is weakest for very low d isto rtion  levels w ith  noisy control points. 

T he perform ance of th e  algorithm  is now evaluated w ith  a  selection of large 

focal length  lenses to  assess bo th  the  levels of d isto rtion  in these lenses and 

the  behaviour of th e  proposed technique in such circum stances.

T he unknow n affine transform  A  may be equated  w ith  th e  scaled in ternal cam ­

era param eter m a trix  (assum ing zero skew), where a  m inim um  of two views 

are required to  solve for th ree  unknow ns (Zhang, 1998). I t is im p o rtan t there­

fore to  highlight th a t  these param eters are solely dependent on th e  d istortion 

present in th e  image, where t is the  apparen t centre of d isto rtion  and bears 

no d irect relationship  w ith  the  principal point. Any fram e grabber stretching

106



C h a p t e r  4  - D i s t o r t i o n  C a l ib r a t io n

Table 4.10: Low d isto rtion  lens details. All are C-M ount lenses and are a t­

tached  to  a K odak M egaPlus digital cam era.___________________

Sam ple ID Make Focal Length D istortion

a Cosm icar 25mm Pincushion

b C om putar 25mm B arrel

c C om putar 50mm Pincushion

d C om putar 50mm B arrel

e C om putar 55mm Tele Pincushion

of th e  x  0 1  y  coord inate pixels, or non-square pixels are accounted for by the 

variable s.

Five lenses are tested  for, w ith  a typical d isto rtion  of less th a n  one pixel. These 

lenses are described in tab le  4.10 w ith  the  accom panying type of distortion. 

T hey are all C -M ount lenses and are a ttached  in tu rn  to  a  K odak M egaPlus 

d igital cam era. Due to  th e  m ounting, it is unlikely th a t  th e  centre of d istortion 

resides near th e  centre of th e  image array. Each im age is calib rated  using the 

proposed m ethod, w ith  a  th ree  param eter m odel for d istortion. T he distortion  

residuals before and  after calibration  are presented in tab le  4.11. This shows 

th a t  the re  is an  appreciable reduction in lens nonlinearities following calibra­

tion. A selection of the  d isto rtion  residuals before and after calibration are 

shown in Figs. 4.15 and  4.16. These results show th a t th e  proposed technique 

does indeed correctly converge to  m odel d istortion , even to  very small levels.

T he estim ated  variance in the  recovered d istortion  centers are presented in 

tab le  4.12. As expected due to  the  very low d isto rtion  levels, its location has 

an associated increase in uncertainty. However, overall these levels are low in 

relation to  th e  im age size (1312 x 1032).
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Fig. 4.15: Left column: Sam ple a. R ight colum n Sam ple b. B oth  are 25 m m  

lenses. Sam ple a contains pincushion d istortion, while sam ple b contains barrel 

distortion. Black dot represents the  estim ated  d isto rtion  centre. T he vector 

fields of d isto rtion  are scaled x50.
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Fig. 4.16: Left column: Sample c. R ight colum n Sam ple d. B oth  are 50 mm 

lenses. Sam ple c contains pincushion d istortion, while sam ple d contains barrel 

distortion. Black dot represents th e  estim ated  d istortion  centre. T he vector 

fields of d isto rtion  are scaled x50.
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Table 4.11: Residuals before and after calibration for low d isto rtion  samples 

(pix) ____________

C h a p t e r  4  — D i s t o r t i o n  C a l ib r a t io n

Sam ple Before C alibration A fter C alibration

M ean SD M ean SD

a 1.0577 0.9685 0.0823 0.0712

b 1.1208 1.0975 0.0837 0.0742

c 0.4358 0.3898 0.0819 0.0711

d 0.8715 0.8313 0.0814 0.0707

e 0.6099 0.6252 0.0786 0.0698

Table 4.12: E stim ated  centre point uncertain ties (SD) (pix)

C oordinate a b c d e

X 4.7062 6.2169 11.1108 7.7288 6.6478

y 3.6325 5.1892 15.0059 6.0099 5.9465

T he proposed algorithm  is based on th e  prem ise th a t a t least some level of 

d isto rtion  is present in an image. T his is generally easily satisfied using norm al 

general purpose lenses. T he behaviour of th e  technique w ith  very low distortion  

lenses is thus investigated to  determ ine its s tab ility  under such conditions. It 

is shown for a  selection of low d isto rtion  lenses, roughly in th e  sub-pixel range, 

the  algorithm  successfully models the  d istortion  which in tu rn  improves the 

linearity  of the  im age following d isto rtion  com pensation.

4.3 D ep en d en ce  on control p o in ts

The proposed algorithm  is based on some assum ptions on th e  geom etry of 

th e  calibration  ta rg e t and the  reliable detection of th is ta rg e t in an image. 

T his section investigates these constrain ts, to  assess th e  im pact of the ir non 

com pliance on the  calibration  and removal of d isto rtion  in images.

T he issue of bias free control point detection in an im age has largely been 

addressed in C hap ter 3, while the  robustness of th e  proposed d istortion  cali­

b ra tion  to  random  error in pixel coordinates has been investigated in Section 

4.2.2. T his section now exam ines th e  necessary quan tity  of control points re­

quired for successful calibration. I t is subsequently  shown th a t  th is quan tity  

is d irectly  rela ted  to  a  m ulti-im age inpu t variation of th e  proposed algorithm .
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T he constra in ts on th e  calibration ta rg e t are th a t of p lanarity  and precision in 

th e  chessboard p a tte rn . For general usage, th e  calibration  p a tte rn  m ight only 

be m anufacturab le  to  a specific precision, using (for exam ple) a laser printer, 

which can resu lt in the  in troduction  of errors. T he dependence of the calibra­

tion  technique on these errors is investigated. It is also possible th a t in general 

usage, th e  p a tte rn  m ay not be exactly  planar. This results in a system atic type 

error, for which the  errors resulting from th e  proposed technique are quanti­

fied. Finally, th e  m is-calibration resulting from bias inducing p a tte rn s  such as 

circular type  features is highlighted.

4.3.1 Num ber of control points required

In Section 4.1.1 it was shown th a t a m inim um  of m  control points are required 

to  solve th e  system  of equations, where m  =  ce il(n$ /2 ) and n<*> is the  length of 

the param eter vector. For the  basic radial d isto rtion  m odel w ith  two param e­

ters a t to ta l of eight control points are required, where each control point yields 

two constrain ts. A ccording to  the  principal of M axim um -Likelihood there is 

an  exponential relationship  between the  convergence to  th e  tru e  solution and 

th e  qu an tity  of calibration  da ta , assum ing norm ally d istribu ted  d a ta  errors. 

T he aim  now is to  outline the  num ber of control points required to  converge 

sufficiently close to  th e  optim um  solution, under varying noise conditions. It 

has previously been shown in Section 4.2.2 th a t the  algorithm  is sufficiently 

invariant to  th e  location of these control points.

T his investigation is prim arily  conducted w ith sim ulated d a ta , w here lens dis­

to rtion  is sim ulated as in Section 4.2.2. T he num ber of control points n  are 

varied from 8 up to  500. T heir locations are chosen from a uniform  random  

d is tribu tion  covering th e  entire im age window, while th e  residuals are compiled 

over 100 independent tria ls  of these locations. T he residuals are com puted w ith 

the  usual regular grid covering the  im age window. O nly sam ples where the 

algorithm  has converged are included, the  m ajority  of these non-convergence 

situa tions na tu ra lly  occurring w ith low num bers of control points. As shown in 

Section 3.3.5 the  expected control point noise is less th a n  a =  0.15 (pix) w ith a 

norm al d istribu tion . T he control points are thus corrup ted  w ith  norm al noise 

w ith  excessive s tan d ard  deviations of cr =  0.15, 0.3 and 0.5 pixels to  estim ate 

a  w orst case senecio.
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Fig. 4.17 shows the  error convergence w ith  increasing num ber of control points 

for th ree  levels of d istortion. In all these exam ples, there  is a  rap id  increase in 

perform ance up to  100 control points, a t which poin t th e  error begins to  level 

off. From  200 onwards the  im provem ent in error is negligible. T he level of 

d isto rtion  prim arily  effects the  final error level, b u t does not drastically  alter 

th e  convergence shape. T he increase in noise levels na tu ra lly  slows the  ra te  of 

convergence, b u t again becom es insignificant after 200 control points. In this 

light, th e  calibration  p a tte rn  used in th is work yields 247 control points which 

in conjunction w ith  noise levels lower th a n  a  =  0.15, provides am ple d a ta  for 

correct convergence.

M ultiple Input Images

An a lte rn a te  m eans of increasing the  quan tity  of d a ta , w ithou t increasing the 

density  of control points on th e  calibration p a tte rn , is to  use m ultiple input 

images. Considering q images w ith  n  control points each, the  objective error 

function of equation  4.4 can be modified as:

q n

m in V ]  V '  e i j( c , <1 j )2 w ith
,= i i=i (4.19)

e^j (c jj, ^ j )  +  T)(JhlejCij, k) Ac ¿j,

where for every additional image, th e  dim ensions of th e  param eter space in­

creases by eight. A solution to  avoid th is increase was sought by finding the 

relationship  betw een th e  entries in H e w ith  H d and the  d isto rtion  function. 

However, an  analy tical solution was not found, nor practical, due to  the  poor 

estim ation  of Hd-

T he effective equivalence of using fewer control points on m ultiple images, and 

th e  use of single im ages of higher po in t density, is dem onstra ted  by experim ents 

on real images. Seven inpu t images, each w ith  35 control points 3 are com pared 

to  th e  perform ance of one p lanar view (image num ber 1 of 7) w ith  the full 

com plem ent of 247 control points. For evaluation purposes th e  noise in the 

detected  control points (m axim um  expected S D =  0.15) is am plified by adding 

G aussian  noise of S D =  0.55 pixels. T he residual errors are m easured w ith a 

separate  im age using th e  full com plem ent of 247 control poin ts and the  usual

3The subset of 35 control points are taken from the 19 x 13 chessboard pattern by taking 
every third point.
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Noise a = 0.15 Noise o = 0.3 Noise o = 0.5

(a) Distortion=-0.5

Noise o = 0.15 Noise a = 0.3 Noise a = 0.5

(b) Distortion=-0.3

Noise a = 0.15 Noise o = 0.3 Noise o = 0.5

(c) Distortion=-0.1

Fig. 4.17: Convergence properties of proposed algorithm  w ith  respect to  the 

num ber of control points.
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Number of input images

Fig. 4.18: E rrors for m ultiple inpu t images w ith  35 control points per image, 

including s tan d ard  deviation error bands (red trace). Noise was synthetically- 

added to  real point coordinates to  am plify th e  errors for com parison. The 

green reference line shows the  m ean error from a single inpu t image w ith  247 

control points w ith  noise added. The black reference line represents the noise 

free solution error.

weighted hom ography approxim ation (A ppendix A). Fig. 4.18 shows the  drop 

in error (Red trace) and SD as th e  point count and im age num ber increases. 

U pon reaching 245 control points (from 7 images) th e  error converges to  the 

single image level (Green line), evaluated w ith  247 points. Due to  th e  amplified 

noise content, th is level is slightly larger th a n  the  solution obta ined  w ithout 

the  additional noise (Black line). This exam ination dem onstrates th a t the 

addition  of ex tra  inpu t images gives an equivalent perform ance to  a sim ilar 

increase in th e  quan tity  of control points in a  single view, save for th e  enlarged 

param eter space dimensions.
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4.3.2 Errors in calibration target

In th e  above sections, and in chapter 3, it is assum ed th a t th e  calibration 

p a tte rn  is b o th  perfectly  p lanar, w ith  a  very high spatia l accuracy for the 

chessboard intersections. T he calibration m odel is then  sim ply specified up to  

scale as an equally spaced m a trix  of points. To best satisfy these requirem ents a 

chessboard p a tte rn  is m anufactured  using an high precision xy tab le  originally 

designed for PC B  board  m anufacture. Black and w hite layers are formed 

w ith  a very th in  black vinyl sheet a ttached  to  a sheet (1.5mm) of w hite PVC. 

Using a knife a ttach m en t w ith  the  xy table, a series of horizontal and vertical 

slits are m ade on the  black vinyl. T he con trast p a tte rn  is formed by removing 

alternative  squares of th e  black vinyl to  reveal th e  w hite PV C  backing. Finally, 

th e  PV C  sheet is adhered to  a glass backing p la te  to  ensure planarity. For 

evaluation purposes, such high precision is necessary,

For general usage however, it is significantly easier to  use a  conventional prin ter 

to  p rin t th e  chessboard p a tte rn , and fix it to  a wall or table. M ost prin ters have 

a  hab it of no t sucking th e  paper in perfectly s tra igh t or a t exactly  the  same 

velocity (worn roller slippage, friction resistance), resulting in non co-linearity 

of th e  chessboard rows and  columns. Considering these errors as random  

deviations from th e  assum ed model, knowledge of the  expected perform ance 

of th e  algorithm  in such circum stances is useful. A lthough sheet glass is cheap 

and  readily available, it is useful to  assess th e  perform ance of th e  algorithm  

where th e  p lanarity  constra in t is no t fully m et. T his is exam ined for a slightly 

cylindrical calibration  ta rge t.

Random  noise in calibration pattern

T his experim ent is carried ou t using real da ta . M odel im precision is sim ulated 

by adding zero m ean G aussian noise w ith  s tan d ard  deviation ranging from 

0.01 to  1mm. T he size of the  each calibration square is 14 x 14 m m  so th is 

signifies a considerable error. For each noise level 100 tria ls  were conducted, 

and th e  average and  SD values for the  radial d isto rtion  param eters are com­

puted . These variations are shown in Fig. 4.19. N aturally, th e  variation of 

th e  d isto rtion  param eters increases w ith  increasing noise. T he  corresponding 

m ean E uclidean and  SD errors are shown in Fig. 4.20. These results show 

th a t  the re  is roughly a  one-to-one transfer in error. N ote th a t  it is possible
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to  im prove th e  perform ance if considerable random  errors are expected in the 

calibration  ta rg e t, using a T otal Least Square (TLS), or E rro r in Variables 

(EIV) technique such as Lavest et al. (1998).

S y s te m a t ic  e r r o r s  in  c a l ib r a t io n  p a t t e r n

N on-planarity  of th e  calibration  ta rg e t is now considered. Since the  calibration 

ta rg e t is a  sheet, e.g. prin ted  on a sheet of hard  paper, it has a  n a tu ra l tendency 

to  bend along either its horizontal or vertical axis, giving rise to  a cylindrical 

type shape. I t is unusual to  encounter significant bending in bo th  directions 

as th is causes th e  m ateria l to  kink. A cylindrical shape can be sim ulated by 

displacing th e  z  coordinate of th e  calibration m odel as w  =  (x, y, 1 +  px2)T, 

where p  d ic ta tes  the  degree of bending. T he ex ten t to  which th is displacem ent 

is picked up  by the  cam era depends on its d istance from the  ta rg e t and the focal 

length, e.g. a  cam era very far away w ith  a large focal length m ay be considered 

as having parallel pro jection  where the z  displacem ents are invisible, while 

th e  opposite s itua tion  is encountered w ith  a  fish-eye lens. This experim ent 

is conducted as before w ith  a wide angle lens a t approxim ately  200mm from 

th e  250 x 170 m m  calibration  chart and a  pixel resolution of 2830 x 2128. 

T he cylindrical d isto rtion  observed for varying levels of p  is then  used in the 

d isto rtion  calibration. Fig. 4.21 shows the  induced error from th is bending, 

m easured as th e  m axim um  deviation from the  p lanar position. Roughly, a 

one-to-one proportional increase in error is again observed. Bending in excess 

of 1mm is generally visible to  the  eye, and m ay be alleviated by th e  user. The 

p lanarity  induced errors in lower focal length  lenses will be lower th an  this 

level.
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N oise  variance in model points (mm)

N o ise  variance in model points (mm)

N o ise  variance in model points (mm)

Fig. 4.19: T he estim ated  param eter m ean (Red trace) and SD bounds for

random  noise in th e  calibration ta rge t.
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Noise variance in model points (mm)

Fig. 4.20: T he m ean Euclidean and SD errors for increasing noise in th e  cali­

bration  p a tte rn  points.
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Fig. 4.21: The m ean Euclidean errors for increasing cylindrical bending of the  

calibration  chart.
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Sample No.

Fig. 4.22: T he m ean and SD errors resulting from th e  calibration of d istortion  

w ith m ultiple sam ples of a laser p rin ted  pa tte rn . This is com pared to  the  m ean 

level(0.42 pix) achieved using th e  precisely m anufactured  p a tte rn  (green line).

Low accuracy printed patterns

As a high quality  calibration p a tte rn  is not always available, it is useful to  

investigate how well th e  calibration  can be achieved using a p a tte rn  prin ted  

on an A4 sheet using a s tan d ard  office laser p rin ter4. To th is end, the  distor­

tion  calibration for 33 separate  prin ted  p a tte rn s  is com pared to  th a t obtained 

w ith the  high accuracy p a tte rn . T he relative positions of th e  cam era is fixed 

throughout. A Fiji F ineP ix  6900 is used w ith  a wide angle lens (displaying 

mild distortion) and a pixel resolution of 2832 x 2128. T he intersections of 

the  chessboards are ex tracted  using th e  saddle point refinem ent m ethod. This 

d a ta  is then  used in the  calibration  routine, from which th e  residuals are com­

piled using th e  radially  weighted homography. T he results are shown in Fig. 

4.22 in com parison w ith  th e  m ean error obta ined  using th e  high accuracy p a t­

tern. It can be seen th a t an average error of over 2.1 pixels is incurred if low 

quality  p rin ted  p a tte rn s  are used. A lthough these results are linked to  the 

p articu la r cam era and indeed laser p rin ter used, it gives a  strong indication of 

the  expected calibration  accuracy for p rin ted  patterns.

4Laser printer in this experiment is HP LaserJet 6mp, feeding standard 80 g/m2 paper.
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Fig. 4.23: In p u t image used to  com pare d isto rtion  calibration  w ith  circular 

control points and square intersection control points.

4.3.3 Biasing influence of circular calibration patterns

T he calib ration  of d isto rtion  w ith  circular control points is com pared w ith 

th a t of square chessboard type control points to  quantify  the  influence distor­

tion bias has on the  removal of lens d istortion. The hybrid p a tte rn  is again 

used as shown in Fig. 4.23, from which the  centroids and chessboard in ter­

sections are ex tracted . Following calibration, the  estim ated  param eters are 

used to  correct an image of the  s tandard  chessboard p a tte rn . These points 

are then  approxim ated  using a radially  weighted hom ography, from which the 

residual d isto rtion  is estim ated. These residuals are shown in Fig. 4.24 for 

circular correction, and in Fig. 4.25 for th e  square correction. These vec­

to r p lots clearly show the  underestim ation  of rad ial d isto rtion  using circular 

control points. T he m ean and s tan d ard  deviation of the  circular and square 

residuals are 0.8939(0.6993) and 0.3996(0.3101) respectively. T he estim ated  

param eters for rad ial d isto rtion  are k c =  (—0.5773,0.4463, —0.1941)T and 

k s =  (—0.5808,0.4491 — 0.1937)T for circular and square type control points 

respectively.
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Fig. 4.24: Residual d istortion  following correction w ith param eters estim ated  

using circular control points of Fig. 4.23
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Fig. 4.25: Residual distortion following correction with parameters estimated
using square intersection control points of Fig. 4.23.
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4.3.4 Discussion

T his section investigates, am ong o ther things, the  degree to  which the as­

sum ptions on th e  geom etry of the  calibration chart m ust be satisfied. These 

assum ptions relate to  the  p lanarity  of the calibration ta rg e t and  known rela­

tive 2D coordinates of the p a tte rn  up to  an  a rb itra ry  scale. E rrors in these 

2D locations are sim ulated by adding random  noise of varying degrees. The 

results, evaluated on a high resolution sensor, indicate th a t there  is roughly a 

d irect transfer from these errors, in m illim eters, to  d isto rtion  errors in pixels. 

System atic errors such as non-planarity  are investigated, w ith the  results indi­

cating th a t  th e  algorithm  perform s sim ilarly to  the  p a tte rn  imprécisions, w ith 

1mm bending inducing a  little  less th an  a  m ean 1 pixel error. Lastly, the  mis- 

calibration  of d isto rtion  from circular control points corrupted  w ith  distortion 

bias is investigated. T his dem onstrates for the  exam ple considered, th a t there 

is a  considerable induced error com pared w ith  the  square based control point 

calibration. In th e  light of o ther error sources, it equates to  roughly 1mm 

bending or 1mm of im precision in the  control p a tte rn . Such a p a tte rn  would 

represent a fairly poorly m anufactured calibration ta rge t.

A dditionally, th is  section also dem onstrates th a t there  is no advantage gained 

by using m ultiple images for d istortion  calibration  over single image calibra­

tion, assum ing roughly equal num bers of control points in each d a ta  set. A 

sufficient d a ta  set size has been identified as containing roughly 200 or more 

control points, considering norm al levels of noise. Thus, single view calibration 

w ith  a  sufficiently sized d a ta  set, and accurate bias free detection, will lead to  

optim al d isto rtion  calibration.

In sum m ary, the  following observations can be m ade regarding the  practical 

im plem entation  of th is algorithm :

• To reach an optim al estim ation  for d istortion, th e  m inim um  num ber of 

control points required is roughly in the  region of 200. T his is largely 

independent of th e  level of d istortion , and does not assum e very precisely 

detected  control points, (up to  the  region of SD =0.5  pixels).

•  M ultiple images m ay be used to  generate ex tra  control points b u t they 

offer no fu rther advantages.

•  T he requirem ents for precision in the  2D p a tte rn  and its p lanarity  are
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roughly equal, w ith  an approxim ate one-to-one transfer betw een millime­

te r inaccuracies and pixel errors.

•  C ircular control points, susceptible to  d isto rtion  bias, lead to  a  significant 

underestim ation  for d istortion , equivalent to  a  very poorly m anufactured 

chart.

4.4 D ecen terin g  D istortion

Thus far all experim entation  was carried out using a  m odel th a t excludes 

decentering d istortion. T his facilitated  the  side by side com parison w ith a lter­

native m ethods th a t in the  m ajo rity  do no t consider its inclusion. Also, since 

rad ial d isto rtion  is clearly th e  dom inant d isto rtion  type, the  perform ance of 

the  algorithm  was investigated w ith  respect to  it only.

T he rem aining residuals following the  inclusion of decentering d isto rtion  model, 

as presented in Section 2.1, into the  d istortion  calibration  equations are now 

investigated. T he com parisons are m ade on real lenses (a selection of those 

in Section 4.2.3, tab le  4.6) and  com pared w ith  th e  perform ance of the decen­

tering  free m odels in Section 4.2.3. These results are presented in tab le  4.13, 

showing th a t, surprisingly, there  is no overall im provem ent in th e  residuals. In­

vestigating th is fu rther for a low cost lens th a t is known to  contain misaligned 

elem ents, i.e. sam ple 3, the  residual vector fields after calibration w ith and 

w ithou t decentering are shown in Fig. 4.26. T his shows th a t vector field in­

cluding decentering d isto rtion  displays a larger decentering type residual field 

th a n  th e  vector field th a t does not consider its modelling. These results a t 

first glance are a t odds w ith  the  expected behaviour.

An investigation of th e  decentering param eter values pi and reveals th a t 

they  have large associated uncertain ties, in some cases th e  uncertain ty  is 

g reater th a n  th e  actual value. T he values and uncertain ties are presented 

in tab le  4.14 for the  sam ples considered. T he m ain assum ption  for calibrating 

d isto rtion  is th a t  th e  functional m odel correctly m odels th e  real d isto rtion  ef­

fects. Since th e  add ition  of decentering d isto rtion  does no t serve to  reduce the 

residuals, it m ay be assum ed th a t  th e  decentering d isto rtion  is either not there 

or has been accounted for by a com bination of o ther param eters. Considering 

th a t  m odern lenses are m ass produced, cheap and of sm all form at, it is unlikely
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Fig. 4.26: Residuals for sam ple num ber 3. Images show uncorrected and cor­

rected images. Left vector plot depicts th e  residuals following distortion  re­

moval w ithout the  explicit consideration of decentering distortion. R ight vector 

plot show th e  residuals rem aining following calibration w ith the  inclusion of 

decentering distortion.
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Table 4.13: C om parison of rem aining d isto rtion  residuals following calibra­

tion  w ith  and w ithou t th e  explicit inclusion of decentering d isto rtion  models.

Residuals w ithou t decentering are taken  direct
Sam ple no. W ithou t decentering W ith  decentering

1 0.3164 (0.3362) 0.3264 (0.3225)

2 0.4569 (0.3323) 0.4158 (0.3636)

3 0.2646 (0.2566) 0.3194 (0.2921)

4 0.5556 (0.7865) 0.5029 (0.4886)

5 0.8690 (0.6615) 0.8795 (0.6602)

y from tab le  4.7.

Table 4.14: D ecentering param eter values and associated uncertainties for re­

sults on real images.

Sam ple p x x lO -4 SD p i  x lO -4 P2 x lO -4 SD p 2 x lO " 4

1 -4.1567 1.4226 7.3960 1.8937

2 1.0257 2.1559 8.8403 3.7863

3 -31.1631 1.2181 3.6948 1.2933

4 11.6121 1.1331 -10.124 2.1927

5 0.3762 1.2660 5.4786 1.7113

th a t decentering d isto rtion  is not a  factor. Therefore, th is d isto rtion  m ust be 

accounted for by some com bination of th e  o ther param eters.

It is very useful to  look a t th e  correlations between the  estim ated  param e­

ters. These correlations m ay be obtained directly  from th e  covariance m atrix  

resulting from th e  ite ra ted  estim ation  procedure upon convergence. Again 

considering th e  F isher inform ation m atrix  in equation 4.17, an  approxim ate 

correlation coefficient betw een the  zth and /cth param eters is given by:

( F - 1)*

( F - i ) f ( F
where 1 <  cifc <  1. (4.20)

D ecentering d isto rtion  is historically linked w ith the  estim ation  of the  princi­

pal po in t or th e  intersection of the  optical axis w ith  th e  im age surface. The 

correlation coefficients also indicate a  strong link betw een these param eters. 

T he correlation between th e  decentering param eters and th e  centre point for a 

typical exam ple, i.e. sam ple 3, are p\ ~  0.8379 ~  cx and p% ~  0.9536 ~  Cy. In­

deed it has been shown by Stein (1993) th a t a variable principal po in t induces 

decentering like elem ents th rough  the  s tan d ard  rad ial d isto rtion  model.

Considering th a t  the  error hom ography H e may, a t least, in troduce a  variable
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centre po in t by th e  simple ad justm en t of h3 —> h3 +  A x and  h 6 —> /i6 +  A y, 

resulting  in th e  following:

R e s u l t  5. >1 translation o f the undistorted points induces decentering distor­

tion and a sm all residual through the radial distortion functional:

I k\ A x (3x2 +  y 2) +  2k2A vx y  ~f" • • p(p+A,k) = p(p,k)+ 1 y > o2 y;  ] + e
\ 2 k iA xxy +  k2Ay(3y +  x ) H y

Proo/. Considering the  form ulation of d istortion  as P ( H ec, k) =  P(p, k), and 

in troducing  a  pure transla tio n  into H e results in the  shifting: x  —► x  +  A x and 

y —> y  +  A y. T he two param eter radial d istortion  m odel then  becomes:

£>x(p +  A, k) = k xx r 2 +  k 2x r 4 +  fci A x (3x2 + y 2) + 2kxA yxy+  

k2A x (5x4 +  6x2y2 +  2/4) +  /c2A 2/(4x3y +  4xy3)+  

h  ((3A 2 +  A 2)x +  2 A x A yy  + A xA 2y +  A*) +  

k2 ((5A 4X +  6A 2A 2 +  A l ) x  +  (4A ^A y +  4A XA 3y)y  +

A5X +  2AxAy + A xA4y +  . . . )

and sim ilarly for th e  y  com ponent of the  d isto rtion  equation. R adial d istortion 

is m odelled as before, while fci A x, fci A y, k2A x and k2A y exactly  m atch  the  de­

centering term s derived from the  wave aberra tion  equation  2.2 in Section 2.1. 

T he basic in troduction  of a transla tion  elem ent into H e thus m odels decen­

tering  d isto rtion  w ith  th e  additional in troduction  of a sm all residual E . This 

residual m ay additionally  be approxim ated by a sm all affine transform ation  

E  =  A Hp. □

Therefore th e  objective error e  may be re-w ritten , im plicitly modelling decen­

tering d isto rtion  as:

e(c , $ )  =  H ec +  P ( H ec, k) +  A HH ec -  A c  (4.21)

In th e  least square estim ation, th e  sm all decentering residual A HH ec is ab­

sorbed by a com bination of H e and  A  in th e  search for a  global minimum . 

It should also be rem em bered th a t these equations are only approxim ations 

to  the  ac tua l lens d istortion , so such sm all ad justm ents are likely to  have a 

negligible im pact.

T he effectiveness of th is form ulation in m odelling decentering d istortion  is 

dem onstra ted  by sim ulating rad ial and decentering d istortion , and  using this
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d a ta  for calibration  w ith  the  proposed m ethod. Recalling from Section 2.1, 

th a t  decentering param eters m ust be considered in conjunction w ith  the  radial 

d isto rtion  param eters, ie. p x = k i A x and p 2 = k i A y . T hus to  increase the 

effects of decentering a relatively low radial d isto rtion  level is chosen a t k\ = 

—0.1. T he rad ia l d isto rtion  level is set relatively low in order to  induce the 

effect of larger decentering d istortion. T he decentering param eters are varied 

w ith in  the  range p\ = p2 =  —0.01 —>0.01. Considering a  norm al 10mm square 

CCD elem ent, th is equates to  an m axim um  m isalignm ent of an individual lens 

elem ent by 1mm which is fairly significant, for exam ple, a  sm all C-M ount lens 

m ay have an entire lens d iam eter of 20mm. Following calibration, the residuals 

are m easured as before w ith  a  radially  weighted hom ography and are shown 

in Fig. 4.27. This shows th a t there is a  sm all pixel residual over the  entire 

range of sim ulated  decentering levels. W hen considered w ith  respect to  the  

the  typical noise in th e  detected  pixels if a  =  0.15 (pix) th is residual becomes 

insignificant. Fig. 4.28 shows the decentering residuals when control point 

detection noise is included.

T he advantage of using a  perspective transform  to  m odel decentering d istor­

tion  th rough  th e  norm al radial d istortion  equations is now investigated. A 

com parison is m ade w ith  th e  form ulation given by Stein (1993), which uses 

only a  variable centre poin t for m odelling decentering d istortion. In th is solu­

tion  th e  reverse d isto rtion  m odel is used, which may be used in the  following 

objective error to  calibrate distortion:

e(c , $ )  =  c +  D (p  +  A , k) -  H ec (4.22)

Using th e  sam e sim ulation d a ta  as in Fig. 4.27, the  residuals resulting from this 

form ulation are m easured. These are shown in Fig. 4.29, dem onstrating  th a t 

th is m ethod  is m uch less effective a t m odelling decentering d isto rtion  com pared 

to  th e  proposed one, which utilises a  perspective transform . Significantly, the 

errors are m uch greater th a n  the  typical control po in t noise.
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Fig. 4.27: T he decentering residuals following calibration w ith the  proposed 

m ethod. Original d a ta  is sim ulated w ith  radial and decentering d istortion. 

The calibration m odel is radial only. T he residual d istortion  (pix) is shown for 

the  estim ate.

Fig. 4.28: T he decentering residuals following calibration w ith the  proposed 

m ethod. Typical control point detection noise is added to  the  sim ulated radial 

and decentering da ta . Following calibration th e  sm all decentering distortion  

residual in Fig. 4.27 is negligible in com parison.
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Fig. 4.29: The decentering residuals following calibration w ith th e  m ethod pro­

posed by Stein (1993), where decentering is approxim ated solely by a  variable 

centre point.

4.4.1 D istortion centre and the principal point

It has been proposed, for exam ple in Ahm ed and Farag (2001), th a t the inclu­

sion of decentering d isto rtion  param eters will com pensate for an error in the  

centre point. This idea m ay be used to  fix th e  centre point, say a t the  image 

centre, thus removing the  necessity to  estim ate it. T his idea has been shown 

to  be flawed by Clarke et al. (1998) th rough  simple experim ents. It is slightly 

curious why, if a variable centre point accounts for decentering distortion  to  a 

high degree, does decentering d isto rtion  not properly com pensate for a fixed 

centre point?

Considering the objective error e w ith a  fixed centre poin t th a t is displaced 

from th e  tru e  centre point by A  =  (A x, A y)T th e  objective function can be 

w ritten  as:

e(c + A, * ) = H ec + A  +  V R{H ec  +  A, k) - Ac - A,

w here V R(.) refers to  th e  radial d istortion  com ponent. T he decentering com­

ponent is likewise concisely referred to  as D ecentering d isto rtion  is

explicitly added to  com pensate for the  the  m iscalculation of the radial d istor­
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tion  a t th e  incorrect centre point as:

e(c +  A,  $ )  =  Hec +  £>*(Hec +  A, k) -  P ^(H ec +  A, k) -  Ac.

Using R esult 5 th is gives:

e(c +  A, * )  «  H ec +  P *(H ec, k) +  P D(Hec, k) -  P D(Hec +  A, k) -  Ac.

Clearly, the  decentering d istortion  term s do no t properly  cancel each other, 

w ith  one being evaluated a t a different location. Thus w ith  an increase in 

th e  centre poin t error A, there  is a  corresponding rise in the  modelling error. 

T his trend  is shown in experim ents w ith real images. T he centre point is fixed 

a t various intervals w ith  a ± 40  pixel distance from th e  tru e  location on an 

im age size of 1312 x 1032 pixels. T he calibration is then  carried out w ith 

th is fixed centre poin t w ith  and w ithou t th e  inclusion of decentering term s. 

Fig. 4.30 shows th e  d isto rtion  residual resulting from th e  calibration  w ithout 

decentering elem ents. A larger error is accum ulated due to  the  m is-calibration 

of rad ial d isto rtion  ab o u t an  incorrect centre. T he residuals resulting from the 

calibration  w ith  decentering term s are shown in Fig. 4.31 showing a  decrease 

in error. However, the  rem aining residual is unacceptable, except for very 

sm all displacem ents of th e  centre point. In reality, such accurate  placem ent is 

not possible.

To assess th e  likely m agnitude of decentering d isto rtion  in some of the lenses 

used, th e  d isto rtion  centre poin t is com pared w ith  th e  estim ated  principal 

point, com puted using the  m ethod proposed in S turm  and M aybank (1999). 

A m axim um  of nine images of the calibration  p a tte rn  are taken  from differ­

en t locations, from which the  principal po in t is estim ated  increm entally, for 

exam ple, for im age num ber five, five hom ographies are inpu t in the  in ternal 

calibration  algorithm  and so on. T he centre poin t is estim ated  independently 

for each sam ple, w ith  the  proposed m ethod. T he results are shown in Fig. 

4.32. For the  integral Fuji lens, the  x  coordinate overall assum es slightly lower 

values, ind icating  th a t there  is a slight negative x  d irectional decentering dis­

to rtio n  or a  negative p\ param eter. This corresponds w ith  the  approxim ations 

in tab le  4.14. For the  integral Nikon lens, there  is also a  negative x  directional 

d is to rtion  and  a  very slight negative y  elem ent. Finally, for the  6mm lens th a t 

was known to  have decentering elem ents, a large negative x  or p x direction 

value is observed, w ith  relatively constan t d isto rtion  in th e  y  or p2 direction. 

T his is again in good agreem ent w ith  the  estim ates in tab le  4.14.
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Fig. 4.30: Residual d istortion  errors following calibration w ithou t th e  ex­

plicit inclusion of decentering distortion. T he ideal centre point is located 

a t (1116,878) w ith ± 40  pixel displacem ent of the  centre point.

Fig. 4.31: Residual d istortion  error following calibration  w ith  a  fixed centre 

point and th e  inclusion of decentering term s to  help com pensate for the centre 

point errors.
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(a) Fuji (Sample no. 1)

(b) Nikon (Sample no. 2)

(c) Kodak (Sample no. 3)

Fig. 4.32: Comparison between principal point and distortion centers.
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In sum m ary, th e  proposed m ethod of calibrating  lens d isto rtion  im plicitly in­

cludes decentering d istortion. It is effectively calib rated  by the  LS process, 

th rough  th e  use of projectively ad justed  points in the  s tan d ard  radial d istor­

tion  equations. This explains why th e  addition  of decentering d istortion  did 

not im prove th e  d isto rtion  residuals, w ith  the  redundan t param eters reflected 

in th e  high correlations. Also, it clarifies the  reason why th e  centre point is 

likely to  be indeterm inable if decentering d isto rtion  elem ents are explicitly in­

cluded as reported  in (Brown, 1971). From th e  sim ulated results it has been 

shown th a t the  proposed m ethod models decentering to  a higher accuracy than  

th e  previous approxim ation in Stein (1993). Crucially, th is precision is b e tte r 

th an  th e  typical noise in the  detected  control points.

T he relationship  between the  d isto rtion  centre, and decentering distortion  is 

exam ined further. It is shown theoretically  and experim entally  th a t the  in­

clusion of decentering d isto rtion  param eters does not com pensate for a fixed 

and erroneous centre point. An ex tra  illustration  of the  m odelling of decen­

tering d isto rtion  by a  variable centre point is given by com paring it w ith  the 

estim ated  principal point using an a lternative m ethod. T his shows th a t the 

in tegral lenses on th e  digital cam eras used show relatively little  decentering 

distortion . T he m agnitude of decentering d isto rtion  in a  low cost 6mm lens is 

dem onstra ted  by th e  large shift in th e  d isto rtion  centre in com parison to  the 

principal point.

4.5 Focusing variation o f d istortion

So far th is s tu d y  has been dealing w ith  entirely  fixed lenses. M ost basic lenses 

allow th e  facility to  a lter th e  focusing distance and the apertu re  opening. The 

focusing is im plem ented by a relative m ovem ent between th e  lens elements 

a n d /o r  th e  sensor. I t is known th a t changing th e  focusing d istance will im pact 

on th e  d isto rtion  content. This section aims to  identify th e  n a tu re  and m agni­

tude  of th e  d isto rtion  variation resulting from th e  variable focusing distance. 

T he influence of the  apertu re  variation of the  lens is also exam ined.

I t is known from Brown (1971) th a t there  is a  variation  of d isto rtion  w ith 

ob ject focusing distance. Considering s as th e  d istance of a  focusing plane,
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th e  d is to rtion  variation a t ano ther d istance s' may be in terpo la ted  with:

Z>(p, k ) s,s' =  l l s ’h r 3 +  7 t ' h r 5 +  7s6s,fc3 r 7 +  • • • , (4.23)

where 7SiS' =  w ith  /  as th e  focal length  of th e  lens. By calibrating  dis-

to rtion  for a t least two different focus settings, the  d isto rtion  a t o ther locations 

m ay be approxim ated  using equation 4.23

T he variation  of d isto rtion  is investigated w ith th ree  different lenses, a 6mm 

C om putar and  a Fuji 6.8mm lens th a t were used before and described in table 

4.6, and a  Nikon 7.85mm lens. From C hap ter 3 it has been shown th a t the 

edge based in tersection m ethod is quite invariant to  blurring. This allows the 

ex traction  of control points a t a num ber of different focusing distances, while 

th e  calibration  p a tte rn  distance rem ains fixed. These control points are then 

used in th e  calibration  routine. U nfortunately, it is no t possible to  get a m ean­

ingful m easure of th e  focusing distance. T he Fuji cam era allows the  m anual 

m anipu lation  of th e  focusing distance, which was stepped  th rough  w ith  equal 

spacing from far to  near. T he Nikon cam era uses a  m otorized focusing ad just­

m ent, though  th e  individual step  increm ents are not available. It is stepped 

from near to  far. Finally, the  6mm lens uses a  screw ad justm ent, which was 

again varied linearly from near to  far. T he d istortion  param eter variations over 

the  focusing sam ples are presented in Fig. 4.33. This shows th a t d istortion 

param eters for th e  far to  near focus variations follow a form sim ilar to  equation 

4.23, where th e  negative k\ and /c3 param eters becom es more negative while 

th e  positive /c2 param eter increases, and the  opposite for th e  near to  far exam ­

ples. T he Fuji exam ple increases m ost for the  final sam ple, indicating th a t the 

dial and th e  focusing distance are not th a t linearly connected. Excluding the 

fourth  sam ple, th e  Nikon cam era d isto rtion  variation shows a sm ooth  variation 

in param eters. T he 6mm lens displays th e  greatest m agnitude in param eter 

variation  while also showing a  steady param eter variation. These variations in 

param eters are now exam ined in pixel term s th roughou t the  image.

To quantify  th e  actual pixel m anifestation of these variations, the  first and 

last focusing positions for each cam era are com pared. T he vector fields in 

Fig. 4.34 show these variations th roughou t the  im age field. T he Fuji exam ple 

shows a  rad ia l field, w ith  a  slight decentering influence. T he Nikon field is 

p redom inantly  radial, while th e  6mm lens exhibits a considerable decentering 

elem ent. T his x  d irection decentering content has previously been identified 

as shown in Fig. 4.32.
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Focus Sample

(a) Fuji 6 .2m m

Focus Sample

(b) N ikon 7 .8m m

Focus Sample

(c) C o m p u ta r  6m m )

Fig. 4.33: Variation of distortion parameters with focus position.
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Mean = 1.4 S D  = 1.284

(a) Fuji 6.2mm

Mean = 0.735 S D  = 0.5891

(b) Nikon 7.8mm

Mean = 1.05 S D  = 0.9243

(c) Computar 6mm)

Fig. 4.34: Vector plot showing the  variation of d istortion  between the  first

position and last focus positions. Residual scale is xlOO throughout.
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4.5.1 Aperture variation of distortion

In Section 2.1, it was assum ed th a t th e  apertu re  plane was fixed. M ost lenses 

allow th e  ap ertu re  to  be varied, controlling th e  am ount of light entering the 

lens. W ith  an increasingly open apertu re, there  is d irect increase in the light 

rays in tersecting the  CCD array. A ltering th is quan tity  will thus theoretically  

affect th e  d isto rtion  content as these rays traverse different portions of the 

lens. To w hat ex ten t th is  happens is unclear however. Thus, th is subsection 

experim entally  investigates the  actual variation of lens d isto rtion  w ith  apertu re  

setting.

T he sam e cam eras and lenses th a t were utilised in Section 4.5 are again em­

ployed. O n th is occasion th e  lens focal lengths and th e  cam era positions were 

fixed, while the  apertu re  was varied manually. T he digital cam eras allow the 

F -stops to  be changed, b u t no such quantities are generally m arked for low 

cost C -M ount lenses. Thus, th e  exposure tim e was used as a  base for com­

parison, taken  from th e  EX IF  tags for th e  digital cam era images, and from 

the  acquisition software for the  C -M ount lens images. T he d istortion  is again 

calib rated  using the  proposed m ethod, including two d isto rtion  param eters for 

sim plicity in the  presenta tion  of results.

Fig. 4.35 traces the  variation  of th e  d istortion  param eters for th e  three dif­

ferent lenses as th e  ap ertu re  is altered. Clearly, there  is an apertu re  related 

variation  in th e  im age d istortion. T he Fuji and Nikon lens d istortions increase 

steadily  and slightly tra il off tow ard th e  closed ap ertu re  position. T he C- 

M ount lens d isto rtion  rapidly  increased up to  50 ms exposure tim e, and then 

settles off. T he variations are lower th an  th a t encountered for the  variable 

focus experim ents. In term s of the  pixel m anifestation  of these differences, the 

m axim um  d isto rtion  variations are chosen for com parison in Fig. 4.36. This 

w orst case scenario shows th a t th e  apertu re  variation in pixel term s is less 

th a n  the  focus variation differences. Indeed for th e  Nikon lens, th e  difference 

in th e  d isto rtion  profiles is close to  the  norm al observed control point noise, 

effectively rendering it insignificant. Again th e  larger d isto rtion  lens displays 

a g reater tendency  for ap ertu re  influenced d isto rtion  variance.

In sum m ary, th e  focusing d istance alters th e  lens d isto rtion  profile. As an 

exam ple, a high resolution image showed a m ean pixel difference of 1.4 over 

th e  considered focusing range. However, since the  focusing distance or indeed
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Fuji Lens

Nikon Lens

Computar Lens

Fig. 4.35: V ariation of d isto rtion  param eters w ith apertu re  position, described 

in term s of exposure tim e.
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Mean = 0.463 SD = 0.4035

(a) Fuji 6.2mm

Mean = 0.156 SD = 0.1257
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(b) Nikon 7.8mm

Mean = 0.493 SD = 0.4937

(c) Computar 6inm)

Fig. 4.36: Vector plot showing th e  variation of d isto rtion  between th e  m axi­

mum  param eter variations over th e  range of apertu re  positions. Residual scale 

is x 100 throughout.
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any o ther m eaningful focus m easure is unavailable in m ost basic lenses, the 

variation  equation  4.23 can not be used. Higher d isto rtion  lenses natu ra lly  

show a g reater varia tion  th a n  low d isto rtion  lenses. High d isto rtion  is generally 

encountered in wide angle lenses which tend  to  be used as fixed focus lenses 

in m any applications. T he extrem e fish-eye lenses are usually fixed a t infinity 

focus. T he ap ertu re  se tting  also influences the  im age lens d istortion  profile, 

b u t to  a  lesser degree th an  the  change in focusing. In th e  sam e high resolution 

exam ple, th e  d isto rtion  varied by a  m ean of 0.45 pixels over th e  range of 

ap ertu re  settings. O f course, in m any applications th e  apertu re  se tting  rem ains 

constan t.

4.6 D iscussion

T his chap ter has detailed  a  non-m etric technique to  com pensate for geom etric 

lens d isto rtion  in images. It is based on a single view of a  calibration  target, 

from which an appropria te  d isto rtion  m odel is calibrated  by exploiting two 

geom etric constrain ts on the  ta rge ts  p lanarity  and known p a tte rn  d istribution. 

T he calib ration  procedure advances the  following contributions.

•  T he use of th e  forward d isto rtion  m odel in calibration, in com parison to  

existing non-m etric approaches which cannot avail of its advantages (see 

C hap ter 2).

•  T he param eter estim ation  problem  presented as a  closed-form system  of 

equations, w ith  full p artia l derivatives included.

•  A novel m eans of linearly identifying a new im age scaling to  m inimise the 

local d isto rtion  of pixels in th e  com pensation of d isto rtion  in the  image 

array.

An extensive set of experim ents are conducted on th e  proposed m ethod, while 

its perform ance is com pared w ith  respect to  th ree  alternative  techniques for 

calib rating  d istortion . T he com parisons are conducted on b o th  sim ulated and 

real d a ta  and  dem onstra te  th a t th e  proposed m ethod  is highly accurate, and 

stable. It is shown to  a t least m atch, and often surpass th e  perform ance of 

th e  full cam era calibration  techniques, and consistently  outperform s other non­

m etric m ethods. Its  application to  poten tially  problem atic sub-pixel d istortion
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lenses revels th a t  th e  algorithm  retains its s tab ility  and accuracy, allowing 

such im ages to  be fu rther improved. T he dependence of th e  proposed m ethod 

on th e  p lanar calibration  ta rg e t is com prehensively addressed. For reliable 

calibration  a t least 200 control points are recom m ended. It is shown th a t 

m ultiple inp u t views offer no advantage save in th e  supply of additional control 

points. T he degree to  which th e  two geom etric constrain ts on the  calibration 

ta rg e t m ust be satisfied is also exam ined. R egarding the  required precision of 

th e  p a tte rn , it is shown th a t  for the  250 x 170 m m  sized p a tte rn  used, there is 

roughly a  d irect transfer of error from m illim eters to  pixels w ith  a  6M egaPixel 

cam era resolution. Concerning th e  required p lanarity  of the  p a tte rn , a sim ilar 

re lationship  is found, w here roughly 1mm bending of th e  chart will induce a 

m ean of 1 pixel error, again for a 6M egaPixel resolution. O u t of interest, the 

use of circular type p a tte rn s  is shown to  induce a  sim ilar 1 pixel error. Finally, 

the  influence of lens focusing and apertu re  settings on the  d isto rtion  profile is 

exam ined. T his shows th a t  the  m axim um  m ean d isto rtion  variations due to  

focusing, for exam ple in a  6M egaPixel cam era, is 1.4 pixels and roughly 0.5 

pixels for th e  m axim um  apertu re  variation. W ithou t readily available m easures 

of the  focusing distance or the  apertu re , com pensations for these variations 

cannot be applied.

In conclusion, the  proposed approach has the  inherent advantage of being 

generally applicability  to  all levels of lens d istortion, from very mild up to  fish- 

eye. I t im plicitly incorporates quite an effective m eans of m odelling decentering 

lens d istortion , which ad justs as required. Lastly, it is straightforw ard to  

im plem ent and use, overall offering an a ttrac tiv e  and  viable alternative to  

current d isto rtion  calibration and removal solutions.



Chapter 5

Lateral Chromatic Aberration  
Removal

An optical instrum en t is required to  faithfully produce a  geom etrically con­

sisten t im age of a  given object. T he departu re  of practical optical system s 

from th is ideal (G aussian or first order) behaviour is due to  aberrations. In 

general it is im possible to  design a system  which is free from all aberrations. 

This leads lens m anufacturers to  consider aberra tion  com pensation as an op­

tim isation  betw een different types. This chapter is concerned w ith chrom atic 

aberra tions th a t have recently becom e m ore am plified due to  the  higher res­

olution sensors curren tly  employed in m any consum er and scientific cameras. 

By com pensating for these aberrations as a  post process in the  image array, 

higher quality  images can be produced w ithou t recourse to  expensive optics.

In a  colour cam era’s lens, polychrom atic light is split into a  set of rays or wave­

lengths. W hilst traversing th e  optical system  light of different w avelengths will 

follow slightly different paths. U pon reaching the  im age plane the ir misaligned 

recom bination in troduces chrom atic aberration . C hrom atic A berration  (CA) 

can be broadly  classified as Axial C hrom atic A berration  (ACA) (also known 

as Longitudinal CA) and L ateral C hrom atic A berration  (LCA) (also known as 

T ransverse CA). ACA arises from the longitudinal varia tion  of focal position 

w ith  w avelength along the  optical axis. LCA is the  varia tion  of im age size w ith 

w avelength or th e  vertical off-axis d istance of a  poin t from its prescribed point. 

In an  im age it is identified by a radially  dependent m isalignm ent of th e  colour 

planes. C hrom atic aberrations are moving ou t of th e  sub-pixel range w ith
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th e  advent of high resolution arrays, giving rise to  noticeable colour fringes 

around edges and  high con trast areas. T his gives th e  overall im pression of 

poor quality  or definition. M any consum er cam eras display th is aberration. 

For scientific applications, it is akin to  the effects of colour shifts and blur­

ring, th a t contravene the  im aging models. T he digital com pensation of LCA 

th rough  im age w arping is considered here. T here are two m ain aspects of dig­

ita l com pensation in images: determ ining w hat quan tity  of w arp to  apply, and 

the  actual im plem entation of the  warp. T he m ain contribution  deals w ith the 

form er problem , which has curren tly  not been addressed, by considering the 

m odelling and m odel calibration of LCA in images.

T he proposed com pensation is achieved by realigning the  colour planes through 

im age warping. Using the  LCA m odel derived in Section 2.3, a  m ore precise 

and  concise m eans of extending th e  aberration , m easured over a lim ited set 

of control points, to  every pixel in the  colour plane is facilitated. LCA is 

initially  m easured by ex tracting  the  intersections of a chessboard p a tte rn  on 

each colour plane. No special p lanarity  constrain ts or canonical representa­

tion of th e  p a tte rn  is required and it can be im aged w ithou t knowing its 3D 

position. M easurem ent errors are filtered by non-linear least square fitting 

of th e  proposed LCA model. T he partia l derivatives of th e  quadratic  cost 

functions are given allowing the  closed-form com putation  of the gradients and 

Hessian m atrices used by th e  optim isation algorithm s. This gives a  com puta­

tional advantage over num erical estim ation  techniques. D etailed results clearly 

dem onstra te  the  successful com pensation of LCA for te s t images and for real 

scenes.

5.1 G eom etrical T heory o f A berrations

O ptically, aberra tions are com pensated for by adding lens elem ents w ith  appro­

p ria te  properties. C hrom atic aberra tion  is typically elim inated for two selected 

wavelengths, b u t only a t the  centre and some zonal region. These lenses are 

known as achrom atised. Lenses corrected for th ree  different w avelengths are 

known as apochrom atic while superachrom atic lenses are corrected for four 

wavelengths. Of in terest are the  the  rem aining chrom atic aberrations, known 

as th e  secondary spectrum . No d istinctions are m ade betw een types of cor­

rected lenses, as the  derived model is generally applicable. W illson (1994) and
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W illson and  Shafer (1991) show th a t chrom atic aberra tions can be com pen­

sated  in an im age by re-alignm ents of th e  colour channels.

As described in Section 2.3 L ateral C hrom atic A berra tion  can be considered 

as the  sum  of two aberrations: la teral colour d isto rtion  due to  th e  refraction 

index of th e  lens elem ents and th e  chrom atic variation of d isto rtion  (Kingslake, 

1978). An appropria te  m odel for the  chrom atic variation  of d istortion  in one 

colour plane g  m ay then  be described relative to  ano ther colour plane /  as:

cff(P/> cs)x =  c i X f  + c2x f r2 +  c3( 3 x2f  +  y ))  +  2 cAx f yf
(5.1)

C5(p/, Cg)y =  C\Vj +  C2y f r 2f  + 2c3x f y f  + c4(3y2 +  x 2),

w here C /  =  ( c i ,  c 2, c3, c4)T €  R 4 is the param eter vector and  p /  =  (X f , y ¡ ,  1 ) T  

are the  homogeneous lens centric coordinates in th e  /  colour plane.

5.2 M od el C alibration

L ateral chrom atic aberra tion  is modelled for a  specific frequency according to  

equation  5.1. T he actual secondary spectrum  is difficult to  exactly  quantify, 

b u t m anifests itself by m isalignm ents in the colour planes as dem onstrated  

by W illson (1994). These planes typically  m atch  th e  RGB filters of a  typical 

colour sensor, though  o ther colour representations can be used, as the  m ethods 

are general. If one colour plane is taken  as a  reference, chrom atic aberration  

can be com pensated for by realigning the  o ther planes w ith  th is reference. This 

reference colour is chosen as the  G reen (G) channel, as it is m idway w ithin the 

visible spectrum  and is dom inant in the s tan d ard  Bayer array  used in digital 

cam eras1.

5.2.1 M easuring lateral chromatic aberrations

C hrom atic aberra tion  has been previously m easured by K uzubek and M atula 

(2000) using florescent dyed beads. These are then  im aged in 3D, when their 

centroids are estim ated. From  these centroids the  LCA and ACA are m easured. 

T his approach  is only su ited  to  fluorescent microcopy, b u t the  m easured LCA

lrThe impact of correlations between the colour channels due to the interpolation of the 
raw sensor data is not addressed in this work.
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exhibits a  sim ilar profile to  th e  results obta ined  using th e  proposed approach. 

W illson (1994), m easures chrom atic aberra tion  by com paring th e  location of 

edges detected  on th ree  colour planes. In th is chap ter la tera l chrom atic aber­

ra tion  is again m easured by detecting the  intersections of a  chessboard p a tte rn  

for each of th e  colour planes. These are au tom atically  ex tracted  by the two 

stage process of in itia l detection  and sub-pixel refinem ent as outlined in Section 

3.2.2.

5.2.2 Chromatic parameter estim ation

T he p a tte rn  in tersection points are represented in pixel coordinates as C/ =  

(uf , Vf ,  1)T for a  certain  colour plane / .  Given the  average of the  image 

w idth  and  height as w,  th e  intersection coordinates are norm alised by scaling 

Cf =  (Uf , V f , w) T =  (Uf , Vf , 1)T. This does not affect the  chrom atic d istortion  

calibration, following from R esult 3. T he required transform  tak ing  the points 

Cf  to  th e  lens centric coordinates p /  is then  defined as:

=  A  Cf (5.2)

where s is th e  applied com pensation for non-square pixels and the unknown 

sym m etrical centre of th e  aberra tion  is t /  =  (u0)v0, 1)T. These param eters 

need to  be estim ated  in the  calibration. T he un its  of p /  are norm alised pix­

els, (p ix ). I t should be noted th a t R esult 5, regarding the  m odelling of the 

decentering d isto rtion  w ith  a  variable centre point, m ay not be used in this 

case. This is due to  the  ex tra  radial term  C\ , which under an incorrect centre 

poin t gives rise to  a  directional bias. Thus the  centre poin t and  th e  decentering 

elem ents m ust be explicitly estim ated.

T he la te ra l m isalignm ents betw een the red and green planes are modelled as 

a function of the  green plane, following equation 5.1 as:

i s 0 Uq

p  /  = 0 1 -V o Vf

1° 0 1 ) v )

C’XPg, Cr)*\ _  /  CiXg + c2x gr 2g + c3{3x2g + y 2g) + 2c4x gyg) \  

Cr (p 9,c r ) J  I C\yg +  c2ygr 2 + 2c3x gyg + c4(3y2 + x 2) I
(5.3)

and sim ilarly for th e  difference between the  blue and  green planes. For each 

detected  in tersection point, two equations are formed. It is sufficient to  follow
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these equations w ith  respect to  the  red /g reen  planes only:

^ x(P rlP ^ ) ^ r )   ̂ C  ( p ^5 Cr ) x XL
e (p r |p g, $ r ) =

ey( p r |p ^ ,^ r ) ^  +  Cr (p p,c r )3

r 

Ur
, (5-4)

where th e  param eter vector to  be estim ated  is 3>r =  (u0, vOJ s, ci, c2, c3, c4)T, 

where $ r G  M7.

A param eter counting exercise reveals th a t a m inim um  of 4 control points are 

required to  solve th is system  of equations. Given a t least n  > 4 observations 

a least square solution is obta ined  by:

(5.5)
I— 1

T his quadratic  cost function m ay be linearised by perform ing a first order 

expansion of th e  error around the  last iterative estim ate resulting in a 

G auss-N ew ton scheme th a t  can be ite ra ted  utilising m any robust least square 

techniques (G olub and Loan, 1996):

(5.6)

w here A <  1 ensures a  decrease in cost a t each step. T he  p artia l derivatives 

used in th e  closed-form calculation are given as:

¿ M * * )  d e ,(* * )  dex ( & )
d u n ' d vn ’ d s  , 9 ’ S s ’ 9 ?/9’ 9?/9

,2 o _  . .  o . . 2  i „ 2

( d e x { & ) \
d e ( $ fc) d<S>T

<9$T dey( & )
\ d $ T /

8 e ,(* * )  & ,( * > )  3 « ,(4 « )
> ,y 9,ygrg^ x gyg,*y9 ^ x g

w ith

dex{ & ) \ /
dua =

dey( & ) \
\  du„ /

dex ( & ) \ /
dva

dey ( & ) I
d v 0 )

(  d ex { & ) \ /
ds =
dey(& ) \
V d s  /

\  du,

Ci + c2(3x2 + 2/j) + 6c3a;9 + 2c4y9 
2c2x gyg + 2c3yg + 2cAx g

2 c2x gyg + 2 c3y g + 2c4x g 

ci +  c2{x2g +  3y2) +  2c3x9 +  6 c4yg

C \U g +  3 C2X 2 Ug +  6 C3X g Ug + 2C4U9J/9 
2 c3ygu g + 2 c4x gu g

/
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Table 5.1: D escription of the  cam eras used for th e  experim ents
Make and M odel Focal Resolution

Cam  1 

Cam  2 

Cam  3

Nikon E4500 

Fuji F ineP ix  6900 

Fuji F ineP ix  6900 +  W L-FX 9

7.8mm

7.8mm

6.2mm

2272 X 1704 

2832 X 2128 

2832 X 2128

E quation  5.6 is ite ra ted  until 4>fc+1 — $ k falls below a preset threshold. The 

param eter vector can be sim ply initialised as =  (—.5, —.5 ,1 ,0 ,0 ,0 ,0)T. Fol­

lowing calibration the  colour planes are realigned using bilinear in terpolation 

as described in equation 4.9.

5.3 E xperim ents

Chessboard p a tte rn s  and real images are used to  m easure th e  effects of LCA 

com pensation. T hree different com mercial d igital cam eras are used to  cap ture 

the  te s t images, briefly described in tab le  5.1. T he p a tte rn  used for calibration 

is shown in Fig. 5.1. No canonical coordinates are required for calibration, 

hence no precise constrain ts are needed on th e  p lanarity  or precision of the  

pa tte rn . A second lower density  chessboard p a tte rn  (test im age), shown in 

Fig. 5.1, is used for independent validation of th e  proposed LCA m odel and 

th e  resulting realignm ents. P aram eter uncertain ties are also investigated, while 

shots of an outdoor scene are used to  dem onstrate  the  typical im provem ent in 

image quality  following LCA com pensation.

Calibration Image Test Image

Fig. 5.1: C hessboard p a tte rn s  used for calibration (calib image) and testing  

(test image) taken  w ith  cam  1, see tab les 5.2 and 5.3.

147



C h a p te r  5 — L a te ra l C h ro m atic  A b e rra tio n  Rem oval

Cam 1: |iie = 0.1459 ae = 0.083979

0.25

0.15
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0.12

0.1

0.08

0.06

0.04

0.02

0

Euclidean error (pixels)
Cam 2: îe = 0.26765ae = 0.14915

0.2 0.4 0.6 0.8
Euclidean error (pixels)

Cam 3: îe = 0.27163 ae = 0.13057

!

0.2 0.4 0.6 0.8
Euclidean error (pixels)

Fig. 5.2: H istogram  of sub-pixel detection errors for th ree  different cam eras 

w ith  their fitting  w ith Rayleigh P D F . E rrors are estim ated  using m ultiple shots 

of th e  calibration pa tte rn .
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Table 5.2: Colour plane m isalignm ents (in pixels) before calibration  in mean 

(SD) form at for th ree different cam eras. R /G  and B /G  are the  red and blue

C am  1 C am  2 C am  3

C alib

Im age

R /G 0.5707 (0.2113) 0.5496 (0.2308) 1.1834 (0.4125)

B /G 0.4110 (0.2635) 0.7374 (0.6361) 0.5665 (0.3848)

Test

Im age

R /G 0.5355 (0.2225) 0.5413 (0.2035) 0.9729 (0.2866)

B /G 0.4877 (0.2925) 1.1630 (0.8971) 0.8378 (0.7956)

T he intersections of the  chessboard p a tte rn s  are firstly determ ined for each 

colour plane. T he typical sub-pixel detection accuracy of the  techniques ou t­

lined in Section 3.2.2 are shown in Fig. 5.2 for the  th ree  cam eras used in the 

experim ents.

5.3.1 Evaluation w ith real images

T he colour plane m isalignm ents before calibration  for the  two chessboard p a t­

terns are presented in tab le  5.2. Following calibration, the  known LCA models 

are used to  w arp the  colour planes so as to  register th e  red and blue colour 

planes w ith  th e  green channel. T he Euclidean reg istra tion  residuals rem aining 

following th is re-reg istration  are presented in tab le  5.3, showing a  significant 

decrease in m isalignm ents. These residuals are of a  sim ilar m agnitude to  the 

sub-pixel detection  accuracy, thus validating bo th  the  proposed LCA model 

and the  effectiveness of th e  proposed calibration algorithm .

T he con tribu tion  of the  decentering LCA com ponent is now evaluated. The re­

su lts presented in tab le  5.4 show th e  Euclidean reg istra tion  residuals following 

com pensation based on a  m odel w ithou t decentering elem ents. T he increase 

in these residuals com pared w ith those of th e  full calibration  m odel indicated 

th a t although  radial chrom atic aberra tion  is predom inant, there  is a varying 

elem ent of decentering aberra tion  depending on the  lens employed. T he inclu­

sion of decentering elem ents in th e  LCA description gives a  m ore general and 

accurate  m odel of la tera l chrom atic aberra tion  in an  image.

M ore details of th e  colour plane m isalignm ents before and after calibration are 

presented for one exam ple (Cam  1) from tab le  5.2 and  5.3. Fig. 5.3 shows
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Table 5.3: Colour plane m isalignm ents (in pixels) following calibration and 

colour plane w arping in m ean (standard  deviation) form at for th ree  different 

cam eras.______________________ _______________________________________
C am  1 C am  2 C am  3

Calib

Im age

R /G 0.1202 (0.0636) 0.1401 (0.0733) 0.1846 (0.0722)

B /G 0.1376 (0.0734) 0.1658 (0.0947) 0.1543 (0.0925)

Test

Im age

R /G 0.1788 (0.1062) 0.1625 (0.0784) 0.2044 (0.1149)

B /G 0.1879 (0.1110) 0.3092 (0.2146) 0.3202 (0.2419)

Table 5.4: Colour plane m isalignm ents (in pixels) following calibration and 

w arping using a m odel w ithou t tangen tia l elem ents in m ean (standard  devia­

tion) form at for th ree  different cam eras.

C am  1 C am  2 C am  3

C alib

Image

R /G 0.1828 (0.0904) 0.1615 (0.0858) 0.2196 (0.1208)

B /G 0.2131 (0.1117) 0.1805 (0.1087) 0.1507 (0.0754)

T est

Im age

R /G 0.1864 (0.1110) 0.2022 (0.1019) 0.1886 (0.1449)

B /G 0.2071 (0.1334) 0.3670 (0.3070) 0.3761 (0.3029)

the  d istribu tion  of colour plane m isalignm ents before and after com pensation 

for LCA for th e  calibration  p a tte rn  in Fig. 5.1. T he corresponding Euclidean 

vector represen tation  of these m isalignm ents for the  te s t image, before and 

after com pensation, are illustrated  in Fig. 5.4. These show th a t the  rem aining 

m isalignm ents are random  in na tu re  (w ith m agnitude sim ilar to  the  detection 

noise), indicating th e  successful m odelling and com pensation of LCA.

M odel p a ram eter analysis

To determ ine th e  su itab ility  of the  model, in term s of redundan t param eters, 

and  its stability , it is useful to  look a t th e  param eter uncertain ties and the 

p aram eter correlations. These m easures m ay be com puted directly  from the 

itera tive  estim ation  scheme as described in equations 4.17 and 4.20. In order 

to  concisely describe these results two extrem e exam ples are taken  from the 

calibration  d a ta  in Section 5.3.1. These are the  red /g reen  alignm ents in Cam  

1 and C am  3. T he param eter values and uncertain ties are presented in table 

5.5. T he p aram eter ci, related  to  the  la teral colour d istortion , takes a large 

role in th e  calibration  in Cam  1. However, in all estim ations its estim ated
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Red green LCA Red green LCA

Euclidean error (pixels) Euclidean error (pixels)

Fig. 5.3: H istogram s of Euclidean m isalignm ents com puted for chessboard 

intersections on th e  calibration image w ith  Cam  1. Left column shows the  

R /G  and B /G  differences before com pensation, while th e  right colum n shows 

those detected  following calibration w ith fitted  Rayleigh P D F ’s.

uncertain ty  value rem ains low indicating a  stable system  of equations. P aram ­

eter C2, related  to  th e  chrom atic variation of d isto rtion  proves useful for all 

calibrations and also exhibits low uncertainties. T he decentering param eters 

C3 and c4 play a  variable role, clearly related  to  th e  cam era or lens employed. 

The centre point estim ates and uncertain ties are presented for com pleteness.

In lens d istortion  calibration, it was found th a t there  was a  high correlation 

between th e  centre point and decentering param eters. It was argued th a t this 

relationship does not exist to  th e  sam e exten t when using th e  chrom atic aber­

ration  model due to  its additional lower order term . This is easily investigated 

experim entally by looking a t th e  correlations between these param eters. Ta­

ble 5.6 shows th e  extrem e values of these correlations, where Cam  1 shows a 

reasonable to  strong link between the  param eters. From tab le  5.5 it is noted 

th a t there  was little  use m ade of th e  decentering term s so th is is not unusual. 

Cam  3 on th e  o ther hand  shows com plete independence between the  decen­

tering and centre point param eters. T he correlations are thus m ore cam era 

related, and it can be assum ed th a t these param eters are independent, unlike 

the  analogous lens d istortion  case.
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Fig. 5.4: Euclidean vector plots of colour plane m isalignm ents before (left 

column) and after (right column) LCA com pensation, evaluated on th e  te st 

chessboard p a tte rn  w ith  Cam  1.

Table 5.5: P aram eter values and uncertain ties for th e  selection of reg/green 

calibration w ith Cam  1 and Cam  3

P a ra m e te r C a m  1 C a m  3

c i X lO - 3 82.730  (0.0094) 2.021 (0.0152)

C2 X lO - 3 -11.164 (0.0142) -4 .970  (0.1023)

c3 x l O " 4 -0 .0693 (0 .0252) 2 .188 (0.0633)

C4 X lO “ 4 -0 .0716 (0.0349) 1.111 (0.0891)

U o 1163 (5.33) 1335 (4.13)

Vo 903 (5.38) 1074 (4 .18)

Table 5.6: P aram eter correlations for decentering and centre point param eters.

u 0 Vo

C3 -0 .666 -0.012

c4 -0 .009 -0.702

u 0 1 0.004

Vo 0.004 1

U 0 V o

C3 -0.0717 0.012

c4 -0 .008 -0 .340

U o 1 0.0001
Vo 0.0001 1

(a) Cam 1 (b) Cam 3
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5.3.2 Examples

To access the  im provem ent in image quality  a  selection of exam ples are shown 

for each cam era referred to  in tables 5.2 and 5.3. For each cam era a  region 

of in terest (ROI) is selected in the  te s t im age and an outdoor scene image. 

Im ages taken  w ith C am  1 are presented in Figs. 5.5 and 5.6, C am  2 in Figs. 

5.7 and 5.8, while Cam  3 exam ples are presented in Figs. 5.9 and 5.10. The 

associated colour histogram s for the  te s t R O I’s of Figs. 5.5, 5.7 and 5.9 show 

th a t for th e  uncorrected image, two colour pa th s exist between the  black and 

w hite squares of the  te s t p a tte rn . This is due to  th e  additional colour fringing 

in troduced  by th e  LCA around regions of high contrast. T he colour histogram s 

for the  corrected images show th a t following com pensation there  is only one 

colour p a th  between dark  and bright squares, indicating the  successful removal 

of LCA from these images. T he real exam ples of Figs. 5.6, 5.8 and  5.10 show a 

sim ilar behaviour. A dditional colour pa th s  can be seen in th e  original images, 

while following calibration and com pensation these ex tra  colors are removed. 

These results clearly indicate th a t the  proposed m ethod of autom atically  cal­

ib ra ting  and rem oving LCA in images leads to  a  significant increase in image 

quality.
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Fig. 5.5: Test image for Cam 1. Top row shows crop with associated colour histogram before compensation. Two additional colour paths

are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.6: Outdoor image for Cam 1. Top row shows crop with associated colour histogram before compensation. Additional colour paths

are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has been
removed.
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Fig. 5.7: Test image for Cam 2. Top row shows crop with associated colour histogram before compensation. Two additional colour paths
are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.8: Outdoor image for Cam 2. Top row shows crop with associated colour histogram before compensation. Additional colour paths

are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has been
removed.
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Fig. 5.9: Test image for Cam 3. Top row shows crop with associated colour histogram before compensation. Two additional colour paths
are formed by the colour fringing between dark and bright regions. Second row shows the corresponding LCA compensated crop, where
the colour fringing has been cancelled.
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Fig. 5.10: Outdoor image for Cam 3. Top row shows crop with associated colour histogram before compensation. Additional colour

paths are formed by the colour fringing. Second row shows the corresponding LCA compensated crop, where the colour fringing has
been removed.
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5.4 D iscu ssion

This chap ter proposes a new m odel based m ethod of com pensating for la t­

eral chrom atic aberra tion  in images, offering a usable a lternative to  active lens 

control techniques and d a ta  in terpolation  m ethods. T he m ain contributions 

are in th e  derivation of la teral chrom atic aberra tion  m odels and their subse­

quent param eter estim ation  techniques. The chrom atic calibration technique 

is easy to  use, based on a  single view of a chessboard p a tte rn  w ithou t any 

s tric t geom etric constraints. This fully au tom ated  m ethod is presented in a 

closed-form allowing faster and sim pler estim ation. C om pensated images are 

formed by re-sam pling the  originals based on these calibrated  models gener­

ating  higher quality  aberra tion  free images. M odel validation is carried out 

indicating strong global agreem ent w ith  detected  LCA. Exam ples on selections 

of real im ages dem onstra te  the  higher quality  achievable w ith  such aberration  

removal. These show th a t the  additional colours th a t LCA introduces are re­

moved following com pensation w ith  the  proposed m ethods, u ltim ately  giving 

superior quality  colour images.



Chapter 6

D istortion  M inim isation in 

Planar R ectification

R ectification is known to  be a useful step  in stereoscopic analysis. T he aligning 

of epipolar lines allows subsequent algorithm s to  take advantage of th e  epipo- 

lar constrain t, reducing th e  search space to  one dim ension. I t is known and 

easily dem onstra ted  th a t the  rectilinear m echanical alignm ent of two cam eras 

is prohibitively difficult. T he m ethod developed in th is chap ter aims to  simu­

la te  rectilinear images from those of a rb itra rily  placed cam eras. This involves 

sub jecting  the  images to  a  two dim ensional projective transform ation  or pla­

nar hom ography, while sim ultaneously m inim ising projective distortions. This 

work has been published in M allon and W helan (2005).

T here are obvious advantages to  specifying transform ations th a t minimise the 

in troduction  of d istortions, or equivalently m axim ise th e  sim ilarities between 

th e  original im age and  th e  transform ed one. Recall from Section 4.1.2, th a t a 

unique scaling was applied to  th e  new und isto rted  im age in order to  globally 

m inim ise the local pixel distortions. This idea is now expanded to  2D projective 

rectifying transform ations w ho’s solutions are not fully constrained.

T his work follows on from H artley  (1999), w here a rigid transform ation  is de­

rived from  th e  F undam ental M atrix. In th is  uncalib ra ted  case th e  resulting 

d ep th  reconstruction  is determ ined up to  a projective transfo rm ation  (H artley 

and Zisserm an, 2003). M any applications requiring such relative dep th  m ea­

sures exist, including view synthesis (Ng et al., 2002) and robotic navigation 

(Faugeras and  Luong, 2001). The hom ographies are calculated  solely from
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an analysis of the  Fundam ental M atrix, to  re-orien tate th e  epipolar projec­

tions parallel to  th e  horizontal image axis. U ndeterm ined param eters of the 

hom ographies operating  on th e  x  coordinate are then  specified to  maximise 

view point sim ilarities between the  original and rectified images, thus reduc­

ing d isto rtional effects of the  hom ographies and im proving stereo m atching. 

T he rectification is therefore described by a reprojection onto two planes w ith 

relative degrees of freedom abou t th e  vertical axis only.

T he m ain con tribu tion  of th is chapter is the  proposal of a novel technique to  

reduce rectification d istortions for the  m axim isation of view point sim ilarities 

betw een the  original and rectified images. Previous d isto rtion  in terp reta tions 

have included orthogonality  of image corners and m axim ising im age content 

over the  view window (Faugeras and Luong, 2001). Loop and Zhang (1999) 

consider d isto rtion  by a ttem p tin g  to  force affine qualities on th e  hom ographies. 

As skew and  aspect ra tio  are invariant to  affine transform s, they  make ex tra  

constrain ts upon the  hom ographies to  reduce these types of d istortion. Their 

approach is no t op tim al as only one local region of the  im age is considered. 

T he proposed approach in con trast considers all regions of the  image, enforc­

ing first order orthogonal qualities in a  n a tu ra l way th rough  Singular Value 

D ecom position.

T his chap ter also presents an  im proved m ethod for the  com putation  of ro­

bust m atching hom ographies, from a real Fundam ental M atrix  estim ated  from 

noise affected points. T his results in a  rectification error equal to  th a t of 

the  F undam ental M atrix  error, significantly im proving upon the  alignm ent of 

epipolar lines com pared to  sim ilar m ethods such as H artley  (1999), H artley 

and Zisserm an (2003), A l-Shalfan et al. (2000) and Loop and Zhang (1999).
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6.1 E pipolar geom etry

G iven two im ages of a scene, let m  and m ' be the  projections of some 3D point 

M  in im ages 1  and T  respectively. T he intrinsic projective geom etry between 

th e  two views is defined as:

m 'T F m  =  0, (6.1)

where th e  F undam ental M atrix  F  (Faugeras and Luong, 2001, H artley  and
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Zisserm an, 2003, A rm angue and Salvi, 2003) is a  3 x 3 m a trix  of rank  2. Given 

a t least 8 po in t m atches it is possible to  determ ine th e  m a trix  (H artley, 1997). 

T he Fundam ental M atrix  m aps points in X  to  lines in J ' ,  F m  =  1' upon which 

corresponding points lie. T he im age in X  of th e  cam era centre, c ', is term ed 

epipole e  =  (eu, e„, i ) T and sim ilarly for X  th e  im age of c is e ' =  (e'u , e'v) i ) T:

F e =  0 =  F Te'.

T he epipoles e and  e ' can be sim ply com puted from th e  Singular Value Decom­

position of F  =  Udiag(0, <7i,cr2)V T where U  =  ( e ' , u i , u 2), V  =  ( e , v i , v 2), 

Oi and  a2 are th e  typically  non-zero singular values. All th e  epipolar lines in 

th e  respective im ages pass th rough  the  epipoles. In th is chapter it is assumed 

th a t th e  F undam ental M atrix  has been found, which requires a t least 8 point 

m atches for linear estim ation. In addition  th e  origin of the  images is considered 

to  be (0 ,0 ), generally the  top  left corner.

6.2 R ectification

Im age rectification is the  process of re-aligning corresponding epipolar lines to  

becom e collinear and parallel w ith  the  x  axis as illu stra ted  in Fig. 6.1. For a 

stereo sensor, m echanical ad justm ents of th is calibre are difficult to  achieve. 

However, given a description of the  projective geom etry between th e  two views, 

projective transform ations can be applied resulting in rectified images. The 

projective transform ations are uniquely chosen to  minim ise d istortions and 

m ain tain  as accurately  as possible the  s tru c tu re  of th e  original images. This 

helps during subsequent stages, such as m atching, ensuring local areas are not 

unnecessarily w arped.

R ectification can be described by a  transform ation  th a t  sends the  epipoles to  

infinity, hence the  epipolar lines become parallel w ith  each other. Additionally, 

it is ensured th a t  corresponding points have th e  sam e y coord inate by m apping 

th e  epipoles in th e  direction e  =  ( i ,o ,o ) T or equivalently e  =  (ew,o, o)T. The 

F undam ental M atrix  for such a  rectified pair of images is:

F

/  0 0 0 ^ 

0 0 - 1

\ ° 1 0 /
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(a) Left view. (b) Right view.

(c) Rectified left. (d) Rectified right.

Fig. 6.1: Exam ple of th e  rectification procedure. T he original images are 

shown in 6.1(a) and 6.1(b) overlaid w ith  the ir respective epipolar lines. After 

rectification these lines becom e collinear and parallel w ith  the  image x  axis, 

as shown 6.1(c) and 6.1(d).

T he desired hom ographies give new im age coordinates as m  =  H m  and m ' =  

H 'm '.  It follows from equation  (6.1) th a t m /TF m  =  0 and m /TH /TF H m  =  0 

resulting in a  set of constrain ts relating H  to  H7:

H 't F H  =  F (6 .2)

T he hom ographies satisfying equation (6.2) are not unique, b u t sim ilarly to  

H artley  H artley  (1999) H  is chosen to  transform  th e  epipole e  to  infinity:

H  =

1 0 0

/  f-'U 1 0
^ — \ / e u  o 1 y

1

^21

^31

0 0 

1 0 

0 1

\

(6.3)

T he de term inan t of th e  Jacobian, d e t(H ) =  1/(1  — x /e u), gives an indication
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of th e  changes or w arping of local areas. A t the  origin the  transform ation  

appears orthogonal (d e t(H ) =  1), while in general eu is large in com parison to  

the  im age size. T his ensures H  does not cause severe perspective distortion.

6.2.1 M atching Homography

Considering equation  (6.2), it is clear th a t for an ideal Fundam ental M atrix  

there  are no applicable constrain ts on the  first row of H '. T hus the  m atching 

transfo rm ation  H ' is specified w ith  the  form:

/ 1 0 0 \

H' = ¿21 ¿22 ¿23

\¿31 ¿32 ¿33 /

E valuating equation  (6.2), it is now proposed to  estim ate the  entities of H ' by 

the  elem entary  com parison of entries in equation (6.4), w here a  represents the 

(optional) a rb itra ry  scale difference. T he constrain ts on H ' are:

(̂ 21^31 — ¿3^ 21) ¿3 1

( ¿ 2 1  ¿ 3 2  “  ¿ 3 1 ^ 2 2 )  ¿ 3 2

^  ( ¿ 2 1  ^  33 ¿ 3 1  ¿ 2 3 )  ¿ 3 3

- h '21

¿ '22

- h '23 /

=  a
f u  /12 f\3  ^

/ 2I Î 2 2  Î23

/31 Î32 Î33 J
(6.4)

A ssum ing an im perfect F  m a trix 1, the  solution for H' can be robustly  found 

in a least squares sense from equation  (6.4) by the  SVD of B p  =  0, where 

P  =  (¿21 » ¿22’ ¿235 ¿3 1 ? ¿325 ¿ 33) ot)T . C om puting H ' in a least square sense using 

all th e  entries of F  significantly improves th e  rectification accuracy in contrast 

w ith  H artley  (1999) solution H ' =  H ([e ]xF  +  e e /T), and others (see Section 

6.4).

6.3 R educin g  R ectification  D istortion s

T he application  of H  and H 7 does indeed rectify th e  im ages as required. How­

ever, as can be noted  above, th e  first rows of th e  hom ographies are undeter-

lF matrix computed with a limited set of noisy points.
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mined. T his results na tu ra lly  from the  Fundam ental M atrix , which does not 

encapsulate any inform ation abou t th e  position of the  x  coordinate. Weng 

et al. (1993) shows th a t only one com ponent of th e  im age position of a  point 

is used by th e  epipolar constrain t. T he projective transform ations in gen­

eral in troduces d istortions in th e  rectified images, specifically skewness and 

aspec t/sca le  distortions. However, it is possible to  specify the  first rows of 

b o th  hom ographies w ithou t invalidating the  constrain ts used to  com pute them , 

A H e  =  H e , and sim ilarly for th e  prim ed coun terparts  giving:

H 't A ,t F A H  =  K 't F K  =  F , (6.5)

w here K  =  A H . A  and A ' are transform ations of affine form:

 ̂ &11 O'U &13 ^
0 1 0

\ 0 0 1 /
T he creation and loss of pixels as a result of th e  application of transform ation  

K , can be quantified in the  local area of po in t p  by any norm  of th e  Jacobian:

dx dx
J ( K ,p )  =  ' dx dy 

djl
dx dy

Let (ji ( J ) and 02 (J) be th e  non zero singular values of J  in descending order. 

Ideally, an  orthogonal transform  th a t neither creates or destroys pixels will 

have singular values equal to  one. In general <7i(J) > 1 for a  transform ation  

th a t overall creates ex tra  pixels, and 0i(J) < 1 for an  overall com pression of 

pixels w ith in  a local region.

T he search for th e  best com prom ise of the  affine pair a n  and  a u  to  m aintain 

o rthogonality  and  perspective of th e  original image can thus be expressed by 

searching for the  singular values th a t are closest to  one. T he W ielandt-H offm an 

theorem  (G olub and Loan, 1996) for singular values s ta tes  th a t  if A  and E are 

m atrices in Mmxn w ith m  >  n, then:
n

5 > fe(A + E ) - a fe(A))2 <||E|£,
k=1

where ||E ||f  is th e  Frobenius norm  of E. This indicates th a t  if A  is pertu rbed  

by E, th e  corresponding p ertu rb a tio n  in any singular value of A  will be less 

th a n  th a t of the  Frobenius m agnitude of E. This m eans th a t the  relationship 

betw een entries in a  m atrix  and its singular values is a  sm ooth  function, making 

them  very su itab le  for iterative search techniques.
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6.3.1 M inim isation

T he search is conducted by evaluating th e  singular values of the  Jacobian a t 

various points over th e  image. These points, p^ can be sim ply specified as a 

grid covering th e  image area or as the  corners of the  image. T he function to  

be m inim ised is then  expressed as:

n

f ( a n , d l2) =  X > i ( J ( K , Pi)) -  l ) 2 +  (a2( J (K ,Pi)) -  l ) 2]. (6.6)
¿=1

T his functional is m inim ised using th e  Nelder and M ead sim plex search m ethod 

which converges, on average, after 50 iterations. F in ite  derivative m ethods can 

also be applied as th e  function inherently  has sm ooth  derivatives. Since a i3 

is an  x  d irection shift it does not in troduce any d istortion. It can be chosen 

au tom atically  to  centre th e  rectified image in th e  old im age window if desired. 

T he sam e procedures equally apply to  the  prim ed coun terpart image. The 

rectification is determ ined solely on the  estim ate of th e  F  m atrix . This has 

the  advantage th a t no poin t correspondences are explicitly needed. Thus the 

rectification is invariant to  the  location or quan tity  of the  point set, which 

overall tends tow ards a m ore consistent result.

6.4 E xp erim en ts

A selection of nine real exam ples are presented 2. T he perform ance of the  pro­

posed rectification is quantified using various m etrics, and com pared side-by- 

side w ith  two popular m ethods from th e  litera tu re , H artley  (1999), H artley and 

Zisserm an (2003) and  Loop and Zhang (1999). T he exam ples feature a  range 

of Fundam ental M atrix  accuracy levels, and requiring various transform ation  

complexity. T he images were taken w ith  a  digital cam era w ith  640 x 480 pixel 

resolution, over random  unknow n baselines. T he lens param eters rem ained un­

changed th roughou t and lens d isto rtion  has been removed using the  m ethod 

outlined in chap ter 4. T he images are of indoor and outdoor scenes w ith  rel­

atively low and high dep th  of scene respectively. T he Fundam ental M atrix  

was calculated using th e  linear norm alised eight po in t m ethod  (H artley, 1997)

2These real images are used as opposed to those in the literature for two reasons. Firstly, 
the availability of suitable data sets is limited, and secondly the relative simple geometry of 
some of these examples.
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using m anually  m atched points. T he exam ples are available a t the  VSG code 

archive web page, h t tp : / /w w w .e e n g .d c u . ie /~ v s l /v s g c o d e .h tm l  including 

da ta .

6.4.1 Error M etrics

T he rectification technique is based solely on the  estim ation  of the  Funda­

m ental M atrix. Therefore, and according to  equation  (6.5), the  rectifica­

tion  perform ance is directly  related w ith  the  in tegrity  of the  Fundam ental 

M atrix . A direct evaluation of the  accuracy of the  F undam ental M atrix  is 

given by th e  perpendicular d istance from a point to  its epipolar line. Con­

sidering th e  corresponding points m  =  (u ,v ,  i ) T and m ' =  (u ! ,v ', i ) T, the 

epipolar line in 1  is given by 1 =  F Tm ' =  (laJ b J c )T• T he perpendicu­

lar line th rough  m  is: I1 =  (/&, —la, (lav  — lbu))T and th e  intersection point: 

p 1 =  1 A l1 =  (u ± , v ± , i ) T, where A is th e  cross p roduct. T he Fundam ental 

M atrix  error is the  d istance E f =  ((u 1 — u )2 +  (v1 — v )2)%. T he rectification 

precision is then  evaluated as: E r =  | |(K m )2 — (K 'm ')^ ||-

In general, it is no t possible to  avoid all d istortions in a  perspective transfor­

m ation. D istortions in th is case are defined as departu res from the original 

im age s truc tu re , such as skewness and relative scale changes. These factors 

can be quantified by m easuring the p roportional sizes and orthogonality  of the 

transform ed images. Thus a = ( w /2 ,0 ,1)T, b =  (u>, h / 2 , 1)T , c =  ( w /2, /¿, 1)T 

and d =  ( 0 ,/ i /2 ,1 )T are defined as four cross points of the  image where w  

and  h are the  im age w id th  and height. These points are then  transform ed, 

w hereupon th e  vectors x  = b — d and y = c — a are formed. T he orthogonality  

is then  given as th e  angle of th e  upper left corner between th e  x  and y  vectors 

(ideally 90°). This angle is: E 0 =  cos-1 T he aspect ra tio  can be used

to  m easure the  relative size of the image. Taking th e  corner to  corner length 

ra tio  by redefining the  points a =  ( 0 ,0 ,1)T, b = (w, 0 , 1)T , c =  (w , /i, 1)T and 

d =  (0 ,/i, 1)T , th e  vectors x  and  y  are formed as before. T he aspect ratio

(ideally unity) is th en  defined as: E a =  2-

http://www.eeng.dcu.ie/~vsl/vsgcode.html
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Table 6.1: P resents th e  error m etrics described in Section 6.4.1 for nine differ­

ent real world sam ples. T he errors are presented in m ean (standard  deviation) 

form at w here applicable. O rthogonality  is ideally 90° while the  ideal aspect 

ra tio  is 1. T he results are com pared w ith  two alternative  techniques of H artley 

(1999), H artley  and Zisserm an (2003) andLoop and Zhang (1999), (nc) =  no 

convergence. A selection of exam ples (Boxes, Roof, Yard and Drive) are shown 

in figures 6.2 6.3 6.4 and 6.5.

Sample
F Mat. Ef 
Mean (SD)

Method
Orthogonality E0 Aspect Ratio Ea Rectification Er

H' H H' H Mean SD

Lab 4.861
(2.732)

Proposed 
Loop (nc) 
Hartley

89.87

99.07

89.01

96.56

0.9960

1.1635

0.9835

1.1111

4.45

23.02

2.41

4.53

Boxes* 0.5068
(0.3630)

Proposed
Loop

Hartley

88.78
97.77
86.56

89.33
95.69
94.99

0.9785
1.1279
0.9412

0.9889
1.0900
1.0846

0.44
4.35
33.36

0.33
9.20
8.65

Slates 0.5987
(0.4593)

Proposed
Loop

Hartley

89.12
37.29
89.96

89.13
37.15
88.54

0.9852
0.2698
1.0000

0.9855
0.2805
0.9769

0.59
1.14
2.27

0.56
3.84
5.18

Junk 0.3437
(0.2832)

Proposed 
Loop (nc) 
Hartley

90.78

102.67

91.62

99.60

1.0233

1.3074

1.0274

1.2466

0.11

14.38

0.32

8.51

Hall 1.9829
(1.2124)

Proposed
Loop

Hartley

90.00
91.14
102.56

90.03
91.58
90.48

1.0003
1.0194
1.2353

1.0006
1.0271
1.0081

1.81
4.92
2.59

1.39
2.40 
2.75

RooF 1.6422
(1.7085)

Proposed
Loop

Hartley

88.35
69.28
122.77

88.23
87.70
80.89

1.1077
0.6665
1.5256

0.9700
1.0497
0.8552

I.96 
0.84
II.89

2.95
11.01
18.15

Arch 0.3244
(0.3123)

Proposed
Loop

Hartley

91.22
95.40
100.74

90.26
98.94
93.05

1.0175
1.0991
1.2077

1.0045
1.1662
1.0546

0.22
131.3
39.21

0.33
20.63
13.85

Yard* 0.6365
(0.4776)

Proposed
Loop

Hartley

89.91
133.62
101.95

90.26
134.27
91.91

0.9987
2.1477
1.2303

1.0045
2.4045
1.0335

0.53
8.91
48.19

0.54
13.19
11.49

Drive* 0.5684
(0.7568)

Proposed
Loop

Hartley

90.44
98.73
107.66

90.12
101.42
90.87

1.0060
1.1541
1.3491

1.0021
1.2052
1.015

0.18
10.41
3.57

0.91
3.24
3.43
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6.4.2 R ectification Performance

T he rectification perform ance is concerned w ith  quantifying only the  y  or row 

alignm ent of corresponding points over the  images. Referring to  tab le  6.1, of 

in terest is the  Fundam ental M atrix  error E f , which is sufficiently characterised 

by its m ean and  s tan d ard  deviation. As the  rectification is only based on the 

Fundam ental M atrix , its error Ef  represents the  m inim um  expected rectifica­

tion  error Er . T he Fundam ental error Ef  ranges from 4.8(2.7) to  0.32(0.31) 

pixels in th e  exam ples. T his is m atched in every instance by the  m ethod 

proposed here, where Er ranges from 4.5(2.4) to  0.11(0.32).

In com parison, th e  H artley  (1999) technique fails to  m atch  any of these results3, 

w ith  Er ranging from 48.2(11.4) to  2.6(2.7) (see tab le  6.1). I t stem s from a lack 

of robustness in the  m ethod used to  m atch  the  hom ographies. In com parison 

to  Loop and Zhang (1999) m ethods, for some cases th is rectification did not 

converge (nc), while convergence is questionable for the  Arch  exam ple. As 

th is technique is scale invariant, su itable scaling for each exam ple was chosen 

manually. D isregarding th e  non-convergence cases the  rectification error Er 

ranges from 10.4(3.2) to  1.4(3.8). T he poor alignm ent for these alternative 

techniques can additionally  be seen in th e  figures 6.2, 6.3, 6.4, and 6.5. It can 

be seen th a t the  rectification process described here significantly outperform s 

the  com parison techniques. Its convergence to  th e  m inim um  error Ef  in every 

case dem onstra tes good robustness.

theoretically Hartleys method guarantees horizontal epipolar lines. From an examina­
tion of the experiments in Figs. 6.2 to 6.5 it can be concluded that the right image satisfies 
this constraint, but not the left image. The left image is rectified by the matching transform 
H', which is computed in Hartley (1999) according to H' = (I + HeaT)HM. This simplifies 
to H' = HM if aT = (1,0,0). From Result A4.4 and 9.14 in Hartley and Zisserman (2003), 
M is defined as M = [e]xF or equivalently M = [e] x F + evT for any vector v. However, 
the constraint on M that Me7 = e is not well satisfied in practice. This may be due to the 
normal epipole inaccuracies, i.e. that Fe = 0 is generally not exactly 0. The specific reason 
as to why the matching homography H does not entirely match (thus yielding horizontal 
epipolar lines) is unclear, though it must be as a result of the effects of these aforementioned 
inaccuracies.



6.4.3 D istortion Reduction

T he rectification process introduces a  necessary d isto rtion  to  the  images th a t 

realigns them  horizontally relative to  each other. I t is possible to  specify the x  

position of pixels w ith an affine shearing transform  th a t leaves th e  rectification 

unaffected. To th is end the  aim  is to  preserve, as much as possible, the  original 

view point of each cam era in order to  avoid in troducing unnecessary distortions. 

T he d isto rtion  reduction criteria  of equation (6.6) therefore strives to  minimise 

local pixel w arping th roughou t the  image. Table 6.1 and figures 6.2, 6.3, 6.4, 

and 6.5 show the  perform ance on the set of te s t images. T he orthogonality  E 0 

and aspect ra tio  E a are of in terest and are calculated for bo th  hom ographies. 

O rthogonality  gives a in tu itive m easure of th e  d isto rtion  level. Taking the 

exam ples in tab le  6.1, th e  average absolute orthogonal angle error for the 

proposed m ethod is 0.8° for bo th  H  and H '.

In com parison H artley  (1999), H artley  and Zisserm an (2003) m ethod intro­

duces a  significant quan tity  of distortion. T his is expected as d isto rtion  is not 

considered, except to  minim ise disparity. As th e  results show, th is can intro­

duce serious w arping. T he average absolute orthogonal angle error for H  and 

H ' from tab le  6.1 is 4.2° and 12°. Loop and Zhang’s m ethods Loop and Zhang 

(1999) explicitly consider d istortion, defined in a  sim ilar way to  the  proposed 

m ethod, by preserving perpendicularity  and aspect ratio . T he results in ta ­

ble 6.1 show th a t the ir m ethod a t no point m atches our results. T he average 

absolute orthogonal angle error for th is m ethod is 18° and 20° for H  and H '. 

T his is because the ir criteria  is defined only for the  m idpoint of the  image. An 

optim al estim ate  for one point does not m ean it will be optim al for all image 

points, and  indeed th is is the  case. In contrast, our m ethod  considers the local 

areas over th e  entire im age to  preserve orthogonality  giving superior results.

T he rectification detailed above is based on the  application of p lanar 2D pro­

jective transform ations. As evident from Section 6.2, these techniques are not 

applicable for configurations where the  epipole is w ith in  an image. In this 

case it is possible to  cause severe image distortions, even sp litting  connected 

regions by the ir application. In general, the  geom etry th a t  results in such un­

desirable situations, such as forward translation , is no t generally encountered 

in a  stereo-like setup.
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(a) Originals for Boxes example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang (1999) Method

(d) Hartley (1999) Method

Fig. 6.2: Boxes example including epipolar lines, see table 6.1 for more details.
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(a) Originals for Roof example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.3: Roof example including epipolar lines, see table 6.1 for more details.
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(a) Originals for Yard example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.4: Yard exam ple including epipolar lines, see tab le  6.1 for m ore details.
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(a) Originals for Drive example, Left and Right

(b) Proposed Rectification Method

(c) Loop and Zhang’s Method

(d) Hartley’s Method

Fig. 6.5: Drive exam ple including epipolar lines, see tab le  6.1 for m ore details.
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6.5 D iscu ssion

This chap ter describes a  robust m ethod for uncalibrated  p lanar rectification 

for a pair of stereo images taken  from d istinct viewpoints. It is simple to  

im plem ent and  based solely on the  estim ated  Fundam ental M atrix. A much 

im proved m ethod  is given for the  com putation  of m atching perspective tran s­

form ations, w ith experim ental results showing th a t the  rectification accuracy, 

or epipolar alignm ent, is equal to  the  error in the  Fundam ental M atrix  esti­

m ation. A novel technique is described to  reduce the  inevitable perspective 

d istortions. This ensures th a t the  rectified images resemble the originals as 

closely as possible, v irtually  elim inating un n a tu ra l skews and scaling. This 

has clear advantages for subsequent processing steps. T he d istortion  m in­

im isation is carried out by searching through a SVD for the  best first order 

approxim ation  of an orthogonal-like transform  th roughou t the  image window. 

D etailed com parison results clearly indicate much im proved perform ance for 

b o th  th e  rectification process and th e  d isto rtion  reduction  techniques.



Chapter 7

Conclusion and Future Work

A typical CCD sensor easily produces well in excess of over one million 8- 

b it m easurem ents every tim e an im age is acquired, while in com parison, the 

required quan tity  of inform ation is typically  m uch less. However, depending 

on the  application, th is inform ation is generally encoded th roughou t the  image 

array  and often over m ultiple images. On top  of th is decoding problem , ex tra  

com plexity is added by the  fact th a t m ost optical system s na tu ra lly  d isto rt 

th e  im aged geom etry of th e  scene. This m eans th a t  an objects geom etry is 

w arped depending on the  viewing location or position w ithin an  image.

Two types of such errors are considered in th is thesis, lens d isto rtion  and chro­

m atic aberra tion . T he com pensation of la teral chrom atic aberration , through 

the  realignm ent of th e  im age colour planes, m ay influence some specific high 

precision colour applications, b u t currently  its m ain p ractical usage pertains 

to  im age enhancem ent in d igital photography. Lens d istortion  removal or com­

pensation  is currently  used extensively in the m any applications requiring the 

m easurem ent of pixel or object locations. T he in troduction  of a m ethod for 

the  sole calib ration  of d istortion , as outlined in th is thesis, po ten tially  allows 

much g reater access to  d isto rtion  calibration, w ithou t encountering th e  over­

heads associated w ith  more trad itional calibration m ethods. T he m ethod also 

incorporates a  unique m eans of balancing the  unavoidable com pression and 

expansion effects following the  pixel relocations. T his is m indful of th e  overall 

end applications for which the  images m ay be used. N aturally, good image 

quality  is universally beneficial. This idea is no t lim ited to  one specific case, 

and  is fu rther extended to  m inim ising projective d isto rtions in a  p lanar rec­
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tification application. A gain th is considers the  bigger p ic ture including the 

fu rther applications, in th is case typically stereo which depends on the  simi­

larities betw een local areas over m ultiple images.

It can be seen from th e  lite ra tu re  th a t accurate, b u t easy to  use, techniques 

prove m ore popular th a n  equally accurate  b u t com plex m ethods, and indeed 

the  lack of such m ethods was p a rt of the  original m otivation behind th is the­

sis. T he calibration  of optical and fu rther projective d istortions is thus carried 

ou t w ith in  a  fram ework of low complexity, general applicability  and high accu­

racy. T his chap ter presents an  outline of the  findings and contributions of this 

thesis. A list of th e  publications which have resulted  from this work is also 

included, as well as some auxiliary work and presentations. Finally, a  brief 

discussion is included, highlighting some specific extensions and directions for 

fu tu re  research in th is area.

7.1 Sum m ary o f contributions

T he m ain findings and contribu tions resulting from th is thesis are identified 

and sum m arised below.

7.1.1 Aberration m odelling

Previous works in lens d isto rtion  calibration give little  reason for the  choice of 

d isto rtion  models. Consequently, a degree of confusion has arisen in some cases, 

as to  th e  appropria te  model usage and the  benefits thereof. C hap ter 2 aims 

to  redress th is situa tion , w herein the  origins and form of the  d isto rtion  models 

are derived, and  the  relationships betw een different a lternative  in terp reta tions 

are highlighted. T he benefits of each model are com pared on real d a ta  in 

term s of accuracy and stability. T he result is th a t th e  forw ard m odel offers 

th e  m ost general applicability  and su itab ility  for d isto rtion  estim ation  schemes. 

T he a lte rna tive  reverse m odel shows greater instability, u ltim ate ly  m anifesting 

itself w ith  increased sensitivity  in calibration, such as sensitiv ity  to  a  change 

or error in th e  inp u t da ta . T his shows th a t there  are significant advantages to 

be ob ta ined  w ith  the  use of th e  appropria te  model.

T he origins and perform ance of a lternative  m odels are also considered, includ­
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ing th e  popular divisional model. This m odel is shown to  perform  well for 

fish-eye type d istortion , b u t cannot cap ture  the  nonlinearities often encoun­

tered  in perspective cam era lenses. A high accuracy linear inverse approxim a­

tion  to  the  forw ard m odel is also described, as outlined in M allon and W helan 

(2004). Lastly, th is  chapter proposes a  param etric  m odel for m odelling la teral 

chrom atic aberra tion  in images.

7.1.2 Calibration patterns

C hap ter 3 also addresses ano ther neglected, b u t im portan t aspect in cam era 

calibration, th a t  of generating control points. Two popular types of p lanar 

p a tte rn s , circles and chessboards, are considered to  determ ine if th e  choice 

of p a tte rn  and in tu rn  the  detection m ethod, influences the  precision of the 

detected  control points. I t is clearly dem onstrated  th a t chessboard p a tte rn s 

are superior to  circular type p a tte rn s  in the generation of bias free control 

points.

T he respective accuracies are exam ined w ith  regard to  perspective transform a­

tions and lens d istortion. For each p a tte rn  two types of detection m ethods are 

com pared: centroids, conic fitting, edge approxim ation and corner points. It 

is shown theoretically  and experim entally  th a t com pensated conic fitting, edge 

approxim ation  and  corner points are invariant to  perspective bias, while only 

corner points are tru ly  invariant to  d isto rtion  bias. S im ulated and real results 

indicate th a t  d isto rtion  induced bias has a  significant m agnitude. Even for low 

d isto rtion  levels th e  biasing influence of d isto rtion  is likely to  be greater than  

the  no ise /b lu r floor, and  is m ore significant th a n  the  likely perspective bias 

encountered w ith  norm al calibration  views. Thus, th e  current com pensations 

for perspective bias only, are clearly not sufficient to  acquire bias free control 

points. U ltim ately, it is dem onstrated  th a t the choice of p a tte rn  and detection 

m ethod  will significantly im pact on th e  overall accuracy of any control point 

based calibration  procedure.

7.1.3 Calibration of lens distortion

Using th is high accuracy d a ta , high accuracy d isto rtion  calibration  is addressed 

in C hap ter 4. A non-m etric technique (no o ther cam era param eters are directly
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available) using a single view inpu t is proposed. I t uses the  forward distortion 

m odel in a  closed-form least squares solution to  accurately  calibrate lens dis­

to rtion  of all levels. A dditionally, a m ethod to  linearly estim ate a transform  to  

m inim ise th e  in troduction  of d istortions in the  re-sam pling of d istortion  free 

images is also introduced. T he m ethod is straightforw ard to  im plem ent and 

use and offers a viable a lternative to  curren t d isto rtion  calibration solutions.

A n exhaustive set of experim ents are conducted on the  proposed m ethod w ith 

real and sim ulated  da ta . These are conducted to  fully characterise the  m ethod 

and  position  itself w ith  regard to  po ten tial application  areas. In com parisons 

w ith  existing non-m etric and full calibration m ethods, the  proposed m ethod 

a t least m atches, and often surpasses, the  best of these m ethods. T he m ethod 

is shown to  be stab le  for very severe d istortion, right down to  sub-pixel lev­

els. T he dependence of th e  proposed m ethod on th e  p lanarity  and accuracy 

of th e  calibration  chart is investigated. This shows th a t the  relationship be­

tween th e  calibration accuracy and errors in the  calibration  chart are roughly 

proportional. N aturally, th e  ra te  depends on th e  p a tte rn  size and the  cam era 

resolution. As an  exam ple, for a 6M egaPixel resolution cam era and a 250 x 170 

m m  p a tte rn , the  induced error from 1 m m  im précisions in p lanarity  or p a tte rn  

precision is roughly 1 pixel. I t is shown th a t the  use of bias corrupted  control 

points from a circular p a tte rn  induces a sim ilar level of error. For successful 

calibration, it is recom m ended th a t a t least 200 control points are present. 

M ultiple inp u t views m ay be used to  a tta in  th is quantity , b u t they  offer no 

fu rther advantage. T he variable lens param eters which violate the  distortion 

calibration  are also investigated. T he ex ten t of the  d isto rtion  variations w ith 

the basic lens variables of focusing and apertu re  se tting  are shown. A ddition­

ally, th e  m odelling of decentering d istortion  by a variable projective transform , 

th rough  the  radial d isto rtion  equation, is shown to  surpass previous approxi­

m ations and  na tu ra lly  accom m odates th is type of d isto rtion  as required.

7.1.4 Com pensation for lateral chromatic aberrations

C hap ter 5 proposes a  m odel based m ethod for com pensating la tera l chrom atic 

aberra tion  in colour images. This com pares w ith  active lens control and rough 

im age in terpo la tion  m ethods, offering a much m ore usable alternative. It is 

based on a  single view of a  chessboard p a tte rn , b u t w ithou t any geom etric or 

m odel constrain ts. T he chrom atic m odel is calibrated  in a  closed-form least
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squares fashion, from which the  colour planes are re-aligned to  negate the 

effects of th e  aberra tion . A selection of exam ples before and after com pensation 

show th e  superior quality  images achievable w ith  such aberra tion  removal. I t 

is no t lim ited to  im age quality  concerns, and also offers a contribution  in the 

powerful b u t possibly slightly under-used area of colour vision systems.

7.1.5 D istortion m inim isation in rectification

Finally, C hap te r 6 describes a  direct, self-contained m ethods for p lanar rectifi­

cation of stereo pairs w ith particu la r focus on m inim ising projective distortions. 

T he m ethod, presented in M allon and W helan (2005), is based solely on an 

exam ination of th e  Fundam ental M atrix , where an im proved m ethod is given 

for the  derivation of two rectifying transform s. A approach to  uniquely op ti­

mised each transform  in order to  minim ise perspective d istortions is proposed. 

This ensures th a t  th e  rectified images resemble the  originals as closely as pos­

sible. D etailed results show th a t the  rectification precision exactly  m atches 

the  estim ation  error in th e  Fundam ental M atrix  calculation. In tests, the re­

m aining perspective d istortions are shown to  be much less th a n  alternative 

m ethods th a t  also consider the ir m inim isation. This m eans th a t  for follow on 

applications such as stereo m atching, th e  rectified images m aintain , as much 

as possible, th e  s tru c tu re  of the  original images to  leave th e  local m atching 

regions v irtually  invariant.

7.2 P u b lica tion s arising

T he following list of publications stem  directly  from the  work conducted during 

th is p ro ject, including background work on robotics, ex ternal presentations and 

subm itted  work. All papers are full length  and peer reviewed.

C a l ib r a t io n  a n d  R e m o v a l o f  L a te r a l  C h r o m a t ic  A b e r r a t i o n  in  Im a g e s

J. M allon and  P.F . W helan P attern  Recognition Letters , (A ccepted)

P r o je c t iv e  R e c t i f ic a t io n  f ro m  th e  F u n d a m e n ta l  M a t r i x  J. M allon and 

P.F . W helan Image and Vision Com puting , Volume 23, Issue 7, pp 643-650, 

2005.

181



C h a p te r  7 -  C onclusion

P r e c is e  R a d ia l  U n - d is to r t io n  o f  Im a g e s  J. M allon and P.F. W helan In

Proc. IC PR2004 - 17th In ternational Conference on Pattern  Recognition , 

Cam bridge, UK, pp 18-21, A ugust 2004.

R o b u s t  3 -D  L a n d m a r k  T ra c k in g  u s in g  T r in o c u la r  V is io n  J. Mallon, 0 .  

G h ita  and P.F. W helan In  Proc. S P IE  OPTO-Ireland, Galway, Ireland, 2002.

A n  I n te g r a te d  D e s ig n  T o w a rd s  t h e  I m p le m e n ta t io n  o f  a n  A u to n o m o u s  

M o b ile  R o b o t  J. M allon, O. G hita , P. F. W helan In  Proc. O P T IM  2002 

- 8th In ternational Conference On O ptim ization o f Electrical and Electronic 

E quipm ent, Brasov, R om ania, 2002.

E p ip o la r  lin e  e x t r a c t io n  u s in g  f e a tu r e  m a tc h in g  O. G hita, J. M allon and

P.F. W helan In  Proc. Irish M achine Vision and Image Processing Conference, 

M aynooth, Ireland, pp 87-95, 2001.

Auxiliary publications and presentations
C o m p u ta t io n a l  a p p r o a c h  fo r d e p th  f ro m  fo c u s  O. G hita , P. F. W helan 

and J. M allon, Journal o f Electronic Imaging  Volume 14 issue 2, pp 1-8, 2005

M o b ile  ro b o t ic s  a n d  t r i n o c u la r  v is io n  J M allon, Presentation to A us­

tralian Centre fo r  Field Robotics U niversity of Sydney, A ustralia , January  

2003.

Submitted publications 1
W h ic h  P a t t e r n ?  B ia s in g  A s p e c ts  o f  P la n a r  C a l ib r a t io n  P a t t e r n s  a n d  

D e te c t io n  M e th o d s  J. M allon and P.F. W helan P attern  Recognition , (Under 

review: S ubm itted  Ju ly  12, 2005)

7.3 D irection  for future research

Several extensions and rela ted  topics to  th is work are w orthy of fu rther inves­

tigation . T his section proposes a few directions for fu tu re  research.

1At the time of writing these are under review
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Considering th e  popularity  of p lanar calibration ta rg e ts  in m any applications, 

including th e  calibration  of d isto rtion  as presented in th is thesis, there  is a 

need for dedicated  m ethods for au tom atically  ex tracting  accurate estim ates, 

and ordering, of control points from these targets. It has been proven in this 

thesis th a t  chessboard ta rg e ts  give much higher quality  d a ta  th a n  alternative 

pa tte rn s . Thus, th e  detection m ethods should be focused on these types of p a t­

terns. T he detection  consists of th ree  subproblem s, in itial estim ation, accurate 

refinem ent, and d a ta  ordering.

It was found during th e  experim entation, th a t in the  presence of image blur, 

large lens d isto rtion  or acute p a tte rn  positions, th a t th e  regular corner de­

tectors failed to  register all the  intersections of the  chessboard squares. This 

problem  can be overcome by tak ing  into account th e  known in tensity  struc­

tu re  around a  intersection point. False h its can be filtered as described in this 

thesis, Section 3.2.2.

It was also found th a t th e  saddle point refinem ent process is fast b u t very 

dependent on th e  level of blurring, d isto rtion  and th e  in itia l location guess. 

Conversely, th e  edge based approach is qu ite com putationally  expensive, bu t 

accurate  when applied w ith  a  relatively small ROI, regardless of blurring, dis­

to rtio n  or in itia l location 2. A new technique is required th a t combines the 

benefits of each of these m ethods. I t should be fast, invariant to  image blur­

ring and d isto rtion  and able to  cope w ith  poor initialisation. It should also be 

possible to  re tu rn  a  confidence m easure regarding th e  accuracy to  which the 

intersection poin t is detected.

Lastly, for m any calibration  m ethods, a  com parison w ith  a  calibration model 

is required, invariably requiring the  ordering of th e  detected  d a ta  to  form the 

correct correspondences. A basic m ethod is outlined in Section 3.2.3, bu t 

only works unaided for relatively low d istortion. For higher levels an initial 

estim ate  of d isto rtion  is required to  u nd isto rt th e  points. It m ay be possible 

to  au tom ate  th is process regardless of d isto rtion  level for exam ple using a 

D elaunay triangulation .

2Within reason, at maximum of a few pixels in difference is typical

7.3 .1  C h essb oard  d etec tio n
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7.3.2 Axial chromatic aberration

C hap ter 5 described the  com pensation of la tera l chrom atic aberra tion  only. As 

m entioned there  is also a axial com ponent to  th is aberra tion  th a t introduces 

a  sim ilar radially  and colour dependent blurring. A lthough th e  correction 

for la te ra l chrom atic aberra tion  gives a significant im provem ent, the  com plete 

chrom atic aberra tion  would represent ano ther step  forward. T here is no reason 

th a t  it cannot be modelled using the  sam e m odel as its la tera l cousin, and may 

also be m easured using the  chessboard p a tte rn . Considering th a t the  location 

of the  in tersection points of th e  chessboard are already detectable, the  axial 

chrom atic aberra tion  introduces a sort of radial sm earing of the  in tensity  w ith 

the  result th a t  th e  local in tensity  area is no t balanced. This im balance may 

be m easured, directly  corresponding w ith  th e  axial chrom atic aberration . Its 

im age com pensation m ay not be so straightforw ard, requiring a program m able 

de-blurring filter w ith a variable origin. T he com pensation for all chrom atic 

aberra tions may facilitate m ore colour applications, for exam ple in underw ater 

im aging, where additional chrom atic aberrations are in troduced due to  the 

ex tra  m edium  (w ater-glass-air). For general im age enhancem ent, the  successful 

com pensation of chrom atic aberrations offers significant im provem ents in the 

perceived im age quality.

7.3.3 M odel based image warping

C urren tly  th e  im age re-sam pling process is carried ou t based on the  known 

d isto rtion  function using bilinear in terpolation  to  calculate the  new pixel in­

tensity. T his m ethod  is point-wise correct, b u t because of the  use of supporting  

pixel intensities is not area-wise correct. T he in terpolation  area should not be 

based on a  regular patch, instead it should be based on a  d isto rtion  warped 

patch  th a t  transform s into a regular patch  in the  corrected image. This may 

be addressed by either using th e  d isto rtion  function in order to  m anipu late  the 

in terpo la tion  patch  or th rough  a d isto rtion  based biasing of the  regular shaped 

patch  intensities.
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7.3.4 Optimal image rectification

T he m ethod outlined in chapter 6 optim ally  estim ates the  undeterm ined pa­

ram eters of a  p lanar rectifying transform . However, the  actual rectifying com­

ponent, based on H artley  (1999), only considers th e  optim al form ation of one 

of these rectifying pairs. This indeed m ay not even be the  m ost optim al for­

m ation. A lternative m ethods such as Loop and Zhang (1999) are unstable, 

while the ir m otives of im posing affine qualities are no t optim al either. There 

is a  need for a form ulation th a t  will also lead to  the  form ation of rectifying 

transform s th a t specifically minim ise perspective distortions. It may also be 

beneficial to  bypass the  explicit com putation  of relative geometry, i.e the Fun­

dam ental M atrix  or trifocal tensor.

7.4 C oncluding rem arks

T he techniques presented in this thesis have a  broad scope and influence for 

m any tasks th a t  a t least require some consideration of distortions. However, 

th e  evaluations are carried ou t independently  of such applications as it is con­

sidered th a t  a  s tan d  alone investigation effectively allows th e  ex trapolation  

of perform ance for any po ten tia l application. As an exam ple, th e  rectification 

procedure is evaluated using specific m etrics th a t dem onstra te  satisfactory  rec­

tification, w ithou t recourse to  stereo algorithm s and the ir inherent drawbacks. 

Similarly, th e  aberra tion  m odelling and calibration p a tte rn  contributions have 

a broader scope th a n  w hat they  were used for in th is thesis. These were not 

explicitly investigated, b u t the ir benefits m ay be appreciated  in light of the 

detailed  investigations presented.
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A pp en d ices



A ppendix A

Radially W eighted Homography

Following th e  calibration  of geom etric d istortions in an image, a m eaningful 

m easure of the  residual aberra tion  is required to  assess the  success of the  pro­

cedure. This prim arily  refers to  th e  aberra tion  m odels’ fitting  ability. A useful 

m eans of generating d a ta  to  carry out th is evaluation, is to  use corrected im­

ages of p lanar calibration  pa tte rn s. T he points recovered from these corrected 

images are referred to  as c =  (u, v,  1)T.

Ideally, th e  exact residuals would be formed by the  difference between these 

points and th e  perfect p rojection points. In th e  clear absence of such ideal 

projections, an  approxim ation is required. One such approxim ation can be 

form ed by tak ing  a hom ography between the  canonical m odel of the  calibration 

p a tte rn , w  =  (xw, yW) 1)T 1, and the  recovered points c, by minim ising the 

algebraic distance, ^ ( c ,H w ) .  T his results in a  least square fit to  the  points 

c, w ith  the  effect of m inim ising the  resulting residuals. Thus, th e  tru e  residuals 

are guaran teed  to  be g reater or equal to  these.

A b e tte r  approxim ation  of th e  tru e  pro jected  points can be obta ined  by noting 

th a t geom etric aberra tions are radially  dependent abou t th e  optical axis. Thus, 

it can be safely assum ed th a t points close to  the  optical axis will exhibit 

less residual m agnitude th a n  ou ter points. By appropria tely  weighting the 

d a ta  in favour of central points, giving less influence to  outer points, a b e tte r  

approxim ation  of tru e  residuals can be gleaned. A G aussian type weighting 

is applied over th e  im age window as shown in Fig. A .l by m inim ising the

1The calibration pattern is assumed to have a high degree of planarity with high spacial 
measurement accuracy.
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Weighting distribution for image window

2500

Fig. A .l: C entral weighting of an image window of dim ensions 2500 x 2000

algebraic quan tity2:

H w j)2, w here C, =  exp ^  ^

( c x , c y )  is th e  optical axis or image centre, s is the  spread and n  is the  num ber 

of points. Good values for s are around 0.15 tim es the  image w idth.

Following a d a ta  norm alisation procedure th a t scales b o th  sets of d a ta  w ithin a 

un it circle centered a t the  origin, the solution is obtained  by stacking the  equa­

tions in the  form A x =  b, where x =  (h \, h2, •••hg)T w ith  h9 =  1. Rearranging, 

including the  weighting, the  solution is obtained as:

x = (ATCA)-1A TCb.

T he appropriateness of th is m easure is dem onstrated  by evaluating on a range 

of synthetic residuals, generated  by sim ulating w ith  very sm all d istortion  values 

as shown in Fig. A .2. T he dom inant d istortion  is high order i.e. (k2) w ith 

k\ = .5k2. As can be seen, th e  weighted H om ography serves to  approxim ate 

the  actual residuals much b e tte r  th an  the regular un-weighted version.

2 A tradeoff between robustness and accuracy is made here. The data is first pre-scaled 
to lie within a unit circle centered at the origin to improve conditioning. As is known this 
improves the precision of the estimate, while maintaining the robustness and speed of a 
closed form estimation.
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Mean residual error

X
Q.

0)
C(Ü
0

O
13
LU

-6 -4 ■2 0 2 

SD residual error x 10

6
-16

Distortion k (pix5) x 10
-16

Fig. A .2: Euclidean m eans and SD of residuals com puted w ith regular Homog­

raphy estim ation (Blue) and W eighted Hom ography estim ation (Red). Simula­

tions are carried out w ith low levels of d istortion. R esults show th a t W eighted 

hom ography estim ation  significantly improves th e  approxim ation of tru e  resid­

uals in com parison w ith the  regular Least Square (LS) m ethod (Green).
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A ppendix B 

Closed-form estim ation of 
distortion

T his appendix  com putes th e  partia l derivatives for use in the  iterative estim a­

tion of d isto rtion  in chapter 4. Each control po in t c* =  1)T contributes

to  th e  form ation of th e  following objective function which m ust be minimised:

ei(c i, $ )  =  H ec { +  T>(Heciy k) -  Ac*. (B .l)

w here th e  p aram eter vector is $  =  ( /in , ¿ 12, . . . ,  ¿ 32, s, u Q, vQ, hi, /c2, . . .  >Pi,P2)T 

Perform ing a  first order expansion of th e  error e(c , 3>) around the  last esti­

m ate  results in a G auss-N ew ton scheme th a t can be ite ra ted  utilising m any 

robust least square techniques (G olub and Loan, 1996):

$ k + i =  $1
/ deT(c, 3>k) de(Cj ^ k) \  d e (c ,$ k)
I d $  d $ T I d $ T

e(c,<f>k), (B.2)

If the  forward d isto rtion  model D (p , k) is com puted w ith  th ree rad ial d istortion  

param eters 1 w here p  =  H ec are the  estim ated  lens centric coordinates of the 

ideal projections. T he derivatives are given exactly  as:

\ ~ 7 — i s . /  ------------— i #  1 f ) ¿rnfi
r\ / t  \o e(c , $ k)

d $ T

( e x( c , $ k) \ dex

d $ T d H e ’

ey(c, ^ k ) dty

d $ T / \ 8 H e '
0,0,1 , y r 2 , y f 4 , y f 6

(B.3)

1 Decentering distortion is automatically included in this formulation due to the variable 
projective transformation He, as described in Section 4.4.1.

190



A p p en d ix  B  -  C losed-form  es tim a tio n  of d is to rtio n

where

( dex \ dx
d n e <9H,

dey dy
\ d n j \ d H ,

+  fc, I (3x2 +  y 1)
d x
d H .

+  2 x y
<9H,

+  ki I 2x y - ^ — +  (x 2 +  3y2) ^
d x

m . dw, +

k2 ( ( 5 i4 +  6 i 2y2 +  y 4) - ^ -  +  (4x3y +  4 iy 3) ^
<9H, <9H,

fc2 (4 iry  +  4 iy 3)~3-' 1 VJU +  ( i 4 +  6 x2y 2 +  5y4) ^
<9H, 3H,

d x
h  f (7 i6 +  1 5 i4y2 +  9x2y4 +  +  (6x 5y  +  12x 3y 3 +  6 iy 5) ~

,5., , , 0 , 3 ,3  , c a *"5\ d x  + ( f 6 +  9 i Y  +  1 5 i2^4 +  7 6̂) ^/C3 ( (6 i5y +  12x3y3 +  6xy5)
SH, 3He //

where

/  d x  \

dy

\ d H j

x , y , l , 0 , 0 , 0 , - x x , - x y  

0 ,0 ,0 , x , y ,  1 , - y y ,  - x y h3\x  + h32y + 1
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