
Thesis submitted in partial fulfillment of the requirements for 
the degree of Doctor of Philosophy 

 
 
 

Cellular Tracking and Mitosis Detection 
in Dense In-vitro Cellular Data 

 
 
 
 
 

By 

 
Ketheesan Thirusittampalam 

 

 
 

 

 

 

Supervisor: Professor Paul F. Whelan 
 
 

Dublin City University 
School of Electronic Engineering 

April 2012 



 ii 

Declaration 
 
 
 
I hereby certify that this material, which I now submit for assessment on the 

programme of study leading to the award of Doctor of Philosophy is entirely my own 

work, that I have exercised reasonable care to ensure that the work is original, and 

does not to the best of my knowledge breach any law of copyright, and has not been 

taken from the work of others save and to the extent that such work has been cited 

and acknowledged within the text of my work. 

 
 
 
 
Signed:       (Candidate) ID No.: 57123438 
 
 
 
 
 
Date:  



 iii 

Title: Cellular Tracking and Mitosis Detection in Dense In-vitro Cellular 
Data 

 
Author: Ketheesan Thirusittampalam 

 
 

Abstract 
 

 
 

Cell migration and cell division are two key processes that are associated with a 
wide range of biological phenomena including embryogenesis, inflammation, wound 
healing, tumour development etc. The study of these cellular processes has received a 
substantial interest from the cell and molecular scientists since the understanding of the 
mechanisms that stimulate and control these dynamic events has important practical 
implications. With the advent of modern microscopy imaging modalities the amount of 
information required to be analysed by the clinical experts has substantially increased and 
the development of computer-based automatic techniques that are able to robustly track cells 
in large image sequences is currently one of the most active topics of research. While 
cellular migration is the major source of information in describing biological processes, 
recent studies emphasised the growing importance of cell mitosis, as this information can be 
directly used in the estimation of the cell cycle and in the understanding of complex 
biological mechanisms.  
 

Due to the increasing clinical interest in the automatic analysis of cellular data, a 
substantial number of studies have been recently reported in the field of cellular imaging and 
in the development of robust solutions that are able to identify the cell mitosis. Following a 
detailed analysis of published works in the field of cellular tracking, it can be concluded that 
the development of automated tracking strategies proved extremely challenging due to 
several factors such as changes in cell morphology over time, random motion, cell division, 
cell interaction and low signal to noise ratio. To answer these challenges in a robust manner, 
several approaches have been advanced where the key task was the cellular association. In 
this regard, the major directions of research explored cellular tracking techniques where the 
cellular association was implemented using either segmentation or model-driven strategies. 
The methods included in the former category attempt to identify the cells in each frame of 
the sequence and then they are later associated by employing rules that enforce the 
continuity of the tracking process in the spatio-temporal domain. For these approaches the 
cellular association process proved particularly challenging when the cells undergo shape 
deformation over time and their motility is generally described by random motion patterns. 
To adapt to these challenges, alternative approaches where parametric or non-parametric 
representations that sample the cells morphologies and their intensity patterns were 
employed to identify the corresponding cells in consecutive frames of the sequence. These 
methods offer the advantage that they do not entail the segmentation of the cells in each 
frame, but they were also problematic in the presence of cell mitosis and cell interaction - a 
situation when they are likely to be either trapped in local minima or to return incorrect cell 
associations. A distinct category of model-driven cellular tracking techniques applied motion 
prediction to guide the cellular association process, but practice has indicated that the 
simplistic inclusion of the motion estimators in the tracking process proved troublesome 
since the resulting tracking strategies are not able to sample in a coherent manner the modes 
of motion that encompass the cell migration. In the vast majority of the published works on 
cell tracking, the cellular division has been approached during cellular association and often 
their application was restricted to particular cellular data types.  
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The major objective of this thesis is to introduce a novel framework that is able to 

address the theoretical and practical challenges associated with the cell tracking and cell 
division (mitosis) detection in dense time-lapse image sequences. To this end, a multi-phase 
adaptive algorithm was developed where the cell association is carried out by evaluating the 
topology of the local cell structures in consecutive frames of the sequences. To allow for a 
detailed evaluation of the local cellular structures, the connectivity rules between the 
neighbouring cells are encoded using Delaunay triangulation. A particular challenge 
associated with phase-contrast cellular datasets is associated with the large intensity contrast 
variation and the relative high level of noise that is present in the image data, and the robust 
identification of the cells throughout the sequence proved problematic. To compensate for 
the inconsistent inter-frame cell segmentations, in the proposed framework, a novel 
approach based on the evaluation of the topology changes in the local cellular structures was 
developed, with substantial benefits in relation to overall tracking accuracy. The last 
component of the proposed algorithm addresses the mitosis detection using a backward 
tracking analysis that integrates the local cellular structures with a pattern matching 
algorithm for the identification of the mitotic cells that were missed in the forward tracking 
phase of the algorithm.  
 

While the major contributions that emerge from this work are associated with the 
proposed computational framework that has been designed to address cellular tracking and 
mitosis detection, it would be useful to point out that another contribution resides in the 
detailed performance analysis of the algorithm.  Thus, to comprehensively evaluate the 
performance of the proposed framework, several challenging time-lapse phase-contrast cell 
image sequences were used in the experimental study and the results returned by the 
proposed automatic cell tracking algorithms were compared against the manually annotated 
data. To further evaluate the performance of the developed method it has also been applied 
to public available cellular datasets and its performance is compared against those reported 
by the state-of-the-art cellular tracking and mitosis detection implementations. The 
experimental results indicate that the proposed method is able to successfully track phase-
contrast cells in the presence of random migration and detect the mitosis events, and its 
performance proved superior to those attained by the state-of-the-art implementations. 
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Chapter 1:  
 

Introduction 
 
 

This thesis describes the development of a novel automatic tracking 

framework that has been specifically designed for cell tracking and mitosis detection 

in phase-contrast time-lapse image sequences. Cellular tracking is an important 

research area in the field of molecular biology, since the tracking results can be 

directly used by clinical experts to estimate motility and proliferation indicators 

(please refer to Appendix A for additional details). These cellular indicators are often 

used in the process of interpreting a wide spectrum of biological phenomena 

including embryogenesis, inflammation, wound healing, tumour development, etc [7, 

68, 69, 70]. Typically, cell migration and cellular division (proliferation) are 

evaluated in time-lapse image sequences where the image data is captured by a CCD 

camera that is fitted to a digital microscope [71]. Subject to various image protocols 

that are adjusted for each type of in-vitro cell line, the CCD camera captures cellular 

structures at specific time intervals over a long observation period (in some studies 

the acquisition time may span several days). While the acquisition of dense time-

lapse image sequences is beneficial as it allows a precise estimation of cellular 

indicators, on the other hand it generates a vast amount of image data that has to be 

analysed by the clinical experts. The manual analysis of such large cellular datasets 

has become (in many situations) impractical, and as a consequence, the development 

of computer-based techniques that are able to robustly attain cellular tracking results 

represents one of the most active contemporary topics of research in this field. While 

cellular migration is the prime source of information when applied to the 

description/modelling of in-vitro biological processes, recent studies emphasised the 

importance of cellular division, as the frequency of the mitosis events defines a key 

indicator that can be used in the assessment of the efficiency of newly developed 

therapeutic agents. To this end, the major objective of this thesis is to advance a fully 

automatic framework that can accurately estimate the migration patterns and detect 

mitosis events in challenging time-lapse phase-contrast image sequences.  
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1.1 Motivation 
 

Cellular motility and proliferation (mitosis or cell division) are two key 

indicators that are assessed in the study of artificially induced physiological and 

pathological processes that lead to the development of new drugs and therapies. The 

traditional approach that is applied to identify motility patterns and the frequency of 

mitosis events involves a user-driven procedure where the cells and the association 

rules in the image stack are established based on the decisions made by a clinical 

expert (molecular biologist). In general, the manual interpretation of cellular data 

returns satisfactory results, but it is important to note that due to the advent of new 

microscopy imaging modalities, the amount of data that needs to be interpreted by 

the biologists is constantly increasing. There is no doubt that the availability of 

cellular data with high spatial and temporal resolutions is welcome as it allows a 

detailed analysis of biological processes. At the same time the vast amount of data 

renders impractical in many clinical studies the procedure associated with the 

manual cell annotation. In addition, manual annotation procedures are prone to intra- 

and inter-observer variability, and the accuracy of the user-driven data interpretation 

is highly influenced by the experience of the molecular biologist [67]. This is one of 

the major reasons that motivated the development of automatic cellular tracking 

solutions, which currently represents one of the most important areas of research in 

this field.  

 

During the development of automated cell tracking algorithms, the accurate 

association of cells in large image sequences represents the major challenging task. 

This is caused by several factors such as the high similarities between the intensity of 

the cells present in each frame of the sequence and the predominately random nature 

of the cellular migration process. In addition, since the image acquisition process 

involves the application of specific protocols that are adjusted for each type of in-

vitro cell (for instance, one protocol entails the administration of fluorescent agents 

to increase the image contrast between the cells and the background), computer 

vision-based tracking solutions have to be designed to accommodate the imaging 

characteristics of the data to be analysed. There were substantial studies centred on 

the optimisation of the imaging and the specimen preparation protocols, but these 

studies were in particular concerned with issues related to extraneous effects on the 
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biological process that are caused by staining agents (fluorescent dyes) or the 

illumination set-up. From an image analysis standpoint, the major objective is to 

design an optimised protocol that is able to generate cellular data with sufficient 

image contrast, which allows the application of computer vision-based solutions for 

the estimation of the relevant biological indicators. To this end, a wide variety of cell 

tracking algorithms have been published in the specialised literature where they 

attempted to address a specific application domain in the field of molecular biology. 

To answer this application driven scenario, the proposed algorithms were custom 

designed to serve the segmentation and tracking of specific cellular data. This strict 

application context of the published works motivated the research work detailed in 

this thesis, whose main goal is to develop a more generic framework that can be 

successfully applied to cellular datasets that consist of image sequences that are 

captured for diverse cell types. Among the cellular data types that are currently used 

in clinical studies, the time-lapse phase-contrast image sequences define a very 

complex and challenging tracking scenario that is the main focus of the work 

detailed in this thesis. Thus, the proposed framework has been carefully developed to 

be able to address several issues related to faint image contrast, intra and inter-frame 

intensity variations, large deformations in the shape of the corresponding cells in 

consecutive frames of the sequence, random migration and various rates of cellular 

division. All these challenges form a difficult research problem and in this thesis, 

novel solutions have been advanced to achieve a robust and distinct cell tracking 

framework.  

 

Another area of interest was focused on the robust identification of cell 

division events. During cell division or mitosis, the parent cells divide into two child 

cells (or daughter cells) and the identification of these biological events is 

particularly relevant in the estimation of the cell cycle and other related biological 

parameters. In some distinct types of cellular datasets, mitosis events are preceded by 

apparent changes in the intensity profile of the parent cell and this information can 

be used for the robust identification of parent-child cells links. However, other types 

of cellular data (such as MDCK datasets) do not exhibit such prominent intensity 

transitions, and as a consequence, the precise detection of cellular mitosis requires 

the development of more complex solutions that rely on the application of backward 

tracking strategies. 
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1.2 Objectives of the research 
 

The final goal of this research work is the development of a fully automated 

framework that adaptively employs the topological information associated with local 

cellular structures in the tracking process and in the detection of the cellular division 

events. Since the incidence of cell segmentation errors has undesirable effects on the 

accuracy of the tracking process, another major aim of this work was the 

development of targeted algorithmic solutions that evaluate the consistency of the 

cellular association decisions in consecutive frames of the time-lapse image 

sequence.  

 

Since the cells in phase–contrast data exhibit similar intensity and shape 

characteristics, the process associated with the identification of the corresponding 

cells over the entire image cannot be robustly carried out using standard pattern 

matching techniques. In addition, the motility of the cells is defined by random 

migration and this fact restricts the use of motion prediction in the implementation of 

robust cell tracking strategies. To address this challenging cell matching scenario, 

the main concept behind the cell tracking approach proposed in this thesis resides in 

the construction of a graph-based representation that is able to encode the local 

relationships (or topological structure) between the cells that are present in each 

frame of the image sequence. By using this representation, the cellular tracking 

process can be elegantly formulated as a graph matching process in pairs of 

consecutive frames in the image sequence.  One important problem, as indicated 

earlier, is caused by the cell segmentation errors that occur due to the low contrast 

between the cells and the background. Under-segmentation inserts local disturbances 

in the graphs that are constructed in each frame, and as a result, artificially reduces 

the efficiency of the cell tracking process. To compensate for this issue, a novel 

approach to identify and correct these segmentation errors has been developed in this 

research work.  

 

The next objective of this research work consists of developing a robust 

cellular division detection strategy that is sufficiently flexible to adapt to situations 

where the division events are not signalled by conspicuous transitions in the intensity 

profile of the parent cells. To achieve this research objective, a novel backward 
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tracking strategy has been developed that is able to return accurate results in the 

presence of segmentation errors. The last major objective associated with this 

research work is to perform a comprehensive evaluation of the developed cell 

tracking and mitosis detection framework when applied to various cellular datasets 

and to compare its performance with respect to those obtained by the state-of-the-art 

implementations. 

 

1.3 Contributions of this research 
 

As indicated in the previous section, the process associated with the precise 

tracking of cellular structures in phase-contrast time-lapse image data is very 

challenging. This is caused by a wide variety of imaging and biological factors 

including the low image contrast, intra and inter-frame intensity variations, 

unpredictable changes in the shape of the cells in consecutive frames of the 

sequence, cellular division, random migration patterns, etc. All these adverse factors 

prevent the direct application of common feature-based tracking strategies to address 

the cell tracking in long phase-contrast image sequences. In addition, the incidence 

of cellular mitosis cannot be robustly predicted/modelled a priori, and this further 

complicates the methodologies that have to be devised to achieve robust inter-frame 

cellular association.  

 

According to the research objectives stated in Section 1.2, the most visible 

contribution associated with this research work consists of the overall cell tracking 

and mitosis detection framework. The proposed framework has been developed in a 

modular manner and in this work substantial efforts have been devoted to provide a 

flexible implementation that allows the inclusion/testing of various computational 

components of the proposed cellular tracking and mitosis algorithm using a plug-in 

approach.  

 

The second major contribution resulting from this research work is associated 

with the theoretical aspects related to the development of the cellular association 

process. Thus, in this thesis, a novel graph-based cell association technique has been 

introduced, where the spatial relationships between the cells are encoded in a 

hierarchical manner by the use of Delaunay triangulation. This approach proved 



 - 6 - 

particularly robust when tracking dense cellular structures in the presence of random 

(Brownian) motion and one major aspect that is useful to mention is the fact that the 

tracking scheme discussed in this thesis is well adapted to deal with situations caused 

by cellular division, which explains its high accuracy when applied to challenging 

cell tracking scenarios.    

 

The methodology devised for cell division detection represents another major 

contribution resulting from this work. In the proposed approach, the normal tracking 

(forward tracking) results are analysed using a backward tracking strategy, which 

entails the application of a hybrid algorithm to identify and redress the errors 

inserted by the segmentation process.  

 

The last major contribution is located in the detailed experimental validation 

of the proposed method on various cellular datasets and in its comparison against 

relevant state-of-the-art cell tacking and mitosis detection methods.  

 

Another contribution resulting from the investigation detailed in this 

dissertation resides in the algorithmic solution proposed to redress the segmentation 

errors (under-segmentation) during the normal (forward) and backward tracking 

stages of the algorithm. In the proposed work under-segmentation is addressed by 

applying an intensity based pattern matching technique that is combined with a 

process that evaluates the consistency of the local cellular structures in adjacent 

frames of the image sequence.  

  

1.4 Overview of the proposed cell tracking framework 
 

This section provides a brief description of the structure of the proposed cell 

tracking framework that has been developed during this research programme. The 

main computational components of the cell tracking and mitosis detection scheme 

are shown in Figure 1.1. The proposed tracking framework consists of three major 

modules including cell segmentation, forward tracking and backward tracking 

modules. The developed framework initially detects the cells’ centroid points in each 

frame of the image sequence by applying a morphology-based segmentation 

approach. Once the cell segmentation process is complete, the next component, the 
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forward tracking module, is applied to associate the corresponding cells in the time-

lapse sequence. To accomplish this goal, a graph based cell association process has 

been applied where the local cellular relationships are sampled using a Delaunay 

representation. One issue that required special attention was to counteract the 

negative influence of the segmentation errors on the tracking results. The 

segmentation errors are mainly caused by the improper image contrast present in the 

image, which generates situations when cells are not detected by the segmentation 

algorithm. The occurrence of under-segmentation has adverse effects when the cells 

are associated in consecutive frames of the sequence with respect to the local cellular 

relationships. To reduce the level of uncompleted cell lineages, a hybrid algorithm 

has been applied to identify the locations of the undetected cells that minimise the 

disturbances in the local Delaunay meshes.  

 

 

 

 

 

 

 
 
 
Figure 1.1. Main computational components of the proposed cell tracking and 
mitosis detection framework. 
 

 

The last component of the proposed framework entails the application of the 

backward tracking module to identify cell division (mitosis) events. The major 

objective of this computational module was to link the parent and child cells and to 

provide detailed information that complements the statistics that describe the 

migration indicators that are extracted from the forward tracking results. Similar to 

the forward tracking module, an approach that is able to identify segmentation errors 

has been implemented during the backward tracking process to eliminate as much as 

possible the incorrect cell associations that are caused by under-segmentation. All 

computational components illustrated in Figure 1.1 are discussed in detail in the third 

chapter of this thesis.   
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1.5 Thesis organisation 
   

Chapter 2 provides an in-depth analysis of past research works on automatic 

cell segmentation, tracking and mitosis detection that are published in the specialised 

literature. In this chapter the most relevant techniques are discussed and categorised 

based on their algorithmic content, and a comprehensive discussion is provided to 

emphasise the connections between the theoretical contributions and the clinical 

application context.   

 

Chapter 3 presents in detail the development of the cell tracking and mitosis 

detection framework, where ample discussions are included to motivate and 

emphasise the theoretical advances associated with each component of the proposed 

framework.  

 

Chapter 4 details the experimental results that emerged from a 

comprehensive validation of the proposed cell tracking framework on various types 

of cellular data. The reported results are compared with the manual ground truth 

annotations to illustrate the efficiency achieved by the automatic cell tracking 

framework with respect to tracking and mitosis detection accuracy. To provide a 

wider assessment of the proposed cellular tracking framework, its performance was 

quantitatively evaluated on publicly available datasets and compared to those 

achieved by state-of-the-art cell tracking and mitosis detection algorithms.  

 

Chapter 5 summarises the main conclusions and contributions resulting from 

this research work and discusses the main future directions of research. 
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Chapter 2:  
 

Literature Review 
 

 

The study of cell migration entails a three-step process: live cell microscopy, 

application of computer vision-driven cell tracking techniques, and evaluation of the 

tracking results to understand/model the biological implications associated with the 

cell migration. Generally, the cell images are captured by a digital camera that is 

fitted to a microscope in order to record the cellular migration/proliferation over a 

long period of time. During the data acquisition phase, the camera captures images at 

a specific interval of time (usually in the range of minutes) which is generally set in 

agreement with the cell type, migration patterns, therapeutic agents, cell environment 

interactions, etc. Existing microscopic imaging modalities [90, 110] that are typically 

employed to capture sequences of time-lapse images include bright-field/dark-field 

[89], phase-contrast [91, 109], differential interference contrast [109], Hoffman 

modulation contrast [109] and fluorescence microscopy [89] – a detailed discussion 

about most common cellular time-lapse imaging modalities is provided in Appendix 

B. The time-lapse images obtained in this process are analysed using computer 

vision and image processing techniques that are able to track the cell migration, 

detect automatically the mitosis events and generate statistical indicators that 

describe the cellular motility such as speed, distance travelled, directionality, cell 

cycle, etc. These results are analysed by the molecular scientists to determine/model 

the biological processes associated with cellular migration and cellular division. 

While the biological implications associated with the interpretation of time-lapse 

cellular data represent a very specific and active area of research, it is important to 

note that this dissertation mainly addresses the development of automated computer 

vision algorithms for cellular tracking and mitosis detection. Thus, the major 

objective of this chapter is to provide a comprehensive review of past research work 

that was focused on the development of algorithmic solutions that addressed the 

automatic tracking of multiple cells and the detection of cell division in time-lapse 

microscopic image sequences.  
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When analysing cellular activity from a biological perspective, the 

identification of cellular migration and the detection of cell division are two separate 

problems. Along with cellular migration, which is the major source of information in 

describing/modelling biological processes, several recent studies emphasised the 

growing importance of the cell mitosis (as this information can be directly used in 

the estimation of the cell cycle and in the understanding of complex biological 

mechanisms). Although cellular migration and mitosis are distinct biological 

processes, when they are evaluated from a computer vision standpoint, they cannot 

be considered in isolation, since the tracking information that quantifies the cell 

migration plays an important role in the identification of the cell division events. By 

extending this observation, we can note that the occurrence of cell mitosis has 

adverse implications on the robust identification of the corresponding cells in 

consecutive frames of the sequence, as the new cells may generate incorrect tracking 

decisions. The optimal approach to identify the mitosis events opened a difficult 

research problem. Consequently, a distinct category of approaches detailed in the 

literature dealt with cellular division in coordination with cellular tracking, while 

another category of methods analysed the cell tracking and cell division as 

independent problems. For clarity reasons, in this chapter the state-of-the-art cellular 

tracking and cell division detection algorithms are discussed in two different sub-

sections.  

 

2.1 Cell tracking 
 

Generally, live cell imaging is targeted to particular biological applications 

that have their own specific requirements. Hence, the strong application 

characteristic of the cellular data has a direct impact on the image features that has to 

be evaluated by the automatic tracking algorithm. Also, as indicated in the previous 

section, a wide variety of microscopy imaging modalities are applied in current 

studies and the main properties of the image data captured by a particular method are 

fairly distinct when compared to those captured by a different image acquisition 

method. Moreover, some image acquisition techniques (due to constraints related to 

the specimen (living cells) being observed and in particular due to the imaging 

problems induced by the illumination set-up) generate poor quality image data which 

effects the performance of the automated cell tracking. For instance, phase-contrast 
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microscopy is very popular when applied to live cell imaging because it requires 

standard imaging equipment and does not involve cytotoxic effects generated by 

spotting proteins (SPs) used in fluorescent microscopy. As a downside, phase-

contrast microscopy has certain disadvantages such as poor photomicrography, halo 

and shade-off effects [1, 2, 3, 85]. One solution to increase the contrast between the 

specimen and the surrounding cell environment involves the use of fluorescent dyes. 

However, these dyes have cytotoxic effects that induce artificial changes to the cells’ 

health and this issue is particularly important when cells have to be monitored for 

long periods. To limit the cytotoxicity induced by the fluorescent agents, scientists 

have designed complex image acquisition protocols that allow the use of low 

concentrations of fluorescent dyes for which the microscope is still able to generate 

image data with an appropriate signal to noise ratio [4]. Nonetheless, the large 

variety of imaging protocols corroborated with the wide-range of cell types generate 

a complex scenario that has to be addressed by automated cell tracking solutions.  

 

Cellular image sequences typically contain a large number of cells with 

similar characteristics and this substantially increases the difficulty of the cell 

matching process. As time-lapse microscopy records cells over a long period of time, 

there are large frame-to-frame variations in the image contrast with respect to the 

imaged cellular structures. Cells are non-rigid biological structures, i.e. their size and 

shape vary frequently throughout the image sequence, and they are guided by self-

propelled motility which makes the task to predict their future states difficult. In 

addition, cells undergo division and interact each other (forming cellular clusters), 

which turn the identification/segmentation/tracking process into a difficult problem. 

The challenges associated with automated tracking vary substantially depending on 

the characteristics of the imaging systems or on the nature of the cell types being 

analysed. Hence, numerous semi-automatic [1, 5, 6] and fully automatic [7, 8, 74] 

algorithms have been proposed in the literature to solve the cellular association task 

for different cell lines.  

 

The cell tracking algorithms reported in the literature can roughly be divided 

into four broad categories as follows: detection-based, model-based, filter-based and 

hybrid methods. Each broad category can be further sub-divided and Figure 2.1 

provides a graphical organisation of categories and sub-categories of methods that 
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have been developed in the context of cellular tracking. In this diagram, processes or 

modules are marked with oval shapes, whereas categories and sub-categories of 

cellular tracking approaches are marked with rectangles. Details in regard to each 

category and sub-category of methods are provided in the remainder of this chapter. 

 

    

 

Figure 2.1. Categorisation of the processes and approaches in the field of cellular 
tracking and mitosis detection.   
 

 

2.1.1 Detection-based cell tracking methods 

  

In this category of methods, the cells are initially segmented in each frame of 

the sequence and then the segmented cells are associated across adjacent frames. 

This process is relatively straightforward when the segmentation of individual cells 

in each frame is accurate and cells can be unambiguously associated in the 

subsequent frames. In general these approaches entail a two-step tracking process, 

namely the segmentation/detection phase and the cell association phase. The 

segmented cells are typically associated by means of feature matching, a process that 

proved particularly challenging when tracking multiple cells that exhibit different 

intensity or shape characteristics. Consequently, several techniques have been 

proposed to address cellular association, whose main objective was to maximise the 
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use of the image features during the cellular matching process. However, 

segmentation errors such as under/over segmentation are unavoidable [9] when 

dealing with challenging data, and in this scenario, false matching or incomplete 

tracking results may often occur. The occurrence of segmentation errors is the major 

problem for the detection-based cell tracking strategies and the vast majority of the 

algorithms developed have included the implementation of additional post-

processing steps to reduce as much as possible the rate of incorrect tracking 

decisions [10]. While cellular segmentation is one component that has a substantial 

effect on the overall performance of the cell tracking process, in the next section I 

discuss in detail the most relevant techniques that have been published in the 

specialised literature.   

 

2.1.1.1 Segmentation 

 

As cellular segmentation has a key role in the cellular tracking process, some 

published papers analysed the cell segmentation as an independent problem [7, 11, 

73, 78]. At this stage it is useful to mention that due to the large variety of cell types, 

imaging protocols and the frequency of mitosis events, a large palette of approaches 

has been proposed. While the analysed cellular data is often characterised by distinct 

characteristics such as variation in cell morphology, intensity profile, illumination 

set-up and different degrees of cellular agglomeration, the proposed methods were, 

in general, custom designed. In this regard, some segmentation algorithms apply 

simple detection/thresholding technique, others explored more sophisticated 

segmentation approaches to accommodate the poor image contrast and high level of 

noise [12, 13], while another category based on active contours or level sets 

addressed the segmentation problem in close coordination with the tracking process 

[14].  

 

However, as the application context was the key element in the development 

of cellular segmentation strategies, this makes their precise categorisation extremely 

difficult. The published cellular segmentation methods employ a wide range of 

techniques such as thresholding, watershed, mean shift, deformable models and 

wavelet transform to achieve accurate results. In this regard, the thresholding-based 
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cell segmentation methods are based on the assumption that the intensity of the 

background is uniform and it can be robustly separated from the intensity signal 

associated with the cell regions [15, 83]. Thus, these methods initially binarise all 

images that compose the time-lapse sequence using adaptive thresholding techniques 

[16] followed by some morphological operations that are applied to merge and split 

the detected regions in order to deal with under-segmentation and over-

segmentation, respectively. These methods proved successful when applied to data 

that can be precisely approximated with a bi-modal distribution, but they have shown 

substantial limitations when applied to more challenging cellular data that exhibit 

substantial intensity variation within each frame or across consecutive frames in the 

image sequence. Watershed algorithms were also used for cell segmentation. These 

methods are generally marker-controlled, where the seed points are selected by 

applying either adaptive thresholding or the h-maxima operation. For instance, in 

[17], the h-maxima transform has been used to detect the seeds in the gradient image 

and the image regions resulting from the watershed process are subsequently merged 

to avoid over-segmentation. In [7], cell segmentation is carried out using a multi-step 

algorithm that initially binarises the input image using an adaptive thresholding 

technique [77]. To limit the level of under-segmentation, the authors applied a 

distance transformation [76] to accommodate the situations generated by the cellular 

interaction (cell clustering). The last step applies a watershed-based algorithm to 

merge the cell nuclei in order to eliminate false cell detection. A different cell 

segmentation method based on the morphological top-hat and the h-maxima 

transform is reported in [12]. In this method the segmentation errors are redressed 

during the tracking process by analysing the initial tracking results in the temporal 

domain.   

 

Mean shift is another method that proved popular in the context of cellular 

segmentation and in general these methods involve a multi-step analysis that is 

usually designed for a particular data type [19]. In [20], the authors presented a 

wavelet transform-based method that was employed to identify the bright spots in 

fluorescence images. In this approach, the authors used the multi-scale correlation of 

the filtered wavelet coefficients to enhance the peaks of the spots and to reduce the 

level of noise present in the image. This method has been further developed in [21] 

to detect apparent spots in 3D image stacks. However, it is important to point out 
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that the application of this method to cell segmentation in phase-contrast imaging is 

not appropriate, as the intensity of the cell region is not substantially higher than that 

of its immediate neighbourhood.  

 

As indicated in the introductory part of this section, a distinct category of 

methods attempted to integrate the cell segmentation in the tracking process. In this 

sense, the cell segmentation methods based on active contours [22] and level sets 

[14] make use of the information relating to the shape of the cells and image 

contrast. In this process the results obtained in the current frame are utilised as the 

initial solution for the next frame, where the final segmentation is achieved by 

evolving the contours based on the gradient information and some parameters that 

constrain the geometric properties of the contour. These methods proved highly 

successful when applied to sparse cellular data, but they have shown substantial 

drawbacks such as erroneous contour merging and convergence to high contrast non-

cellular regions when applied to data characterised by low image contrast and high 

cellular density. In addition, they have an inherent inability to adapt to situations 

caused by large cellular movements (migration) in consecutive frames of the 

sequence.  

 

The analysis of the main directions of research in cellular segmentation that 

has been carried out in this section allowed us to draw some useful conclusions. The 

most apparent is that the vast majority of the developed methods have been 

developed to serve a particular application domain (cell type, image conditions and 

protocols, cell density, etc.) – for additional details refer to Table 2.1. However, in 

spite of the strong application context that was the prevailing factor in the 

development of cellular segmentation strategies, this section attempts to identify the 

advantages and limitations associated with existing segmentation algorithms. An 

important conclusion resulting from this study is that precise cell 

detection/segmentation using standard segmentation approaches is impractical due to 

the wide range of morphology and intensity variations that are present in cellular 

data. This issue proved particularly visible when the algorithms are applied to 

challenging cellular datasets and the limitations associated with the imperfect cell 

segmentation generate a difficult research problem that will receive full attention in 

this thesis. The conclusions that emerged from this survey prompted the 
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development of the framework presented in this dissertation that treats the 

segmentation and tracking problem in an integrated manner to limit as much as 

possible the impact of the segmentation errors on the overall tracking accuracy. 

 

Table 2.1: An overview of cell segmentation methods that were proposed for the 
analysis of different cell lines. 
Reference Cell line Modality Segmentation approach 

1 Murine neural progenitor 
cells 

Phase-contrast Uneven illumination 
removal + adaptive 
thresholding + marker-
based watershed  

8 Human osteosarcoma & 
amnion epithelial cells 

Phase-contrast Region based (gray 
scale morphology + 
level set)  

78 Histopathology images Fluorescence Graph cut binarization  

92 Drosophila cells Fluorescence Active contour & H-
minima & marker-
based watershed 

94 Melanoma cells Phase-contrast Optical flow & level set 

93 Breast cancer tissue Fluorescence Multiple filters & 
watershed-region 
growing & dilation 

95 Breast cancer cell MDA-
MB2 31 

Phase-contrast Flow-guided active 
contours 

96 HeLa Fluorescence Adaptive threshold & 
Watershed & Region 
merging 

97 H4 neuroglioma cells Fluorescence Background correction 
& Gaussian filtering & 
watershed & statistical 
region splitting 
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2.1.1.2 Cellular association 

 

Each image of the cellular sequence contains cells with similar intensity 

profiles, a fact that complicates their matching/association in consecutive frames. 

Cells also undergo random motion, deformation and division, and these factors 

further enhance the difficulty of the cellular tracking process. Several matching 

(cellular association) techniques have been reported in the literature that are 

principally based on image features [1, 23, 24], motion estimation [21, 25, 26], 

spatial relationship [7, 27, 82] and hybrid implementations (image and motion 

features) [12, 28, 84].  

 

  

        (a)     (b)     (c) 

Figure 2.2. Illustration of the cell association process that tries to minimise a global 
objective function. Nodes marked by grey-filled circles denote cells in the current 
frame. Nodes marked with white circles depict the cells in the next frame. (a) 
Current frame. (b) Next frame. (c) Principles of the cellular association process.  
 

 

The most straightforward cell association process is based on the estimation 

of a similarity metric that evaluates the disparity between sets of features associated 

with the segmented cells in adjacent images. Although different features can be 

theoretically employed in the context of cell association, the objective is to minimise 

the overall disparity in matching which translates to maximising the overall 

matching confidence. This is illustrated in Figure 2.2 where the cells in the current 

frame and the next frame are shown in Figure 2.2(a) and Figure 2.2(b), respectively. 

Figure 2.2(c) shows the relative position of these cells in a single frame where the 

cells from the current frame are marked with grey-filled circles. In this diagram, the 

number associated with an edge represents the Euclidean distance between the cells 

that are connected by the respective edge. Now, if association is carried out using a 
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simple greedy approach [98], A, C and B will be associated with D, F and E, 

respectively, generating a matching cost of 2, 3 and 10, respectively. Thus the total 

cost will be 15. However, the cellular association A-E, B-D and C-F will result in an 

overall matching cost equal to 12, which illustrates the inability of this approach to 

generate reliable matching decisions.   

 

If the cells in adjacent frames of the sequence do not show large migration 

patterns (such as depicted in Figure 2.2), the distance between the cell centroids can 

be used as a cell association metric. In this regard, the methods proposed in [10, 29, 

30] implemented cell matching based on the distance between the centroids of the 

segmented cells and the amount of overlap in the cell regions in consecutive frames. 

Apgar et al [29] validated their method using micro-sphere particles fluorescent 

image sequences and the inter-frame particle association was carried out with respect 

to nearest neighbour rules. The experimental results indicate that this association 

process produces satisfactory results, but it is useful to mention that the distribution 

of the micro-spheres is sparse and the displacements between corresponding particles 

in consecutive frames are very small. A similar approach was reported in [31] where 

the size of the cells was used to complement the Euclidean distance between the 

cells’ centroids in the association process. Related association principles were 

applied by Jaeger et al [30], where they initially segmented Dictyostelium cells in 

each image and then associated them based on the distance between their contours. 

Since the association process is implemented by minimising an overall cost function, 

the problems generated by the segmentation errors proved particularly cumbersome 

to address. This issue has received a substantial level of attention in [10] where the 

authors developed an elaborated segmentation process to identify Escherichia coli 

cells in fluorescence images.  

 

A distinct characteristic of cell tracking methods based on the simple 

evaluation of the minimum distance between cells is that they return an appropriate 

level of performance when applied to track spatially sparse cells only in situations 

where the segmentation errors are not significant. Indeed, incorrect cell association 

decisions are determined by several factors, including unexpected shape changes that 

are encountered during the cell growth, high cell density and more importantly by 

the random migration of cells. For instance, to accommodate different cell motility 
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patterns, multiple features need to be concurrently analysed in the cell association 

process [23, 32]. Nath et al [23] employed three discrete distances (the overlapping 

area of the bounding boxes that enclose the segmented cell regions, the distance 

between cell contours and the amount of overlap between the cell regions) to track 

cells in time-lapse phase-contrast epithelial cell image sequences. This tracking 

solution proved efficient when applied to image sequences captured with a small 

time lapse interval, but since the algorithm strongly relies on the area of overlap 

between cells in consecutive frames, it is not applicable to tracking scenarios where 

cells undergo large migration. A related approach is presented in [32] that 

incorporates two distinct measurements, namely the overlap area and the distance 

between cell centroids, measures that were normalised with respect to the maximum 

size of the cells under analysis. The experiments were conducted on fluorescence 

image data containing cancer cells (HeLa cells) and the authors reported that more 

than 90% of cells were correctly tracked. However, it is important to point out that 

this high tracking accuracy is achieved under the condition that accurate cell 

segmentation is available (>98%). This condition was satisfied in their study, as the 

identification of the nuclei of the HeLa cells requires a fairly straightforward 

segmentation process. There is no doubt that this favourable scenario cannot be 

applied when dealing with challenging phase-contrast data that is often characterised 

by low image contrast and a high level of noise. In this situation the segmentation 

errors have to be accommodated during the cell tracking process, and some 

algorithmic solutions have been reported in [9, 33].  

 

 When all challenges associated with complex time-lapse phase-contrast data 

are taken into consideration, simple measurements that record the displacements 

between cells in consecutive frames are inadequate to obtain robust cellular 

association. To provide more confidence in the tracking process, multiple 

measurements have been included to generate more detailed features that can 

substantially increase the overall tracking accuracy. As an example, the method 

presented in [1] evaluated the likelihood for all possible pairs of cells in two adjacent 

frames using the following set of features: centroid, area, eccentricity, major axis 

length and orientation. To achieve a global minimisation in this high dimensional 

feature space, the authors employed linear programming. However, the association 

process based on large feature sets is computationally expensive as it generates a 
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large matrix whose size is proportional to the number of cells present in the image. 

In their experiments, the authors evaluated phase-contrast data containing murine 

progenitor cells, and in their study they showed that the incidence of segmentation 

errors artificially increases the number of broken tracks. To overcome this problem, 

the authors proposed to approximate the position and the shape of the undetected cell 

in the next frame with that of the unmatched cell in the current frame. This process is 

repeated over a number of consecutive frames and if no matching cell is found, the 

tracking for the cell in the current frame is terminated. While this approach to 

address the under-segmentation errors is intuitive, it is applicable only in situations 

where the inter-frame migration is very small.  Moreover, the approach applied to 

estimate the location of the missed cell is inappropriate when dealing with cell data 

characterised by random migration patterns. A similar idea was applied in [34], 

where the authors employed a sliding temporal window to redress the errors caused 

by under-segmentation. To alleviate the problems associated with the approach 

detailed in [1], additional constraints were enforced in [34] to handle the situations 

when the cells are entering and exiting from the region of interest that is imaged by 

the microscope.  

 

Another important issue associated with detection-based tracking methods is 

the identification of the optimal computational architecture for robust cell 

association. In this sense, in [4] the authors introduced a graph-based framework that 

formulated the cell association problem as a flow network that can be efficiently 

solved using the minimum-cost flow algorithm. In this framework, a weighted bi-

partite graph is used where one set of nodes represents the cells in the current frame 

and the other set represents the cells in the next frame. The weight/cost of an edge is 

defined by the absolute difference between feature vectors associated with the nodes 

that are connected by that edge. Using this data structure, the cell association is given 

by the minimum weighted bipartite matching. The approach based on bipartite 

graphs proved well adapted for cellular association and it has been extended to cover 

more complex situations including cell division. In [4], the authors evaluated their 

algorithm using fluorescence HeLa cell sequences and the reported results proved 

very promising. A related cell tracking framework based on the bipartite graph 

formulation has also been reported in [12]. 
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 As indicated above, the cellular tracking approaches based on feature 

matching proved inefficient when applied to cellular data characterised by low 

contrast or/and random migration. To answer such a challenging tracking scenario, 

some of the existing methods attempted to use structural information associated with 

neighbouring cells. Such an implementation has been reported in [27] where the 

structural (spatial) relationship between the neighbouring cells was encoded into a 

graph representation. The use of structural information proved critical in increasing 

tracking accuracy especially in complex situations that are generated by random 

migration. However, the main problem associated with this approach is the 

methodology applied to encode the spatial relationships between closely located 

cells. For instance, even small changes in the topology of the cells in the consecutive 

frames can have a significant impact on the graph representation [27], and this 

substantially complicates the cellular association process. However, the advantages 

of using the spatial information for cellular tracking outweigh the limitations, and 

many efforts have been devoted to improve the manner in which the spatial 

information is included in the tracking process. In this regard, Delaunay triangulation 

[35] has been actively used in the context of cell tracking [7, 13, 36, 37]. This 

representation has several advantages, such as it generates a unique planar graph that 

is independent of the topology of the nodes [35], and at the same time maximises the 

minimum angles of the triangles that compose the mesh. Moreover, in the Delaunay 

mesh the triangles tend towards equiangularity and the insertion or the removal of a 

node affects the mesh representation only at the local level. These properties are 

particularly well adapted to encode the neighbouring relationship between the cells 

in the image, as the insertion and the removal of nodes can be caused either by 

cellular division or by under-segmentation. 

 

In [7] the authors reported a tracking algorithm where the spatial distribution 

of the cells in each frame is encoded using Delaunay triangulation and the cell 

association decisions were obtained by employing a linear programming algorithm. 

The algorithm detailed in [7] has been evaluated on fluorescent data containing HeLa 

cells and the reported results clearly demonstrate that the use of spatial information 

proved to be the key factor in obtaining high cellular tracking accuracy. As a 

disadvantage, the tracking process detailed in [7] consists of a rigid architecture, and 

it proved inefficient in accommodating the errors that occur during the segmentation 
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process. This problem formed one of the main research issues that received special 

attention in the development of the cellular tracking method discussed in this thesis. 

The problem caused by improper segmentation is most apparent when dealing with 

phase-contrast cellular image sequences, as they are typically characterised by large 

intensity variations within the same image and a relatively high level of noise. Due 

to this challenging segmentation process, under-segmentation frequently occurs, and 

this significantly reduces the tracking accuracy by generating incomplete cell 

lineages (trajectories). To address this problem, recently, a flexible cell tracking 

algorithm was reported in [12] that includes a computational module that was 

designed to link the broken tracks generated by segmentation errors. In this 

approach, five features including motion information are adaptively combined to 

measure the similarity between cells in consecutive frames and a post-processing 

step has been applied to bridge the broken cell tracks throughout the sequence. The 

major drawback associated with this approach is that it cannot handle the situations 

where the under-segmentation occurs in the presence of cellular division. This is 

another research problem that has been fully addressed in the cellular tracking 

framework presented in this thesis. The errors induced by the segmentation process 

form the main challenge associated with the detection-based cellular tracking 

approaches. To alleviate this issue, computer vision researchers have approached the 

cellular association from a more supervised perspective, which implies the accurate 

identification of prior models that describe the shape variation and/or the migration 

patterns. These methods are reviewed in the next section of the thesis. 

 

2.1.2 Model driven cell tracking methods 
 

As pointed out in the concluding remarks of the previous section, since cells 

are difficult to segment in each frame of the image sequence, substantial research 

efforts have been concentrated on the development of model-driven techniques. In 

these methods, a model is constructed for each cell to be tracked. The model 

generally encodes information relating to the shape or/and the intensity profile of the 

cell. The constructed model is propagated to the next frame(s) and is evolved to 

identify the most probable target in that (those) frame(s). Model propagation and 

target identification using this approach simultaneously solves both the cell detection 

and tracking problems. The model-based techniques developed in the context of 



 - 23 - 

cellular tracking can be classified into two sub-categories: contour-based and region-

based. Snake/active contours [38] and level sets [39] are the predominant methods 

employed in the development of contour based cell tracking methods, whereas 

normalised cross-correlation [40] and mean-shift [41] approaches were used in the 

implementation of region-based cell tracking methods. 

 

2.1.2.1 Contour-based methods 
 

 The snake/active contour methods [38] are well known techniques that are 

popular in the development of cellular tracking techniques. An active contour 

represents a deformable model where its deformation is controlled by user-defined 

parameters and image information (usually gradient data). When this approach is 

applied to analyse the cell migration, the contour for each cell in the current frame is 

propagated to the next frame (i.e. the contour in the current frame is used as an initial 

condition for the contour in the next frame). The propagated contour is evolved with 

respect to the image information and subject to the internal parameters that impose a 

priori constraints on the smoothness of the evolved contour. From a biological 

perspective, this model is especially suitable for describing the shape variation 

during the cell migration. However, active contours do not generally handle cellular 

division which needs to be addressed using additional post-processing steps.  

 

In [42], an active contour method is applied for single cell tracking, where 

the contour initialised in the first image is passed to the next frame and evolved until 

convergence. In this work the authors applied a multi-scale filtering process to 

remove noise, to smooth the original image data and to emphasize image features 

such as edges or contours. Goobic et al [43] also proposed a cell tracking method 

based on active contours and experimentally compared the performance of their 

method with that achieved by the centroid and correlation-based tracking methods. 

The authors conducted the experimental validation using 33 sequences, and 

concluded that tracking with active contours returns better results. While the use of 

active contours may be beneficial when applied to well-imaged cellular data that is 

characterised by small cellular migration, the active contour framework has several 

limitations when applied to more challenging scenarios. These include convergence 

problems when dealing with poor contrast data, inability to accommodate cell 
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division, incorrect propagation into the contours of nearby cells and errors caused by 

large cellular migration. To address these issues, algorithmic solutions have been 

proposed to improve the suitability of the active contour methodology when applied 

to challenging data. 

 

To overcome the difficulties associated with the ambiguities between the 

cells’ boundaries, an edge map based on the average intensity dispersion is applied in 

[44] to take advantage of the relatively homogenous background. The same problem 

was also addressed in [45] by employing a modified/texture constrained active 

contour formulation that is able to grow across isolated strong edges and stop at 

weak boundaries. To avoid contour merging and at the same time allowing cell 

division, in [46] repulsive forces and topological constraints were applied, whereas 

in [47] the authors modified the standard active contour framework to be able to 

accommodate large cell migrations. However, the inclusion of the additional 

constraints to control the active contour evolution significantly increased the 

“custom-designed” characteristic of the devised methods. In [22], size and shape 

constraints are integrated within the energy functional to precisely track leukocytes 

(white blood cells) in time-lapse data. In this work, the authors coupled active 

contours with Kalman filters to infer the location of the leukocyte cells when they 

are occluded or undetected. The application of the Kalman filter proved successful, 

as the migration of the leukocytes can be well approximated with a linear model. 

Ray and Acton [47] reported another extension of this work by including the motion 

gradient vector flow to track large cell movements.  

 

The geometric active contours, which are widely referred to as level sets, 

were also used for cell tracking because they are able to handle topological changes 

such as contour splitting, a property that is extremely useful when dealing with cell 

division. As an example, the application of the level sets in the development of cell 

segmentation and tracking has been reported in [14, 48]. However, in its standard 

form, the level sets methods do not prevent two boundaries from merging and thus it 

is prone to erroneously joining multiple cells that are close to each other into a single 

cell. To address this issue, different implementations were developed to prevent the 

cell merging when the cells are spatially close [49]. This approach was further 

extended to track cells in 3D data and it has been reported in [18, 79]. However, it is 
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useful to note that this approach shows limitations when applied to dense cellular 

structures (the occurrence of cell agglomeration proved particularly problematic).  

 

2.1.2.2 Region-based methods 
 

In distinction to the contour propagation-based cell tracking techniques, in 

region-based approaches the shape of the cell is not explicitly used in the tracking 

process. Instead, the intensity profile of the cell region is utilised in the process of 

inferring the cell association decisions. In this approach, the mass centre for each cell 

is first identified, which provides information relating to the position of the cell 

within frame. Then, a template/pattern surrounding the mass centre is created and the 

cell is tracked by identifying a template/pattern in the next frame that minimises a 

cost-matching functional. This process is sequentially carried out to track the 

corresponding cells in the subsequent frames of sequence. The normalised cross 

correlation [40] was generally employed to identify the corresponding (associated) 

cells in the image sequence and several methods that followed this approach were 

reported in [43, 50, 51]. In [51], the intensity pattern of the cell under analysis is 

selected in the first frame of the sequence and the point that maximises the 

normalised cross-correlation matching criteria is selected as the location of the 

corresponding cell in the next image. The tracking path for each cell is obtained by 

connecting the best locations in the temporal domain. While this approach is simple 

and intuitive, it is likely to generate matching errors as the cells frequently change 

their shapes and intensity profiles in consecutive frames of the image sequence. 

Therefore, simplistic template matching is not sufficiently robust to identify the 

corresponding cells over long periods of time especially in challenging time-lapse 

phase-contrast data. In [43], the authors also applied a correlation-based method to 

track in vitro leukocytes in a flow chamber environment. This approach proved 

successful, but it is useful to note that the leukocyte cells do not exhibit large 

migration patterns and the image data show only minor inter-frame intensity 

changes. There is no doubt that this favourable scenario is not usually encountered in 

time-lapse cellular data, and in the context of large migration and inter-frame 

intensity changes, the template matching process returns erroneous decisions [50]. 

Thus, the researchers included further features in the matching process to provide 

more robust information when deciding if the candidate cell location is correctly 
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identified [26]. This issue has received special attention in this dissertation and in the 

proposed cellular tracking framework the limitations associated with the standard 

correlation-based template-matching approach have been addressed by incorporating 

additional information that describes the spatial distribution of the cells in each 

frame of the sequence. 

 

 To further improve the accuracy of the cellular association process, other 

region-based tracking methods employed the mean-shift strategy to identify the 

corresponding cells in the image data [5, 52]. The mean-shift implements an iterative 

process that locates the mode of the intensity pattern within the search space for the 

given intensity pattern. The mean-shift-based cell tracking method proposed in [5] is 

semi-automatic and defines an octagon kernel to encompass the area covered by each 

cell in the phase-contrast image. Thus, based on the cell intensity profile, which is 

defined by a dark cell nucleus that is surrounded by a bright region, two intensity-

based kernels are coupled which are completed with a third kernel that models the 

cell division. While the user is allowed to select only a restricted set of cells in the 

first image, this approach has difficulties in tracking new cells that enter or exit the 

region of interest that is imaged by the microscope. Consequently, the performance 

of this approach is downgraded by the occurrence of false matching. The application 

of the mean-shift for cellular tracking proved very problematic due to the following 

limitations: (a) the mean-shift tracking is likely to generate incorrect association 

when the cells present similar pixel-intensity characteristics, (b) after a few frames 

the tracking process usually diverges from the actual cell location and it is often 

trapped by local minima, and (c) it does not naturally handle cell division. 

 

2.1.3 Stochastic filter-based methods 
 

Stochastic filter-based tracking methods involve a probabilistic/Bayesian 

approach and they usually rely on a priori knowledge about cell motion 

characteristics and/or deformation patterns. These methods are extremely powerful if 

the cell motion and the deformation patterns can be accurately modelled [4], and the 

application of Bayesian frameworks to cellular tracking has been extensively studied 

in recent years. The major advantage of this approach consists of its ability to 

estimate the future states of the target (cell) in terms of its position, size, intensity, 
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etc, by making use of prior assumptions. When dealing with complex cell tracking 

data this estimation is very useful, especially in situations where the cell 

segmentation is extremely challenging. Thus, such model-based estimation can be 

used to identify the target cell [53] or it can be combined with additional cost 

functions to increase the matching confidence of the cell association process [54, 

80]. Within the Bayesian framework, the posterior probability density function is 

derived from the state transition model, which can be linear in the case of Kalman 

filter [55] and non-linear in the case of particle filtering [56]. Methods that use the 

Kalman filter for tracking are based on the hypothesis that the noise distributions are 

Gaussian and the system dynamics are linear [56]. However, in the case of cellular 

tracking, the Gaussian and linear assumptions are sub-optimal. In this context, 

particle filtering-based schemes are more appropriate because they are able to 

accommodate the nonlinear cell migration and the non-Gaussian distributed noise. 

As a downside, these methods require accurate a priori knowledge about the motion 

patterns associated with the cells to be tracked. 

 

The methods presented in [21, 25, 26, 54, 57] involve the application of 

Kalman filtering to track spot-like particles/cells in fluorescence images. The 

application of the Kalman filter to track the cells in time-lapse image sequences is 

appealing as it provides a recursive solution to estimate the state of the tracking 

process by minimising the mean of the squared error. In these approaches the 

transition model that describes the cellular motion plays a very important role. As 

cell migration does not follow a particular motion pattern, it is difficult to describe 

them using only a single motion model. Thus, a number of motion models (random 

walk, first order linear extrapolation (constant velocity), and second-order linear 

extrapolation (constant acceleration)) that describe different migration patterns are 

integrated with the aim of implementing an interacting multiple model (IMM) 

algorithm [21].  In this approach, the switching between different models is 

controlled by a finite state Markov chain. Genovesio et al [21] evaluated their IMM 

tracking technique on synthetically generated image data and attempted to 

characterise the 3-D movements of the endocytic vesicles containing quantum dots. 

Although the experimental results proved accurate, the synthetic generated data does 

not fully encompass all challenges associated with complex cell migration.  
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To improve the robustness of the probabilistic tracking process, non-linear 

single-model particle filters [26, 45, 53, 54] and multi-model particle filters [25] 

have been applied to track spot-like biological targets. In these implementations the 

particle filters were implemented as a set of random samples/particles and their 

associated weights are used to compute the posterior density function. Then, the 

samples and their weights are propagated to give an approximation of the particle 

distributions in subsequent frames. During this operation, re-sampling of the 

particles is often necessary to avoid the degeneracy problem [56] (i.e. when the 

weights associated with the vast majority of the particles attain very low values 

compared to the remaining ones). In spite of these limitations, the particle filtering-

based methods provide a better integration of the spatial and temporal information 

than approaches based on Kalman filtering, and in addition, they offer the possibility 

of incorporating more detailed prior knowledge that samples more accurately the cell 

migration and image dynamics. Similar to Kalman filtering based strategies, the 

particle filtering methods are generally application dependent and they are designed 

to model specific migration patterns  

 

A different tracking approach involves the application of joint probabilistic 

data association (JPDA), which considers for the cell under analysis in the current 

frame more than one candidate as a potential target in the next frames of the 

sequence [33, 58]. Kirubarajan et al [33] reported a JPDA based method for the 

tracking of fibroblast (tissue) cells in phase-contrast image sequences. This 

framework proved able to accommodate difficult situations that are caused by under-

segmentation and cell division. However, the efficiency of this method is highly 

influenced by a large number of a priori assumptions, a requirement that is difficult 

to fulfil when dealing with random migration. This issue has been fully addressed in 

[58] where the authors developed a JPDA tracking method that evaluates a large set 

of a priori conditions. To attain a computational tractable approach, the authors 

applied the Hungarian method [58] that entails a linear programming optimisation 

process.  
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2.1.4 Hybrid methods 
 

Considering the large spectrum of challenges associated with the cellular 

tracking problem, some published techniques integrate multiple algorithms into a 

single framework to obtain better performance. In this dissertation, these approaches 

are referred to as hybrid methods. For instance, a method included in this category 

has been reported in [8], where a topologically constrained geometric active contour 

algorithm was combined with edge-based segmentation and an interactive multiple 

motion models approach to robustly track cells in phase-contrast images. As post-

processing, the authors applied a track compiler to validate the identified cell tracks 

and a track linking module to connect the broken tracks. In this way, this method 

incorporates the advantages associated with both filter-based and contour-based 

approaches, but one obvious disadvantage resides in the substantial level of 

supervision required to identify the optimal values for a large set of parameters. 

 

In [60], the individual cells in each frame were segmented first by applying a 

level sets method that is extended with a customized pruning procedure to identify 

the individual cells in the presence of cell clustering (agglomeration). Then, the final 

cell tracking process was implemented using a stochastic filtering approach. In this 

tracking method, the authors assume that the migration for each cell can be 

approximated with only two models: random diffusion and goal-directed movement. 

Thus, a two-state Hidden Markov Model was applied, where the cell migration was 

modelled as a random walk with Gaussian distributed displacements. It is important 

to note that this particular cell migration modelling was suggested by the motility 

characteristics of the adult neural stem/progenitor cells and may not be suitable for 

accurately approximating the migration of other types of cells. 

 

In [70], the authors detailed a framework that is able to track cells in growing 

plant roots. This method involves the application of the Network Snakes technique 

[72] (which is a variant of parametric active contours) that allows the optimisation of 

arbitrary graphs that encode both the geometry and the boundaries between adjacent 

cells. To allow the tracking of fast-moving cells, the Network Snakes method is 

combined with a Markov Chain Monte Carlo algorithm [75], and to obtain a precise 
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initialisation for each cell contour, the authors applied a semi-automatic algorithm 

based on the watershed transform.  

 

In [59] the authors combined the optical flow and region-based active 

contours methods by implementing a unified energy formulation to track neuronal 

cell data. A similar approach was proposed in [61] where a standard detection-based 

method was combined with an active contour method. In line with all methods 

included in this category, these approaches were also designed to serve well-defined 

cellular application domains.  

 

2.2 Cellular division (mitosis) detection 
 

A characteristic of modern cell culturing and imaging equipment is that they 

facilitate the monitoring of cell behaviours over long periods of time. Thus, the time-

lapse image sequences encompass a large number of cell division events. While cell 

migration remains the main field of research, in recent years the automatic detection 

of cellular division started to capture the attention of molecular scientists. This 

research interest was motivated by the role of cellular mitosis in biological studies, 

as this information is crucial in the process of quantifying the cell cycle and the 

growth rate of the cell population [48, 62, 63]. To answer this research interest, 

similar to cellular tracking, computer-vision algorithms have been developed to 

identify mitotic events in cellular data with no user interaction. The methods 

published in the literature attempt to detect mitosis events either during the cellular 

association process, or they approached the cell division as a post-processing step 

that relies on the availability of cellular tracking results. Thus, the existing cell 

division detection algorithms can be broadly classified into tracking-independent [7, 

62, 64, 65] and tracking-based [5, 8, 12, 37] cell division approaches. In the first sub-

category, intensity-based features are usually extracted to detect the cell divisions, 

while in the second sub-category the tracking results are utilised to identify the 

mitosis events. 
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2.2.1 Tracking independent cell division detection 
 

 Mitosis detection methods included in this category exploit the distinctive 

intensity features that are associated with cells prior to the cellular division event. 

More exactly, these methods use the knowledge that mitotic cells undergo distinct 

phase changes during the cell cycle [48, 86] that are reflected in significant intensity 

and shape variations. In some cellular images, during cell division the shape of the 

cells becomes very regular (circular) and their outlines show a very bright intensity 

halo. Thus, these apparent visual features have been often employed to identify cell 

division events.  

 

The method presented in [7] first identifies the child cells (anaphase) in the 

next frame that follows the division event using a Support Vector Machine (SVM) 

classifier. Thus, if both child cells are identified based on their shape and intensity 

similarity, then they are associated with the closest parent (metaphase) cell in frame 

that precedes mitosis. The results returned by this method were promising when 

applied to fluorescence HeLa cell data, as the phase changes associated with the 

mitotic events are apparent. As a limitation, this approach is highly dependent on the 

results returned by the segmentation process, since each cell needs to be evaluated in 

order to measure its suitability to be assigned as a child cell. Thus, accurate cell 

division detection can be obtained only in situations where both child and parent 

cells are available as input for the cell division process. Also, the application of this 

method to dense cell phase-contrast image data is not straightforward due to the 

substantial challenges associated with the cell segmentation procedure. 

 

 A different classification-based cell division detection method has been 

proposed in [65] that has been specifically designed to detect mitotic cells in phase-

contrast image data. This method first identifies the image sub-regions where the 

potential cell division may have occurred. Then, a trained Hidden Conditional 

Random Field (HCRF) [66] was applied to the selected sub-regions to determine 

whether each potential candidate contains a mitotic event. This work has been 

further extended in [63, 64] to enhance the accuracy of the mitosis detection. In [64] 

the HCRF was replaced with the Event Detection Conditional Random Field 

(EDCRF), which is a probabilistic approach that is able to model the dynamic 
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changes before and after the cell division event. The detection accuracy of this 

method proved excellent when applied to low to medium density cellular data, but it 

has shown problems when applied to dense phase-contrast data. In [63], a Two-

Labelled Hidden Conditional Random Field (TL-HCRF) was used, an approach that 

complements the changes in the intensity profile of the mitotic cells with the 

information that samples the timing associated with the cell division process.  

 

As a common property of the mitosis detection methods analysed in this 

section, they are based on the assumptions that the cellular division is signalled by 

conspicuous changes in the shape and the brightness of the parent cell. These 

assumptions are not always present in all types of cellular phase-contrast data [1, 7]. 

Another limitation is associated with their dependency on the accuracy of the 

segmentation results, and, in addition, the mitosis detection implies a 

computationally intensive search process. 

 

2.2.2 Tracking dependent cell division detection 
 

 When dealing with cellular data where the mitosis events are not signalled by 

distinct shape and intensity changes, more sophisticated procedures have to be 

developed by analysing the spatio-temporal information encompassed in the tracking 

results [1, 5, 12, 32]. The use of the tracking results in the context of mitosis 

detection leads to increased accuracy, and at the same time permits the 

implementation of computationally efficient algorithms.  

 

 The cell division detection method proposed in [32] applied the one-to-many 

matching constraint during the cell association process. In other words, two child 

cells in frame (at time T+1) that follows mitosis correspond to only one cell in the 

current frame (at time T). However, multiple cell divisions may occur at the same 

time and they may generate ambiguities in the cell division detection. This problem 

has been partially addressed in [32] by using geometric information that is calculated 

for all cells situated in the neighbourhood of the mitotic cells. The major limitation 

associated with this method lies in the assumption that all child cells are detected 

after the cell division, which may not be the case when dealing with low contrast 

image data.  
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A similar approach for cell division detection has been reported in [1] where 

the likelihood that a cell is divided is estimated based on the absolute differences 

between the feature vectors associated with the parent and the child cells. To do this, 

the pairs of candidate child cells are merged, and the prior estimates of the mean and 

covariance of the difference vectors (calculated for each parent cell) are employed to 

increase the confidence of the parent-child matching process. Thus, a successful 

detection can be obtained when the parent and the child cells are correctly 

segmented, a condition that may be difficult to fulfil when the algorithm is applied to 

low contrast cell data.  

 

Cellular tracking results are affected by segmentation and cell association 

errors. Hence, often during segmentation one or both child cells may be undetected 

in several frames after the mitosis event. There is no doubt that these errors have a 

negative effect on the accuracy of the mitosis detection, and to reduce their 

occurrence, backward tracking analysis has been applied to identify the child cells 

that are missed by the segmentation process. More precisely, the goal of the 

backward tracking process is to identify the location of the cells that are missed by 

the forward (normal) tracking in frame or frames that follow mitosis. To solve this 

task, pattern recognition methods based on normalised cross-correlation [12] and 

mean-shift [5] have been reported. For example, in [5] an integrated multiple mean-

shift kernel-based backward tracking procedure was employed to detect the cell 

division. To alleviate the problems caused by the sudden intensity shifts, the 

proposed kernels were tuned to accommodate the intensity variation during the 

mitotic event. The method presented in [12] also employed the reverse tracking 

process for mitosis detection in phase-contrast cell data. In [12], a normalised cross-

correlation based method was incorporated to detect the missing cell locations in 

frames where the segmentation results are not available, and backward tracking was 

applied to identify the parent-child cells links.  
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2.3. Conclusions  
 

The goal of the literature survey presented in this chapter was to analyse the 

main directions of research in the area of cellular tracking and mitosis detection. The 

evaluation of the state-of-the-art algorithms mainly addressed the technical aspects 

relating to the implementation of computer vision-based automatic cell tracking 

solutions and details about the application context were also provided whenever such 

information was made available in the analysed papers. Since the cellular tracking 

and mitosis detection play a central role in the process of understanding/modelling 

diverse biological processes, a substantial number of approaches have been 

published in this field of research. One distinct conclusion that emerged from the 

literature survey is that the complexity of the cellular tracking and mitosis detection 

algorithms was dictated by the innate characteristics of the analysed cellular data. 

This conclusion is not unexpected, since the biological patterns that are captured in 

sequences of cellular images exhibit strong particularities that are related to the type 

of cells being analysed. Nonetheless, this conclusion is extremely important as it 

elevated one main direction of research that was followed in this thesis, namely the 

need of developing more flexible cell-tracking and mitosis-detection algorithms that 

are able to better accommodate the problems relating to improper image conditions 

such as low contrast and image noise, and the issues associated with the random 

nature of the cell migration.  

 

Another important objective of this chapter was to analyse from a technical 

standpoint the most important algorithms published in the literature and to identify 

their advantages and limitations. To facilitate this discussion the algorithms analysed 

in this section have been grouped in distinct categories based on the approach 

applied to solve the inter-frame cellular association. In this regard, four major 

categories have been identified: detection-based, model-based, filtering-based and 

hybrid cellular tracking strategies. As indicated in Section 2.1.1, a dominant 

characteristic associated with the detection-based techniques is their dependence on 

the accuracy of the segmentation process. Since segmentation errors are unavoidable 

when dealing with dense time-lapse phase-contrast data, these methods have shown 

substantial limitations in the presence of cellular interaction and random migration, 

and these limitations motivated the researchers to investigate more sophisticated 
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cellular tracking strategies. Indeed, in an effort to reduce the undesirable effects 

induced by the segmentation errors, the researchers have investigated alternative 

solutions based on the inclusion of intensity and geometric models in the cellular 

association process.  

 

The major advantage associated with model-based cellular tracking 

approaches is that they do not require the explicit identification of cells in each frame 

of the image sequence, but they have several inherent limitations. Among these 

limitations two are most apparent.  

 

Firstly, the model-based cellular tracking methods are not able to achieve 

accurate results when applied to datasets that are characterised by large migration 

patterns. Secondly, they are not suitable for handling the topological changes in the 

cellular structures that are caused by cellular division events. To overcome the major 

limitations of the model-based approaches, the cellular tracking process has been 

addressed by constructing a priori motion models that describe cellular migration.  

 

The cellular tracking methods based on Kalman and particle filters use the 

assumption that the future states (locations) of the cells in consecutive frames of the 

sequence can be efficiently predicted using well-defined state transition models that 

are often integrated in a Bayesian framework. While the Kalman and particle 

filtering schemes are theoretically attractive when analysed in the context of cellular 

tracking (as they are not dependent on the accuracy of the segmentation process) 

they proved problematic when applied to data that is characterised by random 

cellular migration. The random migration cannot be accurately modelled using 

particular motion models, and as a consequence, more complex schemes based on 

the interaction of multiple motion models were proposed. The application of multiple 

motion models to solve the cellular association is opportune, but substantial practical 

problems emerged in relation to the identification of the optimal motion model that 

best approximates the image dynamics and the substantial level of supervision that is 

required in the training process. In an effort to generate more flexible and accurate 

cell tracking strategies (that can better adapt to the large spectrum of challenges that 

are present in dense time-lapse cellular datasets), hybrid techniques that integrate 

multiple tracking algorithms have been recently investigated. Indeed, the hybrid 
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cellular tracking implementations proved more robust when compared to the 

detection, model or filtering-based tracking strategies, but one apparent problem is 

associated with the optimisation of large sets of parameters.  

 

Thus, in conclusion, the critical analysis described in this chapter was 

particularly useful as it highlighted the major theoretical areas in the field of cellular 

tracking that require additional research. In this work, substantial efforts have been 

devoted towards the development of a robust cellular tracking framework that is able 

to minimise the tracking errors that are caused by the incidence of segmentation 

errors.  

 

Another area of interest focused on was the robust identification of cellular 

division events. As indicated in Section 2.2, two categories of mitosis detection 

algorithms have been identified. In this regard, the algorithms included in the first 

category approached the mitosis detection by exploiting the apparent intensity 

changes that are associated with the parent cells prior to cellular division. These 

algorithms proved robust in the identification of the patent-child cells links, but they 

are not feasible for application in the absence of such conspicuous intensity changes 

that signal the mitosis events. Thus, the second category of algorithms approached 

the problem of mitosis detection from a more generic standpoint by analysing the 

cell tracking results in a backward manner. One prominent limitation associated with 

these algorithms is the negative impact of segmentation errors, which generates 

incorrect parent-child cells links. This problem has received special attention in this 

thesis, where a novel backward tracking scheme that is able to redress the under-

segmentation problems has been proposed and comprehensively evaluated.  

 

The proposed theoretical framework provides an integrated solution for cell 

tracking and mitosis detection. In this research work a novel cellular association 

algorithm has been developed that evaluates the topological information between the 

cells in each frame of the sequence. To alleviate the negative influence of 

segmentation errors on the accuracy of cell tracking and mitosis detection, a distinct 

module has been designed to identify and redress the segmentation errors during the 

forward and backward tracking processes. The theoretical and practical problems 
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relating to the development of the proposed cell tracking and mitosis detection 

framework are extensively discussed in the next chapter of this thesis.  
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Chapter 3:  
 

Cellular Tracking and Mitosis Detection 
 
 

As indicated in the previous chapter, the topic of cellular tracking and mitosis 

detection has received substantial interest from computer vision researchers. This 

interest has been largely motivated by the wide spectrum of molecular application 

domains that can be targeted by the development of fully automatic cellular tracking 

solutions. The aim of this chapter is to detail a novel image processing framework 

that has been designed to robustly identify the migration patterns and mitosis events 

in time-lapse phase-contrast image sequences.   

 

 As mentioned above, the main objective of this chapter is to present the 

technical details associated with the proposed cellular tracking and mitosis detection 

algorithm and to emphasise how the major limitations identified in the previous 

chapter are addressed in the solution advanced in this dissertation. The main issues 

that hamper the development of robust cellular tracking algorithms are as follows: 

• Under-segmentation  

• Random motion 

• Cell division 

• Cellular agglomeration 

• Cells that enter/Exit the ROI imaged by the microscope 

 

In order to provide a flexible and efficient solution for automatic cell tracking 

and mitosis detection, in this work a multi-stage approach has been developed that 

involves a computational framework that consists of three main components: 

segmentation, forward-tracking and backward-tracking modules. Figure 3.1 

illustrates the block diagram of the full system where the sub-modules of the three 

main components of the developed algorithm are also shown.  
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Figure 3.1. The block diagram of the proposed cellular tracking and mitosis 
detection framework. 
 

 

The first computational component of the proposed framework is represented 

by the Segmentation module. The main goal of this module is to identify the cells in 

each frame of the phase-contrast image sequence and to determine their centroid 

points. The identified centroid points (that describe the location of the cells in each 

frame) are passed to the forward tracking module to determine the cell lineages 

(migration patterns) in all frames that compose the image sequence. In the proposed 

cell segmentation approach, to maximise the contrast between the cells and 

background a morphological process has been applied to precisely localise the 

intensity peaks that represent the nuclei of the cells in phase-contrast images.  

 

The next component of the proposed framework is the Forward tracking 

module whose aim is to implement the cell tracking process. Since in phase-contrast 

data the cells exhibit similar intensity characteristics and random motion, the cellular 

association (particularly when dealing with dense cellular data) is very challenging. 

Thus, to generate an efficient solution a novel graph-matching-based cellular 

association is proposed in this thesis. Here the cellular association process evaluates 
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the local distribution (topological structure) of the cells that is encoded using a 

graph-based representation for each frame of the sequence. In this work, the graph 

that describes the relationships between neighbouring cells is constructed using 

Delaunay triangulation that encodes the spatial position of the cells within frame. 

The proposed cellular association is formulated as a graph matching process where 

the cell trajectories (or cell tracks) are obtained by identifying the corresponding 

centroid points in consecutive frames of the image sequence. One problem that had 

to be addressed in the proposed graph-based cell association process was to tackle 

the errors that are caused by under-segmentation. In this regard, a pattern matching 

approach (under-segmentation module in the block diagram shown in Figure 3.1) has 

been devised that is able to signal the occurrence of under-segmentation and to 

identify the location of the cells that have been missed by the segmentation process. 

More exactly, if the cell tracking identifies an unmatched cell during cellular 

association, the under-segmentation module is activated to find the cell location in 

the next image using a pattern matching algorithm that minimises the local distortion 

in the Delaunay mesh. The under-segmentation module forms one contribution that 

enhanced the performance of the proposed graph-based cell tracking algorithm. 

 

The last module is designed to deal with cell division (mitosis) detection that 

performs the cell tracking in a reverse manner to identify the links between the 

parent and child cells. Cellular division is a biological process where a parent cell 

divides into two identical child cells. In this situation, the Forward tracking module 

associates the parent cell with one child cell, while the other child cell is considered 

as a new cell that will erroneously initiate a new track. The cellular division cannot 

be handled during the forward association process, so to link the un-associated child 

cell with the correct parent cell, in this thesis a reverse tracking strategy has been 

implemented that makes use of the cellular association results provided by the 

Forward tracking module. In this way, if an unmatched cell (due to cell division) is 

identified, a searching process is initiated using pattern matching and local cellular 

structure to identify the parent cell in the previous frame. In the following sections of 

this chapter each component (module) of the proposed framework are explained in 

detail. 
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3.1 The segmentation module 
 

 The segmentation module is the first component of the proposed cell tracking 

framework whose aim is to segment the cells in each frame of the image sequence. 

As discussed in Chapter 2, the segmentation process is hampered by limitations in 

the image acquisition process such as the low contrast and image noise, and it is 

useful to note that this scenario is particularly present when dealing with phase-

contrast image data. To alleviate these adverse image conditions, researchers have 

developed image protocols that require the use of staining fluorescence agents to 

increase the contrast between the cells’ nuclei and the background. However, the 

administration of fluorescent agents is not feasible for all cell lines as they negatively 

affect the cell cycle and may compromise the analysed molecular indicators. In this 

scenario, phase-contrast image modalities are often applied but the generated image 

sequences are characterised by low contrast and high intra-frame intensity variation. 

These adverse imaging conditions substantially complicate the segmentation process, 

and the main objective of the proposed cellular segmentation solution consists of the 

development of a robust morphological-based technique that is able to accommodate 

the intra- and inter-frame intensity variations and adapt to the low intensity contrast 

that is common for Madin Darby Canine Kidney Epithelial Cells (MDCK) and 

Human Umbilical Vein Endothelial Cells (HUVEC) cellular datasets.  

 

3.1.1 The proposed cell segmentation method 
 

In phase-contrast data, the image areas covered by cells have generally a 

darker interior (nucleus) which is surrounded by a peripheral bright halo. Following 

this intensity profile model, the cells can be theoretically extracted using threshold-

based segmentation techniques. However, in practice the application of simplistic 

thresholding schemes proved ineffective, as the phase-contrast data cannot be 

precisely approximated with a bimodal distribution. The segmentation method 

described in this thesis entails a greyscale morphological process that is applied to 

increase the contrast between the cells’ nuclei and the background. A block diagram 

that outlines the proposed cell segmentation technique is illustrated in Figure 3.2. 
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Figure 3.2. The overview of the cell segmentation module. 
 

 

The main objective of the proposed cell segmentation method is to find the 

intensity peaks that are associated with the cells’ nuclei, which facilitates the 

separation of the cells from the background. Since the intensity profiles of the cells 

are non-uniform, the first step requires the enhancement of the intensity profile of the 

cells’ nuclei with respect to the surrounding background regions. To achieve this 

goal, a top-hat filter has been applied to the inverted image (the image has been 

inverted as the cells’ nuclei are defined by low intensity signals when compared to 

the background). These morphological operations are indicated in equation 3.1, 

where the top-hat filter retains the bright intensities within the structuring element 

(SE) while eliminating those situated outside the SE. The application of the top-hat 

filter eliminates the uneven illumination and the small artefacts that are caused by 

the image noise.  

 

( )( )( )top inv inv invI tophat I I I s r= = − �  

 
where invI  is the inverted image, ( )�  is the greyscale morphological opening 

operation and ( )s r  denotes a circular structuring element with a radius r. The radius 

r is a user-defined parameter and should be selected in relation to the average size of 

the cells. The automatic identification of this parameter may be problematic in the 

absence of a priori knowledge regarding the cell data, and in this study the 

parameter r is set to a value greater than the average cell size (the parameter r is used 

to identify the cells in all frames of the image sequence). 

Phase-contrast 
image 

Intensity 
smoothing 

Centroid 
detection 

Background 
suppression and nuclei 

enhancement 

Peak detection 

(3.1) 
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Although the application of the top-hat transform increases the contrast 

between the cells’ nuclei and the background, this process is not able to remove the 

extraneous peaks that are generated for a single cell region. This issue is illustrated 

in Figure 3.3.2(a). To compensate for this problem, the image data resulting from the 

application of the top hat transform is smoothed using a Gaussian filter where the 

scale parameter is adjusted to implement an r×r kernel. Next, to detect the cells’ 

nuclei the extended maxima transform has been applied, which is the regional 

maxima of the h-maxima, and the final segmentation results are shown in Figures 

3.3.2(e) and 3.3.2(f). Figures 3.3.1 and 3.3.2 details all computational steps 

associated with the proposed cell segmentation process and additional segmentation 

results are provided in Figure 3.4.  

 

 
(a) 

  
(b) (c) 

Figure 3.3.1. Cell segmentation process. (a) The original phase-contrast image 
(Madin Darby Canine Kidney Epithelial Cells - MDCK). (b) The top-hat 
transformed version of the inverted image. The circular structuring element with 
radius r is marked with a red circle (c) 3D view of the image shown in (b) (further 
cropped to illustrate the occurrence of the multiple peaks).   
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             (a)       (b) 

  
(c)     (d) 

  
(e)     (f) 

Figure 3.3.2. Cell segmentation process. (a) The segmentation result from image (c) 
in Figure 3.3.1 using the h-maxima transform – note the issues caused by the 
multiple peaks which generate multiple responses for a cell region – marked with 
black circles. (b) The image resulting after filtering the image (b) in Figure 3.3.1 
with a Gaussian filter. (c) 3D view of the Gaussian smoothed result shown in (b). (d) 
The segmentation results from the image (b), where a single peak defines a single 
cell region. (e) and (f) depict the final segmentation results, where the identified cells 
borders are super-imposed on the original image. 
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  (a)     (b) 

  
     (c)     (d) 

  
      (e)     (f) 

Figure 3.4. Additional segmentation results for Human Umbilical Vein Endothelial 
Cells (HUVEC) phase-contrast data. (a) Original image. (b) Top-hat filtered image. 
(c) The image resulting after filtering the image shown in (b) with a Gaussian filter. 
(d) Segmentation result where each blob represents a cell. (e) - (f) Segmentation 
results where the cells borders and their centroids (red dots) are overlaid on the 
original image shown in (a).  
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The proposed cell segmentation technique returns promising results when 

applied to challenging MDCK and HUVEC datasets. However, due to the extremely 

low contrast between the cells and the background there are situations when cells are 

undetected by the algorithm (under-segmentation). Such examples are illustrated in 

Figures 3.5.1 and 3.5.2 and the locations where under-segmentation occurs are 

marked with yellow and blue circles. For clarity purposes, the detection failures 

caused by large morphological changes are marked with yellow circles, while the 

blue circles denote the failures generated by the faint image contrast. The incidence 

of under-segmentation has negative effects on the performance of the cell tracking 

process and in this thesis an approach that combines a pattern matching technique 

with the topological information that samples the local relationships between cells 

has been integrated in the proposed tracking framework. The developed cell tracking 

approach will be detailed in the next section of this chapter.   

 

  
       (a)                             (b) 

  
(c) (d) 

Figure 3.5.1. Examples that illustrate under-segmentation errors (MDCK data). The 
segmentation failures that are caused by large morphological changes are marked 
with yellow circles while the segmentation failures due to the faint image contrast 
are marked with blue circles. 
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    (a)                                        (b)  

Figure 3.5.2. Examples that illustrate under-segmentation errors (HUVEC data). The 
segmentation failures due to the faint image contrast are marked with blue circles. 
 
 

3.2 The forward tracking module 
 

The forward tracking module represents the main component of the proposed 

cell tracking framework. As emphasised in the literature survey provided in Chapter 

2, the cellular association in time-lapse dense cellular data is the most complex 

process since cells have similar intensity and shape characteristics and cell migration 

is dominated by random motility patterns. To circumvent the issues relating to 

feature ambiguity or inconsistent motion estimation, the proposed cell tracking 

framework evaluates the structural (topological) relationships among neighbouring 

cells with the aim of identifying the corresponding cells in adjacent frames of the 

image sequence. The spatial neighbourhood relationship of a finite set of nodes 

(cells) can be encoded using global and local representations. Global representations 

construct complete graphs where each cell is linked to all other cells in frame as 

shown in Figure 3.6.1(a). This representation is defined by an exhaustive graph 

where all links between cells are considered. One disadvantage associated with this 

global mesh representation is that any changes in the structure of the mesh at local 

level (that can be caused by under-segmentation, cellular division or situations when 

the cells enter or exit the area visualised by the microscope) will distort the entire 

mesh structure. An alternative global representation considers only the links that are 

directly connected to the cell under observation. This simplified global 

representation is shown in Figure 3.6.1(b) where only the links associated with cell 

u  are considered in matching process. Since this new global representation alleviates 
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several issues that are associated with the more complex exhaustive topological 

representations, still is not well adapted to deal with problems that are generated by 

local disturbances in the mesh structure. To further reduce the impact of the 

problems generated by local disturbances, the graph associated with a cell u can be 

constructed by considering only its neighbours situated inside a circular region RC 

around it, as shown in Figure 3.6.1(c). While this approach substantially reduces the 

number of links required to encode the local relationships between a cell and its 

neighbouring cells, the structure of the resulting mesh largely depends on the 

selection of the radius RC. Due to variations in cell density and different cell motility 

patterns in consecutive frames, the optimal selection of the parameter RC is critical. 

In this sense, a small RC value will result in disconnected graphs, while a large value 

will generate a graph representation as shown in Figure 3.6.1(b). Due to changes in 

cellular motility, an inappropriate selection for the parameter RC will insert 

unpredictable changes in the structures associated with corresponding cells in 

consecutive frames of the image sequence and this fact may compromise the 

accuracy of the cell tracking process. Figure 3.6.1(d) illustrates such a situation 

where a small migration of one cell will result in a very different structure that is 

sampled within the radius RC. In this figure the red dots denote the position of the 

cells in the previous frame (Figure 3.6.1(c)), while the black dots denote the position 

of the cells in the current frame.  
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(a) (b) 

  
(c)          (d) 

Figure 3.6.1. The use of global and local cellular relationships for cell association. 
(a) Exhaustive global representation where the links between all cells in the image 
are considered. (b) Global representation where only the links between the cell u and 
its neighboring cells are considered. (c) Local representation that is constructed using 
the nodes sampled around the node u within a circular region RC. (d) Inconsistencies 
in the local structure that are caused by cellular migration. 

 

In order to perform cell association, the spatial structure associated with a 

particular cell in the current frame is matched with the structures associated with 

other cells in the next frame. To implement an efficient cell association algorithm a 

compact graph representation is required. Such representation should be able to 

encode the spatial arrangement between cells without any user-defined parameters, 

be able to maintain the mesh structure in the presence of cell migration, and more 

importantly, the insertion and deletion of nodes that may arise due to cell division 

and under-segmentation should induce only local disturbances. Several methods such 

as relative neighbourhood graph [107], Gabriel graph [108], and β-skeletons [108] 

have been reported in the literature as efficient approaches for encoding the 

neighbouring relationships between the nodes contained in a set. These techniques 

are able to accommodate the issues related to the insertion/removal of nodes in the 

local structure, but they are either dependent on explicit parameters or they are not 

u  
u  

u  u  
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able to preserve the structure when the initial positions of the nodes are altered. 

Thus, these methods have not been considered in the proposed implementation since 

the location of the cells in consecutive frames is disturbed due to cellular migration.  

 

To achieve all properties mentioned earlier, in this work the intra-frame 

cellular relationship (or spatial structure) is encoded using Delaunay triangulation 

[35]. Delaunay triangulation generates a planar graph where each node in the mesh is 

optimal linked to its neighbours [102, 106]. Figure 3.6.2(a) illustrates an example 

where the Delaunay mesh has been constructed using the cells’ centroid points and 

the relationships between neighbouring cells are represented by the edges that 

connect the nodes in the graph. This representation is suitable for cell association 

since the spatial structure encoded by Delaunay triangulation is minimally affected 

by cell migration in consecutive frames. Figures 3.6.2(b) and 3.6.2(c) show the 

construction of the Delaunay mesh for the cell u in two cases: before and after the 

local structure has been disturbed by random migration. In Figure 3.6.2(c) it can be 

observed that although the initial positions of the cells around the node u have been 

distorted, the resulting mesh is still similar to that depicted in Figure 3.6.2(b).  

 

    
(a)                                       (b)                                    (c) 

 

Figure 3.6.2. Delaunay triangulation and its advantages in cell association. (a) 
Delaunay mesh that is constructed using the centroids of the cells that are detected in 
one frame of the sequence. (b) Delaunay mesh constructed for the points sets in 
Figure 3.6.1(a). (c) Delaunay mesh constructed for the same set of points where a 
random migration is incorporated with each of the points.  

 

 
In the structure encoded by the Delaunay mesh, the triangles tend towards 

equiangularity and the insertion or removal of a node affects the mesh representation 

only at the local level [81, 106]. This property is particularly well-adapted to encode 

the neighbouring relationship between the cells in the image, as the insertion and the 

u  u  
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removal of nodes can be caused by cellular division or under-segmentation. This is 

illustrated in Figure 3.6.3. Figures 3.6.3(b) and 3.6.3(c) shows the effect of deletion 

and insertion of a node in the mesh in the original graph shown in Figure 3.6.3(a) 

and it can be observed that the insertion/deletion of nodes disturbs the original mesh 

only at local level.  

 

   
(a)     (b) 

 
(c) 

Figure 3.6.3. Examples that illustrate that the removal (under-segmentation) and the 
insertion (cell division) of nodes (cells) affect the structure encoded by the Delaunay 
mesh only at local level. (a) Initial Delaunay mesh. (b) Mesh after node deletion. (c) 
Mesh after node insertion. 
 

 

Once the Delaunay meshes are constructed in two consecutive frames, the 

cellular association process can be formulated as a graph-matching problem. Since 

the cell relationships are accurately modelled using this graph-based formulation, the 

similarities between the local structures in two consecutive frames can be efficiently 

estimated based on the assumption that the cells are accurately detected in each 

frame and the similarity measurements can be evaluated for the cellular association. 

As the identification of the corresponding cells in consecutive frames of the 

sequence entails a sequential process based on the evaluation of the local structure, 

missing cells in one frame will have a detrimental effect on the accuracy of the 
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tracking process (i.e. it will generate discontinuities in the cell lineages that are 

determined for each individual cell). To overcome this problem, a procedure referred 

to as under-segmentation module has been incorporated in the proposed cell tracking 

strategy, which aims to redress the undesired effects generated by under-

segmentation. This computational step will be detailed in the Section 3.2.2 of this 

chapter.  

 

3.2.1 The cellular association process 
 

The aim of the cell association process is to identify corresponding cells in 

consecutive frames of the image sequence. In the proposed approach, the 

correspondence between the cells in frames T and T+1 is determined, as indicated in 

the previous section, based on the similarities in the local structures that are 

encompassed in the Delaunay graphs DT and DT+1. (The Delaunay graphs DT and 

DT+1 are constructed using the centroid points resulting after the application of the 

cell segmentation process).  More precisely, the cellular association (node matching) 

process evaluates the level of similarity in the local structure for all nodes in the 

graphs DT and  DT+1. Key to this matching process is the mesh (or graph links) that 

encompasses the local structure contained in the Delaunay representation for each 

node in the image. An example that illustrates this concept is shown in Figure 3.7.1  

 

       
        (a)            (b) 

Figure 3.7.1. The local structure TuS associated with the cell u  in the Delaunay mesh 
TD , frameT . (a) Delaunay mesh DT. (b) The local structure associated with the 

node u in the mesh DT. 
 

When translated into a mathematical formulation, the local structure T
uS  

associated with the node u  in the Delaunay TD  mesh in image T  is defined as 

follows,  

u  
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{ }   , , , , ,T T
uS upq u p q D u p u q p q= ∆ ∈ ⊥ ⊥ ⊥  

 

where upq∆  is the triangle connecting the nodes u, p, and q, u p⊥  denotes that the 

nodes u  and p  are linked by the edge up  and {.} is the mathematical set operator. 

To evaluate the level of similarity between the local structures associated with two 

nodes TDu ∈  and 1+∈ TDv  it is necessary to define a metric that is able to evaluate 

the distortion level in the mesh in the DT and  DT+1 graphs.  

 

Since the local structure associated with a node in the Delaunay mesh is 

represented by a number of triangles that are directly incident to the node, the 

cellular association process is carried out by measuring the similarities of these 

triangles in two consecutive frames. To achieve this goal, the Hausdorff distance 

[103, 102] has been employed to determine the triangular dissimilarity. The 

Hausdorff distance provides a robust measure to quantify the mutual proximity for 

all vertices that generate the triangles in the two Delaunay meshes, by considering 

the maximal Euclidean distance between any vertex of one triangle with respect to 

the vertices that form the other triangle. The Hausdorff distance for two triangles ∆1 

and ∆2 is defined in equation (3.3). 

 

( ) ( ) ( )( )1 2 1 2 2 1, max , , ,H ϕ ϕ∆ ∆ = ∆ ∆ ∆ ∆  

 

( ) ( ){ }{ }qpdqp ,minmax,
2121 ∆∈∆∈=∆∆ϕ  

 

where ( )qpd ,  is the Euclidean distance between two nodes with indexes p and q.  

 

The Hausdorff distance has been extensively used for shape matching [80, 

99-105] since it is a more precise dissimilarity measure than the shortest Euclidean 

distance. The shortest Euclidean distance does not provide satisfactory results since 

it is shape independent metric and in addition is not able to sample the changes in the 

vertex locations. Figure 3.7.2 illustrates this limitation when the shortest Euclidean 

distance is applied to evaluate the dissimilarity between two triangular shapes.  As 

(3.2) 

(3.3) 

(3.4) 
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indicated in Figure 3.7.2, the shortest Euclidean distance (marked with a red line) is 

the same in both cases shown in Figures 3.7.2 (a) and (b) although the positions 

between the two triangular shapes in these two scenarios are quite different. Since, 

the Hausdorff distance is computed based on the mutual proximity of all vertices that 

compose these two triangular shapes, the dissimilarity measure is affected by the 

distortion of triangular shapes or by changes in vertex locations. Using the same 

judgement, it can be easily observed that the Hausdorff distance is more precise in 

sampling the shape dissimilarity than the metric provided by the distance between 

the centroid points of the two triangular shapes. The favourable properties associated 

with the Hausdorff distance motivated its use in the proposed cellular association 

algorithm to measure the dissimilarities between the triangular shapes encoded in 

two consecutive Delaunay meshes.  

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 3.7.2. Example that illustrates the problem associated with the use of the 
shortest Euclidean distance when applied to measure the dissimilarity between two 
triangular shapes. 
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During the cell association process, all triangles associated with a node in the current 

frame are matched based on the Hausdorff distance measure. With respect to 

equation (3.3), the triangles ∆1 and ∆2 are assumed to be similar only if their 

Hausdorff distance is smaller than a predefined threshold α as indicated in equation 

(3.5). This predefined threshold restricts a triangle associated with the node u in the 

current frame to be matched with triangles that are associated with non-

corresponding nodes in next frame. In the implementation detailed in this thesis, α is 

set to the maximum instantaneous cell movement in two consecutive frames to 

accommodate the inherent distortion that is caused by cell migration. 

 

( ) ( )1 2
1 2

1          ,
,

0         

H
MT

otherwise

α ∆ ∆ <∆ ∆ = 


 

 

  Since the local structure associated with each node consists of a set of 

triangles that are generated by the node of interest and the adjacent nodes in the 

Delaunay mesh, to completely evaluate the similarity between the nodes TDu ∈  and 

1+∈ TDv  a matching confidence function M(.) that evaluates the similarity between 

two local structures TuS  and 1T
vS +  has been defined as indicated in equation (3.6).  
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where T
uS  represents the number of triangles contained in the set T

uS . The term that 

defines the denominator in equation (3.6) has been applied to normalise the matching 

confidence M(.) in the range [0,1].  

 

Based on the value returned by equation (3.6) for each pair of cells (nodes) in 

frames T and T+1, the cells are associated in multiple stages. In the first stage, the 

nodes (cells) in frames T and T+1 that have their local structure completely matched 

(i.e. MT(.) =1 for all triangles in the local structures T
uS  and 1+T

vS ) are associated. An 

example where two nodes u and v in frames T and T+1 have their local structures 

(3.5) 

(3.6) 
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completely matched is shown in Figure 3.8, where the corresponding triangles in 

meshes TD  and 1+TD  are shaded and indexed in agreement to the Hausdorff 

distance. It is important to note that the nodes that are matched in the first stage of 

the cellular association process are matched with the highest level of confidence and 

they are included in a reference list R (refer to equation 3.7) that will be used to 

guide the following steps that attempt to identify the corresponding nodes for which 

the local structure was only partially matched. 

 

( ){ }1, | ,T TR p q p D q D += ∈ ∈  

 

where p and q form a pair of corresponding nodes in frames T and T+1, respectively 

that are matched in the first stage of the cellular association process. 

 

 

 

 

 

 

 

 

 
                (a)                                    (b)  

Figure 3.8.  An example that illustrates a case where the local structures for two 
nodes u and v in frames (a) T and (b) T+1 are completely matched with respect to 
equation (3.6).  
 

 

 A graphical example that illustrates the cells that are matched in the first 

stage of the cellular association is presented in Figure 3.9. In this diagram, for clarity 

purposes, the cells that have their local structures fully matched are marked with 

white dots in the images corresponding to frames T and T+1, whereas the un-

associated cells are marked with small red dots. (To further emphasize the un-

associated nodes in Figure 3.9, the edges in the Delaunay graphs TD  and 1+TD  

corresponding to un-associated local structures are marked with red lines).  

a 

b 

c 

d 

e 

u 
1 

2 3 

4 
5 

f 

g 

h 

i 
j 

1 v 

2 3 

4 
5 

(3.7) 



 - 57 - 

 

   
        (a)        (b) 

Figure 3.9. The first stage of the cell association process. (a) Frame T. (b) Frame 
T+1. The cells associated in the first stage are marked with white dots. The 
remaining cells for which their local structures were only partially matched in frames 
T and T+1 are marked in this diagram with small red dots. 
 

 

Due to cellular division, under-segmentation and degeneracy problems in the 

construction of the Delaunay mesh, the local structure for the node u ( T
uS ) in the 

first Delaunay mesh (frame T) could be distorted when compared to structure of the 

corresponding node v  ( 1T
vS + ) in the next frame. As a result, some of the triangles in 

the local structures TuS  and 1T
vS +  may not be matched with respect to (3.5). Figure 

3.10 illustrates two examples for which the local structures of corresponding nodes u 

and v in frames T and T+1 are only partially matched.   
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Figure 3.10. Examples that illustrate two cases of corresponding nodes for which 
their local structure has been partially matched. (a) and (b) illustrate the distortion in 
the local structure that is caused by under-segmentation. (c) and (d) show the 
distortion in the local structure that is caused by large migration. (a, c) frame T. (b, d) 
frame T+1.  
 

 
The second stage of the cell association process deals with the cells that were 

not matched in the first stage (i.e. they have their structures only partially matched).  

To provide more confidence in the second stage of the cell matching process, a 

partial matching confidence PMC(.) is measured using equation (3.8) that evaluates 

both the similarity for triangles and mesh edges with respect to the reference nodes 

contained in the list R. In this node association stage, edge matching is also evaluated 

(see the second term in equation 3.8) to maximise the use of the local structure when 

matching the nodes with M(.) < 1. This avoids the incorrect matching decisions that 

may be caused by cellular migration and under-segmentation. The last term in 

equation (3.8) is introduced to penalise the displacement between the nodes u and v 

in frames T and T+1, respectively. 

 

( ) ( )
( )

( )
( )1

1

, ,
, , 1

max ,

T T
u v

T T
u v

ME E E d u v
PMC u v M u v

E E α

+

+

 
= + + − 

 
 

a 
b 

c 

d 

e 

u 

f 

v 

g 
h 

i 

j k 
l 

l 

u 

a 
b c 

d 

e 
f 

g 

h 
i j 

k 

n 

o 
v 

l 

m

       (a)         (b) 

        (c)          (d) 

(3.8) 



 - 59 - 

where { } |T
uE up p R= ∈ , { }1 |T

vE vq q R+ = ∈ , ( )1, +T
v

T
u EEME  denotes the number of 

matched edges between T
uE  and 1+T

vE , T
uE  is the number of edges in the set { }T

uE , 

( ).d  is the Euclidean distance and α is the maximum cell’s displacement in two 

consecutive frames.  The distance constraint term is added to maintain a high level of 

matching accuracy when dealing with large migration patterns that may occur during 

cellular division and to prevent incorrect matches that are caused by larger than α 

instantaneous cellular motilities that are generated by under-segmentation.  

 

The nodes that were unmatched in the first stage and that maximise the value 

of PMC(.), are associated and are included in the list R. This process is shown in 

Figure 3.11 where the nodes associated in the second stage are marked with large 

blue dots.  

  

   
          (a)         (b) 

Figure 3.11. The cell association using partial structure matching. (a) Frame T. (b) 
Frame T+1. The nodes matched in the second stage of cellular association are 
marked with blue dots and the corresponding matching structures are shaded in 
yellow.  
 

 
Due to under-segmentation, cellular division and cells that enter/exit the area 

imaged by the microscope, there are still cells in frames T and T+1 that are left un-

associated. This is illustrated in Figure 3.12 where the results returned after the 

application of the two-stage cellular association procedure are shown. In this 

diagram, the cells matched in the first stage are marked with white dots, the cells 



 - 60 - 

associated in the second stage are marked with blue dots, while the cells left un-

associated are marked with solid black circles.   

    
       (a)                            (b) 

Figure 3.12. Matching results at the end of the two-stage cellular association 
process. The white dots denote the cells associated in the first stage. The blue dots 
illustrate the cells matched in the second phase of the association process. The 
remaining cells marked with black dots in image (a) are left un-associated due to 
under-segmentation. The cells marked with black dots in (b) are cells that entered the 
region of interest imaged by the microscope in frame T+1 and they do not have 
corresponding cells in frame T. 
 

 
From the un-associated nodes shown in Figure 3.12, the nodes in frame T, for 

which the corresponding nodes in frame T+1 left the region of interest, were 

correctly left un-associated. Similarly, the same observation applies for nodes that 

enter the region of interest only in frame T+1. As these nodes do not have 

corresponding cells in frame T, they were correctly left un-associated. Thus, in the 

last stage of the cell association process we focus on the un-matched nodes (in frame 

T) that were not associated due to under-segmentation. This situation occurs when 

nodes in frame T+1 were missed by the segmentation process. In the next section, a 

proposed solution to redress the errors caused by under-segmentation is detailed.  
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3.2.2 Redressing under-segmentation errors 
 

 There are situations when cells are not detected by the proposed h-maxima-

based segmentation algorithm due to the very low contrast in the image. As 

explained in Section 3.2.1, the occurrence of segmentation errors disturbs the local 

structure in the Delaunay mesh in the T+1 frame. Therefore, the local structure for 

the cell in frame T will not be matched in frame T+1 if its corresponding cell is left 

undetected by the segmentation process. If such a situation occurs, the trajectory 

(cell lineage) for the cell in frame T will be terminated, and another track will be 

initialised when the unmatched cell in frame T+1 is detected in the subsequent 

frames. Practically, the incidence of under-segmentation will generate gaps in the 

identified cell lineages (or cell tracks) as illustrated in Figure 3.13. (In this diagram 

the 2D+time cell tracks are plotted for 100 frames.)  

 

 

Figure 3.13. 2D+time plot detailing the cell tracks for 100 frames. The under-
segmentation errors generate gaps (indicted by dashed circles) in the cell tracks that 
were obtained after the application of the two-stage cell association process.  
 
 
 

If cells are left un-associated in frame T, this triggers the activation of the 

procedure that is applied to redress the problems caused by under-segmentation. To 
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accomplish this goal, the proposed algorithm initiates a search process to identify a 

suitable cell location in frame T+1 using the normalised cross-correlation and the 

local structure encompassed in the Delaunay mesh. In this sense, the algorithm 

attempts to identify an image location in frame T+1 that approximates the intensity 

profile of the unmatched cell in frame T (the intensity profile of the cell in frame T is 

sampled within a rectangular mask). To avoid the potential identification of cell 

locations that are too far with respect to the position of the un-associated cell and the 

previously matched local structures (i.e. nodes included in the list R) in frame T, the 

search region in frame T+1 is restricted within a ( ) ( )2 1 2 1α α+ × +  area whose 

center is the coordinate of the centroid of the un-associated cell in the frame T. The 

application of the normalised cross correlation procedure will generate multiple peak 

points within the image area enclosed within the ( ) ( )2 1 2 1α α+ × +  mask. To select 

the best location among the multiple peaks, the local structures associated with the 

un-matched cell in the frame T and the local structures constructed for each peak 

point are evaluated next, and the peak point that minimises the equation (3.9) is 

selected as the best location in frame T+1 for the un-associated cell in frame T. To 

maximise the level of confidence when the expression in (3.9) is assessed, the local 

structure for each peak in frame T+1 is constructed by linking the peak point and the 

reference nodes (cells) contained in the list R.  
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where u  is the unmatched cell in frame T, Tua D∈ , 1T
iv b D +∈ , iv  is the thi  peak 

point, ( )el  returns the length of the edge e and ( )eθ  returns the angle of the edge e 

with respect to the horizontal axis. As mentioned earlier, the location v that 

approximates the unmatched cell in frame T+1 is the peak point iv  that minimises 

the DL  as follows, 

 

( )( )| [1.. ]arg min ,
iv i m iv DL u v∈=  

 

(3.9) 

(3.10) 
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where m  is the number peaks returned by the normalised cross correlation process in 

frame T+1. Equations (3.9) and (3.10) evaluate the similarity between the length and 

angles associated with edges for each potential peak points vi in frame T+1 and those 

calculated for the un-matched node u. These new measurements provide additional 

information that is able to sample the subtle differences between the structures 

constructed for each candidate point with positive effects in the identification of the 

best peak point within the search window. 

 

The step-by-step operations that are applied to redress the problems caused 

by under-segmentation are detailed in Figure 3.14. The cell labelled with u  in frame 

T (Figure 3.14a) could not find a corresponding cell in frame T+1 due to a 

segmentation error (Figure 3.14b) (to illustrate the corresponding cells in frames T 

and T+1, in Figures 3.14(c, d) the track indexes are provided for each cell). The 

activation of the under-segmentation module identifies the local maxima points 

(peaks) with respect to the normalised cross correlation and the identified peak 

points ( 1 2 3,  and v v v ) are marked with solid black circles in Figure 3.14(f). The edge 

structures constructed for each peak point are shown in Figure 3.14(g-i) and the peak 

location that minimises the expression shown in (3.9) is marked with a red circle in 

Figure 3.14(j). 
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Figure 3.14. An example that illustrates the step by step operations associated with 
the under-segmentation module. (a, b) Frames T and T+1, respectively, where is 
illustrated a case where a cell u in frame T is left un-associated due to under-
segmentation. (c, d) Track indexes for each cell in frames T and T+1. (e) Same as (a), 
the edge structure associated with the cell u in frame T. (f) The peak points identified 
by the normalised cross correlation. (g-i) The edge structures constructed for each 
peak points illustrated in (f). (j) The peak point that minimises the expression shown 
in (3.9). The algorithm assigns this point as the corresponding node for the 
unmatched cell u in frame T.  
 

 

To visually illustrate the improvement in cell tracking accuracy that is 

achieved by the application of the proposed under-segmentation module, Figure 3.15 

shows the 2D+time tracking results obtained on the same set of cells as illustrated in 

Figure 3.13. As illustrated in this diagram, the gaps in the tracks that were caused by 

under-segmentation were successfully eliminated by the application of the proposed 

module (see the points marked in red in Figure 3.15). 
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Figure 3.15. 2D+time plot that illustrates the tracking results when the under-
segmentation module has been applied to redress the segmentation errors.  
 

 

As indicated in Figure 3.15 the proposed under-segmentation module 

successfully identifies the locations of the cells missed by the segmentation process. 

To numerically evaluate the improvement in performance caused by the application 

of the proposed under-segmentation module, Table 3.1 shows the percentage of cell 

tracks that were correctly identified by the forward tracking process in two 

situations: (a) when the under-segmentation module is de-activated and (b) when the 

under-segmentation module is integrated in the development of the cellular 

association process. Full details in regard to the process applied to generate the 

ground truth data are provided in Section 4.1, whereas the metrics employed to 

quantify the accuracy of the segmentation and tracking process are indicated in 

equations 4.1 and 4.3. 

 

 

 

 

 



 - 66 - 

Table 3.1. Tracking and segmentation accuracy with and without the activation of 
the under-segmentation module. 
Cell type No. of 

frames 
Under-segmentation module 

de-activated 
Under-segmentation module 

activated 
  Segmentation Tracking Segmentation Tracking 

MDCK-1 100 97.41% 62.25% 98.15% 89.47% 

MDCK-2 100 97.28% 60.95% 98.91% 87.50% 

MDCK-3 100 96.96% 60.27% 98.11% 82.18% 

 

 

3.3 The backward tracking module 
 

Cellular division is a self-occurring process that cannot be accurately 

predicted during the standard forward tracking procedure, unless the parent cells 

exhibit apparent intensity transitions in frame (or frames) that precede cellular 

division. Unfortunately, this favourable situation is not present when dealing with 

standard phase-contrast cellular data, and this fact can be observed in Figure 3.16.1, 

row-1 and row-3, where consecutive images from a MDCK sequence are depicted to 

illustrate a cell division (marked with circles) event in two distinct cases. These two 

cases illustrate the problems created by under-segmentation during the cell division 

process. The first row in Figure 3.16.1 depicts a practical scenario where the parent 

cell and one of the child cells are not detected (case 1), while the third row (case 2) 

presents a situation when one child cell is missed by the segmentation process. Thus, 

cell division detection during forward tracking is not practical, as the cellular 

association entails a one-to-one matching constraint. As a consequence, one of the 

child cells resulting from mitosis is associated with the parent cell, while for the 

other child cell, a new track will be initialised with a new index. This is illustrated in 

Figure 3.16.1, row-2 and row-4, where the parent cell (index 110 in row-2, 45 in 

row-4) is matched to one of the child cells, whereas for the other child cell a new 

track index (342 in row-2 and 328 in row-4) is generated. To help visualise the 

problems caused by cellular mitosis during the forward tracking process, in Figure 

3.16.2, the 2D+time cell tracks that are identified by the forward tracking module are 

shown. In this diagram the unconnected branches (marked by circles) that are 

generated by the cell division events can be observed. Thus, the last problem that has 

to be addressed prior to the estimation of the migration patterns and cellular cycle is 
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to link, in a robust manner, the parent and child cells resulting from mitosis events. 

To achieve this objective, in this thesis a multi-stage backward tracking process has 

been developed.  

 

    

    
 frame T         frame  T+1      frame  T+2                frame T+3 

     

     
       frame T           frame T+1         frame T+2          frame T+3          frame T+4 
 
Figure 3.16.1. Two examples that illustrate the problems generated by under-
segmentation during the cell division event. First row: the parent and one child cell 
have been missed by the segmentation process. Third row: one child cell has been 
missed by the segmentation process. Second and fourth rows: corresponding forward 
tracking results.   

Parent Parent 
Child-1 

Child-2 

Child-1 

Child-2 

Parent Child-1 Child-1 Child-1 Child-1 

Child-2 Child-2 Child-2 Child-2 
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Figure 3.16.2. 2D+time plot that illustrates the forward tracking results in the 
presence of cellular division. Full explanations in regard to this diagram are provided 
in the text.   
 

 

The application of backward tracking is successful in detecting the mitosis 

events only if all cells (parent and child cells) are correctly detected by the 

segmentation process. Unfortunately, due to the low intensity contrast that is a 

characteristic of phase-contrast images, there are situations when some child cells 

resulting from cellular division events are missed by the segmentation algorithm. 

This situation can be observed in the third row of Figure 3.16.1 where it is indicated 

that the child cell-2 has not been identified by the proposed segmentation scheme. 

Since the child cell-2 was not identified by the segmentation algorithm, this fact did 

not trigger the activation of the under-segmentation procedure and the parent cell has 

been associated with the child cell-1. The child cell-2 is detected by the algorithm 

only in frame T+4 (see third row- Figure 3.16.1) and it will be further detected with a 

new track index. Thus, this type of under-segmentation problems needs to be 

addressed during backward tracking using a hybrid procedure that combines the 

intensity model of the missed cell with the local structural information contained in 

the Delaunay meshes.  

 

In the proposed backward tracking scheme, for each cell track identified by 

the forward tracking module, the backward tracking process is carried out from the 

Track index 110 Track index 45 



 - 69 - 

end of the track towards the first cell of the track. In this way, the backward tracking 

can be successfully applied (from frame T towards frame T-1), only in situations 

when all child cells are identified. If under-segmentation occurs (see the third row in 

Figure 3.16.1) the tracking is initiated from frame where the child cell is detected 

first (frame T+4) and the algorithm will attempt to identify the suitable locations for 

the corresponding cells in frames T+3, T+2 and T+1 using a process similar to that 

applied to redress the under-segmentation problems. This process is applied until the 

child cell-2 is linked to its parent cell in frame T. To provide more details, when 

attempting to identify the missing cell in frame T+3, the algorithm initiates a search 

operation within a ( ) ( )2 1 2 1α α+ × +  neighbourhood (for details please refer to 

Section 3.2.2) to identify the locations in frame T+3 that approximate the intensity 

profile associated with the cell detected in frame T+4. The candidate locations are 

determined using normalised cross-correlation. The selection of the best candidate 

location is carried out by minimising the expression as indicated in equation (3.9).  

 

An example that illustrates all steps associated with the backward tracking 

process is shown in Figures 3.17.1 and 3.17.2. As shown in Figure 3.17.1, the cell 

division occurs in frame T+1, but one of the child cells (c2) is detected only in frame 

T+3 and tracked with the index 171. In this situation the backward tracking module 

could not find a suitable corresponding cell in frame T+2 using the local structure 

provided in the Delaunay meshes. In order to determine a suitable location for the 

missing cell in frame T+2, a normalised cross-correlation search process is activated 

to identify the candidate locations in frame T+2 that approximate the intensity profile 

of the child cell in frame T+3. From these multiple peaks, the one that minimises the 

expression in (3.9) is selected. This process is sequentially applied until the child cell 

is linked to a parent cell. To avoid the incidence of false positives that may be 

created by cells that enter the area imaged by the microscope, trajectories initialised 

near the borders of the image are eliminated. Furthermore, the backward tracking 

process is applied for maximum of five consecutive frames. Figure 3.17.2 depicts the 

backward tracking results when the selection of the best candidate location is 

performed using the proposed strategy that combines normalised cross-correlation 

with the information sampled in the local structure of the Delaunay meshes. As can 

be observed in these diagrams, the track associated with the child cell identified in 
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frame T+3 is correctly linked to the parent cell in frame T. To illustrate the benefits 

of using the structural information in the backward tracking process, in the last row 

(j-l) of Figure 3.17.2 are illustrated the results where the identification of the missed 

cell location is carried out using only intensity information (i.e. the location of the 

best candidate is decided based on the result returned by the normalised cross 

correlation only). As indicated in these diagrams, the estimation of the missed cells 

in frames T-2 and T-1 is erroneous, and as a result the detected locations drift from 

the position of the parent cell in frame T (track index 111).  To visually emphasize 

the performance of the proposed backward tracking in the detection of cellular 

division events, diagrams that illustrate the tracking process in 2D+time are shown in 

Figures 3.18 and 3.19. To complement these visual results, the proposed backward 

tracking strategy has been numerically evaluated and results are provided in Table 

3.2.  

 

     

Figure 3.17.1. An example that illustrates four consecutive frames that depict a cell 
division event. First row: Original frames. Second row: Cell segmentation results. 
Third row: Forward tracking results. This example is used in Figure 3.17.2 to show 
how the under-segmentation error has been redressed during the backward tracking 
process.  
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Figure 3.17.2. The backward tracking process in the presence of under-
segmentation. (a) Candidate cell locations that are detected using normalised cross-
correlation in frame T+2. (b) The spatial relationship in T+2 when the child cell C2 
(see Figure 3.17.1) is not segmented. (c) Local structure associated with the child 
cell u in image T+3. (d-f) Local structures that are constructed for each candidate 
point vi. (g-i) Shows the detected cell locations in frames T+2, T+1, and T where it 
can be observed that the child cell is correctly tracked to the parent cell in frame T. 
(j-l) Shows the divergence of the backward tracking when the cell detection process 
in frames T+3, T+2, T+1 and T is carried out using only normalised cross-
correlation. 
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Figure 3.18. Tracking results displayed in 2D+time plots. In these graphs the black 
points indicate forward tracking results. The backward tracking results are shown in 
green, while the red points indicate the identified tracks when the under-
segmentation module is activated for both forward and backward tracking modules. 
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Figure 3.19. 2D+time plots that outline the results obtained by the proposed cellular 
tracking and mitosis detection algorithm. For clarity reasons, tracking results for 
only one cell are illustrated.  
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Table 3.2. Cell tracking accuracy after the application of the forward and backward 
tracking. 

  Cell detection accuracy 
Cell type No. of 

frames 
Forward tracking Forward-tracking + 

Under-segmentation module 
+ backward tracking 

MDCK-1 100 97.41% 
98.21% 

MDCK-2 100 97.28% 
99.09% 

MDCK-3 100 96.96% 
98.28% 
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Chapter 4:  
 

Experimental Results 
 
 

This chapter provides an extensive evaluation of the proposed framework, 

analyses the experimental results and compares the performances obtained by the 

proposed cell tracking and mitosis detection algorithm to state-of-the-art 

implementations. To allow for a comprehensive evaluation of the performance 

attained by the proposed scheme, experimental results are reported to sample the 

accuracy levels for both areas of interest: cellular tracking and identification of the 

cellular division events. To facilitate the calculation of the performance indicators 

that are able to numerically sample the accuracy of the proposed and state-of-the-art 

cell tracking and mitosis detection algorithms, seven time-lapse video sequences 

(three sequences of Madin Darby Canine Kidney Epithelial Cells - MDCK and four 

sequences of Human Umbilical Vein Endothelial Cells - HUVEC cell data) were 

employed in this study. The spatial resolution of these datasets varies from 0.87 to 

1.3 µm/pixel and the temporal resolution is in the range 5 to 9 min/frame. These 

seven video sequences were captured using phase-contrast microscopy image 

acquisition modalities (for additional details refer to appendix B) and, as indicated in 

Chapter 2, they are characterised by substantial intensity variations and a high level 

of noise. The MDCK cell datasets contain dense cellular structures that undergo 

frequent cell division, and these characteristics raised substantial challenges for all 

computational components of the proposed algorithm, cellular segmentation, forward 

tracking and mitosis detection. In addition, since the region of interest imaged by the 

microscope is limited, there are frequent situations when the cells situated near the 

border of the ROI exit and re-enter the area encompassed by the field of view. As 

opposed to MDCK data, the cellular structures sampled in HUVEC image sequences 

are relatively sparse and a distinct characteristic is the high level of mitosis events. 

Since the number of cells contained in a HUVEC frame is relatively low, the 

negative effects caused by the cells that exit and re-enter the ROI are more 

noticeable than in the case of MDCK data. Similarly to MDCK data, the HUVEC 

datasets exhibit substantial intra- and inter-frame intensity variations and is worth 
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noting that the sizeable changes in the morphology of the cells introduce an 

additional challenge for the cell segmentation process. These two cell lines, MDCK 

and HUVEC, are widely used to assess several biological mechanisms such as 

absorption, sensory reception and secretion, and since they are used as generic 

models for epithelial and endothelial cells, respectively, they are particularly popular 

in clinical research [87, 88]. As indicated above, the MDCK and HUVEC cell lines 

encompass a wide spectrum of challenges that include the improper image contrast, 

cellular agglomeration and high proliferation, and these issues provide a challenging 

scenario for all components of the proposed cell tracking and mitosis algorithm. 

These distinct characteristics proved particularly useful when employed to evaluate 

the impact of segmentation errors on the performance of the cellular tracking 

process. The strong clinical interest, in combination with the complexity of the cell 

migration and cell division processes, justify the use of these cell lines to assess the 

performance of the proposed framework. Figures 4.1.1 and 4.1.2 depicts four frames 

sampled from MDCK and HUVEC datasets to exemplify the challenges associated 

with the analysis of these cell lines.  

 

  
 

  

Figure 4.1.1. Phase-contrast cellular images. Four consecutive frames from a 
MDCK image sequence. 
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Figure 4.1.2. Phase-contrast cellular images. Four consecutive frames from a 
HUVEC image sequence. 
  

 

To allow a direct comparison of the results obtained by the proposed 

algorithm with the results reported for state-of-the-art cell tracking methods, publicly 

available cellular datasets have also been included in the experimental study. In this 

regard, experimental results for two additional sequences of Murine Progenitor 

Neural (MNP) stem cells (phase-contrast data) and one image sequence of HeLa 

cells (fluorescence data) will complement the results obtained for MDCK and 

HUVEC cellular data. These publicly available datasets also raise a wide range of 

imaging and biology-related problems that need to be addressed by the cell 

tracking/mitosis detection algorithms and these challenges make these datasets 

particularly appropriate to be included in the experimental evaluation. Indeed, the 

MNP datasets exhibit low contrast, large changes in the cell morphology in 

consecutive frames of the sequence, and a high rate of cellular division, while the 

HeLa data is characterised by high cellular densities, a high rate of cellular divisions 

and large migration patterns. Figure 4.2 depicts two images sampled from the MNP 

(1) MNP and (2) HeLa datasets were made available by Al-Kofahi et al [1] and Li et al [7] respectively. They were also 
used by other authors when they attempted to evaluate/compare the performance of their cell tracking algorithms. (1) 
http://www.landesbioscience.com/supplement/alkofahi.zip. (2) http://www.cbi-tmhs.org/Dcelliq/index.html 
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and HeLa datasets and it can be observed that the segmentation problem is 

substantially simplified when dealing with fluorescence (HeLa) image data.   

 

  
      (a)                                                                 (b) 

Figure 4.2. Additional cellular datasets used in the experimental study. (a) MNP 
cellular data. (b) HeLa cellular data. 
 

 

For clarity purposes, the performances achieved by cellular segmentation, 

tracking and mitosis detection components of the proposed framework are analysed 

in separate sections. This approach is also motivated by the fact that different metrics 

are used in the evaluation of the accuracy obtained by the different components of 

the proposed framework. In this sense, the proposed segmentation method is 

evaluated using a metric that samples the number of correctly segmented cells with 

respect to the total number of cells that are contained in the manually annotated data. 

On the other hand, the evaluation of the forward cell tracking algorithm is performed 

using metrics that sample the number of correct tracks (cell lineages) that are 

identified by the tracking algorithm when compared to those contained in the 

manually marked ground truth data. In a similar manner, the cell division accuracy is 

evaluated using quantitative indicators that assess the number of correctly identified 

parent-child links with respect to the manual annotated results. To facilitate an 

exhaustive performance analysis, the proposed cellular tracking framework was also 

evaluated on synthetic data. This approach is motivated by two reasons. Firstly, to 

isolate the undesired effects inserted by the segmentation errors, and secondly, to 

illustrate the theoretical and practical advantages associated with the proposed 

strategy when compared to traditional tracking strategies.  
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4.1 Generation of the ground truth data 
 

To facilitate the numeric quantification of the proposed cellular tracking and 

mitosis detection framework, all datasets used in the experimental study were 

manually annotated. In this process the data has been annotated to allow the 

performance evaluation for each component of the developed framework: cell 

segmentation, cell tracking and mitosis detection.  

  

The manual annotation process has been conducted by the Centre for Image 

Processing and Image Analysis (CIPA) researchers, and in this process, clinical 

collaborators provided additional input to validate the annotated data. The manual 

annotations include information regarding the location of the cells in each frame, i.e. 

the (x,y,t) coordinates of the cells’ centroids, and this information is directly used to 

calculate performance indicators that quantify the accuracy of the developed 

segmentation technique (the metric employed to calculate the accuracy of the 

segmentation process involves the identification of the true positives (TP), false 

positive (FP) and false negatives (FN) and is introduced in the next section, equation 

4.1. ) 

  

The next sets of annotations were conducted to generate ground truth data for 

the numerical quantification of the cell tracking algorithm. To achieve this goal, cell 

lineages (or cell tracks) were manually identified by analysing the migration patterns 

for each cell in consecutive frames of the sequence. During this process a unique 

index is generated for each identified track and this information is used in the 

calculation of tracking accuracy indicators (the tracking indicators that are employed 

to quantify the performance of the proposed cell tracking framework and state-of-

the-art implementations introduced in Sections 4.4 and 4.7, equations 4.3 to 4.5).  

  

The last sets of annotations were generated to facilitate the quantification of 

the mitosis detection process. In this sense, the manual tracking annotations were 

evaluated in a forward and backward manner and the mitosis events were visually 

validated by examining frames prior to and after the mitosis event. At the end of this 

manual annotation process, the locations of the parent and child cells were recorded, 

and this information was used to quantify the accuracy of the proposed mitosis 
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detection algorithm. The numerical evaluations carried out for each computational 

component of the proposed cellular tracking and mitosis detection framework are 

presented in detail in the following sections of this chapter. 

 

4.2 Validation of the cellular segmentation algorithm 
 

 The proposed segmentation method has been evaluated on MDCK, HUVEC 

and MNP cellular sequences. Thus, the proposed segmentation method has been 

applied to nine different time-lapse phase-contrast sequences that consist of cellular 

data with different densities (for more details please refer to the discussion provided 

in the previous two sub-sections). As stated in Chapter 2, microscopy image analysis 

entails the application of specific protocols that are tuned for specific cellular 

applications. As a result, image data will have strong characteristics that are dictated 

by the type of cells that are under observation. Thus, the development of generic cell 

segmentation/detection methods that are able to accommodate the substantial 

differences between the datasets captured using different imaging protocols is 

extremely difficult. Therefore, in this work the main focus was on the development 

of a segmentation strategy for robust cell detection in phase-contrast data. To 

maximise the cell detection, the main idea associated with the proposed 

segmentation method consists in the identification of the intensity peaks in the image 

using the h-maxima transform. This approach proved efficient in increasing the 

detection rate and to reduce the level of false positives in the presence of non-

uniform background and poor image contrast. The optimised values for the 

parameters h, r and α  for each type of image sequence are illustrated in Table 4.1. It 

is useful to note that the parameterα  does not have a direct role in the segmentation 

process, since its purpose is to restrict the maximum instantaneous cell displacement 

in two consecutive frames.  This parameter has been included in Table 4.1 for clarity 

purposes, as this allows a targeted discussion in regard to the role of each parameter 

in the overall cellular tracking and mitosis detection framework.  
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Table 4.1. The values of the parameters r, h and α  that are optimised for each type 

of cellular data. 

   Parameters 
Cell type No. of 

sequence 
r h α  

MDCK 3 15 19 12 
HUVEC 4 15 15 20 D

at
as

et
 

MNP 2 11 10 15 
 

The accuracy of the proposed cell segmentation method is evaluated based on 

the number of cells that are correctly segmented with respect to the number of cells 

that are manually identified in the ground truth data. In order to measure the 

segmentation accuracy, the number of true positive (TP), false negative (FN) and 

false positive (FP) are calculated. TP is the number correctly segmented cells, FN 

denotes the number of cells that are not segmented by the algorithm, while FP 

defines the number of incorrect segmentation decisions. The accuracy is calculated 

as follows, 

 

100 %
TP

Accuracy
TP FN

= ×
+

 

 

To illustrate the performance achieved by the proposed cell segmentation 

method when applied to phase-contrast image sequences, several visual examples are 

displayed in Figures 4.3 and 4.4. Figure 4.3 shows the results obtained by the 

proposed algorithm when applied to an image containing MNP cells. In Figure 4.3 

the low contrast between the cells and the background, and the shallow intensity 

transitions between the borders of the cells that are clustered together can be clearly 

observed. (The areas covered by the clustered cells are marked with rectangles in the 

diagrams). In spite of these difficulties, the proposed segmentation algorithm is able 

to correctly identify the cells in the image (see Figure 4.3(b) where the contours of 

the identified cells and their corresponding centroids are overlaid on the original 

data).    

 

 

 

 

(4.1) 
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       (a)                                                                 (b) 

Figure 4.3. Robustness of the segmentation in low contrast image. (a) A low contrast 
phase-contrast MNP image where the intensity transitions between the cells and the 
background are very shallow. Observe the faint intensity changes between the 
borders of the clustered cells. (b) Segmentation results that illustrate the robustness 
of the proposed segmentation method – note the precise identification of the 
individual cells in the presence of cellular agglomeration (clustering).  
 

 

Figure 4.4 depicts additional results when the proposed algorithm has been 

applied to the MDCK, HUVEC and MNP images that are shown in Figures 4.1 and 

4.2. These additional results further illustrate the accurate performance of the 

proposed cell segmentation algorithm when applied to different types of phase-

contrast cellular data.   
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(a) MDCK 

  
    (b) HUVEC               (c) MNP 

Figure 4.4. Segmentation results when the proposed algorithm was applied to (a) 
MDCK, (b) HUVEC and (c) MNP images – the original MDCK and HUVEC 
images are shown in Figures 4.1.1 and 4.1.2  
 

 

To numerically quantify the accuracy of the proposed cell segmentation 

algorithm, the TP, FP, FN and accuracy are calculated and the results are presented 

in Table 4.2. As indicated in Table 4.2, the numerical results are reported for nine 

image sequences where the number of frames for each dataset ranges from 100 to 

320. The overall detection accuracy achieved by the developed cell segmentation 

technique is 90.08%, which is sufficiently high to obtain accurate cellular tracking 

results. More precisely, this segmentation accuracy permits the construction of local 

spatial cellular structures with sufficient precision that allows the association of the 

cells in consecutive frames of the image sequence. Also, as indicated in Section 

3.2.2, the cell detection accuracy increases during forward and backward tracking by 
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employing the information in the intensity and temporal domains to redress the 

problems introduced by under-segmentation.  

 

Table 4.2. Quantitative results when the segmentation method was applied to nine 
phase-contrast cell sequences. 

Cell type No. of 
Frames 

Total no. 
cells 

TP FN FP Accuracy 
% 

MDCK-1 100 16267 15845 422 346 97.41% 
MDCK-2 100 11525 11211 314 389 97.28% 
MDCK-3 100 16966 16450 516 599 96.96% 
HUVEC-1 320 8936 7489 1447 123 83.81% 
HUVEC-2 320 8377 7227 1150 567 86.27% 
HUVEC-3 320 4588 3425 1163 176 74.65% 
HUVEC-4 320 6342 5317 1025 847 83.84% 

MNP-1 300 8919 8456 463 430 94.81% 
MNP-2 300 9615 9199 416 1712 95.67% 

 

4.3 Validation of the forward tracking algorithm 
 

The main advantage associated with the proposed algorithm when compared 

to alternative tracking solutions is its resilience to segmentation errors. To provide a 

comprehensive performance evaluation of the proposed tracking algorithm, the 

experimental evaluation was conducted using synthetic and real cellular data. This 

evaluation approach has two main advantages. Firstly, it allows a controlled testing 

environment that illustrates the inabilities of standard tracking solutions to achieve 

appropriate results, and secondly, it allows one to quantify the negative impact of the 

segmentation errors in the tracking process. When the algorithm was applied to real 

cellular data, two distinct scenarios emerged. In the first scenario the proposed 

algorithm was evaluated on phase-contrast cellular data and the cells identified by 

the segmentation algorithm were directly passed to the forward tracking module. In 

the second scenario, the proposed tracking algorithm has been evaluated on 

fluorescent HeLa cellular data, a situation where the coordinates of the cells are a 

priori known (segmentation results are publicly available).  
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4.4 Experimental results using synthetic and manually 

annotated data 

 
Synthetic and manually annotated datasets have been independently 

employed to evaluate the performance of the proposed cell association algorithm. 

The use of synthetic data to validate the proposed algorithm is justified since the cell 

tracking accuracy is not affected by errors that are introduced by other components 

of the frameworks such as the segmentation module.  

 

The cell association method described in this thesis relies on the proximity 

and the local cellular structure and it is not dependent on other image features. To 

provide a detailed evaluation, the tracking accuracy achieved by the proposed 

method has been compared with the cell tracking accuracies obtained by two 

standard distance-based cell association techniques using both synthetic and 

manually annotated cellular data.  

 

The synthetic data is generated using a set of random points that are 

distributed over a 195×165 image that represents the first frame of the sequence. The 

next frames are generated by applying a random motion to each cell in the previous 

frame, and this approach is sequentially applied until the desired number of frames is 

reached. The instantaneous (frame-to-frame) displacement tS  of a newly generated 

point tX  is calculated using the following equation,  

 

2

1

0.5* *t

t t t

S u Q f Q
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= ∗ +

= +
 

 

where the u  and f  are the velocity and acceleration, respectively, and the value of 

the parameter Q  is set to 2.0 in order to generate a small movement. The value of u 

is set within the range of [0,1] and the value of f is randomly selected from the 

normal distribution with zero mean and unit variance. 

 

(4.2) 
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For evaluation purposes, two synthetic video sequences that contain 32 and 

140 random points, respectively, were generated in agreement with equation (4.2). 

The application of the proposed cellular association method to this synthetically 

generated data indicates that the proposed tracking algorithm is able to achieve 

correct cellular association. To illustrate the limitations of the standard tracking 

solutions when applied to data that is characterised by random motion, a global 

distance minimisation method (please refer to Figure 2.2 in Chapter 2) has also been 

evaluated on the same data. In this method the nodes are associated based on the 

minimisation of a global cost function. The experimental results indicate that this 

minimisation process works reasonably well when the cells in the subsequent frames 

undergo small migration. However, it returns inappropriate results in the presence of 

significant cellular migration. To further illustrate the limitations of distance-based 

tracking solutions, additional results are reported when the nearest neighbour 

tracking algorithm is applied to the same data that was generated using (4.2).  

 

To quantitatively assess the accuracy of the cellular tracking process, a metric 

that evaluates the level of correct tracking decisions has been introduced (please 

refer to Appendix A for additional qualitative results). In this regard, the tracking 

accuracy is given by the number of correct tracks that are identified by the algorithm 

with respect to the total number of tracks identified in the ground truth data (see 

equation 4.3). A track is deemed valid if all the cells that form it are correctly 

associated. Comparative results for all tracking methods evaluated in this study are 

reported in Tables 4.3a and 4.3b. From Table 4.3a, it can be observed that the 

proposed method returns 100% accuracy, while the tracking accuracies for the global 

distance matching and the nearest neighbour methods are only 93.75% and 81.25%, 

respectively when the algorithms were applied to the sequence that contains 32 

points. Table 4.3b depicts the results when the analysed methods were applied to the 

sequence that contains 140 points and the results were as follows:  97.86% - 

proposed method, 82.86% - global minimum distance and 67.87% - nearest 

neighbour algorithm. The results reported in Tables 4.3a and 4.3b show that the 

proposed method substantially outperforms the standard tracking algorithms. 

 

   
100%

   

Number of valid track
Accuracy

Total number of tracks
= ×  (4.3) 
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Table 4.3a. Comparative tracking results (for 32 points) when the proposed tracking 
method, global minimisation and nearest neighbour methods are applied to synthetic 
data generated using (4.2). 

Method No. of 
frames 

Total 
no. of  
tracks 

Successfully 
identified 

tracks 

No. of incorrect 
tracks 

Tracking 

accuracy 

Proposed 
method 

200 32 32 0 100% 

Global 
minimum 
distance 

200 32 30 2 93.75% 

Nearest 
neighbour 
algorithm 

200 32 26 6 81.25% 

 

 

Table 4.3b. Comparative tracking results (for 140 points) when the proposed 
tracking method, global minimisation and nearest neighbour methods are applied to 
synthetic data generated using (4.2). 

Method No. of 
frames 

Total 
no. of  
tracks 

Successfully 
identified 

tracks 

No. of incorrect 
tracks 

Tracking 

accuracy 

Proposed 
method 

200 140 137 3 97.86% 

Global 
minimum 
distance 

200 140 116 24 82.86% 

Nearest 
neighbour 
algorithm 

200 140 95 45 67.86% 

 

 

In the next set of tests, the proposed method will be evaluated on manually 

annotated cellular image sequences. In this performance evaluation scenario, the 

cells in each frame are manually marked, and the coordinates of the cells are passed 

to the forward tracking module to complete the cell association process. Similarly to 

the evaluation using synthetic data, the goal of these experiments is to evaluate the 

performance of the proposed cell association module independent of segmentation 

errors. The tracking accuracy is evaluated using equation (4.3) ― as in the case of 

synthetic generated data ― and the experimental results are reported in Table 4.4.  
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Table 4.4. Accuracy of the proposed tracking algorithm when applied to manually 
segmented cellular data. 

Sequence No. of 
frames 

Total 
no. of 
track 

Successfully 
identified 

tracks 

No. of incorrect 
tracks 

Tracking 

Accuracy 

HUVEC-1 320 97 96 1 98.97% 

MNP-1 320 38 38 0 100.00% 

MDCK-1 100 190 190 0 100.00% 

 

 

4.5 Experimental results for real cellular data - 

Automatic segmentation 

 
In this section, the performance of the proposed tracking solution is evaluated 

on unmarked cellular data, where the algorithm attempts to redress the segmentation 

errors detailed in Chapter 3. To achieve this objective, the performance evaluation is 

conducted using ten time-lapse video sequences (3 MDCK, 4 HUVEC, 2 MNP and 1 

HeLa) that present random migration and different levels of cellular proliferation. 

Since the validation of the proposed algorithm is conducted using different types of 

cellular data, the parameter α  (that limits the maximum instantaneous cell 

displacement in two successive frames) is optimised for each video sequence as 

indicated in Table 4.1 (in the case of HeLa cells, 20α = ). When dealing with real 

cellular data, due to the low contrast present in the image, there are situations where 

cells are left undetected by the segmentation algorithm. As mentioned earlier, the 

tracking algorithm has been evaluated on ten challenging image sequences and 

experimental results are given in Table 4.5. From these ten image sequences, three 

are publicly available (HeLa and MNP) and they are also used to compare the 

tracking performances achieved by the proposed framework and state-of-the-art 

implementations. (This analysis is discussed in Section 4.7).  
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Table 4.5. Tracking results obtained when the proposed tracking framework was 
applied to MDCK, HUVEC, MNP and HeLa cellular datasets. 

Sequence Number of 
frames 

Total tracks Valid tracks Tracking 
accuracy 

MDCK-1 100 190 170 89.47% 

MDCK-2 100 120 105 87.50% 

MDCK-3 100 174 143 82.18% 

HUVEC-1 320 54 44 81.48% 

HUVEC-2 320 97 76 78.35% 

HUVEC-3 320 98 81 82.65% 

HUVEC-4 320 51 42 82.35% 

MNP-1 1000 38 34 89.47% 

MNP-2 1000 23 21 91.30% 

HeLa 100 128 120 93.75% 

 

 

The experimental results shown in Table 4.5 indicate that the tracking 

accuracy ranges from 78.35% to 93.75% depending on the type of data being 

examined. The lowest tracking accuracy is obtained for the HUVEC-2 dataset. This  

reduced performance is caused by the improper image contrast between cell regions 

and background, which in certain situations prevent the under-segmentation 

algorithm from identifying the correct location of the missing cells. In spite of these 

severe image acquisition issues, the proposed method is still able to produce tracking 

results that match or exceed the accuracy of the algorithms published in the 

literature. To visually sample the accuracy of the proposed tracking framework when 

applied to MDCK, HUVEC and publicly available datasets, a number of tracking 

examples are depicted in Figures 4.5.1 and 4.5.2.  In these figures the cell tracks 

(lineages) are colour coded where with red and blue are marked the initial and the 

final positions of the tracked cells in the sequence.  
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(a) MDCK 

 
(b) HUVEC 

Figure 4.5.1. Tracking results for (a) MDCK and (b) HUVEC data. The identified 
tracks illustrate the location (x,y coordinates) of the corresponding cells in the 
sequence – for visualisation reasons they are colour coded and overlaid on the 
original data. Red indicates the initial position of the cell, while blue indicates the 
last location of the cell in the cellular track. 
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(a)MNP 

 
(b) HeLa 

 
Figure 4.5.2. Tracking results for (a) MNP and (b) HeLa cellular data. The identified 
tracks illustrate the location (x,y coordinates) of the corresponding cells in the 
sequence – for visualisation reasons they are colour coded and overlaid on the 
original data. Red indicates the initial position of the cell, while blue indicates the 
last location of the cell in the cellular track. 
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4.6 Experimental results for cellular division (mitosis) 

detection 

 
The aim of this section is to present quantitative indicators that illustrate the 

efficiency of the proposed mitosis detection algorithm. To numerically evaluate the 

accuracy of the mitosis detection, the parent-child cells links identified by the 

proposed backward tracking algorithm are compared with those identified in the 

manually annotated data. In other words, a mitosis event is deemed correctly 

identified if the locations (x,y,t coordinates) of the parent and child cells are the same 

as those found in the manually annotated data.  Experimental results are reported in 

Table 4.6 where the mitosis detection accuracy is defined as the ratio between the 

sum of successfully identified parent-child links and the sum of actual cell division 

events that are identified in the manually marked data.  

 

Table 4.6. Mitosis detection accuracy obtained by the proposed backward tracking 
strategy when applied to the MDCK and HUVEC, MNP and HeLa cellular data. 

Sequence No.of 
frames 

Total mitosis 
events  (manually 
annotated data) 

Correctly detected 
mitosis events 

Mitosis 
detection 
accuracy 

MDCK-1 100 34 29 85.29% 

MDCK-2 100 24 19 79.17%  

MDCK-3 100 47 41 87.23% 

HUVEC-1 320 15 13 86.67% 

HUVEC-2 320 12 12 100% 

HUVEC-3 320 24 23 95.83% 

HUVEC-4 320 9 8 88.89% 

MNP-1 1000 34 32 94.12% 

MNP-2 1000 12 11 91.67% 

HeLa 100 80 74 92.5% 
 

The results shown in Table 4.6 indicate that the mitosis events are detected 

with 90.13% mean accuracy, where the worst results are obtained for MDCK data. 

This lower detection accuracy has been obtained for MDCK data and this is mainly 

caused by the large motilities of the new child cells during the cellular division 

process. The cellular division events are best visualised when the tracking results are 
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displayed in the form of 2D+time plots. Figures 4.6.1 and 4.6.2 illustrate a number of 

experimental results. In these diagrams, the forward tracking results are marked in 

black, the tracks identified by the under-segmentation module are marked in red and 

the mitosis event detection using backward tracking are marked in green.  

 

 
(a) MDCK 

 
(b) HUVEC 

Figure 4.6.1. 2D+time plots that illustrate the tracking and mitosis detection (in 
green) results. (a) MDCK data. (b) HUVEC data. 

x 

y 

x 

y 
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(a) MNP 

 
(b) HeLa 

Figure 4.6.2. 2D+time plots that illustrate the tracking and mitosis detection results. 
(a) MNP data. (b) HeLa data.  In these diagrams the mitosis events are marked in 
green. Full explanations in regard to the construction of these diagrams are provided 
in the main text.  
 

 

x y 

x y 
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4.7 Comparative results obtained by the proposed 

framework and state-of-the-art implementations  

 
     The aim of this section is to analyse the level of performance obtained by the 

proposed cellular tracking and mitosis detection framework against the state-of-the-

art implementations that are published in the literature. In this regard, two state-of-

the-art algorithms that were detailed in [12] and [7] are investigated in detail with 

respect to cellular tracking [7, 12] and mitosis detection [12] accuracy. To allow a 

direct comparison between the performances obtained by the proposed framework 

and the two state-of-the-art algorithms, the experimentation has been conducted 

using publicly available cellular data, namely two sequences of Murine Progenitor 

Neural (MNP) stem cells and one sequence of HeLa cells, data that was made 

available by Al-Kofahi et al [1] and Li et al [7], respectively.  

 

In [7] the authors evaluated their tracking algorithm using four video 

sequences of HeLa cellular data, where each sequence contains 200 frames. 

Although they reported experimental results for all four sequences, only one 

sequence containing 100 frames was made publicly available. Thus, due to this 

restriction, the proposed framework has been evaluated only on this publicly 

available image sequence. To facilitate a fair comparison with the work detailed in 

[7], performance metrics such as Error Trace Rate (ETR in equation 4.4) and Error 

Matching Rate (EMR in equation 4.5) were calculated as indicated in the original 

paper [7]. These metrics are expressed in % and the smaller their value the better the 

performance of the algorithm. The comparative results obtained by the proposed 

method and the algorithm detailed in [7] are shown in Table 4.7. 

 

   
100

 

number of track error
ETR

total track
= ×  

 

    
100

 

number of individual matching error
EMR

total track
= ×  

 

(4.4) 

(4.5) 
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As illustrated in Table 4.7, the ETR and EMR obtained by [7] varies from 

7.22% to 14.68% and 6.18% to 13.76%, respectively, while the ETR and EMR 

results obtained by the proposed method are 6.25% and 9%, respectively. The results 

reported in Table 4.7 indicate that the proposed method returns comparable ETR and 

EMR results with respect to [7] when applied to HeLa cell data. To provide more 

details about the experimental results, it is useful to note that the method proposed in 

[7] has been optimised for HeLa data and its tracking accuracy is highly dependent 

on the accuracy of segmentation. Contrary to this approach, the proposed method has 

not been optimised for any particular cell line and the errors caused by under-

segmentation have been algorithmically redressed during the cell association 

process.  

 
Table 4.7. ETR and EMR results obtained by the proposed method and the tracking 
technique detailed in [7]. 

 Proposed 
method 

Method presented in [7] 

Error type HeLa 
(100 frame) 

HeLa-1 
(200 

frames) 

HeLa-2 
(200 

frames) 

HeLa-3 
(200 

frames) 

HeLa-4 
(200 

frames) 
ETR 6.25% 7.22% 14.68% 8.41% 9.16% 
EMR 9.00% 6.18% 13.76% 8.41% 8.40% 

 

The second state-of-the-art method analysed in this section has been detailed 

in [12] and it has been validated using both Hela [7] and MNP [1] cellular data. In 

this work the authors addressed both the cellular tracking and mitosis detection, a 

fact that allows a detailed comparison with the approach detailed in this thesis. Table 

4.8 presents the experimental results returned by the proposed framework and the 

method detailed in [12]. These experimental results indicate that the method 

presented in this thesis outperforms the technique detailed in [12] with respect to 

both cellular tracking and mitosis detection. The cell tracking algorithm introduced 

in [12] is also able to address the issues caused by under-segmentation. However, the 

segmentation errors are only corrected for backward tracking and in many situations 

the normalised cross correlation process fails to identify the correct locations of the 

undetected cells in the presence of under-segmentation during cellular division. On 

the other hand, the proposed tracking framework redresses the segmentation errors 

during the forward and backward tracking and additional structural information has 

been incorporated to guide the tracking process and to identify the best locations for 
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undetected cells. These algorithmic procedures proved appropriate and the reported 

experimental results clearly indicate that the proposed approach returns higher cell 

tracking accuracy and mitosis detection than the method presented in [12]. 

 

Table 4.8. Cellular tracking and mitosis detection results obtained by the proposed 
method and the technique detailed in [12]. 

 Proposed method Method presented in [12] 

Sequence #of frames Tracking Division #of frames Tracking Division 

MNP-1 1000 89.47% 94.12% 1000 87.31% 83.76% 

MNP-2 1000 91.30% 91.67% 1000 85.21% 84.62% 

HeLa 100 93.75% 92.5% 500 85.01% 82.68% 
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Chapter 5:  

 

Conclusions and Future Work 
 
 

 The major objective of this thesis was to detail the development of a novel 

computational framework that was designed to track multiple cells and detect cell 

division events in time-lapse image sequences. The automatic tracking of cells in 

large datasets has recently draw the attention of computer vision researchers, as the 

emergence of modern microscopy imaging rendered the manual annotation 

procedure unfeasible in many clinical studies. This fact has been emphasised in 

Chapter 2, where the most relevant algorithms on the topic of cell tracking and 

mitosis detection are analysed. Arising from the literature survey, it can be 

concluded that the most apparent characteristic of the published algorithms on the 

topic of automatic cell tracking is their strong application context. This conclusion is 

not unexpected since the imaging protocols are optimised for each type of cellular 

data. One objective of the research work detailed in this thesis is to advance a more 

flexible tracking and mitosis detection framework that can be successfully applied to 

a wider range of time-lapse cellular datasets. Thus, the major contributions that result 

from this thesis are located not only in the development of novel algorithms for 

segmentation, tracking and mitosis detection. Additional important contributions are 

associated with the exhaustive validation of the proposed framework on different 

types of cellular data and in the evaluation of its performance when compared to 

those offered by state-of-the-art cell tracking algorithms.       

 

As indicated in Chapter 2, the robust identification of the corresponding cells 

in time-lapse image sequences is a challenging task that cannot be accomplished by 

applying standard feature-based tracking algorithms. This challenging scenario is 

primarily motivated by the constrained nature of the image acquisition process that 

prevents the acquisition of image data with good image contrast. Indeed, low image 

contrast is a distinct characteristic of the phase-contrast cellular data, and in this 

thesis several novel solutions have been advanced in order to achieve robust tracking 
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results. To this end, substantial research efforts were put into the development of a 

flexible tracking framework where the main goal was the optimisation of each 

computational step. In this sense, the cellular segmentation proved quite challenging, 

as the phase-contrast images exhibit shallow intensity transitions between the 

background and regions that define the cells’ nuclei. In addition, this data presents 

noticeable intra- and inter- frame intensity variations. In the proposed approach, to 

reduce as much as possible the incidence of segmentation errors, a morphological 

algorithm based on the h-maxima has been developed. The experimental results 

indicate that the proposed solution is accurate, but in the presence of large changes in 

the cells’ shape and substantial intensity variation there are situations when cells are 

not detected by the proposed algorithm. Thus, the lack of perfect segmentation 

results motivated the development of a flexible cellular association procedure that is 

able to identify the corresponding cells in the sequence in the presence of under-

segmentation. In this regard, the proposed cell association framework is based on the 

evaluation of local structures that encode the neighbouring relationships between the 

cells in pairs of consecutive frames of the sequence, where the identification of the 

corresponding cells does not require any prior knowledge regarding the cell 

morphology or migration patterns. These characteristics associated with the proposed 

tracking methodology are particularly appropriate, as cell migration is often 

characterised by random motility patterns that cannot be accurately modelled by a 

priori motion estimators. As mentioned above, the occurrence of under-segmentation 

introduced a substantial problem that has to be addressed during the cell association 

process. A key issue was the embedding of a hybrid mechanism into the tracking 

procedure that is able to detect and correct the errors caused by the undetected cells.  

 

Full details about the proposed multi-stage cell tracking algorithm are 

provided in Chapter 3. The availability of precise forward tracking results opened the 

opportunity to develop a backward tracking strategy whose goal is the robust 

identification of the mitosis events. During backward tracking, the cell tracks (or cell 

lineages) identified during forward tracking are evaluated in a reverse manner to link 

the child cells to the corresponding parent cells in all frames of the sequence. 

Nonetheless, the incidence of under-segmentation substantially complicates the 

mitosis detection, and again a pattern recognition driven mechanism has been 

applied to identify the undetected child cells that were generated by the cellular 
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division events. The proposed cellular tracking and mitosis detection framework has 

been tested on various types of cellular datasets and in-depth experimental results are 

reported in Chapter 4.  

 

The experimental results demonstrate that the proposed cell tracking and 

mitosis detection framework has achieved the research objectives outlined in Chapter 

1. In the next section, the major and minor contributions that are associated with this 

investigation are outlined. 

 

5.1 Contributions 
 

The development of the proposed cellular tracking and mitosis detection 

framework facilitated the investigation of a large spectrum of algorithms that 

generated the major and minor contributions associated with this research work. In 

this sense, the major contribution resulting from this investigation is the multi-stage 

computational framework that is able to adapt to the challenging image conditions 

that are associated with time-lapse phase-contrast data. Within this framework, the 

algorithm devised for cellular association represents the most visible contribution of 

this thesis. One particular novel element of this algorithm resides in the adaptive 

integration of the cellular topological information in the tracking process. This 

information proved particularly robust when tracking cellular structures in complex 

situations that are generated by random migration. The modular design of this 

computational component of the framework, and the optimal modality to encode and 

analyse the spatial relationships between the cells during the inter frame tracking 

process, opened the possibility of developing a flexible approach that was 

implemented to efficiently identify and redress the segmentation errors that are 

caused by improper image conditions. All these novel algorithmic solutions proved 

key in achieving accurate tracking results.  

 

The second major contribution resulting from this investigation is associated 

with in the approach that has been developed to identify the cellular division events. 

The robust mitosis detection is critically important in the estimation of molecular 

indicators such as the cell cycle. In this thesis, a robust solution that entails a 

backward tracking procedure has been proposed. Similar to the forward tracking 
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algorithm, the incidence of under-segmentation has detrimental effects on the 

process that deals with the identification of the links between parent and child cells. 

To address this problem, a hybrid approach that entails the combination of a pattern 

recognition-based algorithm and the evaluation of the consistency of the local 

cellular structures in a sequential manner has been developed. One particular 

advantage of the proposed framework is the redressing of the segmentation errors for 

both forward and backward tracking processes and this approach has several 

theoretical and practical justifications. Firstly, it limits the possibility of incorrect 

tracking decisions, as the mitotic cells cannot be robustly identified during forward 

tracking, and secondly, it opened up the possibility of developing a multi-stage 

association process where the use of topological information is maximised.   

 

The final major contribution resulting from this thesis can be identified in the 

comprehensive measurements of the performance of the proposed cellular tracking 

and mitosis detection framework using several types of time-lapse cellular data. In 

this regard, an enormous effort has been employed to generate the ground truth data 

with all of the datasets used in the experimental study being manually annotated. In 

this process, thousands of cells were manually annotated and their lineages (or cell 

tracks) were also manually identified by analysing the migration patterns for each 

cell in consecutive frames of the sequence. The ground truth data was used to 

quantify the accuracy of the proposed tracking framework. To further enhance the 

relevance of the experimental results, the proposed framework has been tested on 

publicly available datasets and its performance has been compared to those achieved 

by other relevant published algorithms. The comparative results indicate that the 

proposed technique outperforms the state-of-the-art implementation with respect to 

both cellular tracking and mitosis detection. 

 

There are several minor contributions that are worth mentioning. The first is 

located in the development of the cell segmentation process. The cell segmentation 

proved a very challenging task and substantial efforts have been put into the 

development of a strategy that minimises the incidence of segmentation errors. In 

this research work several algorithms have been evaluated and the approach that 

involves the application of h-maxima proved the most reliable. Other minor 

contribution is associated with the identification of the most robust 
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features/methodology that can be applied in the identification of the segmentation 

errors.  In this regard, the proposed solution applies an intensity-based normalised 

cross correlation process that aims to identify the location of the undetected cell that 

minimises the local disturbances in the cellular structures encoded by the Delaunay 

meshes.   

 

5.2 Future directions of research  
 

The main objective of this research work was to develop a robust cellular 

tracking and mitosis detection framework that shows a higher degree of flexibility 

and increased performance when compared to the most relevant state-of-the-art 

implementations. Based on technical content that was detailed in this thesis and the 

reported experimental results, it can be concluded that the overall outcome of this 

investigation was successful.  However, there are future directions of research that 

can be investigated based on the main concepts that were studied in this thesis. One 

possible development will focus on the investigation of alternative solutions that can 

improve the accuracy of the cell association process in the presence of cell 

interaction and large cellular migration. This may involve the inclusion of specific 

features such as intensity information, cell overlap area and motility estimators to 

enhance the matching confidence when identifying the corresponding cells in the 

image sequence. Another interesting area of further research can include the 

identification of the mitosis events using a priori probabilistic models, as this 

information can be extremely useful when validating the parent-child cells links.  

 

There is also a distinct future direction of research that may aim at the 

extension of the functionality of the proposed framework to allow its application to 

other biological studies such as the robust tracking of cells in in-vivo 3D data. This 

will require (at least a partial) redesign of the cellular association process, but the 

main theoretical developments detailed in this thesis can still be successfully applied 

to this new tracking scenario. 

 

Another possible future development can address the application of the 

proposed tracking strategy to non-cellular application domains such as pedestrian 

tracking in crowded conditions, robust player tracking in sports events, feature 
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tracking in the context of gesture analysis, etc. All these application scenarios require 

the use of robust tracking solutions that can be potentially addressed by the proposed 

tracking strategy.  



 - 104 - 

Appendix A: 
 

Statistical Indicators that Quantify Cell Migration 
 
 
 Once the cellular tracking process is completed, the coordinates of the 

corresponding cells (x,y,t) are available for the entire image sequence and they can 

be used to calculate different statistics that describe the cell migration. Thus, the 

objective of this section is to introduce a number of statistical indicators such as the 

average speed, directional movement and distance travelled by the cells that can be 

used to quantify the cell migration [69, 74]. These statistics are increasingly used by 

the molecular scientists in the evaluation of biological processes related to cancer 

research or in the development of new drugs and treatments. For instance, the 

administration of various therapeutic agents/inhibitors has direct effects on the 

cellular migration and the frequency of mitosis events, and these indicators are 

particularly useful to assess the differences between the control and test specimens.  

 

As indicated above three different measurements are usually calculated and 

analysed. The first is the average speed avgS  that is calculated for each cell using the 

following formula, 

 

1
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F
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S X X

F −
=
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where F is the total number of frames and X ={x,y} is the 2D spatial coordinate.  

The second indicator is the active movement also known as directional/vectorial 

displacement that can be computed using the distance between the initial and the 

final position of a cell. Figure A1 provides an example that illustrates the calculation 

of the directional movement. The third indicator is the total cell displacement which 

is given by the summation of all inter-frame instantaneous displacements, i.e. the 

length of the path that was travelled by a cell as indicated in Figure A1.   

 

(A.1) 
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Figure A1. Diagram that illustrates the calculation of the directional movement and 
the total cell displacement.  
 

  
        (a)                                          (b)  

 
(c) 

 

Figure A2. Cell migration indicators calculated for the MDCK-1 image sequence. 
(a) Directional movement. (b) Total cell displacement. (c) Average speed. 
 
 

Figure A2 depicts the measurements calculated for a MDCK dataset where 

the active movement, total cell displacement and the average speed are shown in 

Figure A2(a), (b) and (c), respectively. The directional movement displayed in 

Directional movement 

Starting point 

End point 

Total cell 
displacement 
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Figure A2(a) indicates that most of the cells migrate in one dominant direction and 

the moving distance varies in the range 1 to 40 pixels. The total cell displacement is 

depicted in Figure A2(b) and it shows a variation between 1 to 80 pixels. The 

average speed indicator that is calculated for each cell is plotted in Figure A2(c) and 

it indicates a variation between 0.9 to 1.8 pixels per frame. 

 

  
  (a) MDCK     (b) HUVEC 

 
(c) MNP 

 

Figure A3. The total cell displacement calculated for (a) MDCK, (b) HUVEC and 
(c) MNP datasets. The peaks in these diagrams are recorded for mitotic cells and for 
clarity reasons are marked with circles.  
 

Figure A3 shows the total cell displacements that are calculated for all cells 

in the MDCK, HUVEC and MNP sequences. In this diagram it can be observed that 

the MDCK cells show the lowest motility while the HUVEC cells show the highest. 

In these diagrams the largest total cell displacements are recorded for mitotic cells 
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and this information is in particular useful in the assessment of the clinical effects 

that are induced by therapeutic agents. 

 

Qualitative results 
 

The statistics that quantify cellular migration are of great interests for 

molecular scientists. Thus, it is important that the statistics returned by the automated 

algorithm to be as accurate as possible. In order to evaluate the accuracy of the 

results obtained by the proposed framework, they are compared with the statistics 

obtained from manually marked up data. In this evaluation the active/directional 

movement of cells has been measured since it is an important indicator that 

quantifies the cell migration and its calculation is not affected by localization errors 

that may occur during the manual annotation process.   

 

Comparative results are depicted in Figures A4.1 and A.4.2 where the 

directional movement returned by the proposed method and manually annotated data 

are indicated with blue and red dots, respectively. In these diagrams the x axis 

denotes the cell ID and y axis denotes the directional movement of a cell. For 

visualization purposes, the directional movement is calculated for a small number of 

cells in each sequence. From these graphs it can be observed that there is a good 

agreement between the directional movement obtained by the proposed method and 

that calculated from manually marked data. The overall deviation between these two 

sets of results is 10.5 percent. Thus, it can be concluded that the proposed method is 

suitable to extract the motility statistics that are able to accurately measure the cell 

migration patterns.  
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(a) MDCK-1        (b) MDCK-2  
 

    
 

                                                         (c) MDCK-3    

Figure A4.1. Directional movement extracted from MDCK data. Red dots  - results 
extracted from manual marked-up data. Blue dots - results obtained by the proposed 
method. 
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  (a) HUVEC-1                        (b) HUVEC-2 

       
 

  (c) HUVEC-3         (d) HUVEC-4 
 
Figure A4.2. Directional movement extracted from HUVEC data. Red dots - results 
extracted from manual marked-up data. Blue dots - results obtained by the proposed 
method. 
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Appendix B:  
 

Live Cell Image Acquisition 
 

The objective of live cell imaging is to record key cellular events such as 

migration, division, cellular interaction, apoptosis etc. that help in the process of 

analyzing the biological mechanisms associated with various cellular events. Long 

term monitoring of cells is required to compute key indicators that are able to 

quantify the cell response to diverse stimuli. To facilitate this, live cells are grown in 

a chamber (incubator) that is designed to maintain the cell culture conditions in 

which cells remain in a healthy state for the duration of the experiments. To allow 

the extraction of statistical indicators relating to cellular activity, the cells are 

typically imaged by a microscope that is fitted with a computer-controlled digital 

camera. In this process it is critical that the interaction between the imaging system 

and cells to be maintained at minimal levels to avoid the insertion of undesired 

factors that may impact on the cell health. When cells are monitored for long periods 

of time, images are recorded at fixed intervals (normally few minutes) that are 

sufficiently large to sample the changes induced by cell migration and the frequency 

of cellular division and apoptosis with sufficient accuracy. This particular type of 

image acquisition is known as time-lapse imaging. 

 

In general, time-lapse microscopy imaging system consists of three major 

components: 

 1) An incubator which is fitted to the stage of the microscope. The main role 

of this device is to maintain a constant environment for cells with respect to 

temperature, pressure and nutrition.  

 2) A microscope, which comprises optical components, an automated stage 

and a digital camera that records sequences of cellular images. 

3) Computing devices that control the microscopy parameters during the 

time-lapse image acquisition process.  
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Since molecular biology scientist are interested in the analysis of a variety of 

cell lines, numerous imaging approaches have been developed to enhance the 

discrimination between the cells and the background (which is the culture medium 

where the cells are grown). These techniques include bright-field, dark-field, phase-

contrast, confocal, fluorescence, etc. microscopy image modalities [109]. Each of 

these techniques has particular advantages and disadvantages when applied to 

specific cell lines [111]. Among these techniques, the phase-contrast and 

fluorescence imaging techniques proved the most common when applied to 

experiments that were concerned with the quantification of cell migration and 

cellular division [1, 7, 12].  

 

Fluorescence microscopy uses artificial staining agents that illuminate the 

specimen with a specific band of wavelengths. This imaging process is extremely 

useful when applied to separate the cells from background, which has a much weaker 

response when the specimen is illuminated by the excitatory light. The fluorescence-

stained cellular structures are associated with the high intensity pixels in the resulting 

image, as shown in Figure B.1, and due to high contrast this data is well suited for 

automated analysis. However, fluorescence illumination is too harmful when applied 

to many cell lines, as it has an undesired impact on the cell health. The combined 

toxicity effect caused by fluorescence staining and illumination is in particular 

detrimental when the specimen is monitored for long periods of time.  

 

 

Figure B1. A sample image showing HeLa cells captured through fluorescence 
microscopy. 
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Phase-contrast techniques are based on an optical mechanism that translates 

the phase shift in the light passing through transparent materials into amplitude 

changes that result in an enhanced image contrast as shown in Figure B.2. Phase-

contrast techniques are very common microscopy modalities since the contrast 

enhancement is obtained without loss of resolution. This imaging technique does not 

require staining that implies additional specimen preparation and does not causes 

detrimental effects on cell health. This property makes this technique suitable for 

live cell imaging since it is able to maintain the cells in a healthy state for long 

periods.  

 

   

(a)                                                                     (b) 

Figure B2. Sample images showing (a) MDCK and (b) HUVEC cells captured using 
phase-contrast microscopy. 

 

The proposed automated image analysis solution that has been reported in 

this thesis addresses the quantification of cell migration and cell division for phase-

contrast MDCK and HUVEC cell lines. The MDCK and HUVEC cell images are 

captured at temporal resolutions that range from three to ten minutes depending on 

the objectives of each particular experiment. The spatial resolution varies between 

1.3 to 0.87 µm depending on the imaged field of view. 
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