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Abstract

Cell migration and cell division are two key proses that are associated with a
wide range of biological phenomena including empgmesis, inflammation, wound
healing, tumour development etc. The study of thesldular processes has received a
substantial interest from the cell and moleculderdists since the understanding of the
mechanisms that stimulate and control these dynawints has important practical
implications. With the advent of modern microscdpyaging modalities the amount of
information required to be analysed by the cliniemperts has substantially increased and
the development of computer-based automatic teabsithat are able to robustly track cells
in large image sequences is currently one of thetmative topics of research. While
cellular migration is the major source of infornoatiin describing biological processes,
recent studies emphasised the growing importancelbimitosis, as this information can be
directly used in the estimation of the cell cycledan the understanding of complex
biological mechanisms.

Due to the increasing clinical interest in the anatic analysis of cellular data, a
substantial number of studies have been recenlyrted in the field of cellular imaging and
in the development of robust solutions that are ablidentify the cell mitosis. Following a
detailed analysis of published works in the fielatellular tracking, it can be concluded that
the development of automated tracking strategievega extremely challenging due to
several factors such as changes in cell morphabegy time, random motion, cell division,
cell interaction and low signal to noise ratio. diswer these challenges in a robust manner,
several approaches have been advanced where thadtewas the cellular association. In
this regard, the major directions of research expla@ellular tracking techniques where the
cellular association was implemented using eitlegneentation or model-driven strategies.
The methods included in the former category attetmptientify the cells in each frame of
the sequence and then they are later associatedmipjoying rules that enforce the
continuity of the tracking process in the spatioyeral domain. For these approaches the
cellular association process proved particularlglleimging when the cells undergo shape
deformation over time and their motility is genéralescribed by random motion patterns.
To adapt to these challenges, alternative apprsauslinere parametric or non-parametric
representations that sample the cells morphologied their intensity patterns were
employed to identify the corresponding cells in seputive frames of the sequence. These
methods offer the advantage that they do not etltailsegmentation of the cells in each
frame, but they were also problematic in the presesf cell mitosis and cell interaction - a
situation when they are likely to be either trappetbcal minima or to return incorrect cell
associations. A distinct category of model-drivetiudar tracking techniques applied motion
prediction to guide the cellular association precdsut practice has indicated that the
simplistic inclusion of the motion estimators iretkracking process proved troublesome
since the resulting tracking strategies are na &dbksample in a coherent manner the modes
of motion that encompass the cell migration. Invthst majority of the published works on
cell tracking, the cellular division has been apgiwed during cellular association and often
their application was restricted to particular glgt data types.



The major objective of this thesis is to introduceovel framework that is able to
address the theoretical and practical challengsscaded with the cell tracking and cell
division (mitosis) detection in dense time-lapsad® sequences. To this end, a multi-phase
adaptive algorithm was developed where the cetiG@aton is carried out by evaluating the
topology of the local cell structures in consecaititames of the sequences. To allow for a
detailed evaluation of the local cellular structyréhe connectivity rules between the
neighbouring cells are encoded using Delaunay dtikion. A particular challenge
associated with phase-contrast cellular datasetssisciated with the large intensity contrast
variation and the relative high level of noise tisapresent in the image data, and the robust
identification of the cells throughout the sequepoeved problematic. To compensate for
the inconsistent inter-frame cell segmentations,the proposed framework, a novel
approach based on the evaluation of the topologp@és in the local cellular structures was
developed, with substantial benefits in relation aeerall tracking accuracy. The last
component of the proposed algorithm addresses ftwsisn detection using a backward
tracking analysis that integrates the local cellid&ructures with a pattern matching
algorithm for the identification of the mitotic ¢elthat were missed in the forward tracking
phase of the algorithm.

While the major contributions that emerge from tvisrk are associated with the
proposed computational framework that has beergdedito address cellular tracking and
mitosis detection, it would be useful to point @&t another contribution resides in the
detailed performance analysis of the algorithm. usThto comprehensively evaluate the
performance of the proposed framework, severallahgihg time-lapse phase-contrast cell
image sequences were used in the experimental stndythe results returned by the
proposed automatic cell tracking algorithms wermgared against the manually annotated
data. To further evaluate the performance of theeldped method it has also been applied
to public available cellular datasets and its penBnce is compared against those reported
by the state-of-the-art cellular tracking and nigosletection implementations. The
experimental results indicate that the proposechatkts able to successfully track phase-
contrast cells in the presence of random migratind detect the mitosis events, and its
performance proved superior to those attained éthate-of-the-art implementations.
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Chapter 1.

Introduction

This thesis describes the development of a novebnaatic tracking
framework that has been specifically designed &lirtcacking and mitosis detection
in phase-contrast time-lapse image sequences. |&eliacking is an important
research area in the field of molecular biologyicsi the tracking results can be
directly used by clinical experts to estimate nigtiend proliferation indicators
(please refer to Appendix A for additional detailBhese cellular indicators are often
used in the process of interpreting a wide spectafibiological phenomena
including embryogenesis, inflammation, wound heglimmour development, etc [7,
68, 69, 70]. Typically, cell migration and cellulalvision (proliferation) are
evaluated in time-lapse image sequences wherenhge data is captured by a CCD
camera that is fitted to a digital microscope [Ribject to various image protocols
that are adjusted for each type of in-vitro celklithe CCD camera captures cellular
structures at specific time intervals over a lomgeyvation period (in some studies
the acquisition time may span several days). Wihiee acquisition of dense time-
lapse image sequences is beneficial as it allowseaise estimation of cellular
indicators, on the other hand it generates a vastuat of image data that has to be
analysed by the clinical experts. The manual amalyssuch large cellular datasets
has become (in many situations) impractical, and e@snsequence, the development
of computer-based techniques that are able to tigtatsain cellular tracking results
represents one of the most active contemporargdayiresearch in this field. While
cellular migration is the prime source of infornoati when applied to the
description/modelling of in-vitro biological proces, recent studies emphasised the
importance of cellular division, as the frequenéyh®e mitosis events defines a key
indicator that can be used in the assessment oéffleency of newly developed
therapeutic agents. To this end, the major objeaiihis thesis is to advance a fully
automatic framework that can accurately estimagentigration patterns and detect

mitosis events in challenging time-lapse phaserashtmage sequences.



1.1 Motivation

Cellular motility and proliferation (mitosis or ¢etlivision) are two key
indicators that are assessed in the study of @4y induced physiological and
pathological processes that lead to the developwfemeéw drugs and therapies. The
traditional approach that is applied to identifytitity patterns and the frequency of
mitosis events involves a user-driven procedurergltige cells and the association
rules in the image stack are established basedh@mldcisions made by a clinical
expert (molecular biologist). In general, the mdnuagerpretation of cellular data
returns satisfactory results, but it is importamnbte that due to the advent of new
microscopy imaging modalities, the amount of dat nheeds to be interpreted by
the biologists is constantly increasing. There @sdoubt that the availability of
cellular data with high spatial and temporal regohs is welcome as it allows a
detailed analysis of biological processes. At tame time the vast amount of data
renders impractical in many clinical studies the@gadure associated with the
manual cell annotation. In addition, manual annateprocedures are prone to intra-
and inter-observer variability, and the accuracyhef user-driven data interpretation
is highly influenced by the experience of the malac biologist [67]. This is one of
the major reasons that motivated the developmerdubdmatic cellular tracking
solutions, which currently represents one of thestnnmportant areas of research in
this field.

During the development of automated cell trackitgpathms, the accurate
association of cells in large image sequences septs the major challenging task.
This is caused by several factors such as thediigitarities between the intensity of
the cells present in each frame of the sequencéhenpredominately random nature
of the cellular migration process. In addition,cgrnthe image acquisition process
involves the application of specific protocols tlaaé adjusted for each type iof
vitro cell (for instance, one protocol entails the adstiation of fluorescent agents
to increase the image contrast between the celistia® background), computer
vision-based tracking solutions have to be desigwedccommodate the imaging
characteristics of the data to be analysed. There wubstantial studies centred on
the optimisation of the imaging and the specimegparation protocols, but these

studies were in particular concerned with issuésted to extraneous effects on the
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biological process that are caused by staining tagéituorescent dyes) or the
illumination set-up. From an image analysis stamipdhe major objective is to
design an optimised protocol that is able to gdeecallular data with sufficient
image contrast, which allows the application of pomer vision-based solutions for
the estimation of the relevant biological indicatofo this end, a wide variety of cell
tracking algorithms have been published in the igieed literature where they
attempted to address a specific application donmathe field of molecular biology.
To answer this application driven scenario, theppsed algorithms were custom
designed to serve the segmentation and trackirspedific cellular data. This strict
application context of the published works motidatee research work detailed in
this thesis, whose main goal is to develop a mamegc framework that can be
successfully applied to cellular datasets that isbrf image sequences that are
captured for diverse cell types. Among the celldlara types that are currently used
in clinical studies, the time-lapse phase-contiasige sequences define a very
complex and challenging tracking scenario thathie main focus of the work
detailed in this thesis. Thus, the proposed framkwas been carefully developed to
be able to address several issues related toifia@gfe contrast, intra and inter-frame
intensity variations, large deformations in the mhaf the corresponding cells in
consecutive frames of the sequence, random migrata various rates of cellular
division. All these challenges form a difficult e=sch problem and in this thesis,
novel solutions have been advanced to achieve astand distinct cell tracking

framework.

Another area of interest was focused on the rolmesttification of cell
division events. During cell division or mitosiggt parent cells divide into two child
cells (or daughter cells) and the identification thiese biological events is
particularly relevant in the estimation of the ogjcle and other related biological
parameters. In some distinct types of cellular skettg mitosis events are preceded by
apparent changes in the intensity profile of theeptacell and this information can
be used for the robust identification of parenteticells links. However, other types
of cellular data (such as MDCK datasets) do notilelsuch prominent intensity
transitions, and as a consequence, the precisetidet®f cellular mitosis requires
the development of more complex solutions that oglythe application of backward

tracking strategies.



1.2 Objectives of the research

The final goal of this research work is the develept of a fully automated
framework that adaptively employs the topologicdbrmation associated with local
cellular structures in the tracking process anthendetection of the cellular division
events. Since the incidence of cell segmentaticorehas undesirable effects on the
accuracy of the tracking process, another major aimthis work was the
development of targeted algorithmic solutions thetluate the consistency of the
cellular association decisions in consecutive franoé the time-lapse image

sequence.

Since the cells in phase—contrast data exhibitlaimntensity and shape
characteristics, the process associated with tastification of the corresponding
cells over the entire image cannot be robustlyiedrout using standard pattern
matching techniques. In addition, the motility detcells is defined by random
migration and this fact restricts the use of mopoediction in the implementation of
robust cell tracking strategies. To address thalehging cell matching scenario,
the main concept behind the cell tracking apprqaoposed in this thesis resides in
the construction of a graph-based representatiah ithable to encode the local
relationships (or topological structure) between tells that are present in each
frame of the image sequence. By using this reptasen, the cellular tracking
process can be elegantly formulated as a graphhmgtgrocess in pairs of
consecutive frames in the image sequence. Oneriamtoproblem, as indicated
earlier, is caused by the cell segmentation erttoas occur due to the low contrast
between the cells and the background. Under-segtieminserts local disturbances
in the graphs that are constructed in each frame,ag a result, artificially reduces
the efficiency of the cell tracking process. To pemsate for this issue, a novel
approach to identify and correct these segmentatians has been developed in this

research work.

The next objective of this research work considtdeveloping a robust
cellular division detection strategy that is su#ily flexible to adapt to situations
where the division events are not signalled by pm®us transitions in the intensity

profile of the parent cells. To achieve this reskaobjective, a novel backward
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tracking strategy has been developed that is ableeturn accurate results in the
presence of segmentation errors. The last majoecte associated with this
research work is to perform a comprehensive evialuadf the developed cell

tracking and mitosis detection framework when aplio various cellular datasets
and to compare its performance with respect toettoiained by the state-of-the-art

implementations.

1.3 Contributions of this research

As indicated in the previous section, the proces®@ated with the precise
tracking of cellular structures in phase-contrastetlapse image data is very
challenging. This is caused by a wide variety oagng and biological factors
including the low image contrast, intra and intemfie intensity variations,
unpredictable changes in the shape of the cell€ansecutive frames of the
sequence, cellular division, random migration patgeetc. All these adverse factors
prevent the direct application of common featurseoktracking strategies to address
the cell tracking in long phase-contrast image saqges. In addition, the incidence
of cellular mitosis cannot be robustly predicteddeited a priori, and this further
complicates the methodologies that have to be ddws achieve robust inter-frame

cellular association.

According to the research objectives stated ini@ect.2, the most visible
contribution associated with this research worksesis of the overall cell tracking
and mitosis detection framework. The proposed fraonke has been developed in a
modular manner and in this work substantial effbege been devoted to provide a
flexible implementation that allows the inclusiasting of various computational
components of the proposed cellular tracking anibsig algorithm using a plug-in
approach.

The second major contribution resulting from tlasearch work is associated
with the theoretical aspects related to the deveto of the cellular association
process. Thus, in this thesis, a novel graph-baskdssociation technique has been
introduced, where the spatial relationships betw#en cells are encoded in a

hierarchical manner by the use of Delaunay triaaiguh. This approach proved
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particularly robust when tracking dense cellulan&ures in the presence of random
(Brownian) motion and one major aspect that isulgef mention is the fact that the
tracking scheme discussed in this thesis is welptatl to deal with situations caused
by cellular division, which explains its high acaay when applied to challenging

cell tracking scenarios.

The methodology devised for cell division detectiepresents another major
contribution resulting from this work. In the praggeal approach, the normal tracking
(forward tracking) results are analysed using akWwacd tracking strategy, which
entails the application of a hybrid algorithm toemdify and redress the errors

inserted by the segmentation process.

The last major contribution is located in the dethiexperimental validation
of the proposed method on various cellular datagetsin its comparison against

relevant state-of-the-art cell tacking and mitagection methods.

Another contribution resulting from the investigati detailed in this
dissertation resides in the algorithmic solutioogmsed to redress the segmentation
errors (under-segmentation) during the normal (fody and backward tracking
stages of the algorithm. In the proposed work wségmentation is addressed by
applying an intensity based pattern matching teghmithat is combined with a
process that evaluates the consistency of the loglfllar structures in adjacent

frames of the image sequence.

1.4 Overview of the proposed cell tracking framework

This section provides a brief description of theiatiure of the proposed cell
tracking framework that has been developed durmg tesearch programme. The
main computational components of the cell trackamgl mitosis detection scheme
are shown in Figure 1.1. The proposed tracking éaark consists of three major
modules including cell segmentation, forward tragkiand backward tracking
modules. The developed framework initially detehescells’ centroid points in each
frame of the image sequence by applying a morplyebaged segmentation

approach. Once the cell segmentation process ipleten the next component, the
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forward tracking module, is applied to associate d¢brresponding cells in the time-
lapse sequence. To accomplish this goal, a grapédbeell association process has
been applied where the local cellular relationstaps sampled using a Delaunay
representation. One issue that required speciehtadh was to counteract the
negative influence of the segmentation errors om thacking results. The
segmentation errors are mainly caused by the ingpriopage contrast present in the
image, which generates situations when cells atedetected by the segmentation
algorithm. The occurrence of under-segmentationddagrse effects when the cells
are associated in consecutive frames of the sequeitic respect to the local cellular
relationships. To reduce the level of uncompletell lmeages, a hybrid algorithm
has been applied to identify the locations of thdatected cells that minimise the

disturbances in the local Delaunay meshes.

Time-lapse
image sequence

A 4

Segmentation Forward Backward
X dul » tracking »|  tracking
moauie module module

Figure 1.1. Main computational components of the proposed traltking and
mitosis detection framework.

The last component of the proposed framework entaé application of the
backward tracking module to identify cell divisigmitosis) events. The major
objective of this computational module was to lthke parent and child cells and to
provide detailed information that complements thatigtics that describe the
migration indicators that are extracted from thewrd tracking results. Similar to
the forward tracking module, an approach that le &bidentify segmentation errors
has been implemented during the backward trackioggss to eliminate as much as
possible the incorrect cell associations that awesed by under-segmentation. All
computational components illustrated in Figuredrd discussed in detail in the third

chapter of this thesis.



1.5 Thesis organisation

Chapter 2 provides an in-depth analysis of pagtarets works on automatic
cell segmentation, tracking and mitosis detectiat are published in the specialised
literature. In this chapter the most relevant tégphes are discussed and categorised
based on their algorithmic content, and a compr&kendiscussion is provided to
emphasise the connections between the theoretordliloutions and the clinical

application context.

Chapter 3 presents in detail the development otétietracking and mitosis
detection framework, where ample discussions audied to motivate and
emphasise the theoretical advances associateceadth component of the proposed

framework.

Chapter 4 details the experimental results that rgete from a
comprehensive validation of the proposed cell tragkramework on various types
of cellular data. The reported results are compavid the manual ground truth
annotations to illustrate the efficiency achieveg the automatic cell tracking
framework with respect to tracking and mitosis dete accuracy. To provide a
wider assessment of the proposed cellular trackimgework, its performance was
quantitatively evaluated on publicly available da&ts and compared to those

achieved by state-of-the-art cell tracking and sigaetection algorithms.

Chapter 5 summarises the main conclusions andilbotitms resulting from

this research work and discusses the main futueetibns of research.



Chapter 2:

Literature Review

The study of cell migration entails a three-stepcpss: live cell microscopy,
application of computer vision-driven cell trackiteghniques, and evaluation of the
tracking results to understand/model the biologiogllications associated with the
cell migration. Generally, the cell images are uegd by a digital camera that is
fitted to a microscope in order to record the dalumigration/proliferation over a
long period of time. During the data acquisitiorapd, the camera captures images at
a specific interval of time (usually in the randengnutes) which is generally set in
agreement with the cell type, migration patterherdpeutic agents, cell environment
interactions, etc. Existing microscopic imaging ralides [90, 110] that are typically
employed to capture sequences of time-lapse imagesle bright-field/dark-field
[89], phase-contrast [91, 109], differential ine¥dnce contrast [109], Hoffman
modulation contrast [109] and fluorescence micrpgd89] — a detailed discussion
about most common cellular time-lapse imaging mitidalis provided in Appendix
B. The time-lapse images obtained in this processamalysed using computer
vision and image processing techniques that are tbltrack the cell migration,
detect automatically the mitosis events and geeeststistical indicators that
describe the cellular motility such as speed, ditatravelled, directionality, cell
cycle, etc. These results are analysed by the mlalescientists to determine/model
the biological processes associated with cellulggration and cellular division.
While the biological implications associated withetinterpretation of time-lapse
cellular data represent a very specific and aciea of research, it is important to
note that this dissertation mainly addresses tlveldpment of automated computer
vision algorithms for cellular tracking and mitosietection. Thus, the major
objective of this chapter is to provide a compreinenreview of past research work
that was focused on the development of algorithsalutions that addressed the
automatic tracking of multiple cells and the detactof cell division in time-lapse

microscopic image sequences.



When analysing cellular activity from a biologicaglerspective, the
identification of cellular migration and the deiectof cell division are two separate
problems. Along with cellular migration, which iset major source of information in
describing/modelling biological processes, seveealent studies emphasised the
growing importance of the cell mitosis (as thisommhation can be directly used in
the estimation of the cell cycle and in the unaderding of complex biological
mechanisms). Although cellular migration and ms#osre distinct biological
processes, when they are evaluated from a compisien standpoint, they cannot
be considered in isolation, since the tracking nmiation that quantifies the cell
migration plays an important role in the identifioa of the cell division events. By
extending this observation, we can note that theurmence of cell mitosis has
adverse implications on the robust identificatioh tbe corresponding cells in
consecutive frames of the sequence, as the nesvroalf generate incorrect tracking
decisions. The optimal approach to identify theosig events opened a difficult
research problem. Consequently, a distinct categbrgpproaches detailed in the
literature dealt with cellular division in coordim@n with cellular tracking, while
another category of methods analysed the cell itngcland cell division as
independent problems. For clarity reasons, in¢hapter the state-of-the-art cellular
tracking and cell division detection algorithms aliecussed in two different sub-
sections.

2.1 Cell tracking

Generally, live cell imaging is targeted to partacubiological applications
that have their own specific requirements. Hencee tstrong application
characteristic of the cellular data has a diregtdot on the image features that has to
be evaluated by the automatic tracking algorithisoAas indicated in the previous
section, a wide variety of microscopy imaging mdaded are applied in current
studies and the main properties of the image dgituced by a particular method are
fairly distinct when compared to those capturedabdifferent image acquisition
method. Moreover, some image acquisition technigdes to constraints related to
the specimen (living cells) being observed and amtipular due to the imaging
problems induced by the illumination set-up) geteepmor quality image data which

effects the performance of the automated cell treck-or instance, phase-contrast

-10 -



microscopy is very popular when applied to livel ¢gelaging because it requires
standard imaging equipment and does not involvetoyic effects generated by
spotting proteins (SPs) used in fluorescent miapgc As a downside, phase-
contrast microscopy has certain disadvantages asigoor photomicrography, halo
and shade-off effects [1, 2, 3, 85]. One solutimintrease the contrast between the
specimen and the surrounding cell environment we®khe use of fluorescent dyes.
However, these dyes have cytotoxic effects thatdgedartificial changes to the cells’
health and this issue is particularly important wloells have to be monitored for
long periods. To limit the cytotoxicity induced liye fluorescent agents, scientists
have designed complex image acquisition protocbi @llow the use of low
concentrations of fluorescent dyes for which theroscope is still able to generate
image data with an appropriate signal to noiseorfd]. Nonetheless, the large
variety of imaging protocols corroborated with thigle-range of cell types generate

a complex scenario that has to be addressed bgnated cell tracking solutions.

Cellular image sequences typically contain a langenber of cells with
similar characteristics and this substantially éases the difficulty of the cell
matching process. As time-lapse microscopy recoetls over a long period of time,
there are large frame-to-frame variations in thage contrast with respect to the
imaged cellular structures. Cells are non-rigiddmeccal structures, i.e. their size and
shape vary frequently throughout the image sequearu they are guided by self-
propelled motility which makes the task to predieeir future states difficult. In
addition, cells undergo division and interact eatlmer (forming cellular clusters),
which turn the identification/segmentation/trackipigpcess into a difficult problem.
The challenges associated with automated trackamg substantially depending on
the characteristics of the imaging systems or @nriaiture of the cell types being
analysed. Hence, numerous semi-automatic [1, &n€]fully automatic [7, 8, 74]
algorithms have been proposed in the literaturgotee the cellular association task

for different cell lines.

The cell tracking algorithms reported in the litera can roughly be divided
into four broad categories as follows: detectiosdsh model-based, filter-based and
hybrid methods. Each broad category can be fursiurdivided and Figure 2.1

provides a graphical organisation of categories sutalcategories of methods that
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have been developed in the context of cellulakirer In this diagram, processes or
modules are marked with oval shapes, whereas aadsgand sub-categories of
cellular tracking approaches are marked with regieen Details in regard to each
category and sub-category of methods are providélake remainder of this chapter.

The study of
cell migration

Cell Division
tracking detection

A 4 A 4 A 4 A 4 A 4 A4
Detection|| Model Filtering Hybrid Tracking Tracking
based based based independent [ dependent

Cell .| Contour
segmentation "l based
ot Region

Association .
_’ based

Figure 2.1. Categorisation of the processes and approachdwsifield of cellular
tracking and mitosis detection.

A

2.1.1 Detection-based cell tracking methods

In this category of methods, the cells are ingiakgmented in each frame of
the sequence and then the segmented cells areladsedoacross adjacent frames.
This process is relatively straightforward when slegmentation of individual cells
in each frame is accurate and cells can be unambshy associated in the
subsequent frames. In general these approacheas a&me-step tracking process,
namely the segmentation/detection phase and thle assbciation phase. The
segmented cells are typically associated by mekfeature matching, a process that
proved particularly challenging when tracking nmplki cells that exhibit different
intensity or shape characteristics. Consequentiyeral techniques have been

proposed to address cellular association, whosa oigective was to maximise the
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use of the image features during the cellular matchprocess. However,
segmentation errors such as under/over segmentat®runavoidable [9] when
dealing with challenging data, and in this scenafabse matching or incomplete
tracking results may often occur. The occurrenceegimentation errors is the major
problem for the detection-based cell tracking sgegs and the vast majority of the
algorithms developed have included the implemematof additional post-
processing steps to reduce as much as possibleatheof incorrect tracking
decisions [10]. While cellular segmentation is @oenponent that has a substantial
effect on the overall performance of the cell tingkprocess, in the next section |
discuss in detail the most relevant techniques tleate been published in the

specialised literature.

2.1.1.1 Segmentation

As cellular segmentation has a key role in theutalltracking process, some
published papers analysed the cell segmentatianasdependent problem [7, 11,
73, 78]. At this stage it is useful to mention tdae to the large variety of cell types,
imaging protocols and the frequency of mitosis ¢vea large palette of approaches
has been proposed. While the analysed cellularidatften characterised by distinct
characteristics such as variation in cell morphg)agtensity profile, illumination
set-up and different degrees of cellular aggloni@mathe proposed methods were,
in general, custom designed. In this regard, soemmsntation algorithms apply
simple detection/thresholding technique, others l@rgd more sophisticated
segmentation approaches to accommodate the pogeioantrast and high level of
noise [12, 13], while another category based onveactontours or level sets
addressed the segmentation problem in close cardimwith the tracking process
[14].

However, as the application context was the kegnetd in the development
of cellular segmentation strategies, this makes firecise categorisation extremely
difficult. The published cellular segmentation noeth employ a wide range of
techniques such as thresholding, watershed, meifn déformable models and

wavelet transform to achieve accurate resultshis regard, the thresholding-based
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cell segmentation methods are based on the assumibtat the intensity of the
background is uniform and it can be robustly sejedrdrom the intensity signal
associated with the cell regions [15, 83]. Thugséhmethods initially binarise all
images that compose the time-lapse sequence usapgivve thresholding techniques
[16] followed by some morphological operations theg applied to merge and split
the detected regions in order to deal with undgmentation and over-
segmentation, respectively. These methods provecdessful when applied to data
that can be precisely approximated with a bi-malistribution, but they have shown
substantial limitations when applied to more chajiag cellular data that exhibit
substantial intensity variation within each franteaoross consecutive frames in the
iImage sequence. Watershed algorithms were alsofoasegll segmentation. These
methods are generally marker-controlled, where dbed points are selected by
applying either adaptive thresholding or thenaxima operation. For instance, in
[17], theh-maxima transform has been used to detect the se¢lds gradient image
and the image regions resulting from the watergitedess are subsequently merged
to avoid over-segmentation. In [7], cell segmenptais carried out using a multi-step
algorithm that initially binarises the input imagesing an adaptive thresholding
technique [77]. To limit the level of under-segnaitn, the authors applied a
distance transformation [76] to accommodate theasins generated by the cellular
interaction (cell clustering). The last step applee watershed-based algorithm to
merge the cell nuclei in order to eliminate falsdl aetection. A different cell
segmentation method based on the morphologicalhé#pand theh-maxima
transform is reported in [12]. In this method tlegmmentation errors are redressed
during the tracking process by analysing the ihttiacking results in the temporal

domain.

Mean shift is another method that proved populathan context of cellular
segmentation and in general these methods involveuli-step analysis that is
usually designed for a particular data type [19].[20], the authors presented a
wavelet transform-based method that was employeadeotify the bright spots in
fluorescence images. In this approach, the autied the multi-scale correlation of
the filtered wavelet coefficients to enhance thakseof the spots and to reduce the
level of noise present in the image. This methasl heen further developed in [21]

to detect apparent spots in 3D image stacks. Hawéves important to point out
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that the application of this method to cell segraganh in phase-contrast imaging is
not appropriate, as the intensity of the cell ragionot substantially higher than that

of its immediate neighbourhood.

As indicated in the introductory part of this senti a distinct category of
methods attempted to integrate the cell segmentatithe tracking process. In this
sense, the cell segmentation methods based ore amivours [22] and level sets
[14] make use of the information relating to theash of the cells and image
contrast. In this process the results obtainedhéncurrent frame are utilised as the
initial solution for the next frame, where the fir@egmentation is achieved by
evolving the contours based on the gradient inftionaand some parameters that
constrain the geometric properties of the contdirese methods proved highly
successful when applied to sparse cellular data,they have shown substantial
drawbacks such as erroneous contour merging anggence to high contrast non-
cellular regions when applied to data characterisetbw image contrast and high
cellular density. In addition, they have an inhérgrability to adapt to situations
caused by large cellular movements (migration) onsecutive frames of the

sequence.

The analysis of the main directions of researcheltular segmentation that
has been carried out in this section allowed wrdaw some useful conclusions. The
most apparent is that the vast majority of the bgexl methods have been
developed to serve a particular application donfeatl type, image conditions and
protocols, cell density, etc.) — for additional alkst refer to Table 2.1. However, in
spite of the strong application context that wase tbrevailing factor in the
development of cellular segmentation strategidas,d@ction attempts to identify the
advantages and limitations associated with exissagmentation algorithms. An
important conclusion resulting from this study ishatt precise cell
detection/segmentation using standard segmentagiproaches is impractical due to
the wide range of morphology and intensity variaidhat are present in cellular
data. This issue proved particularly visible whérw talgorithms are applied to
challenging cellular datasets and the limitatioesoaiated with the imperfect cell
segmentation generate a difficult research protileah will receive full attention in

this thesis. The conclusions that emerged from thisvey prompted the
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development of the framework presented in this ediation that treats the

segmentation and tracking problem in an integratechner to limit as much as

possible the impact of the segmentation errordieroterall tracking accuracy.

Table 2.2 An overview of cell segmentation methods thatevproposed for the
analysis of different cell lines.

Reference Cell line Modality Segmentation approach
1 Murine neural progenitgr Phase-contragt Uneven illumination
cells removal + adaptive
thresholding + marker-
based watershed
8 Human osteosarcoma g&Phase-contrast Region based (gray
amnion epithelial cells scale morphology +
level set)
78 Histopathology images Fluorescence Graph cut aagon
92 Drosophila cells Fluorescence Active contour & [H-
minima & marker-
based watershed
94 Melanoma cells Phase-contrast Optical flow & |eses
93 Breast cancer tissue Fluorescence Multiple filterg
watershed-region
growing & dilation
95 Breast cancer cell MDA Phase-contrast Flow-guided active
MB2 31 contours
96 HelLa Fluorescence Adaptive threshold | &
Watershed & Region
merging
97 H4 neuroglioma cells Fluorescenge Background cbarec¢

& Gaussian filtering &
watershed & statistica
region splitting
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2.1.1.2 Cellular association

Each image of the cellular sequence contains edlis similar intensity
profiles, a fact that complicates their matchingéesation in consecutive frames.
Cells also undergo random motion, deformation anassidn, and these factors
further enhance the difficulty of the cellular tkatg process. Several matching
(cellular association) techniques have been regonte the literature that are
principally based on image features [1, 23, 24]tiamo estimation [21, 25, 26],
spatial relationship [7, 27, 82] and hybrid implenagions (image and motion
features) [12, 28, 84].

@ ®

©

(@) (b)

Figure 2.2. lllustration of the cell association process tiigs to minimise a global

objective function. Nodes marked by grey-filledctas denote cells in the current
frame. Nodes marked with white circles depict tlatiscin the next frame. (a)

Current frame. (b) Next frame. (c) Principles o ttellular association process.

The most straightforward cell association processaised on the estimation
of a similarity metric that evaluates the dispabtween sets of features associated
with the segmented cells in adjacent images. Alghodifferent features can be
theoretically employed in the context of cell asatian, the objective is to minimise
the overall disparity in matching which translates maximising the overall
matching confidence. This is illustrated in Fig@:@ where the cells in the current
frame and the next frame are shown in Figure 2 &td)Figure 2.2(b), respectively.
Figure 2.2(c) shows the relative position of thesls in a single frame where the
cells from the current frame are marked with gnégd circles. In this diagram, the
number associated with an edge represents thedeaalidistance between the cells

that are connected by the respective edge. Noasgsibciation is carried out using a
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simple greedy approach [98], A, C and B will becassted with D, F and E,
respectively, generating a matching cost of 2, @ Hd, respectively. Thus the total
cost will be 15. However, the cellular associatfeit, B-D and C-F will result in an
overall matching cost equal to 12, which illustsatke inability of this approach to

generate reliable matching decisions.

If the cells in adjacent frames of the sequencea@loshow large migration
patterns (such as depicted in Figure 2.2), thedlcst between the cell centroids can
be used as a cell association metric. In this teghe methods proposed in [10, 29,
30] implemented cell matching based on the distdoretereen the centroids of the
segmented cells and the amount of overlap in theeggons in consecutive frames.
Apgar et al [29] validated their method using micro-spheretipkes fluorescent
image sequences and the inter-frame particle agsmtiwas carried out with respect
to nearest neighbour rules. The experimental resollicate that this association
process produces satisfactory results, but it éulso mention that the distribution
of the micro-spheres is sparse and the displacenbetiveen corresponding particles
in consecutive frames are very small. A similarrapph was reported in [31] where
the size of the cells was used to complement thdidaan distance between the
cells’ centroids in the association process. Rdlatgsociation principles were
applied by Jaegest al [30], where they initially segmented Dictyosteliwalls in
each image and then associated them based onstheat between their contours.
Since the association process is implemented bymisimg an overall cost function,
the problems generated by the segmentation erroke@ particularly cumbersome
to address. This issue has received a substaewial of attention in [10] where the
authors developed an elaborated segmentation pracesientify Escherichia coli

cells in fluorescence images.

A distinct characteristic of cell tracking methottesed on the simple
evaluation of the minimum distance between cellha they return an appropriate
level of performance when applied to track spatiajparse cells only in situations
where the segmentation errors are not significwkeed, incorrect cell association
decisions are determined by several factors, imetudnexpected shape changes that
are encountered during the cell growth, high celhgity and more importantly by

the random migration of cells. For instance, toocanmodate different cell motility
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patterns, multiple features need to be concurresmiglysed in the cell association
process [23, 32]. Natét al [23] employed three discrete distances (the oppitey
area of the bounding boxes that enclose the segohedll regions, the distance
between cell contours and the amount of overlapvdxen the cell regions) to track
cells in time-lapse phase-contrast epithelial @glage sequences. This tracking
solution proved efficient when applied to image wsEtces captured with a small
time lapse interval, but since the algorithm stignglies on the area of overlap
between cells in consecutive frames, it is notiapple to tracking scenarios where
cells undergo large migration. A related approashpresented in [32] that
incorporates two distinct measurements, namelyothexlap area and the distance
between cell centroids, measures that were noretalsth respect to the maximum
size of the cells under analysis. The experimergsevweonducted on fluorescence
image data containing cancer cells (HeLa cells) tlwedauthors reported that more
than 90% of cells were correctly tracked. Howewels important to point out that
this high tracking accuracy is achieved under tbaddion that accurate cell
segmentation is available (>98%). This conditiors watisfied in their study, as the
identification of the nuclei of the HelLa cells regs a fairly straightforward
segmentation process. There is no doubt that Husuirable scenario cannot be
applied when dealing with challenging phase-cohtlag that is often characterised
by low image contrast and a high level of noisethis situation the segmentation
errors have to be accommodated during the cellkitrgcprocess, and some

algorithmic solutions have been reported in [9, 33]

When all challenges associated with complex tiapsé¢ phase-contrast data
are taken into consideration, simple measuremdras record the displacements
between cells in consecutive frames are inadeqtmt®btain robust cellular
association. To provide more confidence in the kireg process, multiple
measurements have been included to generate moadedefeatures that can
substantially increase the overall tracking accuras an example, the method
presented in [1] evaluated the likelihood for akpible pairs of cells in two adjacent
frames using the following set of features: cewlkr@rea, eccentricity, major axis
length and orientation. To achieve a global minatian in this high dimensional
feature space, the authors employed linear progragirtlowever, the association

process based on large feature sets is computhyiangensive as it generates a
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large matrix whose size is proportional to the namtif cells present in the image.
In their experiments, the authors evaluated phas&a&st data containing murine
progenitor cells, and in their study they showeat tihe incidence of segmentation
errors artificially increases the number of brokeatks. To overcome this problem,
the authors proposed to approximate the positiontla® shape of the undetected cell
in the next frame with that of the unmatched aelihe current frame. This process is
repeated over a number of consecutive frames and rhatching cell is found, the
tracking for the cell in the current frame is tematied. While this approach to
address the under-segmentation errors is intuitivis,applicable only in situations
where the inter-frame migration is very small. Eover, the approach applied to
estimate the location of the missed cell is inappade when dealing with cell data
characterised by random migration patterns. A similea was applied in [34],
where the authors employed a sliding temporal wintio redress the errors caused
by under-segmentation. To alleviate the problenso@ated with the approach
detailed in [1], additional constraints were en&atan [34] to handle the situations
when the cells are entering and exiting from thggam of interest that is imaged by

the microscope.

Another important issue associated with detectiaseldd tracking methods is
the identification of the optimal computational latecture for robust cell
association. In this sense, in [4] the authorohiced a graph-based framework that
formulated the cell association problem as a fl@twork that can be efficiently
solved using the minimum-cost flow algorithm. Instfiramework, a weighted bi-
partite graph is used where one set of nodes repiethe cells in the current frame
and the other set represents the cells in thefraaxie. The weight/cost of an edge is
defined by the absolute difference between feataotors associated with the nodes
that are connected by that edge. Using this datatate, the cell association is given
by the minimum weighted bipartite matching. The rapgh based on bipartite
graphs proved well adapted for cellular associatiod it has been extended to cover
more complex situations including cell division. [#], the authors evaluated their
algorithm using fluorescence Hela cell sequencestha reported results proved
very promising. A related cell tracking frameworkased on the bipartite graph

formulation has also been reported in [12].
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As indicated above, the cellular tracking appresctbased on feature
matching proved inefficient when applied to celtuldata characterised by low
contrast or/and random migration. To answer suchalenging tracking scenario,
some of the existing methods attempted to usetataldnformation associated with
neighbouring cells. Such an implementation has beported in [27] where the
structural (spatial) relationship between the nleghing cells was encoded into a
graph representation. The use of structural inféiongproved critical in increasing
tracking accuracy especially in complex situatidhat are generated by random
migration. However, the main problem associatedhwibis approach is the
methodology applied to encode the spatial relakipss between closely located
cells. For instance, even small changes in theldgyof the cells in the consecutive
frames can have a significant impact on the gragresentation [27], and this
substantially complicates the cellular associapoocess. However, the advantages
of using the spatial information for cellular trawl outweigh the limitations, and
many efforts have been devoted to improve the nrammewhich the spatial
information is included in the tracking processthis regard, Delaunay triangulation
[35] has been actively used in the context of teltking [7, 13, 36, 37]. This
representation has several advantages, such @satajes a unique planar graph that
is independent of the topology of the nodes [3B¢l at the same time maximises the
minimum angles of the triangles that compose thehm®loreover, in the Delaunay
mesh the triangles tend towards equiangularitythednsertion or the removal of a
node affects the mesh representation only at thal level. These properties are
particularly well adapted to encode the neighbaurelationship between the cells
in the image, as the insertion and the removal aifes can be caused either by

cellular division or by under-segmentation.

In [7] the authors reported a tracking algorithmewenthe spatial distribution
of the cells in each frame is encoded using Dekaunangulation and the cell
association decisions were obtained by employitigesar programming algorithm.
The algorithm detailed in [7] has been evaluatedluworescent data containing HelLa
cells and the reported results clearly demonstratethe use of spatial information
proved to be the key factor in obtaining high dallutracking accuracy. As a
disadvantage, the tracking process detailed ic¢npists of a rigid architecture, and

it proved inefficient in accommodating the errdrattoccur during the segmentation
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process. This problem formed one of the main rebemsues that received special
attention in the development of the cellular tragkmethod discussed in this thesis.
The problem caused by improper segmentation is eqmsarent when dealing with
phase-contrast cellular image sequences, as teey@cally characterised by large
intensity variations within the same image and latiresly high level of noise. Due
to this challenging segmentation process, undemsatation frequently occurs, and
this significantly reduces the tracking accuracy dsnerating incomplete cell
lineages (trajectories). To address this problemsemtly, a flexible cell tracking
algorithm was reported in [12] that includes a catmponal module that was
designed to link the broken tracks generated bymsetation errors. In this
approach, five features including motion informatiare adaptively combined to
measure the similarity between cells in consecutigenes and a post-processing
step has been applied to bridge the broken celksréhroughout the sequence. The
major drawback associated with this approach isitt@nnot handle the situations
where the under-segmentation occurs in the presehcellular division. This is
another research problem that has been fully asedesn the cellular tracking
framework presented in this thesis. The errorsdeduby the segmentation process
form the main challenge associated with the deiedbased cellular tracking
approaches. To alleviate this issue, computer wvisgsearchers have approached the
cellular association from a more supervised petsgeovhich implies the accurate
identification of prior models that describe theygé variation and/or the migration

patterns. These methods are reviewed in the nettbseof the thesis.

2.1.2 Model driven cell tracking methods

As pointed out in the concluding remarks of thevimes section, since cells
are difficult to segment in each frame of the imagguence, substantial research
efforts have been concentrated on the developnfemodel-driven techniques. In
these methods, a model is constructed for eachteebbe tracked. The model
generally encodes information relating to the shapend the intensity profile of the
cell. The constructed model is propagated to thd frame(s) and is evolved to
identify the most probable target in that (thos&nfe(s). Model propagation and
target identification using this approach simultauny solves both the cell detection

and tracking problems. The model-based techniges®ldped in the context of
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cellular tracking can be classified into two sultegaries: contour-based and region-
based. Snake/active contours [38] and level s&kdR the predominant methods
employed in the development of contour based caltking methods, whereas
normalised cross-correlation [40] and mean-shifi] [dpproaches were used in the

implementation of region-based cell tracking method

2.1.2.1 Contour-based methods

The snake/active contour methods [38] are wellvkndechniques that are
popular in the development of cellular tracking hi@iques. An active contour
represents a deformable model where its deformasiamontrolled by user-defined
parameters and image information (usually graddaiga). When this approach is
applied to analyse the cell migration, the confoureach cell in the current frame is
propagated to the next frame (i.e. the contounéndurrent frame is used as an initial
condition for the contour in the next frame). Thiepgagated contour is evolved with
respect to the image information and subject tariternal parameters that impose
priori constraints on the smoothness of the evolved contéerom a biological
perspective, this model is especially suitable describing the shape variation
during the cell migration. However, active contodosnot generally handle cellular

division which needs to be addressed using additipost-processing steps.

In [42], an active contour method is applied fangse cell tracking, where
the contour initialised in the first image is pabkse the next frame and evolved until
convergence. In this work the authors applied atirsable filtering process to
remove noise, to smooth the original image datatanemphasize image features
such as edges or contours. Gooblical [43] also proposed a cell tracking method
based on active contours and experimentally condp#re performance of their
method with that achieved by the centroid and ¢atin-based tracking methods.
The authors conducted the experimental validati@ngs 33 sequences, and
concluded that tracking with active contours resubetter results. While the use of
active contours may be beneficial when applied &tl-wnaged cellular data that is
characterised by small cellular migration, the\acitontour framework has several
limitations when applied to more challenging scesarThese include convergence

problems when dealing with poor contrast data, ilitabto accommodate cell
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division, incorrect propagation into the contoufsiearby cells and errors caused by
large cellular migration. To address these issa&ggrithmic solutions have been
proposed to improve the suitability of the actiwmitour methodology when applied
to challenging data.

To overcome the difficulties associated with thebajuities between the
cells’ boundaries, an edge map based on the avaragsity dispersion is applied in
[44] to take advantage of the relatively homogenuoarskground. The same problem
was also addressed in [45] by employing a modiféediire constrained active
contour formulation that is able to grow acrosdat strong edges and stop at
weak boundaries. To avoid contour merging and atshame time allowing cell
division, in [46] repulsive forces and topologicanstraints were applied, whereas
in [47] the authors modified the standard activatcar framework to be able to
accommodate large cell migrations. However, thelusion of the additional
constraints to control the active contour evolutisignificantly increased the
“custom-designed” characteristic of the devisedhoés. In [22], size and shape
constraints are integrated within the energy fumal to precisely track leukocytes
(white blood cells) in time-lapse data. In this othe authors coupled active
contours with Kalman filters to infer the locatioh the leukocyte cells when they
are occluded or undetected. The application ofkkhlenan filter proved successful,
as the migration of the leukocytes can be well apprated with a linear model.
Ray and Acton [47] reported another extension @f Work by including the motion

gradient vector flow to track large cell movements.

The geometric active contours, which are widelyemefd to as level sets,
were also used for cell tracking because they bieta handle topological changes
such as contour splitting, a property that is ewely useful when dealing with cell
division. As an example, the application of theelesets in the development of cell
segmentation and tracking has been reported in4&},However, in its standard
form, the level sets methods do not prevent twandaties from merging and thus it
is prone to erroneously joining multiple cells thag¢ close to each other into a single
cell. To address this issue, different implementetiwere developed to prevent the
cell merging when the cells are spatially close].[4khis approach was further

extended to track cells in 3D data and it has lveparted in [18, 79]. However, it is
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useful to note that this approach shows limitatiafen applied to dense cellular

structures (the occurrence of cell agglomeratiaved particularly problematic).

2.1.2.2 Region-based methods

In distinction to the contour propagation-based trelcking techniques, in
region-based approaches the shape of the celltisxpdicitly used in the tracking
process. Instead, the intensity profile of the cetjion is utilised in the process of
inferring the cell association decisions. In thpp@ach, the mass centre for each cell
is first identified, which provides information ating to the position of the cell
within frame. Then, a template/pattern surroundivgmass centre is created and the
cell is tracked by identifying a template/pattemtine next frame that minimises a
cost-matching functional. This process is sequiytiearried out to track the
corresponding cells in the subsequent frames ofiesex®. The normalised cross
correlation [40] was generally employed to identifyy corresponding (associated)
cells in the image sequence and several methoddadlf@aved this approach were
reported in [43, 50, 51]. In [51], the intensitytigan of the cell under analysis is
selected in the first frame of the sequence and pbiat that maximises the
normalised cross-correlation matching criteria éested as the location of the
corresponding cell in the next image. The trackpath for each cell is obtained by
connecting the best locations in the temporal damadhile this approach is simple
and intuitive, it is likely to generate matchingas as the cells frequently change
their shapes and intensity profiles in consecufragnes of the image sequence.
Therefore, simplistic template matching is not wightly robust to identify the
corresponding cells over long periods of time emdgcin challenging time-lapse
phase-contrast data. In [43], the authors alsoiegp@l correlation-based method to
track in vitro leukocytes in a flow chamber environment. Thisrapph proved
successful, but it is useful to note that the lewyke cells do not exhibit large
migration patterns and the image data show onlyomimter-frame intensity
changes. There is no doubt that this favourableast®is not usually encountered in
time-lapse cellular data, and in the context ofyéamigration and inter-frame
intensity changes, the template matching processn® erroneous decisions [50].
Thus, the researchers included further featurethenmatching process to provide

more robust information when deciding if the camdiédcell location is correctly
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identified [26]. This issue has received speciadrdton in this dissertation and in the
proposed cellular tracking framework the limitasoassociated with the standard
correlation-based template-matching approach haee bhddressed by incorporating
additional information that describes the spatistrdbution of the cells in each

frame of the sequence.

To further improve the accuracy of the cellulasasation process, other
region-based tracking methods employed the mednh-sinategy to identify the
corresponding cells in the image data [5, 52]. mean-shift implements an iterative
process that locates the mode of the intensityepattithin the search space for the
given intensity pattern. The mean-shift-based tcatlking method proposed in [5] is
semi-automatic and defines an octagon kernel torapass the area covered by each
cell in the phase-contrast image. Thus, based ercel intensity profile, which is
defined by a dark cell nucleus that is surroundgd tbright region, two intensity-
based kernels are coupled which are completed avithird kernel that models the
cell division. While the user is allowed to seledly a restricted set of cells in the
first image, this approach has difficulties in kismg new cells that enter or exit the
region of interest that is imaged by the microscdpensequently, the performance
of this approach is downgraded by the occurrendalsé matching. The application
of the mean-shift for cellular tracking proved vgmpblematic due to the following
limitations: (a) the mean-shift tracking is liketgp generate incorrect association
when the cells present similar pixel-intensity awderistics, (b) after a few frames
the tracking process usually diverges from the actell location and it is often
trapped by local minima, and (c) it does not ndlyitzandle cell division.

2.1.3 Stochastic filter-based methods

Stochastic filter-based tracking methods involveprababilistic/Bayesian
approach and they usually rely om priori knowledge about cell motion
characteristics and/or deformation patterns. Thesgods are extremely powerful if
the cell motion and the deformation patterns caadweirately modelled [4], and the
application of Bayesian frameworks to cellular kiag has been extensively studied
in recent years. The major advantage of this amgprazonsists of its ability to

estimate the future states of the target (celfenms of its position, size, intensity,
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etc, by making use of prior assumptions. When dgalith complex cell tracking
data this estimation is very useful, especially situations where the cell
segmentation is extremely challenging. Thus, sudldehbased estimation can be
used to identify the target cell [53] or it can bembined with additional cost
functions to increase the matching confidence ef d¢hbll association process [54,
80]. Within the Bayesian framework, the posterioolgability density function is
derived from the state transition model, which banlinear in the case of Kalman
filter [55] and non-linear in the case of partiikering [56]. Methods that use the
Kalman filter for tracking are based on the hypsifi¢hat the noise distributions are
Gaussian and the system dynamics are linear [S8jeder, in the case of cellular
tracking, the Gaussian and linear assumptions abeoptimal. In this context,
particle filtering-based schemes are more apprprisecause they are able to
accommodate the nonlinear cell migration and the-@aussian distributed noise.
As a downside, these methods require accargieori knowledge about the motion

patterns associated with the cells to be tracked.

The methods presented in [21, 25, 26, 54, 57] wevdhe application of
Kalman filtering to track spot-like particles/celis fluorescence images. The
application of the Kalman filter to track the ceilstime-lapse image sequences is
appealing as it provides a recursive solution timede the state of the tracking
process by minimising the mean of the squared .etrorthese approaches the
transition model that describes the cellular motitelys a very important role. As
cell migration does not follow a particular motipattern, it is difficult to describe
them using only a single motion model. Thus, a nemd$ motion models (random
walk, first order linear extrapolation (constantoggty), and second-order linear
extrapolation (constant acceleration)) that descdbtferent migration patterns are
integrated with the aim of implementing an intewragt multiple model (IMM)
algorithm [21]. In this approach, the switchingtieen different models is
controlled by a finite state Markov chain. Genowesti al [21] evaluated their IMM
tracking techniqgue on synthetically generated imaipa and attempted to
characterise the 3-D movements of the endocytichksscontaining quantum dots.
Although the experimental results proved accuthie synthetic generated data does

not fully encompass all challenges associated eathplex cell migration.

-27 -



To improve the robustness of the probabilistic kKiag process, non-linear
single-model particle filters [26, 45, 53, 54] amdilti-model patrticle filters [25]
have been applied to track spot-like biologicagéds. In these implementations the
particle filters were implemented as a set of ramdgamples/particles and their
associated weights are used to compute the pasteitsity function. Then, the
samples and their weights are propagated to givapanoximation of the particle
distributions in subsequent frames. During this rapen, re-sampling of the
particles is often necessary to avoid the degegepasblem [56] (i.e. when the
weights associated with the vast majority of thetigas attain very low values
compared to the remaining ones). In spite of thiesigations, the particle filtering-
based methods provide a better integration of gatia and temporal information
than approaches based on Kalman filtering, andiditian, they offer the possibility
of incorporating more detailed prior knowledge tbamples more accurately the cell
migration and image dynamics. Similar to Kalmanefihg based strategies, the
particle filtering methods are generally applicatiependent and they are designed
to model specific migration patterns

A different tracking approach involves the appilicatof joint probabilistic
data association (JPDA), which considers for thewsler analysis in the current
frame more than one candidate as a potential targehe next frames of the
sequence [33, 58]. Kirubarajat al [33] reported a JPDA based method for the
tracking of fibroblast (tissue) cells in phase-cast image sequences. This
framework proved able to accommodate difficult &itons that are caused by under-
segmentation and cell division. However, the edigy of this method is highly
influenced by a large number afpriori assumptions, a requirement that is difficult
to fulfil when dealing with random migration. Thisue has been fully addressed in
[58] where the authors developed a JPDA trackinthotethat evaluates a large set
of a priori conditions. To attain a computational tractabl@rapch, the authors
applied the Hungarian method [58] that entailsn@dr programming optimisation

process.
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2.1.4 Hybrid methods

Considering the large spectrum of challenges aawatiwith the cellular
tracking problem, some published techniques integraultiple algorithms into a
single framework to obtain better performance.his tlissertation, these approaches
are referred to as hybrid methods. For instancagthod included in this category
has been reported in [8], where a topologicallyst@ined geometric active contour
algorithm was combined with edge-based segmentatimhan interactive multiple
motion models approach to robustly track cells rage-contrast images. As post-
processing, the authors applied a track compilefatmate the identified cell tracks
and a track linking module to connect the brokextks. In this way, this method
incorporates the advantages associated with bddr-iased and contour-based
approaches, but one obvious disadvantage residetheinsubstantial level of
supervision required to identify the optimal valdessa large set of parameters.

In [60], the individual cells in each frame wergsented first by applying a
level sets method that is extended with a custam@ening procedure to identify
the individual cells in the presence of cell clustg (agglomeration). Then, the final
cell tracking process was implemented using a s&tahfiltering approach. In this
tracking method, the authors assume that the nografor each cell can be
approximated with only two models: random diffusemd goal-directed movement.
Thus, a two-state Hidden Markov Model was appligdere the cell migration was
modelled as a random walk with Gaussian distribdisglacements. It is important
to note that this particular cell migration modajjiwas suggested by the maotility
characteristics of the adult neural stem/progergtdis and may not be suitable for

accurately approximating the migration of otheretypf cells.

In [70], the authors detailed a framework thatkitedo track cells in growing
plant roots. This method involves the applicatidrih@ Network Snakes technique
[72] (which is a variant of parametric active cam®) that allows the optimisation of
arbitrary graphs that encode both the geometrytladboundaries between adjacent
cells. To allow the tracking of fast-moving celthe Network Snakes method is

combined with a Markov Chain Monte Carlo algorithrd], and to obtain a precise
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initialisation for each cell contour, the authoppked a semi-automatic algorithm

based on the watershed transform.

In [59] the authors combined the optical flow arebion-based active
contours methods by implementing a unified eneyntilation to track neuronal
cell data. A similar approach was proposed in Bhgre a standard detection-based
method was combined with an active contour methodline with all methods
included in this category, these approaches waeaddsigned to serve well-defined

cellular application domains.

2.2 Cellular division (mitosis) detection

A characteristic of modern cell culturing and imagiequipment is that they
facilitate the monitoring of cell behaviours ovendy periods of time. Thus, the time-
lapse image sequences encompass a large numbat division events. While cell
migration remains the main field of research, icerg years the automatic detection
of cellular division started to capture the attentiof molecular scientists. This
research interest was motivated by the role outzllimitosis in biological studies,
as this information is crucial in the process ofugfifying the cell cycle and the
growth rate of the cell population [48, 62, 63]. doswer this research interest,
similar to cellular tracking, computer-vision algbms have been developed to
identify mitotic events in cellular data with no emsinteraction. The methods
published in the literature attempt to detect nit@vents either during the cellular
association process, or they approached the oceliahn as a post-processing step
that relies on the availability of cellular tracgirresults. Thus, the existing cell
division detection algorithms can be broadly clasgiinto trackingindependent [7,
62, 64, 65] and tracking-based [5, 8, 12, 37] defision approaches. In the first sub-
category, intensity-based features are usuallyaetdd to detect the cell divisions,
while in the second sub-category the tracking tesate utilised to identify the

mitosis events.
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2.2.1 Tracking independent cell division detection

Mitosis detection methods included in this catggexploit the distinctive
intensity features that are associated with cadiisr o the cellular division event.
More exactly, these methods use the knowledgentatic cells undergo distinct
phase changes during the cell cycle [48, 86] tratreflected in significant intensity
and shape variations. In some cellular imagesnhduell division the shape of the
cells becomes very regular (circular) and theilioes show a very bright intensity
halo. Thus, these apparent visual features have digen employed to identify cell
division events.

The method presented in [7] first identifies thélctleells (anaphase) in the
next frame that follows the division event usin@@pport Vector Machine (SVM)
classifier. Thus, if both child cells are identdfibased on their shape and intensity
similarity, then they are associated with the cdbgmrent (metaphase) cell in frame
that precedes mitosis. The results returned by rieshod were promising when
applied to fluorescence Hela cell data, as the elthsinges associated with the
mitotic events are apparent. As a limitation, #pproach is highly dependent on the
results returned by the segmentation process, sacke cell needs to be evaluated in
order to measure its suitability to be assigned ahild cell. Thus, accurate cell
division detection can be obtained only in situasiovhere both child and parent
cells are available as input for the cell divismocess. Also, the application of this
method to dense cell phase-contrast image datatistraightforward due to the

substantial challenges associated with the cethsagation procedure.

A different classification-based cell division detion method has been
proposed in [65] that has been specifically desigimedetect mitotic cells in phase-
contrast image data. This method first identifiee image sub-regions where the
potential cell division may have occurred. Thenfraned Hidden Conditional
Random Field (HCRF) [66] was applied to the sekcab-regions to determine
whether each potential candidate contains a mitetient. This work has been
further extended in [63, 64] to enhance the acguaii¢the mitosis detection. In [64]
the HCRF was replaced with the Event Detection @mmdl Random Field
(EDCRF), which is a probabilistic approach thatalsle to model the dynamic
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changes before and after the cell division evele Tetection accuracy of this
method proved excellent when applied to low to meddensity cellular data, but it
has shown problems when applied to dense phaseasbmtata. In [63], a Two-
Labelled Hidden Conditional Random Field (TL-HCR#s used, an approach that
complements the changes in the intensity profiletred mitotic cells with the

information that samples the timing associated withcell division process.

As a common property of the mitosis detection mashanalysed in this
section, they are based on the assumptions thatethdar division is signalled by
conspicuous changes in the shape and the brightifesise parent cell. These
assumptions are not always present in all typeeltdlar phase-contrast data [1, 7].
Another limitation is associated with their depemge on the accuracy of the
segmentation results, and, in addition, the mitosistection implies a

computationally intensive search process.

2.2.2 Tracking dependent cell division detection

When dealing with cellular data where the mit@sients are not signalled by
distinct shape and intensity changes, more sophtisti procedures have to be
developed by analysing the spatio-temporal inforomagéncompassed in the tracking
results [1, 5, 12, 32]. The use of the trackingultssin the context of mitosis
detection leads to increased accuracy, and at #rae stime permits the

implementation of computationally efficient algbnits.

The cell division detection method proposed in| [@2plied the one-to-many
matching constraint during the cell associationcpss. In other words, two child
cells in frame (at tim&+1) that follows mitosis correspond to only onel aelthe
current frame (at tim&). However, multiple cell divisions may occur aethame
time and they may generate ambiguities in thediglsion detection. This problem
has been partially addressed in [32] by using géacnaformation that is calculated
for all cells situated in the neighbourhood of thaotic cells. The major limitation
associated with this method lies in the assumptiat all child cells are detected
after the cell division, which may not be the cageen dealing with low contrast

image data.
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A similar approach for cell division detection Haeen reported in [1] where
the likelihood that a cell is divided is estimatealsed on the absolute differences
between the feature vectors associated with thenpand the child cells. To do this,
the pairs of candidate child cells are merged,thadrior estimates of the mean and
covariance of the difference vectors (calculatedech parent cell) are employed to
increase the confidence of the parent-child matghprocess. Thus, a successful
detection can be obtained when the parent and Lhie cells are correctly
segmented, a condition that may be difficult tdifuwhen the algorithm is applied to

low contrast cell data.

Cellular tracking results are affected by segmetaand cell association
errors. Hence, often during segmentation one adn bbild cells may be undetected
in several frames after the mitosis event. Themoisloubt that these errors have a
negative effect on the accuracy of the mitosis aliete, and to reduce their
occurrence, backward tracking analysis has beehedpi identify the child cells
that are missed by the segmentation process. Mwogeisply, the goal of the
backward tracking process is to identify the lomatof the cells that are missed by
the forward (normal) tracking in frame or frameattfollow mitosis. To solve this
task, pattern recognition methods based on norethloss-correlation [12] and
mean-shift [5] have been reported. For examplgsjimn integrated multiple mean-
shift kernel-based backward tracking procedure employed to detect the cell
division. To alleviate the problems caused by thelden intensity shifts, the
proposed kernels were tuned to accommodate thasibgevariation during the
mitotic event. The method presented in [12] alsleyed the reverse tracking
process for mitosis detection in phase-contrastdeg. In [12], a normalised cross-
correlation based method was incorporated to dékectmissing cell locations in
frames where the segmentation results are notadl@jland backward tracking was
applied to identify the parent-child cells links.
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2.3. Conclusions

The goal of the literature survey presented in thiapter was to analyse the
main directions of research in the area of celltriacking and mitosis detection. The
evaluation of the state-of-the-art algorithms maiatidressed the technical aspects
relating to the implementation of computer visiaased automatic cell tracking
solutions and details about the application contexte also provided whenever such
information was made available in the analysed a&ince the cellular tracking
and mitosis detection play a central role in thecpss of understanding/modelling
diverse biological processes, a substantial numiferapproaches have been
published in this field of research. One distinohdusion that emerged from the
literature survey is that the complexity of thelalr tracking and mitosis detection
algorithms was dictated by the innate charactesstif the analysed cellular data.
This conclusion is not unexpected, since the biokigpatterns that are captured in
sequences of cellular images exhibit strong pddities that are related to the type
of cells being analysed. Nonetheless, this conmtuss extremely important as it
elevated one main direction of research that whswed in this thesis, namely the
need of developing more flexible cell-tracking andosis-detection algorithms that
are able to better accommodate the problems rgl&inmproper image conditions
such as low contrast and image noise, and thedsassociated with the random

nature of the cell migration.

Another important objective of this chapter wasat@mlyse from a technical
standpoint the most important algorithms publishethe literature and to identify
their advantages and limitations. To facilitatestliscussion the algorithms analysed
in this section have been grouped in distinct caieg based on the approach
applied to solve the inter-frame cellular assooratiln this regard, four major
categories have been identified: detection-basemtjefrbased, filtering-based and
hybrid cellular tracking strategies. As indicated $ection 2.1.1, a dominant
characteristic associated with the detection-baselniques is their dependence on
the accuracy of the segmentation process. Sincaesggtion errors are unavoidable
when dealing with dense time-lapse phase-contitst, these methods have shown
substantial limitations in the presence of cellufderaction and random migration,

and these limitations motivated the researchergestigate more sophisticated
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cellular tracking strategies. Indeed, in an effiartreduce the undesirable effects
induced by the segmentation errors, the researdimrs investigated alternative
solutions based on the inclusion of intensity aedrgetric models in the cellular
association process.

The major advantage associated with model-basedularel tracking
approaches is that they do not require the expdieittification of cells in each frame
of the image sequence, but they have several inhdiraitations. Among these

limitations two are most apparent.

Firstly, the model-based cellular tracking meth@ade not able to achieve
accurate results when applied to datasets thattmmacterised by large migration
patterns. Secondly, they are not suitable for hagahe topological changes in the
cellular structures that are caused by cellulaisain events. To overcome the major
limitations of the model-based approaches, theuleglltracking process has been
addressed by constructiagoriori motion models that describe cellular migration.

The cellular tracking methods based on Kalman aatigte filters use the
assumption that the future states (locations) efclls in consecutive frames of the
sequence can be efficiently predicted using wedilheée state transition models that
are often integrated in a Bayesian framework. Wiile Kalman and particle
filtering schemes are theoretically attractive wiagalysed in the context of cellular
tracking (as they are not dependent on the accushdlie segmentation process)
they proved problematic when applied to data tlsatharacterised by random
cellular migration. The random migration cannot &ecurately modelled using
particular motion models, and as a consequenceg mmplex schemes based on
the interaction of multiple motion models were pysed. The application of multiple
motion models to solve the cellular associatioopportune, but substantial practical
problems emerged in relation to the identificatadrthe optimal motion model that
best approximates the image dynamics and the suiadti@vel of supervision that is
required in the training process. In an effort emgrate more flexible and accurate
cell tracking strategies (that can better adapheolarge spectrum of challenges that
are present in dense time-lapse cellular dataseybyid techniques that integrate

multiple tracking algorithms have been recentlyestigated. Indeed, the hybrid
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cellular tracking implementations proved more rdbwhen compared to the
detection, model or filtering-based tracking stgéds, but one apparent problem is

associated with the optimisation of large setsavbmeters.

Thus, in conclusion, the critical analysis desatibe this chapter was
particularly useful as it highlighted the majordinetical areas in the field of cellular
tracking that require additional research. In thiwk, substantial efforts have been
devoted towards the development of a robust celttdaking framework that is able
to minimise the tracking errors that are causedhgyincidence of segmentation

errors.

Another area of interest focused on was the rolaesttification of cellular
division events. As indicated in Section 2.2, twategories of mitosis detection
algorithms have been identified. In this regara #@hgorithms included in the first
category approached the mitosis detection by etipipithe apparent intensity
changes that are associated with the parent cebis o cellular division. These
algorithms proved robust in the identification bétpatent-child cells links, but they
are not feasible for application in the absencsuzh conspicuous intensity changes
that signal the mitosis events. Thus, the secotegoay of algorithms approached
the problem of mitosis detection from a more genstandpoint by analysing the
cell tracking results in a backward manner. Onerpment limitation associated with
these algorithms is the negative impact of segnientaerrors, which generates
incorrect parent-child cells links. This problenshraceived special attention in this
thesis, where a novel backward tracking schemeishable to redress the under-

segmentation problems has been proposed and coemsiebly evaluated.

The proposed theoretical framework provides angnatied solution for cell
tracking and mitosis detection. In this researchrkne novel cellular association
algorithm has been developed that evaluates tr@dgigal information between the
cells in each frame of the sequence. To allevidte megative influence of
segmentation errors on the accuracy of cell trackind mitosis detection, a distinct
module has been designed to identify and redressdfgmentation errors during the

forward and backward tracking processes. The thiealeand practical problems
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relating to the development of the proposed celtking and mitosis detection

framework are extensively discussed in the nexpighraof this thesis.
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Chapter 3:

Cellular Tracking and Mitosis Detection

As indicated in the previous chapter, the topiceifular tracking and mitosis
detection has received substantial interest frompeder vision researchers. This
interest has been largely motivated by the widectspen of molecular application
domains that can be targeted by the developmeifutilgfautomatic cellular tracking
solutions. The aim of this chapter isdetail a novel image processing framework
that has been designed to robustly identify theratign patterns and mitosis events

in time-lapse phase-contrast image sequences.

As mentioned above, the main objective of thispthiais to present the
technical details associated with the proposedilegltracking and mitosis detection
algorithm and to emphasise how the major limitagiodentified in the previous
chapter are addressed in the solution advancedsrdissertation. The main issues
that hamper the development of robust cellulakiregalgorithms are as follows:

Under-segmentation

Random motion

Cell division

Cellular agglomeration

Cells that enter/Exit the ROl imaged by the micopse

In order to provide a flexible and efficient sobuti for automatic cell tracking
and mitosis detection, in this work a multi-staggpr@ach has been developed that
involves a computational framework that consists tlafee main components:
segmentation, forward-tracking and backward-tragkimodules. Figure 3.1
illustrates the block diagram of the full systemendnthe sub-modules of the three

main components of the developed algorithm are isan.
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Figure 3.1. The block diagram of the proposed cellular tragkiand mitosis
detection framework.

The first computational component of the proposacthéwork is represented
by the Segmentation modul&@he main goal of this module is to identify tredl€ in
each frame of the phase-contrast image sequenceoadéetermine their centroid
points. The identified centroid points (that deserthe location of the cells in each
frame) are passed to the forward tracking modulelétermine the cell lineages
(migration patterns) in all frames that composeithage sequence. In the proposed
cell segmentation approach, to maximise the cantbegween the cells and
background a morphological process has been apphiedrecisely localise the
intensity peaks that represent the nuclei of tiis aephase-contrast images.

The next component of the proposed framework isRbevard tracking
modulewhose aim is to implement the cell tracking precé&ince in phase-contrast
data the cells exhibit similar intensity charadtecs and random motion, the cellular
association (particularly when dealing with densbutar data) is very challenging.
Thus, to generate an efficient solution a novelplrmatching-based cellular

association is proposed in this thesis. Here tlalaeassociation process evaluates
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the local distribution (topological structure) dfet cells that is encoded using a
graph-based representation for each frame of theesee. In this work, the graph
that describes the relationships between neighbgucells is constructed using
Delaunay triangulation that encodes the spatialtipasof the cells within frame.
The proposed cellular association is formulate@ ggaph matching process where
the cell trajectories (or cell tracks) are obtairmdidentifying the corresponding
centroid points in consecutive frames of the imsgguence. One problem that had
to be addressed in the proposed graph-based seltiason process was to tackle
the errors that are caused by under-segmentatiathid regard, a pattern matching
approach (under-segmentation module in the bloagrdm shown in Figure 3.1) has
been devised that is able to signal the occurrericender-segmentation and to
identify the location of the cells that have beessad by the segmentation process.
More exactly, if the cell tracking identifies an matched cell during cellular
association, the under-segmentation module is aetivto find the cell location in
the next image using a pattern matching algorithat tinimises the local distortion
in the Delaunay mesh. The under-segmentation mddules one contribution that

enhanced the performance of the proposed grapltoaigracking algorithm.

The last module is designed to deal with cell dongmitosis) detection that
performs the cell tracking in a reverse mannerdeniify the links between the
parent and child cells. Cellular division is a bgial process where a parent cell
divides into two identical child cells. In this sdtion, the Forward tracking module
associates the parent cell with one child cell,levthie other child cell is considered
as a new cell that will erroneously initiate a neack. The cellular division cannot
be handled during the forward association proces$o link the un-associated child
cell with the correct parent cell, in this thesise&erse tracking strategy has been
implemented that makes use of the cellular assoniaesults provided by the
Forward tracking module. In this way, if an unmaidtcell (due to cell division) is
identified, a searching process is initiated ugatgiern matching and local cellular
structure to identify the parent cell in the prexgdrame. In the following sections of
this chapter each component (module) of the prapéseanework are explained in
detail.
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3.1 The segmentation module

The segmentation module is the first componeth@froposed cell tracking
framework whose aim is to segment the cells in deanine of the image sequence.
As discussed in Chapter 2, the segmentation prasdsampered by limitations in
the image acquisition process such as the low asinand image noise, and it is
useful to note that this scenario is particularhggent when dealing with phase-
contrast image data. To alleviate these adversgdnsanditions, researchers have
developed image protocols that require the usetahiag fluorescence agents to
increase the contrast between the cells’ nuclei thedbackground. However, the
administration of fluorescent agents is not feasfbt all cell lines as they negatively
affect the cell cycle and may compromise the amay®wolecular indicators. In this
scenario, phase-contrast image modalities are afpplied but the generated image
sequences are characterised by low contrast ahditig.-frame intensity variation.
These adverse imaging conditions substantially ¢cate the segmentation process,
and the main objective of the proposed cellulansagation solution consists of the
development of a robust morphological-based tecletfat is able to accommodate
the intra- and inter-frame intensity variations authpt to the low intensity contrast
that is common for Madin Darby Canine Kidney EplitdeCells (MDCK) and
Human Umbilical Vein Endothelial Cells (HUVEC) adhr datasets.

3.1.1 The proposed cell segmentation method

In phase-contrast data, the image areas covereckllsy have generally a
darker interior (nucleus) which is surrounded kyyeaipheral bright halo. Following
this intensity profile model, the cells can be tetically extracted using threshold-
based segmentation techniques. However, in prathieeapplication of simplistic
thresholding schemes proved ineffective, as thesgoantrast data cannot be
precisely approximated with a bimodal distributiohhe segmentation method
described in this thesis entails a greyscale mdggeal process that is applied to
increase the contrast between the cells’ nucleitaadackground. A block diagram

that outlines the proposed cell segmentation teghenis illustrated in Figure 3.2.
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Figure 3.2.The overview of the cell segmentation module.

The main objective of the proposed cell segmemati@thod is to find the
intensity peaks that are associated with the ceillgtlei, which facilitates the
separation of the cells from the background. Stheeintensity profiles of the cells
are non-uniform, the first step requires the enkarent of the intensity profile of the
cells’ nuclei with respect to the surrounding backemd regions. To achieve this
goal, a top-hat filter has been applied to the itk image (the image has been
inverted as the cells’ nuclei are defined by lowensity signals when compared to
the background). These morphological operations iadecated in equation 3.1,
where the top-hat filter retains the bright intéesi within the structuring element
(SE) while eliminating those situated outside tlie $he application of the top-hat
filter eliminates the uneven illumination and theadl artefacts that are caused by

the image noise.
ltop =tophat( liny) = liny - (I inv 5( r)) (3.1)

where lj,, is the inverted image( ) is the greyscale morphological opening

operation ands( r) denotes a circular structuring element with auadi The radius

r is a user-defined parameter and should be selectethtion to the average size of
the cells. The automatic identification of this graeter may be problematic in the
absence ofa priori knowledge regarding the cell data, and in thisdgtthe
parameter is set to a value greater than the average eell(fhe parameteris used

to identify the cells in all frames of the imagegence).
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Although the application of the top-hat transforntreases the contrast
between the cells’ nuclei and the background, phixess is not able to remove the
extraneous peaks that are generated for a sinljleegeon. This issue is illustrated
in Figure 3.3.2(a). To compensate for this probl#m,image data resulting from the
application of the top hat transform is smoothemgi® Gaussian filter where the
scale parameter is adjusted to implementankernel. Next, to detect the cells’
nuclei the extended maxima transform has been ehplvhich is the regional
maxima of theh-maxima, and the final segmentation results arevehim Figures
3.3.2(e) and 3.3.2(f). Figures 3.3.1 and 3.3.2 idetall computational steps
associated with the proposed cell segmentationegsoand additional segmentation

results are provided in Figure 3.4.

O

(b)
Figure 3.3.1. Cell segmentation process. (a) The original pltasdgrast image
(Madin Darby Canine Kidney Epithelial Cells - MDCK)b) The top-hat
transformed version of the inverted image. Theut#nc structuring element with
radiusr is marked with a red circle (c) 3D view of the geashown in (b) (further
cropped to illustrate the occurrence of the mudtipbaks).
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() (b)

(©) (d)

(e)
Figure 3.3.2.Cell segmentation process. (a) The segmentatguitrfeom image (c)
in Figure 3.3.1 using thé&-maxima transform — note the issues caused by the
multiple peaks which generate multiple responsesafaell region — marked with
black circles. (b) The image resulting after filbgr the image (b) in Figure 3.3.1
with a Gaussian filter. (c) 3D view of the Gausssamoothed result shown in (b). (d)
The segmentation results from the image (b), wlaesingle peak defines a single
cell region. (e) and (f) depict the final segmeptaresults, where the identified cells
borders are super-imposed on the original image.
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(@) (b)

(©) (d)

(e) (f)

Figure 3.4. Additional segmentation results for Human Umbiligain Endothelial
Cells (HUVEC) phase-contrast data. (a) Originalgsmalb) Top-hat filtered image.
(c) The image resulting after filtering the imadmwwn in (b) with a Gaussian filter.
(d) Segmentation result where each blob represergsll. (e) - (f) Segmentation
results where the cells borders and their centr@ied dots) are overlaid on the
original image shown in (a).
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The proposed cell segmentation technique returnmiging results when
applied to challenging MDCK and HUVEC datasets. ldoer, due to the extremely
low contrast between the cells and the backgroharcktare situations when cells are
undetected by the algorithm (under-segmentationghSxamples are illustrated in
Figures 3.5.1 and 3.5.2 and the locations wheresmsglgmentation occurs are
marked with yellow and blue circles. For clarityrposes, the detection failures
caused by large morphological changes are markéd ywellow circles, while the
blue circles denote the failures generated by &im# fmage contrast. The incidence
of under-segmentation has negative effects on énmnance of the cell tracking
process and in this thesis an approach that comlangattern matching technique
with the topological information that samples toedl relationships between cells
has been integrated in the proposed tracking frarew he developed cell tracking

approach will be detailed in the next section g thapter.

(@) (b)

O
O

(© (d)

Figure 3.5.1.Examples that illustrate under-segmentation erf@i3CK data). The
segmentation failures that are caused by large modwgical changes are marked
with yellow circles while the segmentation failurége to the faint image contrast
are marked with blue circles.
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(a) (b)

Figure 3.5.2.Examples that illustrate under-segmentation elftdt$VEC data). The
segmentation failures due to the faint image cehttee marked with blue circles.

3.2 The forward tracking module

The forward tracking module represents the maingmrant of the proposed
cell tracking framework. As emphasised in the &itare survey provided in Chapter
2, the cellular association in time-lapse densduleel data is the most complex
process since cells have similar intensity and slwdyaracteristics and cell migration
is dominated by random motility patterns. To cirmemt the issues relating to
feature ambiguity or inconsistent motion estimatitime proposed cell tracking
framework evaluates the structural (topologicalatienships among neighbouring
cells with the aim of identifying the correspondioglls in adjacent frames of the
image sequence. The spatial neighbourhood reldtipnst a finite set of nodes
(cells) can be encoded using global and local sspriations. Global representations
construct complete graphs where each cell is linkedll other cells in frame as
shown in Figure 3.6.1(a). This representation ifndd by an exhaustive graph
where all links between cells are considered. Gaaddantage associated with this
global mesh representation is that any changelerstructure of the mesh at local
level (that can be caused by under-segmentatidinjaredivision or situations when
the cells enter or exit the area visualised byrtheroscope) will distort the entire
mesh structure. An alternative global representatmnsiders only the links that are
directly connected to the cell under observationisT simplified global
representation is shown in Figure 3.6.1(b) wherg tre links associated with cell

u are considered in matching process. Since thisgtelal representation alleviates

-47 -



several issues that are associated with the mamglea exhaustive topological
representations, still is not well adapted to deigth problems that are generated by
local disturbances in the mesh structure. To furttegluce the impact of the
problems generated by local disturbances, the gaapbciated with a cell can be
constructed by considering only its neighboursaséd inside a circular regioncR
around it, as shown in Figure 3.6.1(c). While tlqiporoach substantially reduces the
number of links required to encode the local relahips between a cell and its
neighbouring cells, the structure of the resultmgsh largely depends on the
selection of the radiusqRDue to variations in cell density and differestl enotility
patterns in consecutive frames, the optimal seeatif the parameter s critical.

In this sense, a small;R/alue will result in disconnected graphs, whilamge value
will generate a graph representation as showngargi3.6.1(b). Due to changes in
cellular motility, an inappropriate selection fohet parameter R will insert
unpredictable changes in the structures associaiéd corresponding cells in
consecutive frames of the image sequence and #ats rhay compromise the
accuracy of the cell tracking process. Figure 3dj.1llustrates such a situation
where a small migration of one cell will resultanvery different structure that is
sampled within the radiusdRIn this figure the red dots denote the positibrihe
cells in the previous frame (Figure 3.6.1(c)), whhe black dots denote the position

of the cells in the current frame.
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(a) (0)

é)
o,
O

(©) (d)

Figure 3.6.1.The use of global and local cellular relationshipscell association.
(a) Exhaustive global representation where theslin&tween all cells in the image
are considered. (b) Global representation wheng thi links between the calland

its neighboring cells are considered. (c) Localespntation that is constructed using
the nodes sampled around the nadethin a circular region R (d) Inconsistencies
in the local structure that are caused by celluigyration.

In order to perform cell association, the spattalicture associated with a
particular cell in the current frame is matchedhwiihe structures associated with
other cells in the next frame. To implement ancefit cell association algorithm a
compact graph representation is required. Sucheseptation should be able to
encode the spatial arrangement between cells witoy user-defined parameters,
be able to maintain the mesh structure in the pEsef cell migration, and more
importantly, the insertion and deletion of nodeattimay arise due to cell division
and under-segmentation should induce only localidhances. Several methods such
as relative neighbourhood graph [107], Gabriel grg08], and -skeletons [108]
have been reported in the literature as efficieppr@aches for encoding the
neighbouring relationships between the nodes comdain a set. These techniques
are able to accommodate the issues related tonsegtion/removal of nodes in the

local structure, but they are either dependentxqti@t parameters or they are not
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able to preserve the structure when the initialitmrs of the nodes are altered.
Thus, these methods have not been considered propesed implementation since

the location of the cells in consecutive framedissurbed due to cellular migration.

To achieve all properties mentioned earlier, irs thiork the intra-frame
cellular relationship (or spatial structure) is eted using Delaunay triangulation
[35]. Delaunay triangulation generates a planaplyrahere each node in the mesh is
optimal linked to its neighbours [102, 106]. Figu8é.2(a) illustrates an example
where the Delaunay mesh has been constructed tiengells’ centroid points and
the relationships between neighbouring cells amresented by the edges that
connect the nodes in the graph. This representa&icuitable for cell association
since the spatial structure encoded by Delaunandtilation is minimally affected
by cell migration in consecutive frames. Figure6.&b) and 3.6.2(c) show the
construction of the Delaunay mesh for the ceih two cases: before and after the
local structure has been disturbed by random magrain Figure 3.6.2(c) it can be
observed that although the initial positions of tedls around the nodehave been

distorted, the resulting mesh is still similar bat depicted in Figure 3.6.2(b).

(a) (b) (c)
Figure 3.6.2. Delaunay triangulation and its advantages in eslociation. (a)
Delaunay mesh that is constructed using the celstiafi the cells that are detected in
one frame of the sequence. (b) Delaunay mesh cmtett for the points sets in
Figure 3.6.1(a). (c) Delaunay mesh constructediersame set of points where a
random migration is incorporated with each of tbens.

In the structure encoded by the Delaunay meshirihiegles tend towards
equiangularity and the insertion or removal of denaffects the mesh representation
only at the local level [81, 106]. This propertyparticularly well-adapted to encode
the neighbouring relationship between the celth@image, as the insertion and the
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removal of nodes can be caused by cellular divisioaonder-segmentation. This is
illustrated in Figure 3.6.3. Figures 3.6.3(b) an@.3c) shows the effect of deletion
and insertion of a node in the mesh in the origgralph shown in Figure 3.6.3(a)
and it can be observed that the insertion/delatfamodes disturbs the original mesh

only at local level.

O O

(@) (b)

(€)

Figure 3.6.3.Examples that illustrate that the removal (undsgrsentation) and the
insertion (cell division) of nodes (cells) affebetstructure encoded by the Delaunay
mesh only at local level. (a) Initial Delaunay me@#) Mesh after node deletion. (c)
Mesh after node insertion.

Once the Delaunay meshes are constructed in twsecative frames, the
cellular association process can be formulated gsajph-matching problem. Since
the cell relationships are accurately modelledgiiis graph-based formulation, the
similarities between the local structures in twosecutive frames can be efficiently
estimated based on the assumption that the callsaecurately detected in each
frame and the similarity measurements can be etaluar the cellular association.
As the identification of the corresponding cells @gonsecutive frames of the
sequence entails a sequential process based @avahetion of the local structure,

missing cells in one frame will have a detrimergffect on the accuracy of the
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tracking process (i.e. it will generate discontiras in the cell lineages that are
determined for each individual cell). To overcorhis {problem, a procedure referred
to as under-segmentation module has been incogubrathe proposed cell tracking
strategy, which aims to redress the undesired tsffegenerated by under-
segmentation. This computational step will be diedain the Section 3.2.2 of this

chapter.

3.2.1 The cellular association process

The aim of the cell association process is to iflebrresponding cells in
consecutive frames of the image sequence. In thepoped approach, the
correspondence between the cells in fralhasdT+1 is determined, as indicated in
the previous section, based on the similaritiestha local structures that are

T+1
D

encompassed in the Delaunay grapHsand . (The Delaunay graph®" and

D™ are constructed using the centroid points resuléifier the application of the
cell segmentation process). More precisely, thielee association (node matching)
process evaluates the level of similarity in thealostructure for all nodes in the
graphsD' and D™, Key to this matching process is the mesh (orlyligks) that

encompasses the local structure contained in tHaubDay representation for each

node in the image. An example that illustrates tbiscept is shown in Figure 3.7.1

b e Co
a d
° °
u e
° °
h
g® ef
(@) (b)

Figure 3.7.1.The local structuréﬁ] associated with the cell in the Delaunay mesh

DT, frameT . (a) Delaunay mesB". (b) The local structure associated with the
nodeu in the mesiD’.

When translated into a mathematical formulatiore tocal structureS-Jr

associated with the node in the DeIaunayDT mesh in imagel is defined as

follows,
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Sl ={Dupy upd B.,0 pu gp (3.2)

where Dupq is the triangle connecting the node®, andg, u”™ p denotes that the

nodesu and p are linked by the edge_p and {.} is the mathematical set operator.
To evaluate the level of similarity between thealostructures associated with two

nodesul D' andvi D™ it is necessary to define a metric that is ablevaluate

the distortion level in the mesh in tBé and D"**

graphs.

Since the local structure associated with a nodéénDelaunay mesh is
represented by a number of triangles that are ttjréccident to the node, the
cellular association process is carried out by mn@ag the similarities of these
triangles in two consecutive frames. To achieve tipal, the Hausdorff distance
[103, 102] has been employed to determine the gukam dissimilarity. The
Hausdorff distance provides a robust measure totdyahe mutual proximity for
all vertices that generate the triangles in the Bedaunay meshes, by considering
the maximal Euclidean distance between any verteone triangle with respect to
the vertices that form the other triangle. The Haul distance for two triangles;
and ,is defined in equation (3.3).

H (Dy, Dp) =max(/ (B, Q) ( B, B) (33)
J (D,D,)= maXp; Dlimian Dz{d( P, Q)}Jl (3.4)
whered(p,q) is the Euclidean distance between two nodes willxes andg,

The Hausdorff distance has been extensively usedhfape matching [80,
99-105] since it is a more precise dissimilarityasiere than the shortest Euclidean
distance. The shortest Euclidean distance doeprowtde satisfactory results since
it is shape independent metric and in additiorotsable to sample the changes in the
vertex locations. Figure 3.7.2 illustrates thisitahon when the shortest Euclidean

distance is applied to evaluate the dissimilarggween two triangular shapes. As
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indicated in Figure 3.7.2, the shortest Euclidemtadce (marked with a red line) is
the same in both cases shown in Figures 3.7.2n@)(la) although the positions
between the two triangular shapes in these twoasmEnare quite different. Since,
the Hausdorff distance is computed based on theahptoximity of all vertices that
compose these two triangular shapes, the dissityilareasure is affected by the
distortion of triangular shapes or by changes irtexelocations. Using the same
judgement, it can be easily observed that the Hatfsdistance is more precise in
sampling the shape dissimilarity than the metriocvled by the distance between
the centroid points of the two triangular shapds Tavourable properties associated
with the Hausdorff distance motivated its use ia groposed cellular association
algorithm to measure the dissimilarities betweem tiangular shapes encoded in

two consecutive Delaunay meshes.

v

(@)

(b)

Figure 3.7.2. Example that illustrates the problem associateith Wie use of the
shortest Euclidean distance when applied to medbkerelissimilarity between two
triangular shapes.
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During the cell association process, all triangiesociated with a node in the current
frame are matched based on the Hausdorff distaneasume. With respect to
equation (3.3), the triangles; and , are assumed to be similar only if their
Hausdorff distance is smaller than a predefinedsitwld as indicated in equation
(3.5). This predefined threshold restricts a trlaregsociated with the noden the
current frame to be matched with triangles that associated with non-
corresponding nodes in next frame. In the impleater detailed in this thesis,is
set to the maximum instantaneous cell movementwim ¢tonsecutive frames to

accommodate the inherent distortion that is cabgezkll migration.

H(Dy Dy) <a

otherwise

1
MT (D1, Dp) = (3.5)

Since the local structure associated with eactle nconsists of a set of

triangles that are generated by the node of intexed the adjacent nodes in the
Delaunay mesh, to completely evaluate the simjldrittween the nodesl D' and

vi D™ a matching confidence functidvi(.) that evaluates the similarity between

two local structureﬁI and S\T‘Ll has been defined as indicated in equation (3.6).

MT (Dy, Dy)

|

WhereHSEH represents the number of triangles containeders#ts] . The term that

Tl
M(u,v)leIS“Di
m

g
=CiIEE

defines the denominator in equation (3.6) has lag@hed to normalise the matching

confidenceM(.) in the range [0,1].

Based on the value returned by equation (3.6)dohair of cells (nodes) in
framesT andT+1, the cells are associated in multiple stageshédnfirst stage, the

nodes (cells) in frameb andT+1 that have their local structure completely matth
(i.e. MT(.) =1 for all triangles in the local structur€ and S **) are associated. An

example where two nodesandv in framesT and T+1 have their local structures
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completely matched is shown in Figure 3.8, where ¢brresponding triangles in

meshesD' and D™ are shaded and indexed in agreement to the Hdfisdor
distance. It is important to note that the noded #re matched in the first stage of
the cellular association process are matched Wwehighest level of confidence and
they are included in a reference IRt(refer to equation 3.7) that will be used to
guide the following steps that attempt to identtig¢ corresponding nodes for which

the local structure was only partially matched.
R:{(p,q)| o O, DT+1} 3.7)

wherep andq form a pair of corresponding nodes in frariesndT+1, respectively

that are matched in the first stage of the cellatmociation process.

(b)

Figure 3.8. An example that illustrates a case where thel Istactures for two
nodesu andv in frames (&)l and (b)T+1 are completely matched with respect to
equation (3.6).

A graphical example that illustrates the cellst thee matched in the first
stage of the cellular association is presentedgarg 3.9. In this diagram, for clarity
purposes, the cells that have their local strustdudly matched are marked with
white dots in the images corresponding to frarfeand T+1, whereas the un-

associated cells are marked with small red dots. f(itther emphasize the un-

associated nodes in Figure 3.9, the edges in thauBey graphsD’ and D™*

corresponding to un-associated local structuresnar&ed with red lines).
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() (b)

Figure 3.9. The first stage of the cell association proceay.FfameT. (b) Frame
T+1. The cells associated in the first stage arekemsarwith white dots. The
remaining cells for which their local structuresrevenly partially matched in frames
T andT+1 are marked in this diagram with small red dots.

Due to cellular division, under-segmentation angesheracy problems in the

construction of the Delaunay mesh, the local stmecfor the nodeu (SI) in the

first Delaunay mesh (framg) could be distorted when compared to structurthef

corresponding node (STH) in the next frame. As a result, some of the gjlas in

the local structureﬁ}r and SU,-J'l may not be matched with respect to (3.5). Figure

3.10 illustrates two examples for which the lodalictures of corresponding nodes
andv in framesT andT+1 are only partially matched.
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Figure 3.10. Examples that illustrate two cases of correspanaiodes for which
their local structure has been partially matchaylafd (b) illustrate the distortion in
the local structure that is caused by under-segatient (c) and (d) show the
distortion in the local structure that is causeddrge migration. (a, c) frame (b, d)
frameT+1.

The second stage of the cell association proceass deth the cells that were
not matched in the first stage (i.e. they havertsuctures only partially matched).
To provide more confidence in the second stagehefdell matching process, a
partial matching confidendeMC(.) is measured using equation (3.8) that evaluates
both the similarity for triangles and mesh edgethwespect to the reference nodes
contained in the ligR. In this node association stage, edge matchiatgtsevaluated
(see the second term in equation 3.8) to maxinhisaise of the local structure when
matching the nodes withl(.) < 1. This avoids the incorrect matching decisidret t
may be caused by cellular migration and under-sagmtien. The last term in
equation (3.8) is introduced to penalise the dispizent between the nodesandv

in framesT andT+1, respectively.

PMC(u V)= M(u Y+ (3.8)

- B8 -



where E] ={u4p}| pl R, E\-,r+1={v7¢} gl R, ME(EI,EJ”) denotes the number of
matched edges betwedr] and E| ™, HEJH is the number of edges in the %Ej},

d(.) is the Euclidean distance andis the maximum cell's displacement in two

consecutive frames. The distance constraint teradded to maintain a high level of
matching accuracy when dealing with large migrapatterns that may occur during
cellular division and to prevent incorrect matchiest are caused by larger than

instantaneous cellular motilities that are generaieunder-segmentation.

The nodes that were unmatched in the first stagetaat maximise the value
of PMC(.), are associated and are included in theRisThis process is shown in
Figure 3.11 where the nodes associated in the destaige are marked with large

blue dots.

(@) (b)

Figure 3.11.The cell association using partial structure matgh(a) FrameT. (b)
Frame T+1. The nodes matched in the second stage of aelhgsociation are
marked with blue dots and the corresponding matrlsitmuctures are shaded in
yellow.

Due to under-segmentation, cellular division andsabat enter/exit the area
imaged by the microscope, there are still cellfamesT andT+1 that are left un-
associated. This is illustrated in Figure 3.12 wh#re results returned after the
application of the two-stage cellular associatiamcpdure are shown. In this

diagram, the cells matched in the first stage aseked with white dots, the cells
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associated in the second stage are marked with datee while the cells left un-

associated are marked with solid black circles.

() (b)

Figure 3.12. Matching results at the end of the two-stage tzellassociation
process. The white dots denote the cells associatde first stage. The blue dots
illustrate the cells matched in the second phas¢hefassociation process. The
remaining cells marked with black dots in image 4eg left un-associated due to
under-segmentation. The cells marked with black dotb) are cells that entered the
region of interest imaged by the microscope in #aml and they do not have
corresponding cells in framie

From the un-associated nodes shown in Figure ghéXodes in framg, for
which the corresponding nodes in frarel left the region of interest, were
correctly left un-associated. Similarly, the sanfsayvation applies for nodes that
enter the region of interest only in framie&l. As these nodes do not have
corresponding cells in framg, they were correctly left un-associated. Thus, & th
last stage of the cell association process we fooukie un-matched nodes (in frame
T) that were not associated due to under-segmentaliois situation occurs when
nodes in framd@+1 were missed by the segmentation process. Ingkesection, a

proposed solution to redress the errors causedtgresegmentation is detailed.
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3.2.2 Redressing under-segmentation errors

There are situations when cells are not detecyetthd proposedh-maxima-
based segmentation algorithm due to the very lowtrast in the image. As
explained in Section 3.2.1, the occurrence of segmtien errors disturbs the local
structure in the Delaunay mesh in fiel frame. Therefore, the local structure for
the cell in frameT will not be matched in fram&+1 if its corresponding cell is left
undetected by the segmentation process. If sudtuatiesn occurs, the trajectory
(cell lineage) for the cell in fram& will be terminated, and another track will be
initialised when the unmatched cell in frariel is detected in the subsequent
frames. Practically, the incidence of under-segatemt will generate gaps in the
identified cell lineages (or cell tracks) as ilkaged in Figure 3.13. (In this diagram

the 2D+time cell tracks are plotted for 100 frames.
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Figure 3.13. 2D+time plot detailing the cell tracks for 100 rfras. The under-
segmentation errors generate gaps (indicted byedasincles) in the cell tracks that
were obtained after the application of the two-stegll association process.

If cells are left un-associated in frarie this triggers the activation of the

procedure that is applied to redress the probleamsex] by under-segmentation. To
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accomplish this goal, the proposed algorithm iteaa search process to identify a
suitable cell location in fram&+1 using the normalised cross-correlation and the
local structure encompassed in the Delaunay meslihi$ sense, the algorithm
attempts to identify an image location in fraiftel that approximates the intensity
profile of the unmatched cell in franfe(the intensity profile of the cell in franieis
sampled within a rectangular mask). To avoid theemital identification of cell
locations that are too far with respect to the gmsiof the un-associated cell and the
previously matched local structures (i.e. nodetuohed in the lisR) in frameT, the

search region in fram@+1 is restricted within a2a+1)" (2+ 1) area whose

center is the coordinate of the centroid of theagseciated cell in the franie The

application of the normalised cross correlationcpoure will generate multiple peak

points within the image area enclosed within (Ba +1)" (22 + 1) mask. To select

the best location among the multiple peaks, thallstructures associated with the
un-matched cell in the frame and the local structures constructed for each peak
point are evaluated next, and the peak point thairmses the equation (3.9) is
selected as the best location in framel for the un-associated cell in frarieTo
maximise the level of confidence when the expressio(3.9) is assessed, the local
structure for each peak in frarie 1 is constructed by linking the peak point and the

reference nodes (cells) contained in theRist

(1(ua)- 1{vb)) (9(ua} o(vH) (3.9)

_alb R alb R

" ma{i(va)- 1(v8)) " maf{a(vd o[

whereu is the unmatched cell in franfe ual D', Vi bl DT+, v, is theit peak

DL (u.v)

point, I(e) returns the length of the edgeand g(e) returns the angle of the edge
with respect to the horizontal axis. As mentionetlier, the locationv that

approximates the unmatched cell in frafit€l is the peak point; that minimises

the DL as follows,

V= arg min, i i.my(DL(um)) (3.10)
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wherem is the number peaks returned by the normalisessarorrelation process in
frameT+1. Equations (3.9) and (3.10) evaluate the sinyldéetween the length and
angles associated with edges for each potenti& paiatsv; in frameT+1 and those
calculated for the un-matched nodeThese new measurements provide additional
information that is able to sample the subtle dd#fees between the structures
constructed for each candidate point with posiéffects in the identification of the

best peak point within the search window.

The step-by-step operations that are applied toessdthe problems caused
by under-segmentation are detailed in Figure 3Thé. cell labelled withu in frame
T (Figure 3.14a) could not find a corresponding dallframe T+1 due to a
segmentation error (Figure 3.14b) (to illustrate dorresponding cells in framds
and T+1, in Figures 3.14(c, d) the track indexes arevipged for each cell). The
activation of the under-segmentation module idesgtifthe local maxima points
(peaks) with respect to the normalised cross atioel and the identified peak

points (v, v, andvg) are marked with solid black circles in Figure4&fL The edge

structures constructed for each peak point are showigure 3.14(g-i) and the peak
location that minimises the expression shown i8)(& marked with a red circle in
Figure 3.14()).
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Figure 3.14.An example that illustrates the step by step dmers associated with
the under-segmentation module. (a, b) Frameand T+1, respectively, where is
illustrated a case where a cellin frame T is left un-associated due to under-
segmentation. (c, d) Track indexes for each cdilamesT andT+1. (e) Same as (a),
the edge structure associated with the wall frameT. (f) The peak points identified
by the normalised cross correlation. (g-i) The edtactures constructed for each
peak points illustrated in (f). (j) The peak pdihat minimises the expression shown
in (3.9). The algorithm assigns this point as tl@responding node for the
unmatched cell in frameT.

To visually illustrate the improvement in cell tkamg accuracy that is
achieved by the application of the proposed undgrrentation module, Figure 3.15
shows the 2D+time tracking results obtained onstirae set of cells as illustrated in
Figure 3.13. As illustrated in this diagram, th@gan the tracks that were caused by
under-segmentation were successfully eliminatethbyapplication of the proposed
module (see the points marked in red in Figure)3.15
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Figure 3.15. 2D+time plot that illustrates the tracking reswittien the under-
segmentation module has been applied to redresegmentation errors.

As indicated in Figure 3.15 the proposed under-gggation module
successfully identifies the locations of the cefissed by the segmentation process.
To numerically evaluate the improvement in perfancecaused by the application
of the proposed under-segmentation module, Talllesl3ows the percentage of cell
tracks that were correctly identified by the fordiatracking process in two
situations: (a) when the under-segmentation modutie-activated and (b) when the
under-segmentation module is integrated in the Idpweent of the cellular
association process. Full details in regard to pghecess applied to generate the
ground truth data are provided in Section 4.1, wasrthe metrics employed to
guantify the accuracy of the segmentation and ingclprocess are indicated in

equations 4.1 and 4.3.
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Table 3.1.Tracking and segmentation accuracy with and witlibe activation of

the under-segmentation module.

Cell type | No. of| Under-segmentation moduleUnder-segmentation module
frames de-activated activated
Segmentatior Tracking Segmentatipn  Tracking
MDCK-1 | 100 97.41% 62.25% 98.15% 89.47%
MDCK-2 | 100 97.28% 60.95% 98.91% 87.50%
MDCK-3 | 100 96.96% 60.27% 98.11% 82.18%

3.3 The backward tracking module

Cellular division is a self-occurring process thannot be accurately
predicted during the standard forward tracking pdace, unless the parent cells
exhibit apparent intensity transitions in frame (oames) that precede cellular
division. Unfortunately, this favourable situatits not present when dealing with
standard phase-contrast cellular data, and thiscéatbe observed in Figure 3.16.1,
row-1 and row-3, where consecutive images from adWBequence are depicted to
illustrate a cell division (marked with circles)eat in two distinct cases. These two
cases illustrate the problems created by under-segtion during the cell division
process. The first row in Figure 3.16.1 depictgactical scenario where the parent
cell and one of the child cells are not detectexsécl), while the third row (case 2)
presents a situation when one child cell is migsethe segmentation process. Thus,
cell division detection during forward tracking ot practical, as the cellular
association entails a one-to-one matching constrAs a consequence, one of the
child cells resulting from mitosis is associatedhwihe parent cell, while for the
other child cell, a new track will be initialisedttva new index. This is illustrated in
Figure 3.16.1, row-2 and row-4, where the parefit (c&dex 110 in row-2, 45 in
row-4) is matched to one of the child cells, wheréa the other child cell a new
track index (342 in row-2 and 328 in row-4) is gexted. To help visualise the
problems caused by cellular mitosis during the @wtracking process, in Figure
3.16.2, the 2D+time cell tracks that are identifiigcthe forward tracking module are
shown. In this diagram the unconnected branchegkgdaby circles) that are
generated by the cell division events can be oleserhus, the last problem that has

to be addressed prior to the estimation of the atign patterns and cellular cycle is
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to link, in a robust manner, the parent and chdtiscresulting from mitosis events.

To achieve this objective, in this thesis a multige backward tracking process has

been developed.

Child-2 hild-2

;Paren ;aren Child-1 Child-1

frameT frameT+1 frameT+2 framé&+3

Child-2 Child-2 Child-2 Child-2
Pare”: &hild-l &hild-l @hild-l @hild-l

frameT framel+1 frame+2 framd+3 framd+4

Figure 3.16.1. Two examples that illustrate the problems generateduthger-

segmentation during the cell division event. Fimst/: the parent and one child cell
have been missed by the segmentation process. fidvrdone child cell has been
missed by the segmentation process. Second antth fauvs: corresponding forward

tracking results.
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Track index 110 Ty5¢ck index 45

Figure 3.16.2.2D+time plot that illustrates the forward trackimgsults in the
presence of cellular division. Full explanationsegard to this diagram are provided
in the text.

The application of backward tracking is successiutletecting the mitosis
events only if all cells (parent and child cells)e acorrectly detected by the
segmentation process. Unfortunately, due to the ilo@nsity contrast that is a
characteristic of phase-contrast images, theresitmations when some child cells
resulting from cellular division events are misdgdthe segmentation algorithm.
This situation can be observed in the third rowriglure 3.16.1 where it is indicated
that the child cell-2 has not been identified bg firoposed segmentation scheme.
Since the child cell-2 was not identified by thgmeentation algorithm, this fact did
not trigger the activation of the under-segmentapmcedure and the parent cell has
been associated with the child cell-1. The child-2as detected by the algorithm
only in frameT+4 (see third row- Figure 3.16.1) and it will bether detected with a
new track index. Thus, this type of under-segmemtaproblems needs to be
addressed during backward tracking using a hybratedure that combines the
intensity model of the missed cell with the loctlstural information contained in

the Delaunay meshes.

In the proposed backward tracking scheme, for eatlhtrack identified by

the forward tracking module, the backward trackimgcess is carried out from the
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end of the track towards the first cell of the krda this way, the backward tracking
can be successfully applied (from framhetowards framerT-1), only in situations

when all child cells are identified. If under-segrtagion occurs (see the third row in
Figure 3.16.1) the tracking is initiated from framéere the child cell is detected
first (frameT+4) and the algorithm will attempt to identify teaitable locations for

the corresponding cells in fram&s3, T+2 andT+1 using a process similar to that
applied to redress the under-segmentation probl&ms.process is applied until the
child cell-2 is linked to its parent cell in franTe To provide more details, when

attempting to identify the missing cell in frare3, the algorithm initiates a search

operation within a(2a +1)" (22+ 1 neighbourhood (for details please refer to

Section 3.2.2) to identify the locations in fraMe3 that approximate the intensity
profile associated with the cell detected in frame. The candidate locations are
determined using normalised cross-correlation. 3élection of the best candidate

location is carried out by minimising the expregsis indicated in equation (3.9).

An example that illustrates all steps associatetth Wie backward tracking
process is shown in Figures 3.17.1 and 3.17.2.h&svs in Figure 3.17.1, the cell
division occurs in framd@+1, but one of the child cells (c2) is detectedyanlframe
T+3 and tracked with the index 171. In this situatibe backward tracking module
could not find a suitable corresponding cell inmieaT+2 using the local structure
provided in the Delaunay meshes. In order to determa suitable location for the
missing cell in fram@+2, a normalised cross-correlation search proceastivated
to identify the candidate locations in fraffe2 that approximate the intensity profile
of the child cell in fram@+3. From these multiple peaks, the one that miremtbe
expression in (3.9) is selected. This processgaedially applied until the child cell
is linked to a parent cell. To avoid the inciderafefalse positives that may be
created by cells that enter the area imaged bynibeoscope, trajectories initialised
near the borders of the image are eliminated. Eurthre, the backward tracking
process is applied for maximum of five consecutraenes. Figure 3.17.2 depicts the
backward tracking results when the selection of blest candidate location is
performed using the proposed strategy that comhbiesalised cross-correlation
with the information sampled in the local structofehe Delaunay meshes. As can
be observed in these diagrams, the track assocamtedhe child cell identified in
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frameT+3 is correctly linked to the parent cell in fraffeTo illustrate the benefits
of using the structural information in the backwénatking process, in the last row
(-1) of Figure 3.17.2 are illustrated the resuitsere the identification of the missed
cell location is carried out using only intensityfarmation (i.e. the location of the
best candidate is decided based on the resultnextuby the normalised cross
correlation only). As indicated in these diagrathg, estimation of the missed cells
in framesT-2 andT-1 is erroneous, and as a result the detectedidosadlrift from
the position of the parent cell in frarig(track index 111). To visually emphasize
the performance of the proposed backward trackinghe detection of cellular
division events, diagrams that illustrate the tnagkprocess in 2D+time are shown in
Figures 3.18 and 3.19. To complement these vigsllts, the proposed backward
tracking strategy has been numerically evaluatet rasults are provided in Table
3.2.

C C, C
Parent CZQ Cz/@ Cz/ j

cell

r'd r'd r'd
bl el P
r'd e r'd
Vol P Pl
T T+1 T+2 T+3

Figure 3.17.1.An example that illustrates four consecutive frarieg depict a cell
division event. First row: Original frames. Secamdv: Cell segmentation results.
Third row: Forward tracking results. This exam@eused in Figure 3.17.2 to show
how the under-segmentation error has been redrelksedy the backward tracking
process.
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Figure 3.17.2. The backward tracking process in the presence mdemn
segmentation. (a) Candidate cell locations thatdatected using normalised cross-
correlation in framel+2. (b) The spatial relationship T2 when the child cell £
(see Figure 3.17.1) is not segmented. (c) Localcgire associated with the child
cell u in imageT+3. (d-f) Local structures that are constructed dach candidate
pointvi. (g-i) Shows the detected cell locations in frameg, T+1, andT where it
can be observed that the child cell is correctigked to the parent cell in franie
(-) Shows the divergence of the backward trackiigen the cell detection process
in frames T+3, T+2, T+1 and T is carried out using only normalised cross-
correlation.

-71 -



OO
O

Figure 3.18.Tracking results displayed in 2D+time plots. legh graphs the black
points indicate forward tracking results. The baakivtracking results are shown in
green, while the red points indicate the identifietdcks when the under-
segmentation module is activated for both forward lbackward tracking modules.
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Image sequence

Cell segmentation

A 4

Forward tracking
module ——

A 4
Forward tracking +
under-segmentation ———>

module

A 4
Forward tracking +
under-segmentation .
module + Backward
tracking module

Figure 3.19.2D+time plots that outline the results obtainedhmsy proposed cellular
tracking and mitosis detection algorithm. For ¢laneasons, tracking results for
only one cell are illustrated.
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Table 3.2.Cell tracking accuracy after the application of tbrward and backward

D

tracking.
Cell detection accuracy
Cell type | No. of Forward tracking Forward-tracking +
frames Under-segmentation modul
+ backward tracking
- [0)
MDCK-1 100 97.41% 98.21%
- 0
MDCK-2 100 97.28% 99.09%
- o)
MDCK-3 100 96.96% 98.28%
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Chapter 4.

Experimental Results

This chapter provides an extensive evaluation ef loposed framework,
analyses the experimental results and comparepdtfermances obtained by the
proposed cell tracking and mitosis detection atbam to state-of-the-art
implementations. To allow for a comprehensive eatdun of the performance
attained by the proposed scheme, experimentaltseatg reported to sample the
accuracy levels for both areas of interest: calltiacking and identification of the
cellular division events. To facilitate the caldida of the performance indicators
that are able to numerically sample the accuradh®iproposed and state-of-the-art
cell tracking and mitosis detection algorithms, esevime-lapse video sequences
(three sequences of Madin Darby Canine Kidney EpahCells - MDCK and four
sequences of Human Umbilical Vein Endothelial CelHUVEC cell data) were
employed in this study. The spatial resolutionledse datasets varies from 0.87 to
1.3 m/pixel and the temporal resolution is in the ralge 9 min/frame. These
seven video sequences were captured using phatestomicroscopy image
acquisition modalities (for additional details nefe appendix B) and, as indicated in
Chapter 2, they are characterised by substantehsity variations and a high level
of noise. The MDCK cell datasets contain denseulzglistructures that undergo
frequent cell division, and these characteristaisad substantial challenges for all
computational components of the proposed algoriteiiilar segmentation, forward
tracking and mitosis detection. In addition, sitfoe region of interest imaged by the
microscope is limited, there are frequent situaiarmen the cells situated near the
border of the ROI exit and re-enter the area enemsgd by the field of view. As
opposed to MDCK data, the cellular structures sathpt HUVEC image sequences
are relatively sparse and a distinct characteristibie high level of mitosis events.
Since the number of cells contained in a HUVEC fais relatively low, the
negative effects caused by the cells that exit emé@nter the ROl are more
noticeable than in the case of MDCK data. SimiladyMDCK data, the HUVEC
datasets exhibit substantial intra- and inter-framensity variations and is worth

-75 -



noting that the sizeable changes in the morpholofjthe cells introduce an
additional challenge for the cell segmentation pssc These two cell lines, MDCK
and HUVEC, are widely used to assess several babgnechanisms such as
absorption, sensory reception and secretion, ancesihey are used as generic
models for epithelial and endothelial cells, respety, they areparticularly popular

in clinical research [87, 88]. As indicated abotres MDCK and HUVEC cell lines
encompass a wide spectrum of challenges that iedloel improper image contrast,
cellular agglomeration and high proliferation, ahdse issues provide a challenging
scenario for all components of the proposed cealtking and mitosis algorithm.
These distinct characteristics proved particuladgful when employed to evaluate
the impact of segmentation errors on the performaot the cellular tracking
process. The strong clinical interest, in comborativith the complexity of the cell
migration and cell division processes, justify tise of these cell lines to assess the
performance of the proposed framework. Figuresl4ahd 4.1.2 depicts four frames
sampled from MDCK and HUVEC datasets to exemplifg thallenges associated

with the analysis of these cell lines.

Figure 4.1.1. Phase-contrast cellular images. Four consecutigsends from a
MDCK image sequence.
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Figure 4.1.2. Phase-contrast cellular images. Four consecutisends from a
HUVEC image sequence.

To allow a direct comparison of the results obtdingy the proposed
algorithm with the results reported for state-aé-tirt cell tracking methods, publicly
available cellular datasets have also been inclini¢ide experimental study. In this
regard, experimental results for two additional ussgces of Murine Progenitor
Neural (MNP) stem cells (phase-contrast data) amel image sequence of HelLa
cells (fluorescence data) will complement the rsswabtained for MDCK and
HUVEC cellular data. These publicly available datasalso raise a wide range of
imaging and biology-related problems that need & dudressed by the cell
tracking/mitosis detection algorithms and thesellehges make these datasets
particularly appropriate to be included in the expental evaluation. Indeed, the
MNP datasets exhibit low contrast, large changesth@ cell morphology in
consecutive frames of the sequence, and a highofatellular division, while the
Hela data is characterised by high cellular dessita high rate of cellular divisions

and large migration patterns. Figure 4.2 depicts itwages sampled from the MNP

(1) MNP and (2) HeLa datasets were made availaplal{Kofahi et al [1] and Liet al [7] respectively. They were also
used by other authors when they attempted to etedtiampare the performance of their cell trackitgpathms. (1)
http://www.landesbioscience.com/supplement/alkofahi (2) http://www.cbi-tmhs.org/Dcellig/index.htm
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and Hela datasets and it can be observed that égmentation problem is

substantially simplified when dealing with fluoresce (HelLa) image data.

(@) (b)

Figure 4.2. Additional cellular datasets used in the experitaestudy. (a) MNP
cellular data. (b) HelLa cellular data.

For clarity purposes, the performances achieveddilar segmentation,
tracking and mitosis detection components of tlteppsed framework are analysed
in separate sections. This approach is also metiMay the fact that different metrics
are used in the evaluation of the accuracy obtaimethe different components of
the proposed framework. In this sense, the propassgimentation method is
evaluated using a metric that samples the numbeoméctly segmented cells with
respect to the total number of cells that are ¢oathin the manually annotated data.
On the other hand, the evaluation of the forwatbtacking algorithm is performed
using metrics that sample the number of correatkfra(cell lineages) that are
identified by the tracking algorithm when comparexd those contained in the
manually marked ground truth data. In a similar neanthe cell division accuracy is
evaluated using quantitative indicators that asgessiumber of correctly identified
parent-child links with respect to the manual aatext results. To facilitate an
exhaustive performance analysis, the proposedlaetiacking framework was also
evaluated on synthetic data. This approach is ratd/ by two reasons. Firstly, to
isolate the undesired effects inserted by the satatien errors, and secondly, to
illustrate the theoretical and practical advantagsesociated with the proposed

strategy when compared to traditional trackingtegis.
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4.1 Generation of the ground truth data

To facilitate the numeric quantification of the posed cellular tracking and
mitosis detection framework, all datasets usedha &xperimental study were
manually annotated. In this process the data ha&n lanotated to allow the
performance evaluation for each component of theeldped framework: cell

segmentation, cell tracking and mitosis detection.

The manual annotation process has been conductéteb@entre for Image
Processing and Image Analysis (CIPA) researcherd, ia this process, clinical
collaborators provided additional input to validéte annotated data. The manual
annotations include information regarding the laabf the cells in each frame, i.e.
the &,y,t) coordinates of the cells’ centroids, and thisinfation is directly used to
calculate performance indicators that quantify t@hecuracy of the developed
segmentation technique (the metric employed toutate the accuracy of the
segmentation process involves the identificationtre true positives (TP), false
positive (FP) and false negatives (FN) and is thiced in the next section, equation
4.1.)

The next sets of annotations were conducted torgenground truth data for
the numerical quantification of the cell trackingaithm. To achieve this goal, cell
lineages (or cell tracks) were manually identifigdanalysing the migration patterns
for each cell in consecutive frames of the sequebcging this process a unique
index is generated for each identified track ang thformation is used in the
calculation of tracking accuracy indicators (theecking indicators that are employed
to quantify the performance of the proposed celtking framework and state-of-

the-art implementations introduced in Sectionsahd 4.7, equations 4.3 to 4.5).

The last sets of annotations were generated tétédeithe quantification of
the mitosis detection process. In this sense, thrual tracking annotations were
evaluated in a forward and backward manner andritesis events were visually
validated by examining frames prior to and after ttosis event. At the end of this
manual annotation process, the locations of therand child cells were recorded,

and this information was used to quantify the aacyrof the proposed mitosis
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detection algorithm. The numerical evaluations iedriout for each computational
component of the proposed cellular tracking andsist detection framework are

presented in detail in the following sections a$ tthapter.

4.2 Validation of the cellular segmentation algunt

The proposed segmentation method has been evdloatMDCK, HUVEC
and MNP cellular sequences. Thus, the proposed esggiion method has been
applied to nine different time-lapse phase-contsasfuences that consist of cellular
data with different densities (for more detailsgsle refer to the discussion provided
in the previous two sub-sections). As stated ingidra2, microscopy image analysis
entails the application of specific protocols treae tuned for specific cellular
applications. As a result, image data will haversgrcharacteristics that are dictated
by the type of cells that are under observationusTthe development of generic cell
segmentation/detection methods that are able t@nawodate the substantial
differences between the datasets captured usirfgretit imaging protocols is
extremely difficult. Therefore, in this work the mdocus was on the development
of a segmentation strategy for robust cell detectio phase-contrast datd.o
maximise the cell detection, the main idea assediatwith the proposed
segmentation method consists in the identificatibthe intensity peaks in the image
using theh-maxima transform. This approach proved efficiemtincreasing the
detection rate and to reduce the level of falsetiges in the presence of non-
uniform background and poor image contrast. Theimopéd values for the
parameters, r anda for each type of image sequence are illustratélchlvie 4.1. It
is useful to note that the parametedoes not have a direct role in the segmentation
process, since its purpose is to restrict the mamirmstantaneous cell displacement
in two consecutive frames. This parameter has bednded in Table 4.1 for clarity
purposes, as this allows a targeted discussioagard to the role of each parameter

in the overall cellular tracking and mitosis deiactframework.
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Table 4.1.The values of the parameters and a that are optimised for each type

of cellular data.

Parameters
- Cell type No. of r h a
@ sequence
8 MDCK 3 15 19 12
a HUVEC 4 15 15 20
MNP 2 11 10 15

The accuracy of the proposed cell segmentation edethevaluated based on
the number of cells that are correctly segmenteatl veispect to the number of cells
that are manually identified in the ground truthtadaln order to measure the
segmentation accuracy, the number of true pos(fh®), false negative (FN) and
false positive (FP) are calculated. TP is the nundoerectly segmented cells, FN
denotes the number of cells that are not segmeoyethe algorithm, while FP
defines the number of incorrect segmentation daessi The accuracy is calculated
as follows,

Accuracyzl’ 100 % (4.1)
TP+ FN

To illustrate the performance achieved by the psepocell segmentation
method when applied to phase-contrast image segseseveral visual examples are
displayed in Figures 4.3 and 4.4. Figure 4.3 shthes results obtained by the
proposed algorithm when applied to an image comgiVINP cells. In Figure 4.3
the low contrast between the cells and the backgtoand the shallow intensity
transitions between the borders of the cells thatchustered together can be clearly
observed. (The areas covered by the clusteredarellsmarked with rectangles in the
diagrams). In spite of these difficulties, the pyepd segmentation algorithm is able
to correctly identify the cells in the image (segufe 4.3(b) where the contours of
the identified cells and their corresponding cadsaare overlaid on the original
data).
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Figure 4.3.Robustness of the segmentation in low contrasj@ng) A low contrast
phase-contrast MNP image where the intensity tiansi between the cells and the
background are very shallow. Observe the faintnsitg changes between the
borders of the clustered cells. (b) Segmentatisnlte that illustrate the robustness
of the proposed segmentation method — note theispradentification of the
individual cells in the presence of cellular aggévation (clustering).

Figure 4.4 depicts additional results when the psep algorithm has been
applied to the MDCK, HUVEC and MNP images that sihewn in Figures 4.1 and
4.2. These additional results further illustrate@ thccurate performance of the
proposed cell segmentation algorithm when appl@different types of phase-

contrast cellular data.
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(a) MDCK

(b) HUVEC (c) MNP

Figure 4.4. Segmentation results when the proposed algoritlas applied to (a)
MDCK, (b) HUVEC and (c) MNP images — the originalD@K and HUVEC
images are shown in Figures 4.1.1 and 4.1.2

To numerically quantify the accuracy of the prombsell segmentation
algorithm, the TP, FP, FN and accuracy are caledland the results are presented
in Table 4.2. As indicated in Table 4.2, the nuerresults are reported for nine
image sequences where the number of frames for @aeset ranges from 100 to
320. The overall detection accuracy achieved bydinecloped cell segmentation
technique is 90.08%, which is sufficiently highdbtain accurate cellular tracking
results. More precisely, this segmentation accupsynits the construction of local
spatial cellular structures with sufficient preorsithat allows the association of the
cells in consecutive frames of the image sequeAtsn, as indicated in Section

3.2.2, the cell detection accuracy increases ddangard and backward tracking by
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employing the information in the intensity and tewrg domains to redress the

problems introduced by under-segmentation.

Table 4.2. Quantitative results when the segmentation methasl applied to nine
phase-contrast cell sequences.

Cell type No. of | Total no. TP FN FP Accuracy
Frames cells %
MDCK-1 100 16267 15845 422 346 97.41%
MDCK-2 100 11525 11211 314 389 97.28%
MDCK-3 100 16966 16450 516 599 96.96%
HUVEC-1 320 8936 7489 1447 123 83.81%
HUVEC-2 320 8377 7227 115( 567 86.27%
HUVEC-3 320 4588 3425 1163 176 74.65%
HUVEC-4 320 6342 5317 1025 847 83.84%
MNP-1 300 8919 8456 463 430 94.81%
MNP-2 300 9615 9199 416 1712 95.67%

4.3 Validation of the forward tracking algorithm

The main advantage associated with the proposexdithign when compared
to alternative tracking solutions is its resilietoesegmentation errors. To provide a
comprehensive performance evaluation of the prapdsacking algorithm, the
experimental evaluation was conducted using syictlaetd real cellular data. This
evaluation approach has two main advantages. yiisthllows a controlled testing
environment that illustrates the inabilities ofratard tracking solutions to achieve
appropriate results, and secondly, it allows onguantify the negative impact of the
segmentation errors in the tracking process. Wheratgorithm was applied to real
cellular data, two distinct scenarios emerged. Ha first scenario the proposed
algorithm was evaluated on phase-contrast cellldaa and the cells identified by
the segmentation algorithm were directly passettheoforward tracking module. In
the second scenario, the proposed tracking algorittas been evaluated on
fluorescent HelLa cellular data, a situation whére ¢oordinates of the cells aae

priori known (segmentation results are publicly availpble
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4.4 Experimental results using synthetic and mayual

annotated data

Synthetic and manually annotated datasets have hedapendently
employed to evaluate the performance of the prapes#l association algorithm.
The use of synthetic data to validate the propedgaorithm is justified since the cell
tracking accuracy is not affected by errors thatiatroduced by other components

of the frameworks such as the segmentation module.

The cell association method described in this gheslies on the proximity
and the local cellular structure and it is not dejsnt on other image features. To
provide a detailed evaluation, the tracking accprachieved by the proposed
method has been compared with the cell trackinguractes obtained by two
standard distance-based cell association technigus#sg both synthetic and

manually annotated cellular data.

The synthetic data is generated using a set oforangoints that are
distributed over a 195x165 image that represemrtsitst frame of the sequence. The
next frames are generated by applying a randomomadi each cell in the previous

frame, and this approach is sequentially appligd thre desired number of frames is
reached. The instantaneous (frame-to-frame) displaat st of a newly generated

point X! is calculated using the following equation,

St=u* Q+0.5* f* @
xt=xt"t+d

4.2)

where theu and f are the velocity and acceleration, respectivehy the value of
the parametef) is set to 2.0 in order to generate a small movénidre value ol

is set within the range of [0,1] and the valuefa$ randomly selected from the

normal distribution with zero mean and unit varenc
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For evaluation purposes, two synthetic video secemhat contain 32 and
140 random points, respectively, were generategigneement with equation (4.2).
The application of the proposed cellular assoamtiethod to this synthetically
generated data indicates that the proposed trackigorithm is able to achieve
correct cellular association. To illustrate the itations of the standard tracking
solutions when applied to data that is charactérisg random motion, a global
distance minimisation method (please refer to U@ in Chapter 2) has also been
evaluated on the same data. In this method thesnade associated based on the
minimisation of a global cost function. The expeginmtal results indicate that this
minimisation process works reasonably well whencilés in the subsequent frames
undergo small migration. However, it returns inaygpiate results in the presence of
significant cellular migration. To further illusteathe limitations of distance-based
tracking solutions, additional results are reporigden the nearest neighbour

tracking algorithm is applied to the same data Wesd generated using (4.2).

To quantitatively assess the accuracy of the @llwacking process, a metric
that evaluates the level of correct tracking decisihas been introduced (please
refer to Appendix A for additional qualitative rdts). In this regard, the tracking
accuracy is given by the number of correct trables are identified by the algorithm
with respect to the total number of tracks ideetifin the ground truth data (see
equation 4.3). A track is deemed valid if all thelle that form it are correctly
associated. Comparative results for all trackinghods evaluated in this study are
reported in Tables 4.3a and 4.3b. From Table 4t3eaan be observed that the
proposed method returns 100% accuracy, while Hekitng accuracies for the global
distance matching and the nearest neighbour metiredsnly 93.75% and 81.25%,
respectively when the algorithms were applied te sequence that contains 32
points. Table 4.3b depicts the results when thé/sed methods were applied to the
sequence that contains 140 points and the resudte ws follows: 97.86% -
proposed method, 82.86% - global minimum distanoed &7.87% - nearest
neighbour algorithm. The results reported in Takle€da and 4.3b show that the
proposed method substantially outperforms the sta@hlacking algorithms.

Accuracy= Number of valid track 100% (4.3)
Total number of tracks
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Table 4.3a.Comparative tracking results (for 32 points) wiies proposed tracking
method, global minimisation and nearest neighboeithiods are applied to synthetic

data generated using (4.2).

Method No. of | Total | Successfully No. of incorrect| Tracking
frames| no. of identified tracks
accuracy
tracks tracks

Proposed 200 32 32 0 100%
method
Global 200 32 30 2 93.75%
minimum
distance
Nearest 200 32 26 6 81.25%
neighbour
algorithm

Table 4.3b. Comparative tracking results (for 140 points) whie proposed
tracking method, global minimisation and nearesgm#our methods are applied to

synthetic data generated using (4.2).

Method No. of | Total | Successfully No. of incorrect| Tracking
frames| no. of identified tracks
accuracy
tracks tracks

Proposed 200 140 137 3 97.86%
method
Global 200 140 116 24 82.86%
minimum
distance
Nearest 200 140 95 45 67.86%
neighbour
algorithm

In the next set of tests, the proposed methodhbeilevaluated on manually
annotated cellular image sequences. In this pedoom evaluation scenario, the
cells in each frame are manually marked, and tloedioates of the cells are passed
to the forward tracking module to complete the esBociation process. Similarly to
the evaluation using synthetic data, the goal es¢hexperiments is to evaluate the
performance of the proposed cell association moawlependent of segmentation
errors. The tracking accuracy is evaluated usingagon (4.3) as in the case of

synthetic generated data and the experimental results are reported in Téaldle
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Table 4.4. Accuracy of the proposed tracking algorithm wheplied to manually
segmented cellular data.

Sequence No.of | Total | Successfully No. of incorrect| Tracking
frames| no. of identified tracks Accurac
track tracks y
HUVEC-1| 320 97 96 1 98.97%
MNP-1 320 38 38 0 100.00%
MDCK-1 100 190 190 0 100.00%

4.5 Experimental results for real cellular data -

Automatic segmentation

In this section, the performance of the proposacking solution is evaluated
on unmarked cellular data, where the algorithmnapts to redress the segmentation
errors detailed in Chapter 3. To achieve this dhjecthe performance evaluation is
conducted using ten time-lapse video sequenceddBH) 4 HUVEC, 2 MNP and 1
HelLa) that present random migration and differevels of cellular proliferation.
Since the validation of the proposed algorithmaaducted using different types of
cellular data, the parametes (that limits the maximum instantaneous cell
displacement in two successive frames) is optimigedeach video sequence as
indicated in Table 4.1 (in the case of HelLa cefis; 20). When dealing with real
cellular data, due to the low contrast presenh@itmage, there are situations where
cells are left undetected by the segmentation #élgor As mentioned earlier, the
tracking algorithm has been evaluated on ten amgilhg image sequences and
experimental results are given in Table 4.5. Froesé ten image sequences, three
are publicly available (HeLa and MNP) and they atso used to compare the
tracking performances achieved by the proposed dvwark and state-of-the-art

implementations. (This analysis is discussed iniGed.7).
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Table 4.5. Tracking results obtained when the proposed trackramework was
applied to MDCK, HUVEC, MNP and Hela cellular dadts

Sequence | Number of | Total tracks| Valid tracks Tracking
frames accuracy
MDCK-1 100 190 170 89.47%
MDCK-2 100 120 105 87.50%
MDCK-3 100 174 143 82.18%
HUVEC-1 320 54 44 81.48%
HUVEC-2 320 97 76 78.35%
HUVEC-3 320 98 81 82.65%
HUVEC-4 320 51 42 82.35%
MNP-1 1000 38 34 89.47%
MNP-2 1000 23 21 91.30%
HelLa 100 128 120 93.75%

The experimental results shown in Table 4.5 indictitat the tracking
accuracy ranges from 78.35% to 93.75% dependinghentype of data being
examined. The lowest tracking accuracy is obtaioedhe HUVEC-2 dataset. This
reduced performance is caused by the improper irnaggast between cell regions
and background, which in certain situations prevéme under-segmentation
algorithm from identifying the correct location thfe missing cells. In spite of these
severe image acquisition issues, the proposed mhéslsiill able to produce tracking
results that match or exceed the accuracy of tigerighms published in the
literature. To visually sample the accuracy of pheposed tracking framework when
applied to MDCK, HUVEC and publicly available dattss a number of tracking
examples are depicted in Figures 4.5.1 and 4.5n2these figures the cell tracks
(lineages) are colour coded where with red and Bhgemarked the initial and the

final positions of the tracked cells in the sequenc

-89 -



(a) MDCK

(b) HUVEC

Figure 4.5.1.Tracking results for (a) MDCK and (b) HUVEC dafe identified
tracks illustrate the locationx,y coordinates) of the corresponding cells in the
sequence — for visualisation reasons they are caloded and overlaid on the
original data. Red indicates the initial positiointiee cell, while blue indicates the
last location of the cell in the cellular track.
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(2)MNP

(b) HeLa

Figure 4.5.2.Tracking results for (a) MNP and (b) HeLa cellufi@ta. The identified
tracks illustrate the locationx,y coordinates) of the corresponding cells in the
sequence — for visualisation reasons they are caloded and overlaid on the
original data. Red indicates the initial positiointiee cell, while blue indicates the
last location of the cell in the cellular track.
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4.6 Experimental results for cellular division (osis)

detection

The aim of this section is to present quantitaindicators that illustrate the
efficiency of the proposed mitosis detection altjon. To numerically evaluate the
accuracy of the mitosis detection, the parent-clogdls links identified by the
proposed backward tracking algorithm are comparétl Whose identified in the
manually annotated data. In other words, a mit@sient is deemed correctly
identified if the locationsx(y,t coordinates) of the parent and child cells arestirae
as those found in the manually annotated data.eifixental results are reported in
Table 4.6 where the mitosis detection accuracyeitndd as the ratio between the
sum of successfully identified parent-child linksdathe sum of actual cell division

events that are identified in the manually markathd

Table 4.6.Mitosis detection accuracy obtained by the progdseckward tracking
strategy when applied to the MDCK and HUVEC, MNH &telLa cellular data.

Sequence No.of Total mitosis Correctly detected Mitosis
frames| events (manually mitosis events detection
annotated data) accuracy
MDCK-1 100 34 29 85.29%
MDCK-2 100 24 19 79.17%
MDCK-3 100 47 41 87.23%
HUVEC-1 320 15 13 86.67%
HUVEC-2 320 12 12 100%
HUVEC-3 320 24 23 95.83%
HUVEC-4 320 9 8 88.89%
MNP-1 1000 34 32 94.12%
MNP-2 1000 12 11 91.67%
HelLa 100 80 74 92.5%

The results shown in Table 4.6 indicate that theosis events are detected
with 90.13% mean accuracy, where the worst resutisobtained for MDCK data.
This lower detection accuracy has been obtained/MdCK data and this is mainly
caused by the large motilities of the new childlsceluring the cellular division

process. The cellular division events are bestalised when the tracking results are
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displayed in the form of 2D+time plots. Figures.4.6nd 4.6.2 illustrate a number of
experimental results. In these diagrams, the falvieacking results are marked in
black, the tracks identified by the under-segmeématodule are marked in red and

the mitosis event detection using backward trackiregmarked in green.

(a) MDCK

(b) HUVEC
Figure 4.6.1.2D+time plots that illustrate the tracking andamsis detection (in
green) results. (a) MDCK data. (b) HUVEC data.
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(a) MNP

(b) HeLa

Figure 4.6.2.2D+time plots that illustrate the tracking andasis detection results.
(@) MNP data. (b) HeLa data. In these diagramsnitiesis events are marked in
green. Full explanations in regard to the consimaobf these diagrams are provided

in the main text.
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4.7 Comparative results obtained by the proposed

framework and state-of-the-art implementations

The aim of this section is to analyse the lle¥gerformance obtained by the
proposed cellular tracking and mitosis detecti@miework against the state-of-the-
art implementations that are published in theditare. In this regard, two state-of-
the-art algorithms that were detailed in [12] afi{l dre investigated in detail with
respect to cellular tracking [7, 12] and mitosisedéon [12] accuracy. To allow a
direct comparison between the performances obtdnyethe proposed framework
and the two state-of-the-art algorithms, the expentation has been conducted
using publicly available cellular data, namely taegquences of Murine Progenitor
Neural (MNP) stem cells and one sequence of Hells, c#ata that was made

available by Al-Kofaheet al[1] and Liet al[7], respectively.

In [7] the authors evaluated their tracking aldort using four video
sequences of HelLa cellular data, where each sequeontains 200 frames.
Although they reported experimental results for flur sequences, only one
sequence containing 100 frames was made publichjiadle. Thus, due to this
restriction, the proposed framework has been eteduanly on this publicly
available image sequence. To facilitate a fair canspn with the work detailed in
[7], performance metrics such as Error Trace RBAWR(in equation 4.4) and Error
Matching Rate (EMR in equation 4.5) were calculadsdindicated in the original
paper [7]. These metrics are expressed in % andniadier their value the better the
performance of the algorithm. The comparative tesabtained by the proposed

method and the algorithm detailed in [7] are shawhable 4.7.

_ number of track error
total track

ETR

100 (4.4)

number of individual matching errar
total track

EMR=

100 (4.5)
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As illustrated in Table 4.7, the ETR and EMR obeagirby [7] varies from
7.22% to 14.68% and 6.18% to 13.76%, respectiwelyije the ETR and EMR
results obtained by the proposed method are 6.2&P80%, respectively. The results
reported in Table 4.7 indicate that the proposethatkreturns comparable ETR and
EMR results with respect to [7] when applied to etell data. To provide more
details about the experimental results, it is ugefumote that the method proposed in
[7] has been optimised for HeLa data and its traglaccuracy is highly dependent
on the accuracy of segmentation. Contrary to thg@ach, the proposed method has
not been optimised for any particular cell line ahe errors caused by under-
segmentation have been algorithmically redressedngluthe cell association

process.

Table 4.7.ETR and EMR results obtained by the proposed ndeéimal the tracking
technique detailed in [7].

Proposed Method presented in [7]
method
Error type HelLa HelLa-1 | HeLa-2 | HeLa-3 | HelLa-4
(100 frame)| (200 (200 (200 (200
frames) | frames) | frames) | frames)
ETR 6.25% 7.22%| 14.68%  8.41% 9.16%
EMR 9.00% 6.18%| 13.76% 8.41% 8.40%

The second state-of-the-art method analysed ins#gon has been detailed
in [12] and it has been validated using both H&laand MNP [1] cellular data. In
this work the authors addressed both the celluoking and mitosis detection, a
fact that allows a detailed comparison with therapph detailed in this thesis. Table
4.8 presents the experimental results returnedchbyptoposed framework and the
method detailed in [12]. These experimental resutidicate that the method
presented in this thesis outperforms the techndptailed in [12] with respect to
both cellular tracking and mitosis detection. Tledl tracking algorithm introduced
in [12] is also able to address the issues caugemhtler-segmentation. However, the
segmentation errors are only corrected for backwraicking and in many situations
the normalised cross correlation process failglémtify the correct locations of the
undetected cells in the presence of under-segn@mtdtiring cellular division. On
the other hand, the proposed tracking frameworkessets the segmentation errors
during the forward and backward tracking and adddl structural information has
been incorporated to guide the tracking processtamdkentify the best locations for
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undetected cells. These algorithmic proceduresgur@ppropriate and the reported
experimental results clearly indicate that the psgul approach returns higher cell

tracking accuracy and mitosis detection than théhatepresented in [12].

Table 4.8.Cellular tracking and mitosis detection resultsaoted by the proposed
method and the technique detailed in [12].

Proposed method Method presented in [12]
Sequenceiof frames Tracking| Division|#of frames Tracking| Division
MNP-1 1000 89.47% 94.12% 1000 87.319% 83.76%
MNP-2 1000 91.30% 91.67% 1000 85.21% 84.62%
HelLa 100 93.75% 92.5% 500 85.01% 82.68%
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Chapter 5:

Conclusions and Future Work

The major objective of this thesis was to detad tevelopment of a novel
computational framework that was designed to tnacKtiple cells and detect cell
division events in time-lapse image sequences. dtltematic tracking of cells in
large datasets has recently draw the attentiorowipaiter vision researchers, as the
emergence of modern microscopy imaging rendered rttenual annotation
procedure unfeasible in many clinical studies. Thaist has been emphasised in
Chapter 2, where the most relevant algorithms @nttpic of cell tracking and
mitosis detection are analysed. Arising from theerditure survey, it can be
concluded that the most apparent characteristih@fpublished algorithms on the
topic of automatic cell tracking is their strongpéigation context. This conclusion is
not unexpected since the imaging protocols aremogdd for each type of cellular
data. One objective of the research work detaitethis thesis is to advance a more
flexible tracking and mitosis detection framewadnlatt can be successfully applied to
a wider range of time-lapse cellular datasets. Tthesmajor contributions that result
from this thesis are located not only in the depmlent of novel algorithms for
segmentation, tracking and mitosis detection. Add&l important contributions are
associated with the exhaustive validation of theppsed framework on different
types of cellular data and in the evaluation ofpg&formance when compared to

those offered by state-of-the-art cell trackingoaifipms.

As indicated in Chapter 2, the robust identificata the corresponding cells
in time-lapse image sequences is a challengingttegkcannot be accomplished by
applying standard feature-based tracking algorithiigs challenging scenario is
primarily motivated by the constrained nature ¢ ttnage acquisition process that
prevents the acquisition of image data with goodgencontrast. Indeed, low image
contrast is a distinct characteristic of the phematrast cellular data, and in this

thesis several novel solutions have been advamcedler to achieve robust tracking
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results. To this end, substantial research effodse put into the development of a
flexible tracking framework where the main goal wie optimisation of each
computational step. In this sense, the cellulamsedation proved quite challenging,
as the phase-contrast images exhibit shallow irtergansitions between the
background and regions that define the cells’ nutheaddition, this data presents
noticeable intra- and inter- frame intensity vaadas. In the proposed approach, to
reduce as much as possible the incidence of segtr@nterrors, a morphological
algorithm based on thB-maxima has been developed. The experimental sesult
indicate that the proposed solution is accurateirbthe presence of large changes in
the cells’ shape and substantial intensity vanmmatigere are situations when cells are
not detected by the proposed algorithm. Thus, #uk lof perfect segmentation
results motivated the development of a flexibldutet association procedure that is
able to identify the corresponding cells in thewsswe in the presence of under-
segmentation. In this regard, the proposed ceticason framework is based on the
evaluation of local structures that encode thehimgring relationships between the
cells in pairs of consecutive frames of the segeentere the identification of the
corresponding cells does not require any prior Kedge regarding the cell
morphology or migration patterns. These charadtesisssociated with the proposed
tracking methodology are particularly appropriates cell migration is often
characterised by random motility patterns that oaroe accurately modelled lay
priori motion estimators. As mentioned above, the ocoga®f under-segmentation
introduced a substantial problem that has to beesddd during the cell association
process. A key issue was the embedding of a hybhadhanism into the tracking
procedure that is able to detect and correct ttewecaused by the undetected cells.

Full details about the proposed multi-stage cedicking algorithm are
provided in Chapter 3. The availability of precisewvard tracking results opened the
opportunity to develop a backward tracking strategyose goal is the robust
identification of the mitosis events. During backdi&racking, the cell tracks (or cell
lineages) identified during forward tracking arelesated in a reverse manner to link
the child cells to the corresponding parent cefisall frames of the sequence.
Nonetheless, the incidence of under-segmentatidstantially complicates the
mitosis detection, and again a pattern recognitioiven mechanism has been

applied to identify the undetected child cells thadre generated by the cellular
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division events. The proposed cellular tracking amtbsis detection framework has
been tested on various types of cellular datasetsradepth experimental results are

reported in Chapter 4.

The experimental results demonstrate that the pexpaell tracking and
mitosis detection framework has achieved the rebeabjectives outlined in Chapter
1. In the next section, the major and minor contidns that are associated with this

investigation are outlined.

5.1 Contributions

The development of the proposed cellular tracking anitosis detection
framework facilitated the investigation of a largpectrum of algorithms that
generated the major and minor contributions aststiaith this research work. In
this sense, the major contribution resulting frdns investigation is the multi-stage
computational framework that is able to adapt ® ¢hallenging image conditions
that are associated with time-lapse phase-contia@st Within this framework, the
algorithm devised for cellular association représeine most visible contribution of
this thesis. One particular novel element of thgoathm resides in the adaptive
integration of the cellular topological informatian the tracking process. This
information proved particularly robust when traakicellular structures in complex
situations that are generated by random migratidre modular design of this
computational component of the framework, and thtntal modality to encode and
analyse the spatial relationships between the ceiighg the inter frame tracking
process, opened the possibility of developing illle approach that was
implemented to efficiently identify and redress tbegmentation errors that are
caused by improper image conditions. All these halgorithmic solutions proved

key in achieving accurate tracking results.

The second major contribution resulting from timgdstigation is associated
with in the approach that has been developed tatifgehe cellular division events.
The robust mitosis detection is critically importan the estimation of molecular
indicators such as the cell cycle. In this thesistobust solution that entails a

backward tracking procedure has been proposed.lé®ina the forward tracking
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algorithm, the incidence of under-segmentation Hatrimental effects on the
process that deals with the identification of timkd between parent and child cells.
To address this problem, a hybrid approach thatilerthe combination of a pattern
recognition-based algorithm and the evaluation led tonsistency of the local
cellular structures in a sequential manner has hd®reloped. One particular
advantage of the proposed framework is the redrgssdithe segmentation errors for
both forward and backward tracking processes anmsl @pproach has several
theoretical and practical justifications. Firstly,limits the possibility of incorrect

tracking decisions, as the mitotic cells cannotddmustly identified during forward

tracking, and secondly, it opened up the possibiit developing a multi-stage

association process where the use of topologiéairmation is maximised.

The final major contribution resulting from thiseis can be identified in the
comprehensive measurements of the performanceeopritposed cellular tracking
and mitosis detection framework using several typlesme-lapse cellular data. In
this regard, an enormous effort has been emplayegnerate the ground truth data
with all of the datasets used in the experimerttalysbeing manually annotated. In
this process, thousands of cells were manually tated and their lineages (or cell
tracks) were also manually identified by analysthg migration patterns for each
cell in consecutive frames of the sequence. Theirgtotruth data was used to
quantify the accuracy of the proposed tracking &ark. To further enhance the
relevance of the experimental results, the propdssdework has been tested on
publicly available datasets and its performancelde®n compared to those achieved
by other relevant published algorithms. The conipagaresults indicate that the
proposed technique outperforms the state-of-thégstementation with respect to

both cellular tracking and mitosis detection.

There are several minor contributions that are lwarentioning. The first is
located in the development of the cell segmentgpi@tess. The cell segmentation
proved a very challenging task and substantial risffthave been put into the
development of a strategy that minimises the inwdeof segmentation errors. In
this research work several algorithms have beetuatesd and the approach that
involves the application oh-maxima proved the most reliable. Other minor

contribution is associated with the identificatioof the most robust

- 101 -



features/methodology that can be applied in thetifieation of the segmentation

errors. In this regard, the proposed solution iapphn intensity-based normalised
cross correlation process that aims to identifyltioation of the undetected cell that
minimises the local disturbances in the cellulandtires encoded by the Delaunay

meshes.

5.2 Future directions of research

The main objective of this research work was toettgy a robust cellular
tracking and mitosis detection framework that sh@ansigher degree of flexibility
and increased performance when compared to the retestant state-of-the-art
implementations. Based on technical content that dedailed in this thesis and the
reported experimental results, it can be concluttedl the overall outcome of this
investigation was successful. However, there ateré directions of research that
can be investigated based on the main conceptsvidrat studied in this thesis. One
possible development will focus on the investigatid alternative solutions that can
improve the accuracy of the cell association preces the presence of cell
interaction and large cellular migration. This mayolve the inclusion of specific
features such as intensity information, cell oyerdsea and motility estimators to
enhance the matching confidence when identifyirg ¢brresponding cells in the
image sequence. Another interesting area of furtiesearch can include the
identification of the mitosis events usirgy priori probabilistic models, as this

information can be extremely useful when validatimg parent-child cells links.

There is also a distinct future direction of reshathat may aim at the
extension of the functionality of the proposed feavork to allow its application to
other biological studies such as the robust trackicells in in-vivo 3D data. This
will require (at least a partial) redesign of treldar association process, but the
main theoretical developments detailed in thisighean still be successfully applied

to this new tracking scenario.

Another possible future development can addressap@ication of the
proposed tracking strategy to non-cellular applkcaidomains such as pedestrian

tracking in crowded conditions, robust player tiagkin sports events, feature
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tracking in the context of gesture analysis, eltthfese application scenarios require
the use of robust tracking solutions that can lermi@lly addressed by the proposed

tracking strategy.
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Appendix A:

Statistical Indicators that Quantify Cell Migration

Once the cellular tracking process is completés ¢oordinates of the
corresponding cellsxfy,t) are available for the entire image sequence heg tan
be used to calculate different statistics that diescthe cell migration. Thus, the
objective of this section is to introduce a numbkestatistical indicators such as the
average speed, directional movement and distaaeelled by the cells that can be
used to quantify the cell migration [69, 74]. Thesatistics are increasingly used by
the molecular scientists in the evaluation of kgudal processes related to cancer
research or in the development of new drugs anatnrents. For instance, the
administration of various therapeutic agents/irtbilsi has direct effects on the
cellular migration and the frequency of mitosis r@ge and these indicators are
particularly useful to assess the differences betvibe control and test specimens.

As indicated above three different measurementsuswelly calculated and

analysed. The first is the average spég\gig that is calculated for each cell using the

following formula,
F
Savg=— _2| Xi- X 1| (A1)

whereF is the total number of frames ald={x,y} is the 2D spatial coordinate.

The second indicator is the active movement alsowknas directional/vectorial
displacement that can be computed using the disthetween the initial and the
final position of a cell. Figure Al provides an exae that illustrates the calculation
of the directional movement. The third indicatothe total cell displacement which
is given by the summation of all inter-frame inséareous displacements, i.e. the

length of the path that was travelled by a celhdgcated in Figure Al.
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End point

Directional movemem\

<«— Total cell
displacement

Starting poin

Figure Al. Diagram that illustrates the calculation of theediional movement and
the total cell displacement.

() (b)

(€)

Figure A2. Cell migration indicators calculated for the MDOKinage sequence.
(a) Directional movement. (b) Total cell displacenéc) Average speed.

Figure A2 depicts the measurements calculated fiD&LK dataset where

the active movement, total cell displacement arel dlierage speed are shown in

Figure A2(a), (b) and (c), respectively. The dilmtal movement displayed in
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Figure A2(a) indicates that most of the cells migra one dominant direction and
the moving distance varies in the range 1 to 4@lpixThe total cell displacement is
depicted in Figure A2(b) and it shows a variaticgtween 1 to 80 pixels. The
average speed indicator that is calculated for eatihs plotted in Figure A2(c) and

it indicates a variation between 0.9 to 1.8 pixasframe.

O 0

(a) MDCK (b) HUVEC

O
O O

(c) MNP

Figure A3. The total cell displacement calculated for (a) MQ(b) HUVEC and
(c) MNP datasets. The peaks in these diagramsaceded for mitotic cells and for
clarity reasons are marked with circles.

Figure A3 shows the total cell displacements thatcalculated for all cells
in the MDCK, HUVEC and MNP sequences. In this deagrit can be observed that
the MDCK cells show the lowest motility while thdJMEC cells show the highest.
In these diagrams the largest total cell displacesmare recorded for mitotic cells
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and this information is in particular useful in thesessment of the clinical effects

that are induced by therapeutic agents.

Qualitative results

The statistics that quantify cellular migration aoé great interests for
molecular scientists. Thus, it is important tha statistics returned by the automated
algorithm to be as accurate as possible. In ordegvaluate the accuracy of the
results obtained by the proposed framework, theycampared with the statistics
obtained from manually marked up data. In this eatdn the active/directional
movement of cells has been measured since it igmgortant indicator that
quantifies the cell migration and its calculatisnhniot affected by localization errors

that may occur during the manual annotation process

Comparative results are depicted in Figures A4.i &m.2 where the
directional movement returned by the proposed nte#imal manually annotated data
are indicated with blue and red dots, respectivilythese diagrams the axis
denotes the cell ID ang axis denotes the directional movement of a cedk F
visualization purposes, the directional movemeraisulated for a small number of
cells in each sequence. From these graphs it cavb®erved that there is a good
agreement between the directional movement obtdgdtie proposed method and
that calculated from manually marked data. The al/eeviation between these two
sets of results is 10.5 percent. Thus, it can Imeloded that the proposed method is
suitable to extract the motility statistics tha¢ @ble to accurately measure the cell

migration patterns.

- 107 -



JuswiaAOW Jeuondalig
luswaAow [euondalig

Cell ID Cell ID
(a) MDCK-1 (b) MDCK-2
o]
2
2
Cell ID
(c) MDCK-3

Figure A4.1. Directional movement extracted from MDCK data. Riets - results
extracted from manual marked-up data. Blue doésults obtained by the proposed
method.

- 108 -



luswiaAoW [euondallg
luswiaAoW [euondallig

Cell ID Cell ID

(a) HUVEC-1 (b) HUVEC-2

luswaAow [euondalig
JuswaAow euondallg

Cell ID Cell ID
(c) HUVEC-3 (d) HUVEC-4

Figure A4.2. Directional movement extracted from HUVEC datadRlets - results

extracted from manual marked-up data. Blue do&sults obtained by the proposed
method.
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Appendix B:

Live Cell Image Acquisition

The objective of live cell imaging is to record kegllular events such as
migration, division, cellular interaction, apopt®stc. that help in the process of
analyzing the biological mechanisms associated wéitious cellular events. Long
term monitoring of cells is required to compute kegicators that are able to
guantify the cell response to diverse stimuli. @ailitate this, live cells are grown in
a chamber (incubator) that is designed to maintia@ cell culture conditions in
which cells remain in a healthy state for the dorabf the experiments. To allow
the extraction of statistical indicators relating ¢ellular activity, the cells are
typically imaged by a microscope that is fitted twda computer-controlled digital
camera. In this process it is critical that theefiattion between the imaging system
and cells to be maintained at minimal levels toiéwbe insertion of undesired
factors that may impact on the cell health. Whdls @ge monitored for long periods
of time, images are recorded at fixed intervalsrrfrally few minutes) that are
sufficiently large to sample the changes inducedddlymigration and the frequency
of cellular division and apoptosis with sufficieatcuracy. This particular type of

image acquisition is known as time-lapse imaging.

In general, time-lapse microscopy imaging systemssts of three major
components:

1) An incubator which is fitted to the stage of tinicroscope. The main role
of this device is to maintain a constant environinfar cells with respect to
temperature, pressure and nutrition.

2) A microscope, which comprises optical composeah automated stage
and a digital camera that records sequences afl@eimages.

3) Computing devices that control the microscopyapeeters during the

time-lapse image acquisition process.
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Since molecular biology scientist are interestetheanalysis of a variety of
cell lines, numerous imaging approaches have bemelaped to enhance the
discrimination between the cells and the backgrofwitich is the culture medium
where the cells are grown). These techniques irechrayht-field, dark-field, phase-
contrast, confocal, fluorescence, etc. microscopsige modalities [109]. Each of
these techniques has particular advantages andvdisages when applied to
specific cell lines [111]. Among these techniqudbe phase-contrast and
fluorescence imaging techniques proved the mostnoam when applied to
experiments that were concerned with the quantiivaof cell migration and

cellular division [1, 7, 12].

Fluorescence microscopy uses artificial stainingnég that illuminate the
specimen with a specific band of wavelengths. Timaging process is extremely
useful when applied to separate the cells from dgpaeknd, which has a much weaker
response when the specimen is illuminated by tlogagrry light. The fluorescence-
stained cellular structures are associated witlinitje intensity pixels in the resulting
image, as shown in Figure B.1, and due to highrashthis data is well suited for
automated analysis. However, fluorescence illunonais too harmful when applied
to many cell lines, as it has an undesired impacthe cell health. The combined
toxicity effect caused by fluorescence staining alhemination is in particular

detrimental when the specimen is monitored for Ipagods of time.

Figure B1. A sample image showing HelLa cells captured throfigbrescence
microscopy.
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Phase-contrast techniques are based on an optezdlamism that translates
the phase shift in the light passing through transpt materials into amplitude
changes that result in an enhanced image contsash@wvn in Figure B.2. Phase-
contrast techniques are very common microscopy fiedasince the contrast
enhancement is obtained without loss of resolufldns imaging technique does not
require staining that implies additional specimeaparation and does not causes
detrimental effects on cell health. This propertgkes this technique suitable for
live cell imaging since it is able to maintain tbells in a healthy state for long

periods.

() (b)

Figure B2. Sample images showing (a) MDCK and (b) HUVEC cediptured using
phase-contrast microscopy.

The proposed automated image analysis solutionhhatbeen reported in
this thesis addresses the quantification of cefjration and cell division for phase-
contrast MDCK and HUVEC cell lines. The MDCK and MBC cell images are
captured at temporal resolutions that range froreetho ten minutes depending on
the objectives of each particular experiment. Tpatial resolution varies between
1.3 to 0.87 m depending on the imaged field of view.
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