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Calibration of Non-Conventional Imaging Systems

Aubrey Keith Dunne

Abstract

This thesis investigates the calibration of cameras that do not conform
to the standard pinhole-plus-distortion camera model. The ability to
calibrate such camera systems is essential for the development of new,
non-conventional, camera types. The major contributions of the thesis
are the development of calibration algorithms for both central catadiop-
tric cameras and non-central flexible mirror imaging systems. A key
link between the calibrations of pinhole cameras and of general cen-
tral cameras is expounded, upon which the proposed central calibration
scheme is built. The proposed scheme incorporates constraints inher-
ent to the geometry of central cameras, resulting in a method that is
shown through rigorous experimentation to have superior performance
to the standard generic method. An enabler for this calibration scheme
is the use of active calibration grids, using structured light techniques,
in place of standard calibration targets. An implementation and thor-
ough characterisation of these active grids is presented. Nevertheless,
the extraction of static calibration grid feature points from images with
large distortions is still fundamentally important, in particular for ex-
perimentation with real images. To this end, a novel algorithm for the
detection and consistent ordering of corners in such images of chessboard
calibration grids is presented, and its capabilities are demonstrated. The
flexible mirror imaging system investigated in this thesis consists of a
fixed perspective camera viewing a deformable mirrored surface, which
in general results in a non-central imager. A novel calibration technique
is proposed that can model the flexibility of these systems, resulting in
a calibration that is dynamically updated as the reflective surface flexes.
Comprehensive testing for both constrained and unconstrained mirror
deflections demonstrates that good calibration results can be obtained
using this technique. Results for structure-from-motion and object re-
construction from a sequence of images from a calibrated flexible mirror
camera are presented, establishing the capabilities of such calibrated
non-conventional imaging systems.
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Chapter 1

Introduction

The human vision system enables humans to instantly perceive depth, colour,

texture, and motion at high resolution, and to perform tracking and rapid fo-

cal length adjustments to account for relative scene motion. This exceptional

versatility has led to the design of cameras and computer vision systems that

replicate human vision. In particular, the perspective camera, which is the

staple of computer and machine vision, is essentially a simple opto-electronic

model of the human eye. However, with the continual increase in processing

power and with the ever growing demand for application specific vision so-

lutions, researchers have realised that it is advantageous to develop camera

systems that stand apart from the human vision model of perspective cam-

eras. New classes of cameras are emerging, with characteristics beyond those

of the human vision system, which can achieve such properties as larger or

reconfigurable fields-of-view (FOVs), high dynamic range imaging, and which

in general vary the optical domain properties of cameras. This thesis is con-

cerned with some of these emerging camera types, and with methods to apply

to them to achieve one of the most fundamental tasks in computer vision —

calibration.

In contrast to the many different camera models that have been proposed,

the general model for capturing camera projection is applicable to any camera

type without restriction. It can cope equally well with perspective cameras that

have minimal distortion, and with omnidirectional cameras that have severe

image distortion due to FOVs up to 360o. Two basic methods have recently

been proposed for general model calibration, and of these generic calibration is

1



Chapter 1 – Introduction

the more flexible and more easily performed. The benefits of generic calibration

for non-perspective central cameras are initially demonstrated in this thesis in

order to provide a basis for the further development of the generic calibration

method. Like many other camera calibration methods, corners extracted from

images of planar chessboard grids are used to generate input for the generic

calibration algorithm. This extraction can be problematic for high distortion

cameras, since imaged grid corners are severely displaced from their canonical

positions in a non-linear manner. A semi-automatic method for the extraction

and ordering of grid corners in such images is investigated that circumvents

the need for tedious manual corner selection. When performing high fidelity

calibrations for the general camera model, the low density of chessboard grid

corners can result in interpolation-induced bias. In order to acquire accurate

and dense location data, the use of active grids – spatio-temporally varying

patterns displayed on a monitor – for calibration is explored, and ultimately

benchmarked against localisation for standard calibration grids. By using ac-

tive grids, performance enhancements can be achieved for the standard generic

calibration method by way of major modifications that are subsequently pro-

posed. The central camera, in which all camera rays intersect at a single point,

is by far the most common type of camera. However, the generic calibration

of this camera type using the standard method is particularly complicated.

Simplifications made possible by active grids and by the geometric constraints

of central cameras are the inspiration for the improved generic calibration that

is investigated in this thesis.

Reconfigurable cameras that view a scene via reflection in a flexible mirrored

surface stand apart from most other camera types since they have few con-

straints and since the calibration changes after each mirror flexion. Thus it is

difficult to efficiently apply existing calibration methods to them, and specific

methods are required. The sole such existing method is accurate and applica-

ble to video, but it demands an extensive offline calibration stage. Promoting

flexible mirror imaging within the community as an advantageous imaging

modality would be made easier if a more user-friendly calibration was demon-

strated. This goal forms the basis for the final section of this thesis.

In summary, this thesis addresses the key issue of camera calibration within

the specific domain of non-conventional cameras, with the key novelty being

the development of practical methods and aids for calibration.

2



Chapter 1 – Introduction

1.1 Background and Motivation

This section gives a brief overview of the principal concepts that are dealt with

in this thesis, namely camera calibration, and non-conventional imaging. The

aim is to highlight the importance of calibration for non-conventional cameras,

and to show how such cameras can contribute to progress in computer vision.

1.1.1 Camera Calibration

The process of camera calibration is fundamental to all computer vision tasks

involving metric image information. Calibration is necessary to allow faithful

measurement and analysis of the abstracted world scene information that is

available in a camera image. It describes the relationship between the image

space and the world space, or at the most basic level it relates 3-space points to

image space pixel locations. In general the closer the camera is to the theoreti-

cal pinhole model, the easier it is to perform calibration. As the camera model

becomes more complicated, principally due to increased non-linear optical ef-

fects, the number of model parameters typically increases, requiring a more

involved calibration. As with many engineering problems, linear solutions to

calibration are desirable but often not sufficiently accurate. Non-linear refine-

ment of calibration parameters, in the form of bundle adjustment, is a drain on

computational and time resources, but is often necessary to improve the accu-

racy of a linear calibration solution. In summary, the task of calibration is to

select an appropriate camera model, and to determine the parameters or values

of this model to an accuracy acceptable to the current application with the

minimum amount of computation, and in a manner that can be conveniently

performed by the practitioner.

1.1.2 Non-Conventional Imaging Systems

Perspective cameras are the most established and most common camera type in

use today. This is principally because they have many advantageous properties

such as ease of manufacture, simple analytic projection scheme, low distortion

and compact form. However, as researchers strive to develop and realise ever

more increasing accuracy and efficiency in computer vision and machine vision

3



Chapter 1 – Introduction

tasks, the shortcomings of the perspective camera become a problem for some

applications. For example, perspective cameras have a FOV that is fixed, that

is relatively narrow, and that is necessarily continuous. In addition, perspective

cameras are central, meaning that there is a scale ambiguity when they are

applied to certain structure and motion tasks.

In response to these shortcomings, recent years have seen a trend in com-

puter vision towards non-perspective cameras that can overcome some of the

perspective camera disadvantages, and that are designed for specific vision

tasks. Conventionally the input to the computer vision pipeline has been the

camera image, whereas increasingly the input to the process is the scene or

object being viewed by the camera. Therefore problems that originally were

being solved in the image domain using image processing are now being partly

addressed in the optical domain before scene information is incident on the

camera sensor, through the use of non-standard camera designs. The camera

systems that result from this trend are collectively termed non-conventional

cameras. A non-conventional camera can be considered to be a camera in

which the optical path between scene and sensor is intentionally modified in

a specific way in order to achieve a certain goal or property that cannot be

achieved with a perspective camera.

Non-conventional cameras have been successfully implemented in various fields

within computer vision, such as mobile robot navigation, security, telepres-

ence, and virtual reality. Examples of non-conventional cameras in mobile

robot navigation include their use for visual topological map building (Silpa-

Anan and Hartley, 2005), for autonomous unmanned aerial vehicle navigation

through urban canyons (Hrabar and Sukhatme, 2004), and for obstacle avoid-

ance by several teams that partook in the DARPA Urban Challenge 2007

for autonomous vehicle navigation1. Other interesting recent applications of

non-conventional cameras include a visual maneuvering aid for large vehicles

(Ehlgen and Pajdla, 2007), omnidirectional endoscopic attachments for med-

ical applications (Sagawa et al., 2008), and low-cost immersive displays for

virtual reality (Johnson et al., 2007), where the projector can be seen as a

non-conventional camera in reverse. In Kuthirummal and Nayar (2006) a sin-

gle image multiview method for object frontal 3D structure recovery is made

possible by the use of a truncated conical mirror and perspective camera, whilst

1http://www.darpa.mil/GRANDCHALLENGE/ (Accessed September 2008)
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Chapter 1 – Introduction

Nomura et al. (2007) use a flexible camera array to generate dynamic scene

collages that enable a new and interesting way to experience large dynamic

scenes.

An example of an image from a non-conventional camera is shown in Fig. 1.1(a).

This image, which is from a camera with a 360o horizontal FOV, demonstrates

by example that the FOV limitation of the perspective camera can be overcome

by applying a new camera design. The richness of scene information captured

in this image could never be replicated in a single image by a perspective cam-

era alone. On the other hand, the resolution of the image shown in Fig. 1.1(b),

which is a version of the omnidirectional image remapped to improve its per-

ceptibility to the human vision system, varies from the top to the bottom

of the image. Clearly, despite their many benefits, non-conventional cameras

also have inherent drawbacks when compared to perspective cameras, unde-

sired variable resolution being only one example. One of the most significant

drawbacks is the difficulty in calibrating them, since perspective calibration

techniques are not normally applicable. This difficulty in calibration is the

core problem that is addressed in the thesis. By providing methods for the

calibration of non-conventional cameras to enable their wider use in computer

vision, the practitioner is afforded the opportunity to select from a broader

range of camera types when determining the most appropriate camera setup

for any particular application.

1.1.3 Thesis Goals

The work presented in this thesis is motivated by the desire to develop effi-

cient and practical methods to calibrate non-conventional imaging systems so

that metric information may be derived from images produced by such sys-

tems. Two types of non-conventional camera are considered, firstly wide-angle

and omnidirectional cameras, and secondly flexible mirror cameras. Complete

practical calibration methods enable non-conventional cameras to be used in

a wider range of applications and facilitate the development of novel imaging

systems using such modalities.

Accordingly, the goals of the presented research are

• to enable the easier application of chessboard grids to the calibration of

5
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(a)

(b)

Fig. 1.1: Omnidirectional image (a) before, and (b) after cylindrical unwarping.

cameras with severe distortion;

• to demonstrate the suitability of active grids for use in non-conventional

camera calibration;

• to improve calibration accuracy and efficiency for central generic calibra-

tion;

• to develop a practical calibration method for flexible mirror cameras

• to demonstrate the suitability and applicability of flexible mirror cameras

for practical computer vision tasks

6



Chapter 1 – Introduction

1.2 Literature Review

Possibly camera calibration has received more attention in the literature than

any other aspect of computer vision. In particular since the advent of the

digital camera, researchers have endeavoured to develop accurate calibration

methods that are convenient to implement on-site, away from the laboratory.

With such a large body of work, the literature survey presented here concen-

trates on the significant publications immediately related to the stated goals

of the thesis. A more detailed examination of camera calibration, and of the

progression of calibration methods to keep pace with the emergence of non-

conventional cameras, is provided in Chapter 2.

The following review is conducted under headings that correspond to each of

the main thesis chapters. In each case, it provides a context for the work in

the related chapter, and covers the current solutions to the problem under

examination. Where necessary, further references and more details of related

work are cited in the relevant chapter.

1.2.1 Corner Extraction and Ordering

Camera calibration methods generally fall into one of two categories: those that

require a-priori knowledge of the scene, and those that do not require a-priori

scene knowledge. The first category primarily uses geometric primitives such

as lines, corners and conics in the image to help with the calibration process,

whereas the second category consists of self-calibration methods that make

use of the epipolar constraint. This thesis deals with the first category, which

encompasses methods for calibrating perspective, fisheye, omnidirectional and

non-central cameras (Zhang, 2000, Kannala and Brandt, 2006, Scaramuzza

et al., 2006, Sturm and Ramalingam, 2003). Images of planar calibration tar-

gets in different orientations are used for calibrating in these methods, enabling

calibration to be easily performed by the practitioner. The most popular target

pattern for planar calibration is the chessboard pattern, in which the domi-

nant features are corners, while circular patterns, in which the features to be

extracted are the circle centroids, are less common. A recent study by Mallon

and Whelan (2007b) compares chessboard and circular grid patterns in order

to determine the accuracy with which feature points in each can be recovered

7
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in images containing distortion. They show that chessboard calibration grid

features are invariant to both perspective bias and distortion bias, and so are

superior to circular patterns for the generation of bias-free control points.

The practical problem of extracting corners from images of chessboard cali-

bration grids is extremely important in the context of accuracy, as significant

noise can be introduced into the calibration by poor feature extraction. As a

result, several automatic or semi-automatic methods of corner detection and

ordering from images of chessboard grids have been proposed. Extraction of

corners in distortion free chessboard images is relatively straightforward, with

the main steps necessary being corner detection, false corner removal, and cor-

ner ordering. Corner detection can be achieved using a robust corner detector,

such as Canny, SUSAN, or Harris, or by performing template matching. False

positive corners can be removed by a symmetry test on each candidate corner,

and by enforcing a minimum distance between corners. Ordering of corners

is based on their geometric proximity. However, the large non-linear distor-

tions typically present in images from non-conventional cameras makes corner

extraction and ordering much more difficult.

Recently Wang et al. (2007) presented a detection and ordering scheme that

makes use of vanishing points and vanishing lines to detect and order chess-

board corners in perspective camera images. Corners are detected with a

Harris corner detector and tested for symmetry. The vanishing points for the

grid rows and columns are then determined, and corners that do not lie at

vanishing line intersections are removed. However, the use of vanishing lines

assumes linearity of the grid edges, and thus the method is only suitable for

images containing very low distortion.

The method of Mallon and Whelan (2007a) is to extract all corners in the

image automatically using any standard corner detector, and then to remove

outliers by applying a symmetry measure to the candidate corners. Ordering

of the points is performed by determining the top left and top right corner

points, and then by extracting the remaining corners in the row as the closest

N points to the line between these two points, where N is the number of grid

columns. Column ordering is based on point distance from the origin corner.

Extracted corners are then removed from the unordered set and the process

is repeated until all corners are ordered. The method of Lucchese (2005) is

very similar in principle, although it requires the user to manually select the

8
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four outer corners of the chessboard grid in the image at the beginning of

the process. The ordering of the internal grid corners proceeds iteratively by

determining the corner pairs whose join is close to parallel to the join of corner

pairs in the same columns but in the previous row, and then selecting the

closest resulting corner.

Shu et al. (2003) exploit the topological structure of chessboard grids using

Delaunay triangulation to group the grid corner points, detected with a Harris

corner detector, into a triangular mesh. Neighbouring triangles with similar

colour are merged into quadrilaterals, the corners of which are the grid point

corners. This method has the advantage that partial grids can be detected in

images. However, it can fail when applied to images with severe distortion,

since the compression of the grid squares in these images can result in an

incorrect triangulation. Test results for images with large distortion are not

presented.

The OpenCV computer vision library2 includes a cvFindChessBoardCorner-

Guesses() function, developed by Vladimir Vezhnevets3, that can be used to

automatically detect and order chessboard corner points. The function adap-

tively thresholds the input image and then successively erodes the image and

searches for image contours. All contours with exactly four sides are classified

as grid square quadrangles, and their corners are the grid corners. Ordering is

performed by pairing each corner based on its proximity to all other detected

corners. However, because the function will only operate correctly if all of the

grid squares are visible in the image, only complete, and not partial, grids can

be extracted. The function was evaluated by Fiala and Shu (2008) with real

chessboard images from cameras with varying parameters and it was found

to perform poorly. Poor performance of the function for images with high

distortion has also been reported by Fiala and Shu (2008) and by Rufli et al.

(2008).

Mühlich and Aach (2007) present a technique to detect chessboard grid corners

using multi-steerable filters. Candidate corner regions are determined using a

Harris corner detector, and then matched filtering is applied to these regions

to detect corners with pixel accuracy. Corners are subsequently localised by

2http://sourceforge.net/projects/opencvlibrary/ (Accessed December 2006)
3http://graphics.cs.msu.ru/en/research/calibration/opencv.html (Accessed November

2008)
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parabola fitting. However, the method focuses on detecting corners in perspec-

tively warped images, and results for non-linearly distorted images are limited

to a single example. The ordering of the corners is not discussed.

A common camera calibration approach is to use the Camera Calibration Tool-

box for MATLAB4. The corner extraction stage of this toolbox requires the

user to select the location of each of the four outer corners of the grid. An ini-

tial estimate of corner locations is made by mapping the metric grid to the four

extreme grid corners under a planar homography, which simultaneously fixes

the ordering of the corners. When the result of this mapping is not sufficiently

accurate, the user must iteratively guess the value of a single radial distortion

parameter until a suitable result is obtained. The low-order radial distortion

model cannot model complex distortions accurately, and cannot model distor-

tion that is not radial.

Rather than extracting localised feature points from chessboard grids, Fiala

and Shu (2008) propose using self-identifying planar patterns for plane-based

calibration. The ARTag fiducial marker system is employed, which consists of

a library of bi-tonal square markers that each encodes 2D location using a 6×6

binary array at the marker centre. By forming a planar array of the ARTag

markers, the location of the markers can be independently determined using

decoding software. This has the advantage of being able to extract partial grids

for calibration, and since the marker locations are immediately available, there

is no need for an ordering stage. Results presented for calibration with the

marker system show improved accuracy relative to the OpenCV method, and

additionally improved robustness to perspective and to non-linear distortion.

However, results for omnidirectional or non-central cameras are not presented

- calibration experiments were conducted for cameras with a distortion model

containing only two radial and two tangential terms. The localisation of the

marker centre, which is performed by intersecting marker quadrilateral diag-

onals, is also susceptible to bias induced by distortion. The ARTag marker

libraries and decoding software are not currently freely available.

The ARTag fiducial marker system is an example of a spatially encoded grid.

Various spatial encoding schemes have been presented in the literature, prin-

cipally in the area of structured light. For this purpose the spatially encoded

patterns are typically projected onto a scene in order to solve the correspon-

4http://131.215.134.19/bouguetj/calib doc/index.html (Accessed September 2007)
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dence problem in stereo vision and thus enable accurate point triangulation.

However, they can be equally employed for the purpose of plane-based camera

calibration. Vuylsteke and Oosterlinck (1990) presented a spatially redundent

binary pattern for depth estimation based on an underlying chessboard grid

structure, where the encoded points exist at the grid corners. The grid pattern

is modulated by a dark or light spot at each grid corner, and the location on

the grid of each encoded point is determined by the binary colours of these

spots in a 2× 3 window. Spatial redundancy is achieved by using overlapping

patterns. Many other spatial encoding strategies have been presented in the

literature, and summaries and comparisons of some of these methods can be

found in Mouaddib et al. (1997) and Salvi et al. (2004). However, when used

for calibrating non-conventional cameras that induce severe image distortion,

spatially encoded grids have the disadvantage that they require image conti-

nuity and that the grid image must be locally regular. Regularity is necessary

since the location of each grid feature is encoded in a local area around that

feature. For large local distortions, it may not be possible to decode the feature

locations.

In contrast to the methods described above, the OcamCalib Toolbox for MAT-

LAB (Scaramuzza et al., 2006) is designed specifically for the calibration of

omnidirectional cameras, which produce images with severe distortion, using

planar chessboard grids. The calibration method does not assume prior knowl-

edge of the mirror surface shape, therefore every corner point of the calibration

grid must be selected manually and in a consistent fashion. This directly de-

termines the corner ordering, but in practice it is slow and tedious.

In order to improve the efficiency of calibration with the above toolbox, Rufli

et al. (2008) recently presented a fully automatic region based segmentation

approach to detecting and ordering chessboard grid corners that is specifically

designed for images from catadioptric cameras. This solution to the detection

and ordering problem was developed simultaneously but independently of the

method that is proposed in this thesis. Input parameters required are the num-

ber of corners in each grid row and in each grid column. The algorithm modifies

the method implemented in the OpenCV cvFindChessBoardCornerGuesses()

function by making five adaptations. The most important of these are a new

kernel for the erosion of the quadrangle regions to prevent excessive corner

rounding, and a new heuristic for determining the linking between quadran-

gle corners. Test results for the modified algorithm show that it outperforms
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the OpenCV method for non-perspective images, and for low-resolution and

blurred images. While automatic detection is an advantage for perspective

cameras, in omnidirectional images with large FOVs, corners near the image

edges are often too small, too distorted, or too blurred to be localised reliably,

and typically they are dropped from further consideration. In these cases,

some manual input is required to discard these corners.

Approaches to corner detection and ordering based on some prior knowledge of

camera deformation have been proposed in the literature. Sturm and Barreto

(2008) and Mei and Rives (2007) present methods that require the manual

selection of 12 and 7 points, respectively, on the calibration grid in order

to fully extract the grid corners. The selected points are used for partial

camera calibration in order to obtain a model for the camera distortion. Both

methods are parts of calibration frameworks, and they can only be applied to

central catadioptric cameras. The disadvantage with using camera deformation

related priors is that such an approach is unsuitable for chessboard corner

detection and ordering in images from some non-central cameras, since for

these cameras deformation types are so varied as to make a-priori modelling

of them impractical.

With the exception of the independently developed method of Rufli et al.

(2008), none of the above automatic or semi-automatic methods has been

shown to correctly and consistently detect and order corners in images of chess-

board grids from both central and non-central cameras that contain significant

distortion. The level of distortion at which each method fails varies, although

generally the distortion must be at least sufficient to cause corners in the second

grid row/column to be closer to a line joining the outer corners than corners in

the first grid row/column. Thus, at the time that the grid corner detection and

ordering problem for distorted images was considered, manual corner selection

was the only available option. This is redressed in Chapter 3, which presents

a novel semi-automatic method for chessboard corner detection and ordering

that is applicable to images from a broad range of non-conventional camera

types that contain significant non-linear distortion. The proposed method

takes a different approach to solving the problem than that taken by Rufli

et al. (2008), although the goals of both methods are similar.
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1.2.2 Central Generic Calibration

The standard generic calibration method proposed by Sturm and Ramalingam

(2003) and developed further in (Sturm and Ramalingam, 2004, Ramalingam

et al., 2005a,b,c) is applicable to any camera geometry. It is used to calibrate

the general camera model (Grossberg and Nayar, 2001) based on the constraint

that all 3-space points seen by the same camera pixel for a fixed camera position

are collinear. The general camera model is described in Chapter 2. The

complete generic calibration method for central cameras is detailed in Section

2.4, along with the basis for its development and its benefits in relation to other

existing calibration methods. In this section, advancements to the method,

that have been proposed in the literature, are reviewed.

Generic calibration was developed such that both central and non-central

cameras can be calibrated within the same framework. Consequently, exist-

ing parametric calibration techniques for central cameras are not used in the

generic calibration framework. Calibration of central cameras is of significant

practical use in vision applications, since the common classes of perspective,

fisheye, and central catadioptric cameras are all either central or approximately

central, and thus central generic calibration warrants further attention. Nev-

ertheless, a survey of existing literature has highlighted a lack of research into

central generic calibration. Use of generic calibration for vision tasks such

as structure from motion has been proposed (Ramalingam et al., 2006), but

only very limited work has been carried out on furthering generic calibration

itself. This may be due partly to the short period of time that has elapsed

since generic calibration was originally proposed by Sturm and Ramalingam

(2003), and it may also be due partly to the fact that a specific algorithm

for central generic calibration from planar grids was proposed and verified at

that time. However, the method of Sturm and Ramalingam (2003) for central

calibration differs principally from their method of non-central calibration in

the analytical determination of the calibration values, which are the grid poses

and the effective camera centre. Their central method is primarily presented

because the non-central equations can not be applied to the central case due to

indeterminacy related to ray coincidency at the camera centre. In their generic

calibration framework, the geometry of the central problem is considered to

be just a specific case of the general camera geometry.

Gonçalves and Araújo (2005) presented a modification to the non-central
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generic calibration method of Sturm and Ramalingam (2003) that uses the

known perspective camera geometry to reduce the minimum number of in-

put images required for non-central catadioptric calibration from three to two.

This was achieved by assuming a-priori knowledge of the intrinsic calibration

parameters of the perspective camera viewing the mirror, so that the required

third point seen by each pixel is parameterised as a point along a known per-

spective camera ray. The use of the three-point collinearity constraint still

forms the basis of the calibration, as in the original method.

Self-calibration of general cameras under constrained motion has been pro-

posed by Ramalingam et al. (2005c). They show that a central camera can be

calibrated using images resulting from two pure rotations of the camera and one

pure translation. Nistér et al. (2005) present a theoretical analysis of the lim-

its of central general camera self-calibration based on the image flows induced

by infinitesimal and finite rotations and translations. They concentrate on the

case of three instantaneous flows resulting from infinitesimal rotations observed

at a finite number of points in the distorted image, and show that in this case

the camera can be calibrated up to a projective ambiguity. Grossmann et al.

(2006) further show that Euclidean calibration can be obtained from two dense

flows corresponding to pure rotations of the camera around non-collinear axes.

A corresponding calibration approach is presented. Espuny and Gil (2008) also

present a method of general camera self-calibration that requires optical flow

data from only two pure rotations about non-collinear axes. However, these

self-calibration methods that are based on camera rotations only are not yet

mature, either because of ambiguity in their solutions or because of high sen-

sitivity to noise and to camera type. The self-calibration methods for general

cameras do not provide any route for the further development of the standard

central generic calibration.

Recently, Ramalingam and Sturm (2008) presented a minimal solution for

generic calibration of central cameras using planar calibration targets. By

considering the theoretical minimum of four rays intersecting three calibration

grids, they derive a calibration solution that is shown to be more robust to

noise than the original method. The solution does not introduce any further

constraints on the calibration due to centrality, but rather is based on the same

collinearity constraint as the original with additional analytical reductions.

Active grids consist of a sequence of structured light patterns displayed on a flat
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screen monitor. In Chapter 4 the application of active grids to central generic

calibration in order to improve calibration accuracy is examined. Structured

light has previously been used in calibration methods as a means of generating

a more dense set of planar feature points than standard planar chessboard

grids. However, its application as a means of directly achieving calibration has

not received significant attention. Although not for complete camera calibra-

tion, Sagawa et al. (2005) propose a distortion calibration method for wide-

angle lenses in which an active grid is imaged by the camera so that accurate

correspondences between active grid locations and camera pixels are deter-

mined. A resulting lookup table describing the mapping between distorted

and undistorted pixels is formed, which, unlike most distortion calibration

methods, is non-parametric. In this way it is similar to the non-parametric

generic calibration method. Undistortion is then easily applied by using the de-

termined lookup table, after normalisation and after some linear interpolation

to refine the accuracy. Presented results demonstrate the improved distortion

correction performance of the method over standard parametric methods.

The above modifications that have been proposed to generic calibration fo-

cus either on the non-central case, or on further analysis of the equations of

the original central generic method. Central cameras have a geometry that

is uniquely defined by the existence of a single effective centre of projection,

and as a result they have many properties in common with pinhole cameras.

However, no attempt has been made to identify links between pinhole calibra-

tion and generic calibration, and so the potentially advantageous properties

of the former have not been applied to the latter. Chapter 4 presents a new

method for central generic calibration that achieves improved accuracy when

compared to the existing central generic method by exploring commonality be-

tween pinhole and central generic calibration. Active grids are shown to enable

an efficient calibration framework in which complete central generic calibration

is achieved, and for which central camera geometry is fully exploited.

1.2.3 Flexible Mirror Imaging

Flexible mirror imaging systems, recently introduced by Kuthirummal and Na-

yar (2007), are non-conventional catadioptric cameras typically consisting of a

perspective camera viewing a scene reflected in a flexible, or bendable, mirror.

The characteristics of the camera image can be continuously and non-linearly
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altered by directly flexing the mirror. This enables control over both the FOV

of the image and the resolution of the imaged scene. By suitable flexing of

the mirror, certain portions of the scene being imaged can be attributed more

sensor resources than other portions, and the FOV can be altered easily as

required. Thus flexible mirror imagers may be beneficial in active vision mon-

itoring and security applications, where higher resolution could be obtained in

image regions containing objects of interest without sacrificing FOV, as would

normally be the case in pan-tilt-zoom camera systems.

The field of programmable imaging is related to that of flexible mirror imaging,

although the methods whereby the images are captured differ significantly.

Nayar et al. (2006) presented a programmable imager based on a perspective

camera viewing a digital micro-mirror device (DMD) similar to that used in

state-of-the-art projector systems. By individually varying the orientations

of the micro-mirrors, variable FOVs and image resolutions can be obtained.

However, current DMDs have only two possible active orientations, so that

programmable imagers cannot produce continuously variable FOVs and thus

are severely limited with respect to flexible mirror imagers. Nomura et al.

(2007) presented a multi-perspective flexible camera array that they use for

forming dynamic scene collages. The imager consists of a set of 20 perspective

cameras that are attached to a bendable plastic frame. The authors focus on

image matching and stitching for improved viewer interpretation rather than

on actually calibrating the camera array, and so there is no crossover with

flexible mirror imager calibration.

The introduction of flexible mirror imaging systems naturally leads to the re-

quirement for methods for their calibration, so that tasks such as tracking in

surveillance can be accomplished. Calibration of such systems is difficult firstly

because the mirror deflection is generally unconstrained, and secondly because

the camera configuration, and thus calibration, alters each time that the mirror

is flexed. The calibration is intrinsically linked to the estimation of the flexible

mirror surface itself, since knowledge of local mirror surface shape allows sur-

face normals and thus reflected rays to be determined for given incident rays.

However, since the mirror shape can change, catadioptric calibration meth-

ods that assume some prior knowledge of mirror shape (Tardif et al., 2006,

Thirthala and Pollefeys, 2005a, Scaramuzza et al., 2006) are not applicable,

and therefore methods that can estimate the mirror shape are required.
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Much work has been presented in the literature on the recovery of surface

shape from images of a diffuse surface, using either structured light or epipo-

lar geometry. These methods are often grouped into the field of shape-from-X,

which has received significant attention outside the field of calibration. The

recovery of specularly reflective surface shape has received relatively less at-

tention from the vision community. This situation differs from the diffuse case

since ‘features’ seen in the image are virtual features, caused by reflection,

that do not obey the epipolar constraint. Halstead et al. (1996) presented one

of the first techniques for accurately determining specular surface shape from

surface reflection in a single image. They used a bespoke conical calibration

object and concentric camera to determine corneal surface estimates based on

a set of estimated surface normals. Savarese et al. (2005) describe a method

for specular surface recovery from a single image of a planar calibration target

when at least two local orientations are available at each target point.

Several approaches to estimating mirror shape from motion have also been

presented. Swaminathan et al. (2002) examine the dependence on surface ge-

ometry of specularities in static scenes with constant velocity camera motion,

whilst Roth and Black (2006) estimate the specular surface geometry from

specular flow and then use the result to improve surface estimation from dif-

fuse flow. Oren and Nayar (1997) recover information on surface profile from

specular reflections whose paths overlap under constrained camera motions.

However, all of these methods assume a fixed mirror shape with relative mir-

ror scene motion, and so are not suitable for flexible mirror imaging systems

calibration. Where relative camera scene motion is used, the motion is assumed

rigid, whereas for flexible mirror systems the mirror motion due to flexing is

non-rigid.

Calibration methods for the general camera model (Grossberg and Nayar, 2001,

Sturm and Ramalingam, 2004) can be used to determine reflected ray direc-

tions and thus calibrate any catadioptric camera, but these methods are time

consuming, and when applied to a flexible mirror imager, they would require

the entire calibration process to be repeated each time the mirror is flexed.

As mentioned in the previous section, Gonçalves and Araújo (2005) simplify

the method of Sturm and Ramalingam (2004) in the case of known perspec-

tive camera calibration. Points on the estimated mirror surface are available

from their solution, but two images for each mirror position are required, and

information on the previous positions of the mirror is not used to inform the
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calibration. Gonçalves and Araújo (2007) also present a method for calibrat-

ing a catadioptric camera from a single image of a calibration target, but it

is only applicable when the mirror surface can be described by a quadric. A

completely non-parametric method for specular surface estimation based on

voxel carving has been presented by Bonfire and Sturm (2003), in which nor-

mal vectors are accumulated for each scene voxel, and the voxels with the

normals in best agreement are considered to be on the specular surface. The

method requires images of the reflective surface from many different viewpoints

to achieve good results. Bonfire et al. (2006) present a method for specular

surface estimation that is an extension of the generic calibration method. Us-

ing images of a planar grid, located in at least two different positions, reflected

in the specular surface, the surface is recovered by triangulation. All the above

methods assume a fixed specular surface geometry. If they were to be applied

to calibrate a flexible imaging system, the system would have to be recalibrated

completely after each mirror flexion, which is not practical in the envisaged

system.

The field of adaptive optics is concerned with the development of flexible mirror

arrays primarily for use in astronomical observation applications. By applying

small deformations in a controlled way across the surface of the mirror in an

astronomical telescope, wavefront aberrations in the incident light can be cor-

rected for optically. The aberrations are the result of atmospheric disturbances

that distort the wavefront as it passes through the earth’s atmosphere – by re-

moving this distortion, more faithful astronomical observations are achieved.

Recently, Papavasiliou and Olivier (2006) have used nanolaminate reflective

materials in conjunction with micro-electro-mechanical electrostatic actuators

in order to create deformable mirrors of various sizes for use in astronomical

imaging. However, the magnitudes of the deformations applied in adoptive

optics systems are of the order of 10µm, and so these systems do not provide

the scope to allow variable camera FOV, and are thus not suitable in their

current form for use in flexible mirror imagers in computer vision. Due to

the small deformations and to the direct control of the deformations using the

actuators, the calibration methods for adoptive optics systems do not have

significant crossover with flexible mirror imager calibration.

Kuthirummal and Nayar (2007), who introduced the concept of flexible mirror

imaging with a nominally planar flexible mirror surface, presented the only

existing calibration method specifically for such systems. Their technique is
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dependent on a unique mirror boundary to mirror surface mapping. Calibra-

tion is performed offline by acquiring an image of the mirror boundary, and

an accompanying mirror surface shape measurement, for each mirror deforma-

tion that is likely to be imposed. The one-to-one mapping between the mirror

surface shape and a descriptor of its boundary is then stored in a look-up ta-

ble, so that the calibration is immediately available when the mirror outline

is visible in the image. They present results for a calibration with greater

than 30, 000 descriptor-surface pairs. Although this method has demonstrated

good accuracy, it requires a significant offline calibration stage that necessitates

equipment for directly determining accurate surface shape information.

The calibration methods reviewed above, excepting that of Kuthirummal and

Nayar (2007), are generally either unsatisfactory or inapplicable for direct ap-

plication to flexible mirror camera calibration. They assume a fixed mirror sur-

face and thus necessitate recalibration after each mirror flexion, which becomes

impractical for multiple successive mirror shape changes. On the other hand,

the single existing method of flexible mirror camera calibration is designed to

calibrate a continuously altering mirror surface, but requires an extensive pre-

calibration stage. If flexible mirror cameras are to grow as an imaging modality

for computer vision, then their calibration should be achieved easily by using

standard calibration tools such as those typically used for perspective camera

calibration. Chapter 5 presents a calibration approach designed specifically

for flexible mirror cameras that is motivated by this desire for accessible and

practical calibration.

1.3 Mathematical Notation

The real and projective spaces are represented by Rn and Pn, respectively,

where n is the dimension of the space. General sets are denoted by A =

{a1, a2, a3, . . . an} where a1, a2, a3, . . . an are the set elements.

Matrices are denoted by upper case letters as Am×n where m and n are the

number of rows and columns in the matrix, respectively. The element at row i

and column j of matrix A is denoted as Aij. Matrix A[i j ... k] is a new matrix

formed from columns i, j, . . . k of matrix A. In×n is the identity matrix of size

n. Transformations are denoted T = [t1 t2 . . .] where ti are the columns of the
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transformation. Rotations, R, and homographies, H, are represented similarly.

Vectors and points in P2 are denoted in bold lower case as a = [a1 a2 a3 . . . an]T

with elements a1, a2, a3, . . . an. Points in P3 are represented in bold upper case

as A = [A1 A2 A3 . . . An]T with elements A1, A2, A3, . . . An. Point A[i j ... k]

is a new point formed by selecting elements i, j, . . . , k from point A. The

inhomogeneous equivalent of point A is denoted as Ã. Line A in P2 has

orientation ∠A with respect to the positive x-axis.

Estimates are denoted with a caret as Â, and updates are denoted with a

prime as A′. Equality up to a non-zero multiple is denoted with the ' symbol.

Finally, an image point p after distortion is represented by p̆.

1.4 Contributions

The major contributions of this thesis correspond to the main thesis chapters.

Lesser contributions, which enable the achievement of the major contributions

but have a lower significance, are described in the minor contributions section.

Together, these contributions encapsulate the most important work of the

thesis.

Major Contributions

The major contributions are reflected in the publications resulting from the

work in this thesis, which are listed in full in Section 6.2. Each of the three

major contributions is summarised below.

• An edge-tracing based semi-automatic method for detecting and ordering

chessboard grid corners that is applicable to images containing significant

non-linear distortion is presented. The method is termed CELECT -

Corner Extraction via Local Edge Contour Tracing. An a-priori model

is not used, so the CELECT method has general applicability to any

image containing continuous distortion. It is shown to extract corners

successfully from distorted images for which, until recently, only manual

methods operated successfully. It is a practical aide to planar chessboard

camera calibration techniques for non-conventional cameras.

20



Chapter 1 – Introduction

• A significantly improved complete method for the generic calibration of

central cameras is proposed. Benefits are achieved through the use of a

synthetic pinhole image plane in the linear estimation stage that provides

a key link between pinhole calibration and non-pinhole calibration of

central cameras, which had not previously been identified. The method

is termed CGSP - Central Generic Synthetic Pinhole calibration. This

method is less complicated and more accurate than the existing central

generic calibration method.

• A novel calibration framework for the calibration of flexible mirror imag-

ing systems is presented. Based on this, a calibration method that oper-

ates on scene points is proposed, which is termed SPFC2 - Scene Point

based Flexible mirror Camera Calibration. The SPFC2 method provides

several benefits over the only existing method specifically for calibrat-

ing flexible mirror imagers. Changes in the mirror shape are estimated

through a dynamic calibration stage, so that the calibration is updated

after mirror deflection rather than being completely recalibrated.

Minor Contributions

Minor contributions are subsidiary considerations that were key to the achieve-

ment of the main thesis objectives, but that do not stand alone as significant

contributions.

• A study and comparison of the relative performance and applicabil-

ity of standard central generic calibration versus standard perspective

camera calibration is conducted. The results demonstrate the invari-

ance of generic calibration of the general camera model to increasing

non-linear camera distortion. For mid to high distortion the standard

generic method is clearly shown to be more effective than the pinhole-

plus-distortion calibration.

• A performance characterisation of active grids with respect to static grid

corner detection methods for generating accurate calibration input data

is conducted. Despite the frequent use of active grids in calibration, the

relative performance had not previously been examined in the literature.

• The application of a linear pose estimation technique to central general
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cameras for improved generic calibration efficiency is expounded. The

linear technique provides speed and accuracy improvements over the pose

estimation method of standard generic calibration, and is more amenable

to inclusion in a RANSAC framework.

• Structure and motion estimation and object reconstruction for a flexible

mirror camera are implemented and evaluated through experimentation,

demonstrating how existing multiview techniques can be applied to flex-

ible mirror imaging systems.

• Modifications to the SPFC2 calibration method are made to investigate

the possibility of flexible mirror camera self-calibration. Experimental

results towards achieving this are presented and discussed.

Key elements of code relating to the most important contributions will be

made freely available on the Vision Systems Group code repository5.

1.5 Thesis Organisation

Chapter 2 examines existing camera models and their treatments of camera dis-

tortion for pinhole, perspective, wide-angle, omnidirectional, and non-central

cameras. The general camera model is described in detail and is contrasted

with the parametric camera distortion models. The chapter concludes with a

comparative study of central generic calibration versus standard perspective

camera calibration for the calibration of simulated and real wide-angle cam-

eras. The accuracy and robustness to increasing non-linear distortion of the

calibration methods are examined.

Chapter 3 firstly addresses the extraction and ordering of chessboard grid cor-

ners from images for subsequent camera calibration. CELECT, a novel semi-

automatic method of corner detection and ordering that can extract chess-

board grid corners from images with severe non-linear distortion, is presented

and evaluated. This chapter secondly presents a performance characterisation

of active grids for use in camera calibration. The accuracy and robustness of

active grids is benchmarked against two existing methods of corner localisation

typically applied to chessboard grid images during calibration.

5http://www.vsg.dcu.ie/code.html
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Chapter 4 deals with the application of generic calibration to central cameras.

Major improvements to the existing method are proposed, resulting in the

CGSP method, that are shown through both simulated and real experiments

to enhance significantly the accuracy and robustness of central generic calibra-

tion. A new linear estimation stage utilising active grids and an alternative

pose estimation method enable the improvements. A side by side comparison

with the standard generic method is conducted with respect to a ray-point

error metric, to calibration parameters, to camera centrality and to distortion

correction for both a real hyperboloidal catadioptric camera and a real fisheye

camera.

Chapter 5 investigates the calibration of flexible mirror imaging systems. The

SPFC2 method, a novel two-stage calibration method that acts to update the

current calibration, is presented. The method requires only two images of a

chessboard calibration grid for calibration after each deflection. Extensive eval-

uation is performed on the SPFC2 method for distortion correction, structure-

from-motion, and object reconstruction tasks. The chapter concludes with an

examination of possible extensions of the method towards self-calibration.

Chapter 6 summarises the principal contributions of the thesis. Some direc-

tions for further research are outlined, and a list of publications arising from

the work in this thesis is provided.
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Chapter 2

General Camera Model and

Generic Calibration

Camera calibration is possibly the most fundamental task in computer vision.

It is the camera specific process of determining how the 3-space world relates

to the 2D image space of the camera. The requirement of deriving any type of

metric information from an image necessitates prior camera calibration. Al-

though the phrase camera calibration is universally used, the more complete

phrase is camera model calibration. This reveals the fact that it is a model

of the camera that is actually being calibrated, and highlights the important

role that models play in the calibration process. By camera model is meant

the mathematical structure that describes the projection operation of a cam-

era. Calibration can be considered to be the determination of the numerical

quantities that complete the camera model.

This chapter begins by introducing some of the varied camera models that have

been developed by the computer vision community, beginning with the pinhole

model in Section 2.1. The pinhole camera model is fundamental to many cam-

era calibration schemes, as it provides a convenient projection scheme that is

linear (up to scale) in first order homogeneous coordinates. However, pinhole

cameras are poor standalone models for cameras that contain distortion. The

non-conventional cameras that are the focus of this thesis all contain signifi-

cant non-linear distortion, and so camera models that move beyond the pinhole

model are considered. Some such models advance the pinhole model by aug-

menting it with distortion terms to capture the non-linear camera distortion,
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whilst for more severe distortion entirely new models are necessary. Section

2.2 examines the camera models for practical perspective and non-conventional

cameras by way of their associated distortions.

It is seen that many of the camera models are tied to specific camera types, and

that the number of parameters varies between different models and different

cameras. A unifying camera model for all camera types would make camera

specific model selection redundant and allow a consistent approach to the

calibration of any camera. Such a model is the general camera model that

was proposed by Grossberg and Nayar (2001). This non-parametric model

is described in detail in Section 2.3. General camera modelling is eminently

suitable for application to the non-conventional imaging systems in this thesis,

and so the task of calibrating the general camera model must be investigated.

Section 2.3 describes the most basic general model calibration method, which

is conceptually simple but requires a very precise experimental setup in prac-

tice. An alternative and less constrained calibration method, termed generic

camera calibration, has more recently been proposed for the calibration of gen-

eral cameras. The method, its component steps, and the implementation of

the key steps for the case of central cameras are described in detail in Sec-

tion 2.4. Having detailed the generic calibration method, a question arises as

to the accuracy and performance benefits of the generic calibration method

and general model over more established pinhole-plus-distortion techniques.

Section 2.5 attempts to answer this question by providing a comprehensive

evaluation of central generic calibration with respect to a standard planar cal-

ibration method. Experiments are conducted on simulated and real data, with

the firm conclusion that the generic calibration method has the capability to

outperform the standard parametric approach for imaging systems with sig-

nificant distortion. The results demonstrate the benefits of generic calibration

for non-conventional central cameras.

2.1 Pinhole Camera Model

The most basic camera model is the pinhole model. It assumes that all light

rays captured by the camera are concurrent at a single point, called the camera

centre, or equivalently that the camera aperture is infinitely small. The cam-
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era obscura is the first recorded example of a pinhole camera. The concept of

the camera obscura was explored as early as 500BC, and it gained popularity

with European artists during the Renaissance in the 16th century. It was con-

structed by placing a small hole in a sheet of opaque material, allowing light

rays reflected from the scene to pass through the pinhole and form an inverted

image on a plane on the opposite side of the sheet. Artists then used the

image to produce accurate perspective drawings of the scene. A true pinhole

camera has no distortion but is not possible to realise in practice due to the

infinitely small aperture requirement. However, since many perspective cam-

eras with low distortion can be approximately modelled as pinhole cameras, it

is beneficial to examine the pinhole model in more detail.

Pinhole camera properties that are independent of the camera position and

orientation are termed intrinsic parameters, and are captured by the camera

calibration matrix, K

K =




αf s px

0 f py

0 0 1


 (2.1)

where f is the focal length of the camera, px and py are the principal point

offsets that describe the location of the intersection of the principal axis with

the image plane in image coordinates, s is the camera skew, which accounts for

skewness in the camera sensor elements, and α is the aspect ratio of the pixel

height to the pixel width of the camera pixels. If knowledge of the pinhole

camera pose is available then 3-space scene points, Xi, can be mapped to

image coordinates, xi, through the camera projection matrix, P , as

xi ' PXi (2.2)

where

P = KR
[
I3×3| − C̃

]
, (2.3)

R is the rotation of the camera in the world coordinate frame, and C̃ is the

camera centre location in world coordinates. R and C̃ are the extrinsic camera

parameters. A pinhole camera is completely calibrated when all the intrinsic

and extrinsic camera parameters are known.

26



Chapter 2 – General Camera Model and Generic Calibration

2.2 Camera Distortions

Images from all practical cameras contain some image distortion due to the

camera’s physical construction. Image distortion is geometric distortion that

displaces pixels from their correct image position but that does not alter the

pixels in any other way. It is solely due to the properties of the camera used

to capture the image. Random aberrations in the camera image sensor, such

as those caused by thermal noise and quantisation, are considered to be image

noise and not image distortions. Furthermore, in the examination of image

distortion in this thesis, distortion due to chromatic aberration, and defocus

blur due to mirror curvature in catadioptric systems, are not considered.

The distortion introduced into images from dioptric cameras, which are cam-

eras that incorporate refractive-only optical elements, will be referred to as lens

distortion. Due to this distortion such cameras do not exactly fit the pinhole

camera model. Catadioptric camera systems, which incorporate both reflective

and refractive optical elements, can introduce both lens and mirror distortion

into the image. Camera calibration must capture these distortions if it is to

faithfully describe the mapping between 3-space points and image coordinates.

It is therefore beneficial to briefly examine the image distortions resulting from

practical cameras, and in particular non-conventional cameras. In the area of

photogrammetry, where the focus is on high precision calibration, high order

models are employed in order to describe accurately the distortions of practi-

cal cameras. However, the level of accuracy required in most computer vision

tasks is generally not as demanding, leading to the use of approximate models

that are easier and faster to incorporate into calibration and multi-view frame-

works. The wide variety of camera types finding practical application has led

to a diverse range of camera distortion models.

2.2.1 Perspective Camera Distortion

Many perspective camera calibration methods model the camera with a pinhole

model augmented by distortion terms that describe the non-linear lens distor-

tion. The two principal lens distortions present in most perspective cameras

are radial lens distortion, caused by camera lens optical non-linearities, and de-

centering lens distortion caused by misalignments between the camera lenses.
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However, in most cameras the radial distortion is of significantly larger mag-

nitude than the tangential distortion (Wei and Ma, 1994, Tsai, 1987), leading

many perspective camera models to drop the tangential distortion terms.

Radial distortion is typically modelled using an image displacement approach,

whereby the displacement of an image pixel from its distortion-free location is

a non-linear function of the pixel’s distance from the distortion centre of the

image. Possibly the simplest such model is the one-parameter divisional model

of Fitzgibbon (2001). As it is designed for the simultaneous estimation of radial

distortion and multi-view geometry, and in particular for the task of matching

across image frames in a sequence, it does not achieve high accuracy. The

dominant forward model for radial distortion, derived from the wave aberration

equation (Mallon, 2005, Mallon and Whelan, 2007a), is

p̆ = p + p(k1r
2 + k2r

4 + . . .) (2.4)

where p and p̆ are the distortion-free and distorted lens-centric image coordi-

nates, respectively, r is the Euclidean distance of p from the distortion centre,

and ki are the radial distortion coefficients. The polynomial order of the dis-

tortion model is chosen in accordance with the desired accuracy. However,

for perspective cameras, the accuracy of the model is dominated by the first

coefficient. The popular method of Zhang (1998) employs a two parameter

radial distortion model of the form of Eqn. 2.4. Heikkila and Silven (1997)

present a camera model that also utilises this distortion model, but it is aug-

mented with a two parameter tangential distortion model. Hartley and Saxena

(1997) capture radial distortion by a cubic rational polynomial model with 80

parameters.

2.2.2 Wide-Angle and Fisheye Distortion

Wide-angle cameras are dioptric cameras that are designed to have increased

FOV over perspective cameras. Wide-angle cameras that have very large

FOVs, possibly exceeding 180o, are generally termed fisheye cameras. Whereas

for perspective cameras the lens distortion present is not designed in and is

undesirable, for wide-angle and fisheye cameras the lens distortion is carefully

designed into the camera as a means to increase the image FOV. The distortion

is once again predominantly radial, is non-linear, and is typically too severe to
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allow the application of the low order distortion models discussed in Section

2.2.1.

Two approaches to dealing with lens distortion in wide-angle and fisheye cam-

era models appear in the literature. The first approach treats the distortion as

non-linear deviation from the pinhole model, and thus is an image displacement

approach. In the second approach, the pinhole model is discarded in favour of

a specific fisheye projection model, so that there is a transformation directly

from incident rays to fisheye image points. The more severe the distortion, the

more accurate is the latter approach. The image displacement approach will

fail for fisheye cameras with FOVs greater than or equal to 180o, since in these

cases there is no single plane with which all the camera rays can intersect.

The image displacement approaches to distortion simply extend the models

of Section 2.2.1 by increasing the number of parameters used. The divi-

sional model (Fitzgibbon, 2001), with between 3 and 8 parameters, is used by

Thirthala and Pollefeys (2005b) for modelling radially symmetric wide-angle

cameras. Shah and Aggarwal (1994) separately model radial and tangential

distortion for fisheye cameras using 5th order polynomials, resulting in a 10

parameter model. Claus and Fitzgibbon (2005) presented a rational function

distortion model for fisheye cameras, requiring 18 parameters, that modifies

the pinhole projection model of Eqn. 2.2 to operate on the lifted 6-dimensional

space inhabited by the zeroth, first, and second order image points.

Specific fisheye camera models are required for the approaches to modelling

lens distortion that are not based on the pinhole model. Ideal fisheye cameras

are radially symmetric, and so they have a camera model of the form

p = r(θ)

[
cos ϕ

sin ϕ

]
(2.5)

where θ is the angle between the incoming ray and the camera principal axis,

r(θ) is the projection function, and ϕ is the angle of the incoming ray about the

principal axis. The projection function effectively models the radial distortion.

Three common fisheye projection functions (Kannala and Brandt, 2006) are

Equidistance : r(θ) = fθ (2.6)

Equisolid angle : r(θ) = 2f sin
θ

2
(2.7)

Stereographic : r(θ) = 2f tan
θ

2
(2.8)
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These functions are convenient for modelling fisheye distortion in experiments

with synthetic data as they enable the extent of fisheye distortion to be easily

related to the FOV. Precise radial undistortion with these models is also easily

accomplished. However, in practice the distortion that exists in fisheye images

requires a more complicated model to capture the non-linearities in camera and

lens assemblies. The single parameter FOV model of Devernay and Faugeras

(2001), which is based on the equidistance model of Eqn. 2.6, is an exception,

although it still requires application of the radial distortion model of Eqn. 2.4

if significant distortion is present. In order to achieve improved accuracy while

still using a low order model, Micusik and Pajdla (2006) present two fisheye

camera models that augment Eqn. 2.6 with an additional parameter. Their

models are determined for specific fisheye lenses as a compromise between

high accuracy and a small number of parameters. Kannala and Brandt (2006)

presented the following fisheye distortion model

p̆ = p + ∆r(θ, ϕ) + ∆t(θ, ϕ) (2.9)

It extends the equidistance projection function as an odd-order polynomial

function of θ, and includes an explicit radial distortion term, ∆r, and a tan-

gential distortion term, ∆t. The complete model contains between 6 and 23

parameters, depending on the accuracy required and the amount of distortion

present.

2.2.3 Catadioptric Camera Distortion

The dominant type of catadioptric camera is that consisting of a single per-

spective camera imaging a scene reflected in one of several specific continuous

quadric mirror surfaces. Such cameras have FOVs that are greater than a

hemisphere and so are often called omnidirectional cameras. Depending on

the location of the camera relative to the mirror, catadioptric cameras are ei-

ther central or non-central (Baker and Navar, 1998) (see Section 2.3.1 for a

discussion on camera centrality).

The extent of the non-linear distortion in omnidirectional cameras is greater

than that in fisheye cameras in order to achieve the 360o FOV. As a conse-

quence, many models for specific catadioptric configurations of omnidirectional

cameras have been proposed, with the general trend in the literature being to

model the camera directly using the mirror surface geometry. Svoboda and
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Pajdla (2002) present such a modelling approach, in which a separate quadric

representation is used to model each of the three possible non-trivial cen-

tral catadioptric camera types (elliptical, paraboloidal, hyperboloidal). Geyer

and Daniilidis (1999) propose a similar set of camera models for catadiop-

tric cameras that are based on the mirror shape employed. In the case of a

paracatadioptric camera (Geyer and Daniilidis, 2002), the mirror focal length

and the mirror centre are the shape specific model parameters. Associating

catadioptric cameras with mirror geometry implies knowledge of the geome-

try, and assumes that the mirror surface does not deviate or aberrate from this

geometry.

Other researchers have taken a more general approach to omnidirectional dis-

tortion, by using a high order model to approximate any of the omnidirectional

cameras. Tardif et al. (2006) propose a camera model based on varying focal

length that is applicable to any camera whose camera rays are radially symmet-

ric. Distortion is captured by a distortion function that directly maps image

coordinates to camera rays. They use a full-order polynomial divisional model

for the distortion function, where a 6 parameter model was employed in the pre-

sented experiments. The omnidirectional camera model of Scaramuzza et al.

(2006) is possibly the most commonly used omnidirectional model, principally

due to its inclusion in a freely available omnidirectional camera calibration

toolbox1. Due to the generality of the model, it can be applied to both fisheye

and central omnidirectional cameras, with the number of model parameters

incremented until the magnitude of the resulting reprojection error is accept-

able. The distortion model is integrated into the projection model by using a

general polynomial, so that a camera sensor point, p̆′, is mapped directly to

its associated camera ray, r, through

r = g (p̆′) '
[

p̆′

a0 + a2‖p̆′‖2 + a3‖p̆′‖3 + . . . + an‖p̆′‖n

]
(2.10)

where g(p̆′) is the projection function and {a0, a2, a3, . . . , an} are the model

parameters. Sensor points p̆′ are related to image points p̆ through an affine

transformation.

Geyer and Daniilidis (2000) develop a camera model based on the observation

that any central catadioptric camera projection can be represented by a central

1http://asl.epfl.ch/∼scaramuz/OCamCalibration/Scaramuzza OCamCalib.zip

(Accessed September 2007)
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projection onto a sphere, with the sphere centre as the centre of projection,

followed by a perspective projection onto a plane. The model parameters

depend on the mirror shape. Barreto (2006) extends this model to all central

cameras by incorporating single parameter radial distortion via the divisional

model into the central spherical projection stage. Ying and Hu (2004) also

extend the model of (Geyer and Daniilidis, 2000) to include fisheye cameras.

Mei and Rives (2007) augment the same model with radial and tangential

terms, containing 3 and 2 parameters respectively, in order to capture the

distortion inherent to the perspective projection in the model.

The catadioptric camera distortion models discussed up to this point are not di-

rectly applicable to non-central catadioptric cameras. Non-central catadioptric

cameras can be discontinuous, such as a catadioptric stereo system consisting

of a perspective camera viewing multiple planar mirrors with skewed normals,

or they can be continuous such as a perspective camera viewing a smooth

non-planar mirrored surface, where, if the surface is quadric, the camera is

not placed at a focus of the quadric. A flexible mirror imager is an example

of a continuous non-central catadioptric camera for which the types of distor-

tion are essentially unconstrained. Non-central camera models for spherical,

paraboloidal and hyperboloidal cameras have been presented by Micusik and

Pajdla (2004) for the case of inexact alignment between the perspective camera

and the mirror. Gonçalves and Araújo (2007) present a method for calibra-

tion of fully non-central camera configurations involving quadric mirrors that

is based on a 10 parameter model, where the model captures the mirror shape

in addition to the relative pose of the mirror and perspective camera viewing

it. However, parametric models for non-central catadioptric cameras whose

mirror geometries are non-quadric have not been presented in the literature.

2.2.4 Exotic Cameras and Distortions

Many camera types with exotic projection properties and that are difficult

to collectively categorise have been proposed and analysed in recent years.

Such camera types stand between central cameras with parametric models

and completely general cameras that do not have parametric models, and they

induce distortions that are typically very specific to the camera type.

Crossed-slits, or X-slits, camera models describe cameras that consist of two
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non-concurrent planes, each containing a slit, placed arbitrarily in front of the

camera image plane. Perspective projection and linear pushbroom projection

are both special cases of the X-slits projection. The projection of every 3-

space point for an X-slits camera is defined by the line that passes through

the point and intersects both slits. The distortion in X-slits images is depth

dependent, and due to occlusions there is no way to remove it even if the scene

geometry is known. Zomet et al. (2003) studied the X-slits camera model

and presented methods for synthesising X-slits image mosaics from a series of

perspective camera images with ego-motion (image-based rendering). Feldman

et al. (2003) have developed the epipolar geometry of the X-slits projection

model, and present the analogue of the fundamental matrix for X-slits cameras.

Pless (2003) examined the epipolar geometry of general cameras consisting of

a network of arbitrarily located perspective cameras. Sturm (2005) analysed

the multi-view geometry of axial cameras, which are cameras in which all rays

touch a single line called the camera axis. Menem and Pajdla (2004) combine

the pinhole camera model with a dedicated circular panorama model in order

to develop the two-view relations between perspective and circular panoramic

images. Each of these cameras have unique distortions that are camera specific,

and so distortion removal must be considered through an examination of the

associated camera projection scheme.

2.3 General Camera Model

The previous section outlines the type of distortion present in each category

of camera. The variety of camera distortion types that must be considered

for camera calibration is shown to have led to the development of a large

selection of parametric camera models that are tailored to specific camera and

projection types. As the camera distortion increases, the parametric models

become more complex and the associated calibration methods are increasingly

specific. Naturally it would be beneficial to have a camera model that is cross-

camera compatible. The general camera model is such a model.

Grossberg and Nayar (2001) promoted the general camera model as a model

that can be applied to any camera, regardless of its inherent distortion. The

concept of the general model is extremely simple - each image pixel is mapped

to its corresponding 3-space camera ray via a lookup table, as shown in Fig. 2.1.
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In principle, the ray direction for each pixel is completely independent of the

ray directions of the surrounding pixels. General model calibration is then the

task of determining this mapping in order to generate the lookup table. Whilst

the augmented pinhole models require increasing numbers of parameters for

increasing accuracy, the general model is completely non-parametric since it

consists only of the lookup table. Thus it is rendered generally applicable, and

is even capable of catering for discontinuous cameras. Any camera, regardless

of its dioptric or catadioptric configuration, and independently of its centrality,

can be described completely by the exact same general camera model. Due to

the non-parametric formulation of the general model, it can capture camera

distortions caused by mirror surface imperfections or lens defects, a capabil-

ity that is not available with other methods. Grossberg and Nayar (2001)

proposed a raxel, or ray pixel, to describe the virtual photosensitive element

that measures the light energy of a compact bundle of rays represented by the

single incoming ray that is associated with a pixel in the general model. Each

raxel has a set of geometric, radiometric, and optical properties. However, in

this thesis only geometric properties are considered, and thus the term camera

rays rather than raxels is utilised. When only considering the geometric cam-

era properties, the general model is similar to the model used by Champertous

et al. (1992).

2.3.1 Central and Non-Central Cameras

When moving away from the pinhole and pinhole-plus-distortion models to

discuss the general camera model, the concept of camera centrality must be

considered. A central camera has all camera rays concurrent at a single ef-

fective point (Baker and Navar, 1998) called the camera centre or the optical

centre. Each camera ray of a central camera is therefore determined by its

normalised direction in conjunction with the single camera centre. Such cam-

eras are sometimes termed single viewpoint (SVP) cameras (Tardif and Sturm,

2005). For non-central cameras, there is no limitation on either the concur-

rency or the intersection of camera rays. Therefore to describe a camera ray

from a non-central camera requires both the ray direction and a point on that

ray, termed the anchor point, as shown in Fig. 2.1. Every anchor point is

distinct in the most general non-central camera.
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Fig. 2.1: The general camera model. Image pixels map to rays in 3-space via

a lookup table of Plücker matrices, Mi.

2.3.2 Plücker Line Representations

Rays in 3-space are conveniently described homogeneously by Plücker repre-

sentations. For any two non-concurrent homogeneous points, A and B, the

Plücker matrix representation, M , of the line passing through both points is a

4× 4 matrix that is calculated as

M ' ABT −BAT (2.11)

This representation has the properties of being invariant to the points chosen

on the line, and to being skew-symmetric. Plücker matrices are used to describe

viewing rays in the general camera model. It will be seen in Chapters 4 and

5 that an alternative Plücker representation of lines is more convenient for

structure-from-motion tasks with general cameras. Plücker coordinate vectors,

L, are 6 × 1 vectors that can be derived directly from their corresponding
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Plücker matrices as

N =




M41 −M14

M42 −M24

M43 −M34

M32 −M23

M13 −M31

M21 −M12




(2.12)

Note that if a ray passes through the origin of the coordinate system in which it

is being represented, then the last three components of its Plücker coordinate

vector are 0.

2.3.3 General Model Calibration

The general camera model, being non-parametric, requires a completely dif-

ferent method of calibration than methods proposed for the camera models

described in Section 2.2. Along with their proposal of the general camera

model, Grossberg and Nayar (2001) presented a method for calibrating the

general model. The method is conceptually straightforward: for each image

pixel, determine two points in 3-space that this pixel sees, then calculate the

join of these two points to get the camera ray associated with that pixel, and

finally determine the ray’s Plücker matrix and store it in the lookup table. In

practice, the 3-space points seen by each image pixel are determined by imag-

ing a planar calibration grid in two known positions and locating the points

on the grid in each position seen by each pixel. A schematic of the calibration

process is shown in Fig. 2.2(a). The relative transformation (usually a trans-

lation) between the two grid positions, T1, must be accurately known in order

to achieve a good calibration. The convenience of the calibration method is

thus compromised by the need for precise motion control. This contrasts with

the perspective camera calibration methods for which the experimental setup

consists only of a planar calibration grid in general positions.

2.4 Generic Calibration

Generic camera calibration was proposed by Sturm and Ramalingam (2003)

to circumvent the need for precise motion control when calibrating general
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(a) (b)

Fig. 2.2: Calibration configurations for (a) the general calibration method;

(b) the generic calibration method. The case of central cameras is shown for

simplicity.

cameras. As with the calibration method described in the previous section,

the goal is to determine the ray direction corresponding to each image pixel.

This is achieved in generic calibration by determining the points seen by a

pixel on each of three differently orientated calibration grids2. Once each ray

direction has been calculated, its Plücker matrix is computed and stored in a

lookup table as before. Although generic calibration requires an extra grid, the

grids can be located in general position without any a-priori knowledge of their

poses in the world coordinate system. Thus there is no need for precise motion

control in generic calibration, leading to an easier calibration configuration.

The generic calibration setup is illustrated in Fig. 2.2(b), where T1 and T2 are

initially unknown but are determined during the calibration process.

The generic calibration process proposed by Sturm and Ramalingam (2003,

2004) is summarised in Algorithm 1. This calibration method will hereafter

be referred to as the standard generic method. The focus of Chapter 4 of

this thesis is generic calibration for central cameras, and thus a more detailed

discussion of stages 3 and 5 of the central version of the standard generic

method is presented in the following sections.

2Other versions of generic calibration that operate on non-planar calibration targets are

also presented by Sturm and Ramalingam (2003). However, while planar calibration grids are

easily formed by attaching a grid printout from a desktop printer onto a planar substrate,

accurate 3D calibration targets must be made with machining tools. In the interest of

achieving efficient and practical calibration, this thesis focusses on generic calibration with

planar grids.
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Algorithm 1 Standard generic camera calibration using planar calibration

targets

1. Image a calibration grid in a minimum of three different poses such that

there is overlap between grid pairs in the image. Take additional overlap-

ping images of the calibration grid in various poses so as to completely

cover the image FOV

2. Determine the location seen by each pixel on each grid

3. Linearly estimate the poses of the calibration grids using this data

and the known constraints. If the camera is central, linearly estimate

the effective camera centre.

4. Bundle adjust in order to refine the poses of the initial grids and the ray

directions

5. Estimate the pose of each of the additional grids, and subsequently

the ray directions of additional rays, using geometric constraints followed

by bundle adjustment

6. Store all the ray directions as Plücker matrices in a look-up table

2.4.1 Linear Estimation

The linear estimation stage of the standard generic method for central cameras

is based on a collinearity constraint: for each camera ray, the camera centre

and the world coordinates of the intersection point of that ray with each of the

initial calibration grids are collinear. The world coordinate frame is chosen to

be coincident with the local coordinate frame of the first grid, and that grid is

termed the base grid. A mathematical expression for the constraint is derived

by first stacking the world homogeneous coordinate for the centre and for the

intersection points of a single ray with each calibration grid in a 4× 4 matrix


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x + R2

22Q
2
y + t22Q

2
w R3

21Q
3
x + R3

22Q
3
y + t32Q

3
w

Cz 0 R2
31Q

2
x + R2

32Q
2
y + t23Q

2
w R3

31Q
3
x + R3

32Q
3
y + t33Q

3
w

Cw Q1
w Q2

w Q3
w




(2.13)

where C = [Cx Cy Cz Cw]T is the unknown camera centre, Ri
mn is the element

in row m and column n of the unknown rotation matrix that describes the

pose of grid i, ti =
[
tix tiy tiz

]T
is the unknown translation of grid i, and Qi =[

Qi
x Qi

y Qi
z Qi

w

]T
is the known intersection point of the ray with grid i in
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Table 2.1: Coefficients used in Eqns. 2.14

i j k Vi Wi Mi Ni

1 x x 0 R2
31 0 R3

31

2 x y 0 R2
32 0 R3

32

3 x w 0 −Cz + t1z 0 −Cz + t2z

4 y x R2
31 0 R3

31 0

5 y y R2
32 0 R3

32 0

6 y w −Cz + t2
z 0 −Cz + t3

z 0

7 w x −CyR2
31 + CzR

2
21 −CxR2

31 + CzR
2
11 −CyR3

31 + CzR
3
21 −CxR3

31 + CzR
3
11

8 w y −CyR2
32 + CzR

2
22 −CxR2

32 + CzR
2
12 −CyR3

32 + CzR
3
22 −CxR3

32 + CzR
3
12

9 w w −Cyt2
z + Czt2

y −Cxt2
z + Czt2

x −Cyt3
z + Czt3

y −Cxt3
z + Czt3

x

grid is local coordinate frame. Qi
z values do not appear in Exp. 2.13 as the

intersection points by definition lie on the intersecting plane. Exp. 2.13 can

be extended by including an additional column for each additional calibration

grid with which the ray intersects, but only the minimal case of three grids is

shown here for presentation clarity. The collinearity constraint is enforced by

ensuring that all 3 × 3 subdeterminants of the matrix in Exp. 2.13 equal 0.

The subdeterminants that include the first 2 columns and the last 2 rows are

used to form the following homogeneous equations

9∑
i=1

Q1
jQ

2
kVi = 0

9∑
i=1

Q1
jQ

2
kWi = 0

9∑
i=1

Q1
jQ

3
kMi = 0 (2.14)

9∑
i=1

Q1
jQ

3
kNi = 0

where the values of vectors V, W, M and N, shown in Table 2.1, are computed

up to scale using least squares.
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The coefficient pairs are brought to common scale factors λ1 and λ2 as

V′ = λ1V (2.15)

W′ = λ1

(
V4

W1

)
W (2.16)

M′ = λ2M (2.17)

N′ = λ2

(
M4

N1

)
N (2.18)

and by multiplying variables from Table 2.1 the matrix equation of Eqn. 2.24

is formed, which is rewritten as

Au = x (2.19)

A is rank 12, so u can be extracted in a subspace spanned by the particular

solution and two basis vectors

u = a + l1b + l2c (2.20)

Next constraints on the rotational elements, resulting from the orthonormality

of rotation matrices, are applied to form a new matrix equation, given in

Eqn. 2.25, which is rewritten as

Dv = y (2.21)

D is rank 5 and so v can be extracted in a subspace spanned by 4 vectors

v = d + g1e + g2f + g3h (2.22)

By simulation it has been shown that certain elements of these vectors are

always 0, allowing a solution to be obtained for {l1, l2} and hence u. Finally,

the solutions for the camera centre and unknown poses are obtained as

Cx = u1 Cy = u2

Cz = ±
√

u6u6+u7u8

−V ′4V ′5

λ1 = ±
q

u2
5+u2

7+(V ′4Cz)
2

Cz
λ2 = ±

q
u2
11+u2

13+(M ′
4Cz)

2

Cz

R2
11 = u5

λ1Cz
R2

12 = u6

λ1Cz

R2
21 = u7

λ1Cz
R2

22 = u8

λ1Cz

R2
31 =

V ′4
λ1

R2
32 =

V ′5
λ1

R3
11 = u11

λ2Cz
R3

12 = u12

λ2Cz

R3
21 = u13

λ2Cz
R3

22 = u14

λ2Cz

R3
31 =

M ′
4

λ2
R3

32 =
M ′

5

λ2

t2x = u3+λ1CxCz

λ1Cz
t2y = u4+λ1CyCz

λ1Cz

t2z =
λ1Czt2y−V9

λ1Cy
t3x = u9+λ2CxCz

λ2Cz

t3y = u10+λ2CyCz

λ2Cz
t3z =

λ2Czt3y−M9

λ2Cy

(2.23)
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The final columns of R2 and R3 are calculated as the cross products of their

first two columns.

2.4.2 Pose Estimation

Pose estimation is necessary in generic calibration in order to allow the entire

FOV of the camera to be calibrated. After completion of the linear stage, the

Plücker matrices for the rays that intersect any of the three initial grids are

known, but the remaining ray directions have still to be determined. By imag-

ing an additional calibration grid in a position such that some of the previously

calibrated rays intersect with it, the grid’s pose can be estimated. Then the

unknown ray directions can be determined directly from their intersections

with the additional grid and from the pose of the additional grid.

The pose estimation scheme of the standard generic method, which can be

applied to both central and non-central cameras, is based on solving a set

of simultaneous second order equations. Given calibrated rays i and j, the

distance dij between their intersections with the calibration grid of unknown

pose can be determined directly. The depths λi and λj of the intersection

points, measured along the ray directions {ri, rj} from the ray anchor points

{Ai,Aj}, can be computed by simultaneously solving

||Ai + λiri −Aj − λjrj||2 = d2
ij (2.26)

for i, j = {l, m, n}, i 6= j. Additional rays are used to determine the correct

pose from the eight possible solutions (four sign-reflected pairs).

2.5 Performance Comparison of Generic and

Pinhole-plus-Distortion Camera Calibra-

tion

This section provides a benchmark of the performance of the central generic

calibration method with respect to the well known and well understood stan-

dard perspective camera calibration method of Zhang (1998). The goal is to

inform the practitioner of the level of precision to be expected with the generic
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calibration strategy. As the comparison is conducted with respect to a radi-

ally distorted perspective model, this is the imaging modality that is utilised.

Favorably, due to the properties of the general model, the same performance

levels can be equally extended to other imaging modalities.

The calibration work of Sturm and Maybank (1999) and of Zhang (2000) were

the first that fully exploited multiple views of planar grids taken from un-

known viewpoints. These works describe how to obtain linear constraints on

the intrinsic parameters of the camera from homographies between the scene

and image planes. Mainly due to an executable distributed by Zhang3 and

an open source implementation within the OpenCV library, this plane-based

approach has become a standard tool for calibrating perspective cameras, and

will hereafter be referred to as the standard perspective method. Thus, as this

method is widely used, and its performance has been well characterised, it is

used to benchmark the performance of the central generic calibration method.

Lens distortion is modelled in the standard perspective calibration method

using Eqn. 2.4 in a final full nonlinear estimation process.

The results are primarily compiled over simulated data. These findings are

subsequently validated on real image samples. For the simulated data, com-

parative experiments are designed to characterise the sensitivity to noisy input

data, and to assess the nonlinearity removal with respect to increasing lens dis-

tortion. With real images, three samples with increasing FOV are used. These

are similarly analysed for residual distortion levels after performing distortion

correction, and for a motion estimation experiment.

2.5.1 Experiments with Synthetic Data

Two experiments are conducted using data for a synthetic camera with a 640×
640 resolution. Firstly, the sensitivity to noise of the central generic calibration

method is compared with the sensitivity to noise of the standard perspective

method. Increasing levels of Gaussian noise are induced in the locations of

999 random image points, and then each calibration technique is implemented

using the resulting data. This process is conducted 50 times for each level

of noise, whereupon the distortion residual statistics shown in Fig. 2.3(a) are

computed. Note that for the central generic method the noise causes millimetre

3http://research.microsoft.com/∼zhang/calib (Accessed November 2006)
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Fig. 2.3: Mean and standard deviation of distortion residuals for the standard

perspective and central generic methods under (a) increasing noise; and (b)

increasing distortion.

error in the ray-plane intersections, which is computed by back-projection

of the noisy pixel data onto each plane. As with the standard perspective

method, the effect of noise in the central generic method is shown to be linearly

proportional.

The second experiment aims to investigate the precision of the calibration

in terms of removing nonlinearities due to lens distortion. Increasing levels

of lens distortion are simulated with the equidistance distortion function of

Eqn. 2.6, which is chosen to be different from the distortion model used in

the standard perspective calibration method. The model is manipulated to

give an increasing field of view from 30o to 150o. Distortion residuals following

calibration are compiled over 50 trials with 999 random points. Fig. 2.3(b)
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shows the resulting statistics. As expected, for high distortion the residuals

of the standard perspective method increase. However, the generic method

residuals maintain a low mean and standard deviation throughout. This level

of performance can be expected regardless of the imaging modality due to

the non-parametric nature of the general model. The increase in the mean

and the standard deviation of the residual at 150o for the generic method can

be attributed to the infinite planes used in the synthetic experiments. For

certain camera rays and plane pose configurations the acute angles between

the rays and the calibration planes with which they intersect can be very

small. Consequently the local coordinates of these intersection points are more

sensitive to noise than those intersection points for which the rays are less

acute. When using infinite planes the noise is thus magnified at the periphery

of the camera FOV, and it increases as the FOV increases. In calibrations with

real data the calibration grids have finite extent, thus limiting the minimum

acute angle between the rays and the grids.

Forming distortion corrected images is a 3-space operation within the generic

calibration approach. As each pixel maps to a ray, distortion correction amounts

to determining the intersections of these rays with a synthetic image plane. In

the presented experiments, the synthetic plane is chosen as the plane that

passes closest to the grids used in the calibration and that is perpendicular

to the principal ray. As the location of this plane affects the scale and lo-

cation of the corrected image points, a homography is applied to map these

intersected points to their known metric positions. Since the homography is a

projective transformation it preserves collinearity, and thus it does not affect

the evaluation of the generic method for capturing non-linear distortions.

2.5.2 Experiments with Real Data

Three real images are analysed for each calibration method with respect to

distortion residuals, and one image set is analysed with respect to a motion

estimation task. Sample input images are shown in Fig. 2.4 that indicate the

levels of distortion present. These were taken at three different zoom levels

using a Nikon CoolPix 4500 camera fitted with a FC-E8 fisheye converter (183o

FOV).

Following calibration with both the standard perspective and central generic
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Fig. 2.4: Three levels of distorted images used in the experiments with real

data.

methods, the distortion residuals are measured after applying homographies

between the known metric grid structure and the perspectively corrected im-

ages determined from the calibration information. The statistics of the result-

ing residuals are presented in Table 2.2. The results show that the accuracy of

the generic calibration is less than that of the standard perspective method for

low distortion levels. As the level of distortion increases, the magnitude and

standard deviation of the errors for the standard perspective method increase,

while the generic method maintains its accuracy throughout. For image set 3,

a vector plot of the residuals for each method is shown in Fig. 2.5. This shows

a classic distortion bias pattern for the standard perspective method, caused

by the least-squares determination of the fitting homography, whereby the

parametric model overcompensates for distortion towards the image (distor-

tion) centre, and undercompensates towards the image periphery. In contrast,

although there is a systematic error in the generic method residuals, there is

no distortion bias present. The systematic error is possibly due to error in

the estimate of the camera centre. Chapter 4 proposes improvements to the

method of generic calibration that aim to reduce this error by way of improved

camera centre and grid pose estimation.

These results are in broad agreement with the simulated results - the error in

the standard perspective method increases as the distortion increases, whereas

the generic method is not sensitive to changes in distortion. The difference

in error magnitudes between the simulated data and real data results can

be attributed partly to the images used in the real experiments. Only the

areas covered by the grids in the images are undistorted, and thus distortion

residuals for the periphery of the images, where the distortion is greatest,

are not calculated. Grids do not cover complete images due to the difficulty in

accurately extracting corners of severely distorted grids. This issue is addressed
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Table 2.2: Mean and standard deviation of the distortion residuals after per-

spective correction for three real images. Error is measured in pixels.

Method Error type Image set

1 2 3

Standard RMS 0.09 0.13 1.20

perspective SD 0.03 0.06 0.67

Central RMS 0.65 0.72 0.68

generic SD 0.35 0.39 0.38
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Fig. 2.5: Vector plots of residuals for (a) the standard perspective method;

and (b) the central generic method. Vectors are scaled ×50.

in detail in Chapter 3, where a corner extraction method designed for severely

distorted grid images is presented.

A second experiment is also conducted to assess the calibration precision. This

involves calibrating with each method, and then performing a motion estima-

tion task. Images are captured of a planar grid attached to a linear motion

controller. Five images are taken with translation increments of exactly 25mm.

Homographies are calculated between each step and subsequently decomposed

to recover the motion. For calibrated images the homography H can be de-

composed as H =
(
R[1 2]|Rt

)
, where R is the relative rotation and t is the

translation. These translation vectors are plotted end to end in Fig. 2.6. For vi-

sualisation purposes, the difference between each vector and the average vector

is scaled by 20. As can be seen, the generic method outperforms the standard

perspective method in the recovery of the translation component.
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Fig. 2.6: Translation estimation using calibration data from the standard per-

spective method and from the generic method. Vector errors are scaled ×20.

2.5.3 Distortion Correction

Samples of perspectively corrected fisheye images formed using the results

from each calibration method are illustrated in Fig. 2.7. The camera zoom

setting corresponds to that of image set 2 in Table 2.2. Again the generic

method is seen to outperform the standard perspective method around the

periphery of the image. World vertical lines are off-vertical in Fig. 2.7(e)

due to the synthetic plane used for the distortion correction, as discussed in

Section 2.5.1. Nevertheless, straight world lines appear straight in the image,

indicating precise correction of distortion.

2.6 Discussion

This chapter introduces the fundamentals of camera calibration for application

in computer vision, and examines the current calibration approaches for a range

of camera types by way of the camera and distortion models. It is shown

that the majority of camera models in the literature are specific to certain

cameras. In contrast, the general camera model is applicable to any camera
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(a)

(b) (c)

(d) (e)

Fig. 2.7: (a) Original fisheye image; (b) perspectively corrected image using

standard perspective method calibration data; (c) enlargement of region con-

tained within red rectangle in (b), showing residual non-linear distortion; (d)

perspectively corrected image using generic method calibration data; (e) en-

largement of region contained within red rectangle in (d), showing removal of

all visible non-linear distortion.
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and so can overcome the difficulty of selecting the correct model and the correct

parameter set to most accurately capture distortion. The general model and

the generic method for its calibration are discussed, and further examined

through a performance comparison of central generic calibration and standard

perspective camera calibration.

Camera distortion inherent to perspective cameras is small, thus allowing the

pinhole model to encapsulate its operation. The importance of the pinhole

model, as discussed in Section 2.1, lies in its preservation of collinearity rela-

tionships and in the simplicity of its associated projection scheme. Deviation

from the pinhole model is induced by lens non-linearity for dioptric cameras,

and by lens and mirror non-linearity for catadioptric cameras. Section 2.2 dis-

cusses a hierarchy of camera distortions that are characterised by the camera

type. For perspective cameras, a simple polynomial radial distortion model,

using one or two parameters, is reported in the literature to remove the major-

ity of lens distortion. Tangential distortion in perspective cameras contributes

minimally to overall image distortion and is generally excluded from models

for such cameras. Image distortion necessarily escalates as the FOV of a cam-

era increases. For wide-angle and fisheye modalities the distortion is a desired

property that is designed into the associated camera lenses. Although some

proposed wide-angle camera models are simply extensions of the perspective

model augmented by additional radial distortion terms, for fisheye cameras

specific fisheye projection functions are generally employed that directly in-

corporate radial distortion. Catadioptric cameras are modelled using either a

geometric description of the mirror shape, or using a more general polynomial

approach. Relying on camera geometry implies that there is no aberration in

the mirror surface. Parametric models for describing non-central catadioptric

cameras have been presented for quadric mirror surfaces in which the camera

and mirror are misaligned with each other, but for general non-central cameras

no parametric models exist.

The brief review of camera models and distortion indicates that increasing

numbers of parameters, and increasingly complex parametric camera models,

are required as the camera type deviates from ideal pinhole. Section 2.3 dis-

cusses the general camera model proposed by Grossberg and Nayar (2001). It

is a unifying model that can be equally applied to all types of cameras, inde-

pendently of the distortion present in them, the mirror shape, or the radial

symmetry of the lenses. A lookup table captures the mapping between cam-
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era rays and image pixels, so the model is non-parametric. The versatility of

the model clearly makes it attractive for the calibration of non-conventional

cameras.

Two methods of calibration for the general camera model have previously been

proposed. The general calibration method, outlined in Section 2.3.3, is con-

ceptually simple but requires precise motion control during the calibration

process. Generic calibration was proposed as a more flexible alternative in

which the only requirement for calibration is a minimum of three images of

a planar calibration grid in different but unknown poses, and where the sec-

ond and third grids each have common overlap with the first grid. Generic

calibration algorithms vary slightly depending on the camera centrality, and

Section 2.4 details the algorithm for generically calibrating central cameras. In

particular, the linear estimation and pose estimation stages of the algorithm

are comprehensively presented, as these will be dealt with further in Chapter

4.

Section 2.5 provides a side by side comparison of central generic calibration

with the well established standard perspective camera calibration method of

Zhang (1998). Experiments are conducted with simulated data for sensitivity

to noise and to increasing distortion. Experiments with real data consider

three different levels of fisheye distortion, and analyse the calibrations in terms

of distortion correction and a motion estimation task. From the results it

is concluded that the generic calibration method achieves good performance

levels at low to mid distortions, although the standard perspective method

performs better for these distortions. Crucially, for higher distortion levels

the accuracy of the generic method is maintained, whilst the accuracy of the

standard perspective method significantly reduces. Overall, this performance

characterisation clearly shows that the performance of the generic calibration

method is effectively independent of the nonlinearities in the imaging sensor,

and thus it outperforms the existing standard perspective method when applied

to cameras incorporating significant distortion.

Generic calibration is further developed in Chapter 4, but first methods en-

abling convenient acquisition of input data for calibration must be addressed.
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Planar Grids for

Non-Conventional Camera

Calibration

Planar calibration targets, or calibration grids, are the de facto standard

method of calibrating cameras for computer vision tasks. They are easily man-

ufactured, for example by printing the grid pattern on a desktop printer and

then mounting the pattern on a planar substrate. For these reasons calibra-

tion grids dominate over 3D calibration targets in practical camera calibration.

This chapter examines two important issues that are encountered when using

patterned grids for accurate calibration of cameras with large image distor-

tion. Firstly the difficulty of extracting grid feature points in distorted images

is addressed. Many existing calibration methods for wide-angle and omnidi-

rectional cameras require calibration grid correspondences in order to perform

calibration (Mei and Rives, 2007, Scaramuzza et al., 2006, Bastardly et al.,

2008). The detection and ordering of calibration grid features in images from

such cameras is thus an important, but often overlooked, practical problem.

This chapter contributes a novel method for chessboard grid corner extraction

in images from non-conventional cameras. Secondly, the benefits of using dy-

namic grids displayed on a flat screen monitor for acquiring dense feature sets

for calibration are demonstrated. An implementation of these dynamic grids

is used to evaluate their performance with respect to accuracy and robustness

relative to standard chessboard grid localisation techniques.
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As discussed in Section 1.2.1, chessboard grid corners are immune to both

perspective bias and to distortion bias, whereas this is not the case for planar

grids consisting of circular dot patterns. In addition, Mallon and Whelan

(2007b) show that corner detection outperforms edge intersection detection

when recovering the pattern features from chessboard grids. Therefore this

chapter focuses on the detection and recovery of corners from images of planar

chessboard calibration grids. The extraction of corners from such images can

be conveniently broken into three stages - corner detection, corner localisation,

and corner ordering. Chessboard corner extraction for camera calibration can

be a difficult task when operating on images with significant distortion, such

as those produced by fisheye, omnidirectional, and flexible mirror cameras.

The distortion causes the corners to shift non-linearly in the image, and as a

result the corners in the image no longer lie on a regular grid. Consequently

many of the standard corner extraction methods that have been designed for

distortion-free cases will fail on such images. Generally failure occurs in the

ordering stage, since the corners no longer lie on straight lines joining corners

on opposite sides of the grid. The CELECT method, a new semi-automatic

corner detection and ordering method that is suitable for application to highly

distorted images, is proposed and detailed in Section 3.1.2. By taking an edge

contour tracing approach, parametric modelling and assumptions about the

image distortion are not required. Simulations demonstrating the robustness

of the method for synthetic data under varying conditions are presented in

Section 3.3.1. Experiments with real images from four different cameras with

large distortion are detailed in Section 3.3.2.

The remainder of this chapter addresses the issue of extracting dense and ac-

curate input data from planar calibration grids. The extraction and accurate

localisation of features in images of calibration grids results in a set of grid to

image correspondences. Feature density in the images depends on grid spac-

ing, grid size and camera to grid distance. However, there is a practical limit

to the density that can be achieved using such static grids. In general, cal-

ibration accuracy and robustness to noise improve as the density of feature

correspondences increases. As described in Chapter 2, the generic calibration

method requires knowledge of these correspondences in order to determine the

intersection points of camera rays with the calibration grid (i.e. the location

seen on the grid by each camera pixel). Generic calibration can achieve pixel

level calibration as discussed in Chapter 2, and thus it seems appropriate to
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use pixel level data as input for that method. Regardless of the calibration

method, dense feature data is desirable. Such data can be obtained by the use

of spatio-temporally varying grids displayed on a flat screen monitor. These

grids are termed active grids in this thesis, and while this method has fre-

quently been used previously (Grossberg and Nayar, 2001, Sagawa et al., 2005,

Bonfire et al., 2006, Tardif and Sturm, 2005) for acquiring dense feature point

sets for calibration, no discussion has been proffered on their performance for

calibration purposes. An explanation of the technique of active grids, and an

example implementation, are given in Section 3.2.2. Results on the charac-

terisation of their performance relative to standard localisation techniques are

presented in Section 3.3.3. Experiments with real images are documented in

Section 3.3.4. Finally, the accuracy of active grids for application to distortion

correction tasks for both continuous and discontinuous cameras is examined.

3.1 Detection and Ordering of Grid Corners

The proposed method for corner detection and ordering applies low-level im-

age processing operations in local windows in order to trace along grid edge

contours. This simple concept behind the algorithm gives the method broad

applicability. Edge contours are strong and robust features in images of cal-

ibration grids: by tracing a window along these contours, corner detection

and ordering are achieved in this window without resorting to global image

processing. Such a gradient approach overcomes the drawbacks of threshold

selection associated with region based detection and ordering methods. The

proposed method is termed CELECT, which stands for Corner Extraction via

Local Edge Contour Tracing. The method is semi-automatic: the user is re-

quired to select the four outer corners of the grid, and to enter the number of

grid corners in each row and in each column, width and height respectively.

Parametric descriptions of the grid contours are not assumed, therefore the

CELECT method can operate on cropped images (in which the distortion cen-

tre may not be near the image centre), and on images from non-conventional

cameras that contain significant distortion.

Prior knowledge of the distortion induced by a camera allows a model-based

detection and ordering algorithm to be applied (Sturm and Barreto, 2008, Mei

and Rives, 2007). However, the goal of the CELECT method is to achieve
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chessboard feature extraction from images with varying distortions caused by

distinctly different camera types. Parametric models for fisheye distortion,

omnidirectional distortion, and flexible mirror distortion do not all have sig-

nificant overlap. Furthermore, flexible mirror cameras can introduce such a

range of possible image distortions that the distortion is practically impossible

to model a-priori. In these cases, incorporating prior knowledge of camera de-

formation would reduce the general applicability of any method. In contrast,

the CELECT method can operate on continuous images from any camera type,

without the restrictions associated with the incorporation of camera models.

Ordering of chessboard corners is the most difficult part of chessboard feature

extraction for distorted images. However, the feature detection stage must

first be applied.

3.1.1 Corner Detection

In the locality around a chessboard corner feature in a distorted image, corner

detection can generally proceed in the same way as for distortion-free images,

since sufficiently small windows around the corner feature can be considered

to be distortion-free. The size of a sufficiently small window is a function

of the local image distortion. Corner detection has long been recognised as

fundamental to any computer vision task requiring feature points, and conse-

quently many corner detection methods have been presented over the years.

The Sobel, Roberts, Canny, Moravec and SUSAN detectors are some popu-

lar examples. Perhaps the most commonly used method is the Harris corner

detector (Harris and Stephens, 1988). Chessboard grid images present high

contrast between the dark and light squares, so the simplicity and efficiency of

the Harris detector makes it suitable for the detection stage of the CELECT

algorithm.

Harris Detector

The Harris corner detector improves on the Moravec corner detector by making

the detector response isotropic and smoothly windowed, and by incorporating

the variation of the filter response with the direction of shift. The detec-

tor is described by a 2 × 2 matrix M whose elements are partial derivative
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functions. When the filter is applied to a corner, both of the eigenvalues

of M are large; for an edge, one eigenvalue is large and one is small; for a

homogeneous region, both eigenvalues are small. The need to explicitly eval-

uate the eigenvalues is circumvented by calculating their sum and product as

trace(M) and det(M), respectively. The filter response, R, is then given by

R = det(M) − k (trace(M))2, where k is a tuning factor. This corner detec-

tor, incorporating a Gaussian smoothing window, is implemented to detect

chessboard grid corners in the CELECT algorithm.

3.1.2 CELECT Algorithm

Corner detection and ordering are carried out simultaneously in the CELECT

method. Beginning at the first corner, the algorithm steps along grid edge

contours, where the edge contour being traced is detected by applying a Hough

transform in a local neighbourhood around the current point. The next point

in the trace is selected as a point further along this contour. At each step

the Hough transform is reapplied, and the edge stepping process is repeated

until the distance to a specified end point is reached. Corners along the traced

contour are detected locally during the edge tracing and are stored for later

processing.

The algorithm first traces clockwise along the four outer contours of the grid,

beginning at the first user selected corner. For simplicity of explanation, and

without loss of generality, it will be assumed here that the first outer corner

selected is the upper left corner. Therefore when outer contour tracing is

completed, the algorithm traces down the column contours of the grid. Tracing

is achieved by applying a moving binary circular window to the current anchor

edge contour point, pcur, and then searching for an appropriate edge contour

point in the window to form the next anchor point, pnew, as shown in Fig. 3.1.

Within each window, lines detected by the Hough transform are filtered based

on their distance from the window centre and based on how their orientations

align with an estimate of the desired orientation. For a suitably small search

window, curved line segments can be detected by a Hough transform. This

is similar to the approach used by Devernay and Faugeras (2001) to extract

distorted lines in images. Corners are detected at each iteration by applying

the Harris detector to the windowed region. At the end of the tracing process

for each contour all the detected corners are processed by performing merging
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Fig. 3.1: Parameters used in the CELECT algorithm for detection and ordering

of chessboard grid corners.

and discarding according to simple rules, and the resulting corners are recorded

as ordered calibration grid corners.

The following sections present a detailed description of the algorithm and of

the variations in it that depend on the edge contour being traced.

Outer Edge Contours

The first step in the CELECT algorithm is to detect the four corner points ci

(i = 1, 2, 3, 4) closest to the four user selected outer grid corners in the image,

I. Next assign c1 to pcur. Apply a window Ar,pcur(I) to I, where the window

radius is r and the window centre is pcur. Corners nq in the windowed region

are detected by a Harris corner detector and assigned to the set of candidate

corners,M. Perform Canny edge detection, C, on the windowed region and take

the Hough transform, H, of the result. The resulting Hough points, h(R, θ),

are described by the distance of the corresponding image line from the window

centre, R, and by the orientation of the corresponding image line, θ. Apply
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non-maximal suppression to the points in the Hough image to get the set Sh of

between two and five Hough peaks that correspond to grid edge contour lines

in the windowed region

Sh = H(C(Ar,pcur(I))) (3.1)

The side lines Li between the outer corner points are given by

Li = ci × c(i mod 4)+1 i = 1, 2, 3, 4 (3.2)

Determine the set of Hough points Sd that are close to the window centre,

since distant points may belong to an adjacent row or column

Sd = {h(R, θ) ∈ Sh|R < t3} (3.3)

From this extract the set Se of Hough points that have angular separation

greater than a threshold angle t4 from L4

Se = {h(R, θ) ∈ Sd|(|θ − ∠L4|) > t4} (3.4)

and select the best candidate hp(R, θ) from Se to have minimum angular sep-

aration from the side line being traced

hp(R, θ) = argmin
h(R,θ)∈Se

(|θ − ∠Li|) (3.5)

The linear approximation to the edge contour in the windowed region is

Lw = H−1(hp(R, θ)) (3.6)

The set E of candidate edge contour points in the windowed region is populated

by those points p that are within t5 pixels of the approximated edge

E = {p ∈ Sc|⊥d(p, Lw) < t5} (3.7)

where

Sc = C(Ar,pcur(I)) (3.8)

and where ⊥d(p, L) is the perpendicular distance between point p and line L.

The best new anchor point pnew is selected as the furthest point in E from the

window centre

pnew = argmax
p∈E

(d(p,pcur)) (3.9)
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that is in the direction of the next clockwise corner

(pnew − pcur) · (c(i mod 4)+1 − ci) > 0 (3.10)

where d(pi,pj) is the Euclidean distance between points pi and pj. θhp is then

assigned to θprev, pcur is assigned to pprev and is added to the edge contour set

P, and pnew is assigned to pcur.

The above process with some modifications is then repeated in order to trace

along the edge contour until pcur is within t6 pixels of c2. When pcur is not

an outer corner point, as shown in Fig. 3.2, θprev and pprev are available from

the previous iteration, and the edge tracing is simplified. Since the direction

of the edge contour being traced is available from the previous anchor points,

Eqns. 3.4 and 3.5 are replaced by

hp(R, θ) = argmin
h(R,θ)∈Sd

(|θ − θprev|) (3.11)

which minimises the change in orientation of the approximation to the edge

contour being traced. Eqn. 3.9 is replaced by

pnew = argmax
p∈E

(d(p,pprev)) (3.12)

and Eqn. 3.10 is replaced by a new direction constraint equation

(pnew − pcur) · (pcur − pprev) > 0 (3.13)

At this stage the first side contour of the grid has been traced. The remaining

three side contours are similarly traced, but with a single modification to the

process. When beginning an edge trace from ci, i 6= 1, the orientation of the

incorrect edge contour at ci is known from the previous edge contour trace and

can be filtered out. Therefore when pcur = ci, i 6= 1, Eqn. 3.4 is replaced by

Se = Sd \ argmin
h(R,θ)∈Sd

(|θ − θprev|) (3.14)

Tracing continues until pcur is within t6 pixels of c(i mod 4)+1.

Column Edge Contours

The process for tracing column contours is very similar to outer edge contour

tracing. For columns k = {2, 3, . . . , width− 1}, when anchor point pcur is the
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Fig. 3.2: Configuration for edge contour tracing when pcur 6= ci.

start point of a column, the orientation of the edge contour at the top of the

column is approximated by θtop as

θtop = ∠ (m1,k+1 −m1,k−1) (3.15)

where mj,k ∈ Mf is the grid corner on the jth row and kth column of the

grid, and Mf is the set of processed grid corners. This orientation is used to

filter out the Hough point corresponding to the edge contour at the top of the

column by replacing Eqn. 3.4 with

Se = Sd \ argmin
h(R,θ)∈Sd

(|θ − θtop|) (3.16)

The vector from the top corner to the bottom corner of the column contour

being traced is given by

vc = mheight,k −m1,k (3.17)

and the orientation of this vector is used to select the best Hough point from

Se by replacing Eqn. 3.5 with

hp(R, θ) = argmin
h(R,θ)∈Se

(|θ − ∠vc|) (3.18)
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Eqn. 3.10 is replaced by

(pnew − pcur) · vc > 0 (3.19)

which ensures that successive anchor points move down the columns.

When pcur is not a column start point the contour tracing proceeds in the

same way as for the outer edge contour tracing, with Eqns. 3.4 and 3.5 being

replaced by Eqn. 3.11, and Eqns. 3.9 and 3.10 being replaced by Eqns. 3.12 and

Eqn. 3.13, respectively. Column contour tracing continues until pcur is within

t6 pixels of mheight,k. The complete column tracing process is then repeated

until the last internal column, k = width− 1, has been traced.

Corner Processing

After the completion of outer edge contour tracing and after the completion

of each column edge contour trace the set of candidate corners M is processed

to remove outliers and to merge candidates associated with the same corner.

The set of inlier candidate corners, Min, is determined based on the distance

from each corner to the line joining the two nearest edge trace points, pα and

pβ, as

pα = argmin
p∈P

(d(p,nq)) (3.20)

pβ = argmin
p∈(P\pα)

(d(p,nq)) (3.21)

Min = {nq ∈M|⊥d(nq,pα × pβ) < t7} (3.22)

Corners in Min within a distance t8 of each other are averaged to get the final

set of ordered corners, Mf .

An overview of the complete CELECT algorithm is presented in the flowchart

in Fig. 3.3.

CELECT Algorithm Properties

With the exception of t4, all the algorithm parameters are data driven. Their

values are derived as functions of the user selected exterior corner points, ci,

and of the number of row and column corners to be extracted. The functional

61



Chapter 3 – Planar Grids for Non-Conventional Camera Calibration

Image


Begin trace from 
c

i


Detect closest corners, 
c
1
, 
c
2
, 
c
3
, 
c
4
,

to user selected outer corner points


Store ordered corner set 
M
f


Trace towards 
c

(i mod 4)+1


, with window


A

r,p
cur


, 
detect
ing corners 
n

q


Distance from 
p

cur


 to


c
(i mod 4)+1
 < 
t
6
?


outlier corner removal

corner merging


i
=4?


Begin trace from 
m

1,k


Trace towards 
m

height,k


with window


A

r,p
cur


, detecting corners 
n

q


Distance from 
p
cur
 to


m

height,k


< 
t

6

?


k
=
width
-1
?


no


no


outlier corner removal

corner merging


yes


yes


Outer edge

contour tracing


Column edge

contour tracing


i
++


no


k
++


no


i
=
1


k
=
2


yes


Fig. 3.3: CELECT algorithm overview.
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relationships were determined heuristically by applying the algorithm to a large

set of images with varying degrees and types of distortion. Parameter values

are shown in Table 3.2.

The selection of the window radius parameter, r, is critical to achieving robust

performance, as it controls the length of curved contour that is mapped to

Hough space. If r is too large the peak in Hough space associated with the

curved edge contour will be smeared and reduced in magnitude, and thus may

be missed when applying peak detection and non-maximal suppression. On

the other hand if r is too small, insufficient pixels are available to form strong

peaks in Hough space, and the Hough space is more easily corrupted by noise

and image blur. The solution when tracing the outer edge contour is to choose

r = si, where si is a function of the size of the average square length for side

i, as shown in Table 3.1. For column edge contour tracing r is chosen as 0.5

times the mean square side length of the previously traced column, for which

the corners and hence square side lengths are known. Robustness to broken

or noisy edge contours is boosted by allowing r to iteratively increase in size,

by 20% at each iteration, when no valid pnext can be identified in the current

Ar,pcur . As the window size increases, more pixels from the broken or noisy

line segment will be mapped to Hough space, and so a valid pnext and a valid

Lw are more likely to be found.

When applying non-maximal suppression in Hough space a minimum of two

detected peaks is enforced. This is to ensure that both contours at a junction

are considered. As a result, if there is only one contour in the windowed region

the single correct Hough peak may be detected as two separated peaks after

non-maximal suppression. An averaging stage is applied to reduce this error

due to split peaks, where points in Hough space within t1 bins of each other

are averaged to form a single peak. Non-maximal suppression is applied to the

mapped Hough space that ranges from 1o to 180o. Phase wrap at the 180o/1o

boundary must be addressed, and this is achieved by an additional stage of

non-maximal suppression that is applied to remapped Hough space for Hough

points within to2 of 180o. In this way Hough peaks that are detected as two

peaks in the initial non-maximal suppression stage are detected correctly as a

single peak in the second stage.

In the absence of noise there are four possible directed contours at each grid

corner, consisting of opposite directions along each of two windowed lines, Lw.
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Table 3.1: Parameter values for determining window radius r.

Parameter s1 s2 s3 s4

Value ||c1−c2||
1.9×width

||c2−c3||
1.9×height

||c3−c4||
1.9×width

||c4−c1||
1.9×height

Table 3.2: CELECT algorithm parameter values.

Parameter t1 t2 t3 t4 t5 t6 t7 t8

Value 0.5si 0.125si 0.4si 15o 0.1si 0.56si 0.4si 0.8si

For outer edge contour traces beginning at ci, i 6= 1, the incorrect contour

is available, and this is used to filter out incorrect edges. When beginning

the contour trace at c1, the fixed t4 angular threshold is set to filter out the

incorrect Lw from further consideration. The correct Lw is then more reliably

detected, even when side line L1 has lower angular separation from the incor-

rect edge contour than from the correct edge contour. A fixed threshold must

be used since no information is available at this point about the orientation of

the incorrect Lw.

Parameter t8 determines the minimum distance that candidate corners must

be separated by in order to be considered distinct corners. The equivalent

merging parameter for merging corners detected in a column trace is 0.47

times the minimum distance between corners in the previous column. The

Harris corner detector parameters are selected so as to detect too many rather

than too few corners, since erroneous corners are removed during the corner

removal and merging stages.

If the detection and ordering fails at any point, then the algorithm does not

automatically return any corners. Graceful degradation is incorporated such

that the user is prompted to manually select corners along an edge contour if

the number of automatically ordered corners along that contour is different to

the user specified number.

The CELECT algorithm design and the requirement of the user to select the

four outer corner points ci enable corners to be detected and ordered in partial

grids in an image. This is an advantage for images of calibration grids in which

regions of the grid are either too small to be reliably localised or are out of

focus, and therefore should not be detected. Corner detection methods that

require a white boundary of one square width around the grid to be extracted,
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such as the OpenCV method and the method of Rufli et al. (2008), cannot be

directly applied to such an image, since the white border is required to enable

the grid corners to be detected automatically. Also, the CELECT algorithm

is not affected by background artifacts in the image that appear similar in

structure to chessboard grids. Since a white boundary is not required, the

CELECT algorithm can extract both more corners from a given grid area

visible in an image, and can extract grid corners closer to the image edge, than

can those methods that require the white boundary. This can be important for

calibration since for many non-conventional cameras the largest distortion is

present at the image periphery, and this distortion should be captured in order

to fully and accurately calibrate the camera. Considering a calibration grid

with grid square side length δmm and with overall physical size λδmm×κδmm,

the CELECT algorithm can extract (λ− 1)×(κ− 1) grid corners, and methods

that require a white border surrounding the grid can extract (λ− 3)× (κ− 3)

corners. The CELECT algorithm can thus extract 2λ + 2κ − 8 more corners

for the fixed calibration grid size. λ = 10 and κ = 8 for the calibration

grid used in the majority of experiments in Section 3.3.2, so for that sized

grid the CELECT algorithm can extract 28 additional corners, or 80% more

corners, than the methods requiring a white boundary. Of course, to get this

improvement the chessboard pattern must extend to the edge of the calibration

grid.

Prerequisites and Limitations

A region of at least half a window size is required around the outermost de-

tected contour within which the only edges are grid edges. This is already

guaranteed to be present if the grid corners to be detected are all interior grid

corners and the whole grid is visible. A white border around the grid is not

required.

Contour tracing from c1 will be incorrect in the CELECT algorithm when the

orientation of the correct contour is within t4 of L4, or when the incorrect

contour has orientation greater than t4 from L4 and has orientation closer to

L1 than the correct contour. Consequently, the user selected corner points ci

should be chosen such that the edge contour between c4 and c1 is the straightest

edge contour of the grid.
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Large grid square size in conjunction with large edge contour curvature can

result in failure of the CELECT algorithm. In this scenario, the window size

is large and thus the windowed portion of the grid edge contour can be sig-

nificantly curved resulting in smeared peaks in Hough space. The windowed

curved contour can not be accurately approximated by a straight line segment,

and so contour tracing is likely to fail. Grids with small square side lengths

should be used for highly distorted images to prevent this failure mode. Failure

due to unsuitable window size is also possible for images with large variations

in grid square size along a grid outer edge contour. This can occur in images

with large perspective distortion, and in these cases the CELECT algorithm

can break down due to distinct grid corners being incorrectly merged together

by parameter t8.

As with any images of grids for calibration purposes, high resolution images

with minimum blur should be used in order to achieve the best corner detection

and ordering performance with the CELECT algorithm.

Fig. 3.4 illustrates the contour tracing and corner detection stages of the

CELECT algorithm when applied to a real chessboard grid image contain-

ing distortion.

3.1.3 Localisation

Once corners have been detected in the calibration grid image, typically their

locations are determined to a subpixel level using a refinement technique.

Two common methods of localisation of grid corners are saddle point meth-

ods and derivative methods. In the saddle point method, first proposed by

Lucchese and Mitra (2002), a surface is fit to the image intensity profile at a

blurred and windowed corner. The surface has a characteristic saddle shape,

and the subpixel corner location is given by the stationary point of inflexion

of the saddle surface. The derivative method is based on edge intersections at

corners. Intensity derivatives in a region of interest around the initial corner

estimate are calculated, and these are non-linearly fit to the surface model of

the photonic response at an edge crossing point proposed by Li and Lavest

(1996).

As noted by Mei and Rives (2007), corner localisation is not significantly af-
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Fig. 3.4: The CELECT algorithm applied to a calibration grid image from

an omnidirectional camera. Note the initial multiply detected corners and

their merging in the final corner set. For clarity purposes the ordering is not

illustrated.

fected by image distortion since it typically operates within small regions of

interest around a corner, and thus any localisation technique is applicable

when the corners have been detected. Nevertheless, further investigation of

the application of the localisation method is necessary so that the method’s

parameters can be selected to achieve maximum accuracy. The saddle point

method takes two principal parameters – the window size that determines

the scale of the region of interest, and the level of blur that is applied be-

fore surface fitting. The window size is the principal parameter required for

the derivative method. A question arises as to the relationship between these

parameter values and the distances between corners in the images. The an-

swer to this question would provide a guide to the parameter selection that

achieves optimum localisation results, and more importantly would allow the

automatic selection of such parameters on a per-corner basis using the result
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of the CELECT method. For distortion free images, the range of inter-corner

distance values varies only with changes in perspective distortion. However, for

images with large non-linear distortion, these distances can vary significantly

across the image even when there is no perspective distortion present. Tests to

examine the relationship were conducted by applying each localisation method

to each of four 1000× 1000 pixel synthetic chessboard grid images with fixed

fisheye distortion, with Gaussian blur of 2 pixels SD, and with additive Gaus-

sian noise of 4 pixels SD. The four images had chessboard grid square sizes of

50, 100, 150 and 200 pixels, respectively, before the application of fisheye dis-

tortion. Initial corner estimates for the localisations were formed by corrupting

the exact corner locations with Gaussian noise of 1 pixel SD. Each localisa-

tion method was applied to each image for a range of window size and blur

SD parameters in order to generate the results shown in Fig. 3.5. The results

are presented in histogram format, where, for every corner, the window size

producing the smallest residual was binned and accumulated for the derivative

localisation, and the combination of window size and blur SD producing the

smallest residual was binned and accumulated for the saddle point localisa-

tion. For derivative localisation it is seen that small windows produce the best

results across all inter-corner distances, although for the smallest inter-corner

distances larger window sizes also perform well. Considering the saddle point

localisation results, it is seen that small window sizes are again preferred but

that otherwise the window size parameter is essentially independent of the

inter-corner distances. Despite evidence of a weak relationship between inter-

corner distances and blur SD, a mid-range blur SD parameter produces close

to optimum results for all inter-corner distances.

Overall, the results show that there is no meaningful relationship between

variations in parameter values and variations in inter-corner distances. Conse-

quently, there is no benefit to using the CELECT algorithm results, in the form

of the inter-corner distances, to inform the selection of localisation parameters,

and therefore such an approach is not further pursued.

3.2 Coded Calibration Grids

Typically camera calibration performance can be improved by increasing the

density of the extracted calibration grid features. In the case of perspective

68



Chapter 3 – Planar Grids for Non-Conventional Camera Calibration

17 21 25 29 33 37 41 45 49

24

32

41

53

69

90

117

153

Window size (pixels)

In
te

r−
co

rn
er

 d
is

ta
nc

es
 (

pi
xe

ls
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a)

17 21 25 29 33 37 41 45 49
1113151719212325

22

29

38

49

64

83

108

140

In
te

r−
co

rn
er

 d
is

ta
nc

es
 (

pi
xe

ls
)

σ blur (pixels)
Window size (pixels)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

(b)

Fig. 3.5: Visualisation of the relationship between localisation parameters and

inter-corner distances for (a) derivative localisation and (b) saddle point lo-

calisation. The histogram frequencies, which are indicated by colour hue, are

normalised for each slice.
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camera calibration using methods similar to that of Zhang (1998), improve-

ments are achieved as a result of the increasing number of linear equations,

which reduces the effect of random measurement noise on the result. Chapter

2 details an alternative calibration method, generic calibration, that is ap-

plicable to general cameras. Increasing the feature point density in generic

calibration has an important advantage relating to interpolation that does not

manifest itself for the perspective calibrations.

3.2.1 Calibration Grid Interpolation Bias

Step 2 of the standard generic calibration method, as outlined in Algorithm

1 in Section 2.4, requires that the intersection point of each camera ray with

each calibration grid be determined. Homographic interpolation is employed

by Sturm and Ramalingam (2003) to determine these intersection points based

on the extracted image coordinates of the four closest grid corner points (with

no three points collinear) on a standard calibration grid. However, any distor-

tion present in the images of the calibration grids induces a bias in the results

when employing this method. Fig 3.6 shows a vector plot of the error residuals

after homographic interpolation is applied to an image of 500 random points

on a 300mm× 300mm grid. The image is formed for a simulated camera with

focal length 680mm, and principal point [150 150]T mm. Radial distortion is

incorporated using the model of Eqn. 2.4 with k1 = −0.8 and k2 = 0.4. The

systematic bias in the plot increases with distance from the image centre, in-

dicating that it is primarily a result of the radial distortion. The non-radial

components of the residual vectors are due to the grid points used in inter-

polation, since for accurate interpolation near to a grid square edge, the grid

corners used in the interpolation form a parallelogram rather than a square.

Although interpolation bias can be reduced by decreasing the square sizes of

the calibration grids, as seen in the simulation result shown in Fig. 3.7 where

the camera parameters from above are used, this approach is limited by the

limits of camera resolutions. Interpolation bias can also be ameliorated by

applying collinearity constraints (Ramalingam et al., 2005a). Homographic

interpolation has the additional disadvantage of requiring local image conti-

nuity. The general camera model makes no continuity assumptions, and thus

it can model discontinuous cameras. By using calibration grids that require

interpolation, the accuracy of generic calibration for such cameras is reduced.
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Fig. 3.7: RMS localisation error after homographic interpolation for a chess-

board grid with increasing grid pitch.

A method of more accurately determining the camera ray intersections with

the calibration grids is likely to lead to improved results for generic calibration.
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3.2.2 Spatio-Temporal Coding – Active Grids

The use of active grids overcomes the disadvantages associated with homo-

graphic interpolation by providing a direct localisation of the point seen by

every pixel viewing the active grid, thus enabling pixel-level generic calibra-

tion. An active grid is implemented using a flat-screen TFT monitor that

displays a temporal sequence of spatially varying greyscale patterns. The lo-

cation (lx, ly) of any point on the active grid can be decoded from the intensity

displayed at that point across the sequence of patterns. Patterns from the

domain of structured light are used to encode location in the active grids de-

scribed in this thesis. Structured light techniques are typically used to recover

shape by triangulation between a projector, which projects light patterns onto

the scene, and one or more calibrated cameras, which view the illuminated

scene. See Salvi et al. (2004) for a comprehensive survey of coded structured

light techniques. The use of active grids in calibration has previously been

employed by Sagawa et al. (2005) for distortion correction. However, due to

the binary striped patterns that they use, their approach still requires inter-

polation in regions where the stripes appear very narrow in the images. In the

method used here, each active grid requires 20 patterns to be consecutively

displayed in order to fully encode the location data. 12 patterns encode lo-

cation on an 8 × 8 grid using Gray coded binary patterns, and 8 sinusoidal

greyscale patterns encode location spatially within each square of this grid.

The Gray codes spatially disambiguate between the locations decoded from

the sinusoidal patterns. Gray codes are suitable for encoding binary location

data because the white/black boundaries occur at different positions in the

different Gray coded patterns, thus limiting to a single pixel decoding errors

that can occur at a boundary. Both the binary patterns and their inverses are

displayed to make the decoding near white/black boundaries more robust - if

the binary pattern at a pixel is lighter than its inverse, a 1 is decoded for that

pixel, and vice versa. The phase of the sinusoidal patterns is shifted by 90o

between consecutive patterns. A 7× 7 smoothing filter is applied to the sinu-

soidal images in order to interpolate the data. This process is necessary when

the camera resolution is greater than the apparent active grid resolution, and

for noise reduction. Fig. 3.8 shows the set of binary and sinusoidal patterns

that encode vertical location.

Sublocations, d, within the 8×8 grid squares are decoded from the active grid
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(a) (b)

Fig. 3.8: (a) Binary and (b) sinusoidal active grid patterns for encoding vertical

location.

images (Salvi et al., 2004) as

d =
1

2π
arctan

(
I1 − I3

I2 − I4

)
(3.23)

where Ii is the intensity of sinusoidal pattern i. Eqn. 3.23 does not take ac-

count of the possibly non-linear camera and TFT monitor radiometric transfer

functions, and therefore it is necessary to investigate the effect of such non-

linearity on the accuracy of the decoded sublocations. An image of one of the

active grid sinusoidal patterns, taken by a calibrated perspective camera, was

undistorted, and the image was rectified such that the grid appeared square.

The mean greylevels in each image column were determined, giving an approx-

imately sine wave shaped greylevel intensity profile with 8 periods. A single

period of this intensity profile is shown in Fig. 3.9. Although the intensity pro-

file exhibits a greylevel offset, the offset reduces to 0 in Eqn. 3.23, and so does

not affect the decoded sublocation values. However, it is clear from Fig. 3.9

that the shape of the intensity profile does not agree well with the best fit sine

(RMS error of fit = 9.839 greylevels). This is due to the non-linearity of the

product of the monitor and camera radiometric transfer functions. Referring

to Fig. 3.9, it is seen that the intensity profile is well modelled by a Fourier

series with a single harmonic (RMS error of fit = 1.309 greylevels), and that

the inclusion of an additional harmonic in the series provides only a marginal

improvement in the fitness of the model (RMS error of fit = 1.308 greylevels).

It can be shown (see Appendix A) that Eqn. 3.23 is unaffected by odd harmon-

ics in the model of the intensity profile, and consequently Eqn. 3.23 is valid for

intensity profiles that are well modelled by the sum of the fundamental and the

first harmonic. Therefore Eqn. 3.23 is robust to monitor-camera radiometric
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Fig. 3.9: Mean greylevel intensities for a single period of a real image of the

horizontal sinusoidal active grid pattern, and best fit sinusoidal models with

zero, one and two harmonics.

transfer function non-linearities of the type that are encountered in the exper-

iments in this thesis. Sublocation decoding is also robust to camera vignetting

since Eqn. 3.23 is applied independently at each pixel where vignetting has

only a constant multiplicative effect on the greylevel intensity.

The raw decoded active grid horizontal location, lx, is given by

lx = (b + d)w (3.24)

where b is the decoded Gray code value, and w is the spatial resolution of the

binary patterns. The vertical location, ly, is calculated similarly. 8-connected

single pass smoothing filtering is applied to the raw location data, followed by a

final infilling pass to interpolate missing pixel locations from their 8-connected

neighbours. The kernels of these filters are as small as possible to minimise

the requirements on image continuity and to reduce interpolation errors.

The sinusoidal patterns displayed as part of the active grid are inherently ro-

bust to errors induced by sensor blooming. Blooming occurs in camera sensor

arrays for saturated regions in images when the photons from the saturated re-
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gion spill into neighbouring sensor elements. Images of chessboard calibration

grids contain regions of high contrast at grid edges, which, due to blooming,

can cause the grid corners to be incorrectly localised. This problem is largely

overcome in active grids since the highest resolution data is extracted from

the sinusoidal patterns, which locally contain only low contrast. Blooming can

still occur at the boundaries in the binary images, although these edges have

low spatial frequencies. The effects of blooming on the Gray code decoding are

reduced by performing decoding based on the comparison between the binary

and inverse binary patterns. Error due to blooming can be further reduced by

localising the binary pattern edges as the midpoint of the edges detected in

the binary and the inverse binary images.

The implementation of active grids presented here is similar to that proposed

by Bonfire et al. (2006), though they use an energy minimisation approach

instead of post-filtering the data directly. The method is also similar to that

of Scharstein and Szeliski (2003), where Gray coded or sinusoidal patterns are

projected onto a scene in order to determine high accuracy correspondences

between stereo image pairs for stereo algorithm evaluation. They propose

using either Gray codes or sinusoidal patterns of different frequencies with

phase shifts, although they require many more images due to variations in

surface albedo of scene points.

3.3 Experiments

Initial evaluation of both the CELECT algorithm and of active grids was con-

ducted for variations in image parameters and calibration grid configurations.

The CELECT algorithm was tested on synthetically generated images of chess-

board grids so that a ground truth for the corner locations was available.

Simulations were conducted to determine the robustness of the algorithm to

variations in image noise, image blur, grid square size, fisheye distortion and

perspective distortion. Simulated data for characterising active grids is not

used as errors in the configuration, for example due to non-linearity of the

camera radiometric transfer function, would be difficult to emulate synthet-

ically. Therefore, characterisation of active grids is performed on real data.

The CELECT algorithm and active grids are subsequently evaluated on real

images, from both central and non-central cameras, in order to verify their
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performances.

3.3.1 CELECT Algorithm Robustness

A synthetic chessboard grid image of size 1000×1000 pixels was generated, and

fisheye distortion was applied subsequently using the equisolid angle projection

function of Eqn. 2.7. Increasing fisheye distortion corresponds to increasing

FOV, and is controlled by reducing the focal length. FOV is a more intuitive

measure of distortion than focal length, and it will be used to quantify dis-

tortion here. The distortion-free synthetic image, and a corresponding fisheye

distorted synthetic image with FOV=134o, are shown in Fig. 3.10. Since the

CELECT method is designed for application to distorted images, the synthetic

experiments are all conducted with images containing fisheye distortion sim-

ilar to that of the distorted grid in Fig. 3.10. Where not otherwise specified,

Gaussian blur with 1 pixel SD was applied to the synthetic images used in

the experiments. The purpose of this is to better approximate real camera

images by reducing quantisation artifacts resulting from the manner in which

the synthetic images are generated.

The user selected corner points ci are refined by applying a Harris corner

detector, as discussed in Section 3.1.2, in order to make the algorithm robust to

inaccuracies in the user selection of the four outer grid corner points. However,

variation in these selected points can result in small variations in the exact

locations of the corresponding Harris detected corners, which causes slightly

different anchor points, pi, to be used in the algorithm. Therefore, Gaussian

noise with a standard deviation of 2 pixels, and with an upper limit of 4

pixels, was added to the true corner locations in the synthetic tests to simulate

user inaccuracy in point selection. The measured corner selection error for

2880 manually selected corners used in Section 3.3.2 had Rayleigh mean and

standard deviation of 0.77 pixels and 0.16 pixels respectively.

Perspective distortion is a linear distortion that results in variation of the size

of a planar chessboard grid across the image when the grid is oriented in a

non-fronto-parallel position. Many perspective camera calibration algorithms

require that a calibration grid be imaged in varying poses to avoid singularities

(Sturm and Ramalingam, 2003, Zhang, 2000), and thus it is important that

the CELECT algorithm can operate correctly on such images. Perspective
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(a) (b)

Fig. 3.10: (a) Distortion-free synthetic image; (b) synthetic image after apply-

ing fisheye distortion corresponding to an FOV of 134o.

distortion is applied to the synthetic images by applying yaw rotations to a

grid in R3, followed by projection of the grid points to P2 using the camera

projection matrix P formed from the synthetic camera parameters {f, u, v}.
Fisheye distortion is subsequently applied to the image.

The experimental results for synthetic images containing varying fisheye dis-

tortion, varying additive noise, varying blur, varying perspective distortion

and varying grid square size are shown in Fig. 3.11(a)-(e). Each data point in

these plots is the mean value of 50 trials. Corners detected with greater than

8 pixels error are classified as detection failures, while the CELECT algorithm

as a whole is considered to have failed a trial if there is a detection failure at

any one of the corners in the test image. The maximum detection errors shown

are compiled over the successfully detected grids only.

The results of the synthetic experiments indicate that the CELECT algorithm

is robust to variations in additive Gaussian noise, in scale, in fisheye distortion,

and in perspective distortion, as evidenced by the maximum detection errors

of less than 6.5 pixels for these tests. The algorithm fails for additive noise

with SD of 26 greylevels, which far exceeds the level of noise that is likely to

be present in most calibration images. Perspective distortion caused by out-

of-plane rotations of more than 48o results in algorithm failure due to the large

compression of parts of the grid in the image. The failure of the algorithm with
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Fig. 3.11: Performance of the CELECT algorithm on synthetic images for

variations in (a) additive Gaussian noise; (b) Gaussian blur; (c) grid square

size; (d) fisheye distortion; and (e) perspective distortion. (f) Localisation

accuracy for varying corner detection error.

78



Chapter 3 – Planar Grids for Non-Conventional Camera Calibration

decreasing grid square size is a result of inaccurate edge and corner detection

due to the small size of the window and the reduced number of edge points

accumulated in Hough space. Nevertheless, the CELECT algorithm can suc-

cessfully detect and order all corners in the grid images with 50 pixels pitch,

despite the corresponding inter-corner distances in the distorted image being

as small as 12 pixels. For large fisheye distortions the algorithm fails due to the

high curvature of the distorted grid edges near the grid boundary: the orienta-

tion of the grid edges varies significantly in these areas, and so the comparison

of edge orientations in these adjacent windowed regions is unpredictable. The

algorithm performance deteriorates when the image blur increases to 4 pixels

SD. This level of blur is relatively low, although in practice for calibration im-

age sets, motion blur is minimal and focusing is well controlled during image

capture.

A corner localisation stage is generally applied after corner detection to achieve

subpixel accuracy for the corner locations, as discussed in 3.1.3. For successful

localisation of the detected corners, the error in the initial corner location

estimates must be sufficiently small for the localisation to converge to the

actual corners. Fig. 3.11(f) shows the error after localisation for initial corner

estimates of decreasing accuracy, for the synthetic fisheye image of Fig. 3.10(b).

Localisation was performed using the OpenCV function cvFindCornerSubPix()

with a 9 × 9 search window. The maximum localisation error over 50 trials

is less than 0.46 pixels for a corner detection error at each corner of up to 8

pixels. This corner detection error is the Euclidean distance each simulated

detected corner is from its ground truth location. Referring to the test results

in Fig. 3.11(a)-(e), it is seen that the maximum detection error for successfully

detected grids is significantly less than 8 pixels for the majority of the synthetic

tests. This shows that the CELECT algorithm is sufficiently accurate for

subsequent corner localisation to converge.

3.3.2 CELECT Applied to Real Non-Perspective Im-

ages

The CELECT method was experimentally evaluated on a real image dataset

against the OpenCV cvFindChessBoardCornerGuesses() function, hereafter

referred to as the OpenCV method. Four different types of non-conventional
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camera were selected, each of which exhibits large distortion. For each cam-

era, 15 images were captured of a calibration grid in various orientations and

positions with respect to the camera. Grid locations were chosen so as to ob-

tain a challenging set of images in which the grids appear severely distorted

due both to perspective and non-linear distortions. However, in order to en-

able the application of the OpenCV method, the entire calibration grid and a

white border one square width wide around the grid were maintained within

the FOV for all images. This limited the extent of grid distortion around the

interior corners, since the most severe distortion typically occurs at the image

periphery.

Details of the test configuration for each image set are presented in Table

3.3. The grid pitches of the 7× 5 calibration grids used for the Spherical and

Flexible Mirror image sets and for the Hyperboloidal image set were 30mm

and 50mm, respectively. The 9× 7 and 12× 9 grids had grid pitches of 30mm

and 15mm, respectively. Camera configurations for the Spherical and Flexible

Mirror image sets are non-central, whereas the Hyperboloidal and Fisheye

cameras are approximately central. Several additional properties of the image

sets should be noted. For the Spherical image set, the reflective sphere is a gold

coloured reflective Christmas decoration that, in conjunction with incandescent

light sources, produces a gold hue in the images. In addition, the contrast in

these images is low since the grid frequently occluded the primary light source.

Several images in the Fisheye set contain weak shadows of the camera due to

its proximity to the grid. The Flexible Mirror image set exhibits significant

noise and chromatic aberration resulting from the low quality of the camera.

Distortion in this image set was induced by directly warping the flexible mirror.

The CELECT method and the OpenCV method were applied to every test im-

age in each image set. The location accuracy of the resulting detected corners

was evaluated with respect to manually selected corners that were subpixelly

localised using the OpenCV cvFindCornerSubPix() function. Ordering success

of the detected corners was evaluated qualitatively by visual inspection. For

each image set, the mean, maximum and SD of the errors in the corners de-

tected with each detection and ordering method were determined, both before

and after localisation with OpenCV’s cvFindCornerSubPix(). The complete

results are presented in Tables 3.4, 3.5, 3.6 and 3.7. Error statistics are com-

piled over successfully detected and ordered grids only.
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Table 3.3: Experimental configurations for the CELECT algorithm evaluation

with real images.

Image set Non-conventional Camera Resolution Grid size

(pixels) (int. corners)

Spherical Canon PowerShot SD500 1600× 1200 7× 5

+ spherical bauble

Hyperboloidal Nikon CoolPix 4500 + 360 1280× 960 7× 5

OneVR hyperboloidal mirror

Fisheye Nikon CoolPix 4500 + 1024× 768 9× 7

FC-E8 fisheye converter 12× 9

Flexible Mirror Creative Live! Cam 640× 480 7× 5

webcam + flexible mirror

Table 3.4: Experimental results for the Spherical image set.

# correctly Error before Error after

Method detected and localisation (pixels) localisation (pixels)

ordered grids Mean Max SD Mean Max SD

OpenCV 3/15 0.31 1.35 0.24 0.0069 0.0752 0.0096

CELECT 12/15 1.54 7.33 0.92 0.0137 0.1985 0.0219

Table 3.5: Experimental results for the Hyperboloidal image set.

# correctly Error before Error after

Method detected and localisation (pixels) localisation (pixels)

ordered grids Mean Max SD Mean Max SD

OpenCV 6/15 0.39 1.35 0.24 0.0088 0.0457 0.0093

CELECT 12/15 1.44 6.07 0.80 0.0108 0.1584 0.0145

Table 3.6: Experimental results for the Fisheye image set.

# correctly Error before Error after

Method detected and localisation (pixels) localisation (pixels)

ordered grids Mean Max SD Mean Max SD

OpenCV 8/15 0.39 1.60 0.26 0.0086 0.0942 0.0111

CELECT 12/15 1.27 4.31 0.76 0.0125 0.2160 0.0162
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Table 3.7: Experimental results for the Flexible Mirror image set.

# correctly Error before Error after

Method detected and localisation (pixels) localisation (pixels)

ordered grids Mean Max SD Mean Max SD

OpenCV 9/15 0.56 1.86 0.33 0.0084 0.0520 0.0110

CELECT 15/15 2.17 5.25 0.96 0.0114 0.1341 0.0152

The results clearly demonstrate the superior ability of the CELECT method

with respect to the OpenCV method to correctly detect and order grid corners

in images containing significant distortion. Out of the total of 60 grid images

used in the evaluation, only 2 grids were detected and ordered correctly by the

OpenCV method but not by the CELECT method. In contrast, the CELECT

method successfully detected and ordered 27 grids for which the OpenCV

method failed. The overall success rate of the CELECT method for detecting

and ordering the grids for all tested image sets is 85.0%, which is significantly

greater than the equivalent rate of 43.3% for the OpenCV method.

The statistics on detection accuracy reveal that the corners detected using the

CELECT method are less accurate than for the OpenCV method. However,

after the application of localisation to the corners, detection accuracy is within

0.12 pixels of the localisation function’s set precision level of 0.1 pixels for all

detected corners for each method. Thus the greater corner detection inaccuracy

of the CELECT method does not significantly impact the final result after

localisation is applied.

Figs. 3.12 and 3.13 show the results of applying the CELECT method to images

from each image set. Images are presented for which both the CELECT and

OpenCV methods operate successfully, for which only the CELECT method

operates successfully, and for which both methods fail.

For the complete set of 60 grid images, grid contour tracing only fails for 2 grid

images. Both of these result from the contours associated with orthogonal grid

edges having very similar orientations in the image due to severe fisheye and

hyperboloidal distortion. False positive and false negative corner detections

are the cause of the remainder of the failures for the CELECT method.

Considering the Spherical image set, two of the failures of the CELECT method

are due to image noise resulting from aberrations in the surface of the low-
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(a) Spherical – CELECT succeeds, OpenCV

succeeds

(b) Hyperboloidal – CELECT succeeds,

OpenCV succeeds

(c) Spherical – CELECT succeeds, OpenCV

fails

(d) Hyperboloidal – CELECT succeeds,

OpenCV fails

(e) Spherical – CELECT fails, OpenCV fails (f) Hyperboloidal – CELECT fails, OpenCV

fails

Fig. 3.12: Images from the Spherical and the Hyperboloidal sets for which

grids are successfully detected and ordered by the CELECT method and the

OpenCV method, by the CELECT method only, and by neither method. Cor-

ners detected by the CELECT method are shown with red circles, and corners

ordered by the CELECT method are connected by yellow and green lines.
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(a) Fisheye – CELECT succeeds, OpenCV

succeeds

(b) Flexible Mirror – CELECT succeeds,

OpenCV succeeds

(c) Fisheye – CELECT succeeds, OpenCV

fails

(d) Flexible Mirror – CELECT succeeds,

OpenCV fails

(e) Fisheye – CELECT fails, OpenCV fails

Fig. 3.13: Images from the Fisheye and the Flexible Mirror sets for which

grids are successfully detected and ordered by the CELECT method and the

OpenCV method, and by the CELECT method only. An image for which both

methods fail is only shown for the Fisheye image set, as the CELECT method

was successful for every image in the Flexible Mirror set. Corners detected by

the CELECT method are shown with red circles, and corners ordered by the

CELECT method are connected by yellow and green lines.
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quality mirror, where the noise is falsely detected as a corner. The remaining

failure is the result of a single missed corner. The high sensitivity of the Har-

ris corner detector in the CELECT method resulted in the false detection of

lens dirt as a corner in one of the Hyperboloidal images. A further image in

the Hyperboloidal set, shown in Fig. 3.12(f), failed when the corner detector

missed several corners due to image glare. Images in the Fisheye image set

exhibit large variation in grid square size along single edge contours. This

weakens the corner merging criteria, since that is based on the mean square

side length along a contour. Two Fisheye image failures can be attributed

to merging failure. The first failure occurs due to adjacent corners being in-

correctly merged together, and the second is the result of a single distorted

and blurred corner being detected as two separate corners that are not subse-

quently merged. Shadow in the Fisheye images does not affect the performance

of the CELECT method, but it does cause failure due to missed corners for

the OpenCV method.

Successful detection and ordering with the CELECT method was seen to vary

slightly depending on the direction of contour tracing resulting from manual

selection of the cis. An informed selection of the outer corners can aid effec-

tiveness of the CELECT method. For example, the ci that is adjacent to the

smallest grid square, where image compression is greatest, should be chosen as

the first corner. This reduces the likelihood of corners beyond the outer corner

being detected during contour tracing.

Failure of the OpenCV method to correctly detect and order the corners of a

grid is generally found to be a result of missed corners. When that method

detects less than the user defined number of internal corners, even if only a

single corner is missed, then the resulting ordering is chaotic and unusable.

This highlights the importance of ordering, since even if the subset of cor-

rectly detected corners is returned, the information is useless for calibration

applications without their associated ordering.

Fig. 3.14 shows images of a large calibration grid taken with a hyperboloidal

catadioptric camera and a fisheye camera that each exhibit blurred corners

and small grid squares. These unusable corners are easily excluded using the

CELECT method by selecting only the grid region that contains localisable

corners, as seen in the figure. Such detection and ordering of corners from a

partial grid is not possible with either the OpenCV method or the method of
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Rufli et al. (2008) since the partial grid is not surrounded by a white border in

the image. The images in Fig. 3.14 were modified by using desktop graphics

software to insert a white border of increasing size around each of the grids

until the OpenCV method returned a correctly detected and ordered corner set.

The largest such sets returned by the OpenCV method were of sizes 17 × 5

and 20 × 6 for the hyperboloidal image and the fisheye image, respectively.

These compare with grids of size 15× 10 and 19× 11 detected and ordered by

the CELECT method without requiring any modification to the images. The

CELECT method detected and ordered corners in the fisheye image that are

too close to the image boundary to be detected by the OpenCV method.

3.3.3 Active Grids Robustness

Active grids overcome the distortion bias associated with homographic inter-

polation and consequently are ideal for use in the calibration process, and

in particular for use in generic calibration. An efficient generic calibration

method is presented in Chapter 4 that employs active grids to acquire input

data, and therefore a performance evaluation of these grids was conducted.

Both the derivative based and the saddle-point based chessboard corner local-

isation techniques that are discussed in Section 3.1.3 are used for the bench-

marking process. When using a standard, static chessboard calibration grid,

these methods are typical of the localisation techniques that would be used

to subpixelly determine the grid corners. The comparison between the active

grids method and these two standard methods is shown in Fig. 3.15. Note

that these tests determine the relative performance of the methods for detect-

ing the grid corner locations, and that they do not address the errors resulting

from localising points that are not grid corners (which would require bias in-

ducing interpolation for the static grid methods and thus would reduce the

performance of the static grid methods relative to the active grid method).

The experiments were conducted with real data by subpixelly localising corners

in the image of a chessboard grid, displayed on a TFT monitor, using the

two standard methods. An active grid was then displayed on the monitor

and decoded. The subpixel corner locations for the active grid method were

determined by searching this decoded location data with the known metric

grid dimensions. A second active grid was then placed in front of the camera,

and the locations on this grid seen by the corner subpixels estimated by each
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Fig. 3.14: Corner detection and ordering using the CELECT method applied

to large chessboard grids without white grid borders: (a) image from a hyper-

boloidal catadioptric camera; (b) image from a fisheye camera. All axes are in

units of pixels.
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method were decoded directly. By mapping these locations to the known

metric chessboard structure via homographies, the RMS error residuals for

each method were determined. It is seen in Fig. 3.15 that the robustness of

active grids to variations in camera-grid distance, grid orientation, Gaussian

image blur and additive Gaussian noise is superior to that of the standard

methods under almost all conditions. The grid pattern used has 15×15 corners

and is 301.5×301.5mm in size, and, where not otherwise specified, the camera-

grid distance is 200mm, the orientation is 0o, and there is no blurring or

additive noise. The excellent performance of the active grids in the comparison

is partly due to their robustness to image sensor blooming, as discussed in

Section 3.2.2. The robustness of active grids to image blur as seen in Fig. 3.15

is an important benefit for the calibration process as it means that camera

focus can be fixed during calibration.

It can be concluded from these results that active grids have localisation ac-

curacy and robustness equal to or exceeding those of the standard methods

for the detection of corners from chessboard calibration grids. Combined with

the lack of interpolation bias, active grids are thus ideal for use in generic cal-

ibration, where pixel-level localisation is a key requirement of the calibration

process. However, one drawback to using active grids during calibration is that

the viewing angle for TFT monitors is limited, resulting in a falloff in intensity

with increased viewing angle. For catadioptric and other wide angle lenses

the usable area of the active grids for certain grid locations is consequently

reduced.

The effects on accuracy when the active grids patterns use a grid size other than

8×8 are not examined here, and may merit further investigation. However, the

suitability of active grids as an alternative to static calibration grids has been

firmly established in this chapter, and any accuracy improvements achieved as

a result of such investigation would only confirm this suitability.

3.3.4 Active Grids with Real Images

The localisation performance of active grids was compared to the derivative

and saddle point methods discussed in Section 3.1.3, as well as the OpenCV

library’s cvFindCornerSubPix() function, which is based on locating radial

saddle points. A Nikon SLR D200 digital camera was calibrated for the ex-

88



Chapter 3 – Planar Grids for Non-Conventional Camera Calibration

0 200 400 600
0

0.1

0.2

0.3

0.4
Varying scale

Distance of camera centre from grid (mm)

R
M

S
 e

rr
or

 (
m

m
)

0 2 4 6
0.14

0.16

0.18

0.2
Varying Gaussian blur

σ blur (pixels)

R
M

S
 e

rr
or

 (
m

m
)

0 5 10 15 20
0.12

0.14

0.16

0.18

0.2

0.22
Varying additive Gaussian noise

σ noise (greylevels)

R
M

S
 e

rr
or

 (
m

m
)

0 20 40 60
0

0.5

1

1.5

2
Varying orientation

Orientation (°)

R
M

S
 e

rr
or

 (
m

m
)

Saddle
Derivative
Active grids

Fig. 3.15: Performance plots for saddle point localisation, derivative locali-

sation and active grids localisation for varying parameters. Grid orientation

is measured between the grid normal and the camera principal axis in the

horizontal plane.

periment using the method of Zhang (1998). This camera was used to image

a monitor displaying a chessboard grid in an approximately fronto-parallel po-

sition, and subsequently to image an active grid displayed on the monitor in

the same position. All the captured images were undistorted to remove lens

distortion (Zhang, 1998). Each of the three localisation methods were used

to localise the grid corners in these images, whilst the grid corners locations

were extracted from the active grids data by searching for their known metric

locations and interpolating between the four nearest available pixels (with no

three collinear). The residuals obtained after mapping the metric grid to the

localised corners for each method are given in Table 3.8. It is seen that the

derivative method’s accuracy is superior to that of each of the other methods,

although its performance is only marginally better than the performances of

the OpenCV and active grids methods. Note that the termination criterion for

the OpenCV method was an accuracy of 0.1 pixels. Fig. 3.16 shows the vector
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residuals for each method. Whilst it is clear from these plots that some distor-

tion, principally radial, remains in the image despite the distortion removal,

the relative performances of the methods are still apparent. The OpenCV and

active grids localisation results are similar and only marginally worse than the

derivative method result.

The parameter values used in the experiment for the derivative, saddle point

and OpenCV methods are also presented in Table 3.8. The image corner

points were localised for a wide range of window sizes and blur SDs in order to

determine these optimum parameter values. It was found that the localisation

performance of the derivative method improves with increasing window size up

to the point at which windowed pixels fall outside the image boundary causing

the method to fail. The most suitable localisation parameters depend on the

apparent grid square sizes in the image. In contrast, the active grids method

takes no parameters and is therefore tolerant to changes in the apparent grid

square size. Note that the optimum parameters presented in Table 3.8 are not

directly comparable to the parameter value results of Section 3.1.3, particularly

in the case of derivative localisation, because here the grid images are distortion

free rather than containing significant fisheye distortion.

Recall that the test image used to generate the results in Table 3.8 had its

radial distortion removed. Therefore additional smoothing and interpolation

could be applied in the active grids method to remove the outliers evident in

the residuals plot. However, for images with high distortion local smoothing is

undesirable. Such an image, taken with a Nikon D200 and a 10.5mm Nikkor

DX ED fisheye lens, is shown in Fig. 3.17(a). Distortion was removed from the

image by using the data from an active grid imaged in an approximately fronto-

parallel position. The undistorted image is shown in Fig. 3.17(b), in which it

is seen that all the real world straight lines appear straight. The vertical world

lines are not vertical in the undistorted image due to the imaged active grid

having a negative pitch angle from the camera’s principal axis.

One of the benefits of using active grids over conventional static grids is the

ability to calibrate discontinuous cameras. Fig. 3.18(a) shows an image of an

approximately spherical ‘disco’ mirror constructed from multiple planar mirror

facets. The static chessboard grid reflected in the disco mirror is significantly

distorted due to the discontinuity of the mirror surface normals. By replacing

the static grid with an active grid, location data was acquired that enabled the
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Table 3.8: Chessboard grid localisation errors and method parameters for

derivative, OpenCV, saddle point and active grids methods.

Method Mean (pix) SD (pix) Win size Blur size

Derivative 0.0934 0.0672 49 -

OpenCV 0.1058 0.0775 35 -

Saddle point 0.1536 0.0993 15 9

Active grid 0.1014 0.0713 - -
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Fig. 3.16: Error residuals after mapping the metric grid to the localised grid

corners in an image of a chessboard grid for the derivative, OpenCV, saddle

point and active grids methods. Vectors are scaled ×200.

chessboard grid image to be approximately perspectively reconstructed. The

corrected image is shown in Fig. 3.18(b) superimposed on the actual chessboard

grid, from which it is seen that the grid corners and edges closely match the

underlying grid. Noise in the corrected image is due to non-specular inter-facet

reflections that can not be decoded.
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(a) (b)

Fig. 3.17: (a) Original fisheye image; (b) Fisheye image after distortion cor-

rection using active grids input data.

3.4 Discussion

This chapter addresses two practical aspects of calibration using planar cal-

ibration grids. These aspects require particular attention when calibrating

non-conventional cameras whose images contain significant distortion.

Firstly the task of chessboard corner extraction from images with large dis-

tortions is examined, and a solution to this task, the CELECT method, is

proposed and evaluated. Corner extraction is necessary in all planar calibra-

tion methods that employ chessboard grids, but until recently no non-manual

selection methods existed that had wide applicability and that had been shown

to operate successfully on severely non-linearly distorted images. Extraction is

shown to consist of the subtasks of corner detection, corner ordering and corner

localisation. Methods of corner detection are reviewed in Section 3.1.1, whilst

localisation is discussed in 3.1.3. The CELECT method, whose primary contri-

bution is the ability to determine correct corner ordering in conjunction with

corner detection, is presented in Section 3.1.2. The method is semi-automatic,

requiring only the locations of the four outer grid corners, and the number

of rows and columns in the grid. Given this information, the grid edge con-

tours are systematically traced, and corner detection is applied locally. The

CELECT method does not assume any underlying parametric arrangement of

the grid feature points in the image, thus rendering it applicable to calibration

grid images with severe distortion. The only assumptions are that the image is

continuous, and that the portion of the grid to be extracted has a fixed num-
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Fig. 3.18: (a) Image of a disco mirror reflecting a chessboard grid; (b) remapped

disco mirror chessboard grid image after distortion correction using active grids

input data. The correct grid is shown in shades of grey.
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ber of grid squares in each row and in each column. The CELECT method

solves a similar problem to that of Rufli et al. (2008), although the methods

were proposed independently and have different implementations. Due both to

the contour tracing approach and to its semi-automatic nature, the CELECT

method can detect more corners and can detect corners closer to the image

edge than existing automatic methods.

The robustness of the CELECT method to noise, scale, fisheye distortion and

perspective distortion is shown in Section 3.3.1 through experiments with syn-

thetic data to be good, although performance is shown to degrade with rela-

tively small levels of blur. Accuracy of the method is also shown to be sufficient

for subsequent subpixel localisation to converge. Results for real images from

four different types of non-conventional camera are presented in Section 3.3.2,

showing that the CELECT method has the capability to correctly detect and

order corners in highly distorted images from both central and non-central

cameras. Performance is evaluated with respect to the established method for

grid corner extraction available in the OpenCV image processing library. The

CELECT method achieves improved performance over the OpenCV method

for each camera type, and correctly detects and orders the corners in 85.0%

of the test images, compared to the success rate of only 43.3% for OpenCV.

The vastly superior performance of the CELECT method over the OpenCV

method for images from the spherical catadioptric camera demonstrates the

effectiveness of the CELECT method under low contrast conditions caused

by poor illumination. Weak shadows in the fisheye image set do not affect

the CELECT method, but do cause the OpenCV method to miss corners.

The high success rate for real images indicates that the CELECT method is a

significant practical aid for the calibration of non-conventional cameras when

applying calibration methods that require images of planar chessboard grids.

The second key contribution of this chapter is a discussion of spatio-temporally

coded grids – active grids – and a characterisation of their performance. Accu-

rate, high-density feature points are an important property of calibration grids

that are to be used for generic calibration. High density data can be extracted

from static calibration grids by interpolation, but this is shown in Section 3.2.1

to induce a bias in the extracted data points that is due to image distortion. By

displaying a sequence of spatially varying patterns on a TFT monitor, active

grids can overcome this induced bias. Section 3.2.2 presents an implementation

of active grids, in which a combination of course location data, decoded from
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binary patterns, and fine location data, decoded from phase shifted sinusoidal

patterns, is used to determine the location on the active grid that is seen by

each pixel.

Section 3.3.3 provides a performance evaluation of active grids under variations

in scale, Gaussian blur, Gaussian noise, and orientation. These experiments

conclusively show that active grids can outperform standard localisation meth-

ods in terms of their robustness. Results presented in Section 3.3.4 for addi-

tional experiments with real data show that active grids have a comparable

localisation accuracy to the best performing localisation methods optimised for

the test image. The benefits of active grids for the purpose of non-conventional

camera calibration are demonstrated for the cases of a fisheye image and an

image from a discontinuous camera. This characterisation of active grids shows

that they can provide accurate and dense calibration data, which is an impor-

tant benefit for the calibration method that is proposed in the next chapter.
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Chapter 4

Efficient Central Generic

Calibration

Standard generic camera calibration, which is discussed in Chapter 2, is a non-

parametric calibration technique that is applicable to any type of vision sensor.

The goal of generic calibration is to determine the mapping between image

pixels and 3-space camera rays. Different variants of the standard generic

method for calibration using planar targets have been proposed for central

and non-central cameras (Sturm and Ramalingam, 2003, Ramalingam et al.,

2005a). Nevertheless, the generic calibration framework is the same for both

camera types, that is, a collinearity constraint is applied to the intersection

points of each camera ray with the grids involved in the linear estimation

stage. The solution for the grid poses, and for the camera centre in the case of

central cameras, is obtained by solving equations that are formed by enforcing

this collinearity constraint (see Section 2.4.1 for details). The central and

non-central models only vary in the steps required to solve these equations.

The ability of generic calibration to calibrate any camera type removes the

requirement for the practitioner to determine the most appropriate model for

any particular camera to be calibrated. There is a trade-off between ease of

use and performance. It can be difficult to distinguish between camera types

that require specific models. However, some camera categories can be easily

identified, and consequently a decision on the camera calibration model can be

taken. Central cameras have a single centre of projection, and they include all

cameras that fit the pinhole model. Although fisheye cameras are not exactly
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central since they have a small locus of projection centres called a diacaustic,

they are approximately central for many fisheye lenses (Ying and Hu, 2004,

Swaminathan, Grossberg and Nayar, 2003). The complete family of central

catadioptric cameras has been determined by Baker and Navar (1998). The

family comprises (1) a perspective camera and a planar mirror, (2) a perspec-

tive camera located at the focal point of a hyperboloidal mirror, (3) an ortho-

graphic camera located on the axis of a parabolic mirror, and (4) a perspective

camera located at the focal point of an elliptic mirror. All other catadioptric

systems are non-central. The identification of approximately central cameras

is thus made by reference to this list of central cameras. Consequently, the

presentation of a generic calibration method specifically for central cameras is

a significant contribution in that such cameras are in wide use and are readily

identified as being approximately central.

Standard central generic calibration is a specialisation of the general generic

calibration framework, and so a link between the pinhole camera model and

the geometric constraints of central cameras is not considered in the stan-

dard central generic method. Additionally, since the polynomial based pose

estimation method of standard generic calibration is the same for both cen-

tral and non-central cameras, it does not account for known centrality. This

chapter proposes an improved generic calibration method for cameras with a

single centre of projection called the CGSP method – Central Generic Syn-

thetic Pinhole calibration method. Alternatives to steps 3 and 5 of Algorithm

1 of the standard generic method are presented that improve the accuracy and

robustness of the calibration. Improvements are achieved by using a synthetic

pinhole image plane that takes advantage of the geometric constraints result-

ing from a single centre of projection. Input data for the CGSP algorithm is

acquired using the active grids approach that is discussed in Chapter 3, as they

can provide the dense input data that is ideal for the new linear estimation

stage. The first improvement results from applying a novel method for the

linear estimation of the camera centre. The estimation of the camera centre

and the initial grid poses in the standard generic method, as detailed in Chap-

ter 2, is complicated, partly due to coupling of the variables to be extracted.

In Section 4.1 active grids are shown to facilitate other, more intuitive and

more accurate methods of determining the camera centre for central cameras.

The second improvement is achieved by way of an alternative pose estima-

tion stage that is proposed for use in generic calibration. The pose estimation
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stage proposed by Sturm and Ramalingam (2003) for standard generic cali-

bration is a 3-point polynomial technique that does not lend itself well to large

scale single-shot pose estimation. The alternative pose estimation algorithm

is derived and evaluated in Section 4.2. Together, the above modifications

serve to make the CGSP method for central cameras both more robust and

more accurate than the standard method. Simulations and experiments with

real data are presented in Section 4.3 that demonstrate the improved perfor-

mance. Comparative distortion correction experiments are conducted for both

an omnidirectional camera and a fisheye camera using the standard and CGSP

methods. Motion reconstruction experiments are undertaken for the omnidi-

rectional camera to validate the calibration approach, and the results of these

are detailed. The effects of the proposed modifications and the accuracy of the

complete CGSP calibration are clearly shown and discussed.

4.1 Linear Estimation

The purpose of the linear estimation stage in central generic calibration is to

determine both the grid poses and the position of the camera centre in the

camera coordinate system attached to the base (usually first) grid. The cam-

era centre is the single point through which all camera rays would pass if no

reflection or refraction occurred, thus the accuracy of the entire calibration is

directly dependent on the accuracy of the centre estimate. The linear estima-

tion stage of the standard generic method is discussed in Chapter 2, in which

the method of determining both the camera centre and the plane positions and

orientations is detailed. Eqns. 2.14 through 2.25 indicate the level of involve-

ment required to decouple and solve for the unknowns. The standard generic

method’s complexity is further indicated by the fact that Eqn. 2.25, which is

non-linear in the unknowns, is solved by observing through simulation that

certain variables are always 0.

An alternative linear estimation stage for central generic calibration is pro-

posed, and is used in the CGSP method. This linear estimation stage is less

complicated than, and is shown to be more accurate than, the method of

standard generic calibration.
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4.1.1 Synthetic Pinhole Calibration

The proposed linear estimation stage results from a novel interpretation of

existing methods for the calibration of pinhole cameras. As known, pinhole

calibration techniques are not directly suitable for wide FOV cameras due to

the existence of severe non-linear image distortion that invalidates the pinhole

projection model. For cameras with FOVs equal to and exceeding 180o the

pinhole model itself is invalid, since there is no image plane location and pos-

itive focal length for which all 3-space points linearly projected through the

camera centre can intersect. However, pinhole calibration methods are well

established and it would be beneficial to utilise this established theory. The

linear estimation stage of the CGSP method enables such utilisation. The key

idea is that an additional calibration grid, referred to as the base grid, is used

as a synthetic image plane in the calibration process, thus forming a synthetic

camera that is exactly pinhole. By placing the base grid in front of the gen-

eral camera so as to intersect the camera rays on the scene side of the camera

optics, as shown in Fig. 4.1, an image is formed on the synthetic image plane.

The synthetic image points are the points of intersection of the rays with the

inserted synthetic image plane. If this plane is an active grid, the intersection

locations can be determined directly as described in Chapter 3.

Consider the camera pixels that view the object in Fig. 4.1. The camera rays

associated with these pixels are coincident at the centre of projection of the

camera. Therefore the intersections of these rays with an additional grid, the

synthetic image plane, will be a perspective projection of the object corners.

By accurately determining the intersection points with the synthetic image

plane of all the camera rays that intersect the object, a pinhole image of the

object is formed on the synthetic image plane. Since the projection from the

object through the synthetic image plane to the centre of projection preserves

point collinearity, the synthetic image is free of all distortion. The synthetic

camera can then be calibrated from at least two such synthetic images of a cal-

ibration grid in different positions. Any standard pinhole calibration method

can be used to achieve this calibration. Since the centres of the synthetic and

general cameras coincide, the desired estimate of the general camera centre is

available directly from the synthetic camera calibration as [px py f ]T , where

px and py are the principal point offsets of the synthetic camera, and f is

the synthetic camera’s focal length. Furthermore, the pose of grids two and
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three can be extracted from the synthetic pinhole calibration using well known

techniques (Sturm, 2000). Note that there is no constraint on the placement

or the pose of the base grid acting as the synthetic image plane, once it is

located externally to the general camera. The only prerequisites for the linear

estimation stage of the CGSP method are that the general camera is central

and that the calibration targets are planar with known calibration patterns.

The non-linear calibration problem is thus linearised by moving the calibration

from a point at which the optics are non-linear to a point at which they are

linear. This new approach provides a link between the established theory of

pinhole calibration and the generic calibration of central cameras that has not

been expounded previously. Within the CGSP calibration framework, this link

enables the generic calibration of non-pinhole central cameras using pinhole

calibration techniques, so that any pinhole calibration technique can be used

to calibrate any central camera. The minimum number of grids required for

the linear estimation stage of the CGSP method is three - two for the pinhole

calibration plus one for the synthetic image plane - which is the same number

as required for the standard generic method’s linear estimation stage. The

benefits of active grids as discussed in Chapter 3, in particular their ability to

provide ray-grid intersection points directly and accurately, make them ideal

for use as synthetic image planes in this method. Standard chessboards, in

conjunction with homographic interpolation, could also be used to form the

synthetic image plane. However, in that case interpolation would introduce

bias into the synthetic camera and so the camera could no longer be precisely

modelled with a pinhole model. Note that the use of active grids in prior work

was for providing high density feature points, and not as a means of forming

a synthetic image plane as proposed here.

A question arises as to which pinhole calibration technique should be used for

the linear estimation stage of the CGSP method. To answer this, two well

known pinhole calibration techniques, those of Sturm and Maybank (1999)

and Wang and Liu (2006), were incorporated into separate implementations

of the CGSP method’s linear estimation stage. Both of these techniques are

based on the same underlying constraints on the Image of the Absolute Conic,

IAC, but they take different approaches to determining the solutions. The

relative performance of these two implementations was evaluated, resulting

in the conclusion that the method of Sturm and Maybank (1999) is more

accurate and robust than that of Wang and Liu (2006) for this application.
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Fig. 4.1: Linear estimation of the camera centre in the CGSP method. The

synthetic image plane allows the use of pinhole calibration techniques for de-

termining the camera centre.

Therefore the pinhole calibration technique of Sturm and Maybank (1999) is

applied in the CGSP method. This technique is based on the IAC, ω, and the

corresponding relationship between ω and the camera calibration matrix given

by

ω ' K−T K−1 (4.1)

The application of the technique to the linear estimation stage of the CGSP

method is detailed next.

4.1.2 CGSP Linear Estimation Procedure

The CGSP method’s linear estimation stage for n calibration grids proceeds

as follows. Let Qij be the intersection point of ray i with calibration grid j

in a coordinate frame attached to grid j, and let the pose of calibration grid

j in the world coordinate frame be given by T j composed of rotation Rj and

translation tj. The perspectivity, Hj, due to central projection gives

Qi1[1 2 4] ' HjQij[1 2 4], ∀i, and j = 2 . . . n (4.2)
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The standard camera projection matrix that maps scene points to image points

is given by (Hartley and Zisserman, 2003)

P = KRc[I3×3 | −tc] (4.3)

where Rc and tc are the camera rotation and translation, respectively, in the

world coordinate system. By placing the synthetic camera such that its image

plane is on the world Z = 0 plane, and by taking the case of planar scene

points, Eqns. 4.2 and 4.3 can be combined to give

Hj ' K [I3×3 | −tc]

[
Rj

[1 2] tj

01×2 1

]

' K
[
Rj

[1 2] | tj∗
]

(4.4)

where tj∗ = tj − tc.

The camera calibration matrix, whose general form is given by Eqn. 2.1, takes

on a simpler form for the synthetic camera. The synthetic camera’s aspect

ratio and skew are determined by the properties of the grid that acts as the

synthetic camera’s image plane. By using an active grid implemented on a

TFT monitor that has zero pixel skew, the skew factor s of the synthetic

camera is 0. The synthetic camera’s aspect ratio, α, is 1, since correction for

the active grid TFT monitor pixel aspect ratio is incorporated in the active

grid decoding stage. The simplified camera calibration matrix is

K =




f 0 px

0 f py

0 0 1


 (4.5)

Substituting Eqn. 4.5 into Eqn. 4.1, multiplying and scaling gives an expression

for ω in terms of the unknown internal camera parameters

ω '




1 0 −px

0 1 −py

−px −py f 2 + p2
x + p2

y


 (4.6)

Combining Eqn. 4.1 with Eqn. 4.4 allows the constraints inherent to the ho-

mographies to be used to provide constraints on ω

HjT ωHj ' HjT K−T K−1Hj

'




1 0 rjT
1 tj∗

0 1 rjT
2 tj∗

rjT
1 tj∗ rjT

2 tj∗ tj∗T tj∗


 (4.7)
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where rj
i is the ith column of Rj. Using this equation, and given that Rj and

tj∗ are unknown and that the equation is up to an undetermined scale, two

homogeneous linear constraints on ω can be derived

hjT
1 ωhj

1 − hjT
2 ωhj

2 = 0 (4.8)

hjT
1 ωhj

2 = 0 (4.9)

where hj
i is the ith column of Hj. The unknown elements of ω are then

{ω11, ω13, ω23, ω33}. There are three camera parameters to estimate, and in

the minimal case there are four independent equations resulting from H2 and

H3 (two constraints per homography), so the system to be solved is overcon-

strained. The inhomogeneous camera centre, C̃, after solving linearly for ω

using least squares, is given by

C̃ =




−ω13

ω11

−ω23

ω11

−
√

ω11ω33−ω2
13−ω2

23

ω11


 (4.10)

The camera calibration matrix of the synthetic camera is

K =




C̃3 0 C̃1

0 C̃3 C̃2

0 0 1


 (4.11)

Poses of the grids used in the linear estimation stage with respect to the base

grid acting as the synthetic image plane can be extracted from the homogra-

phies Hj by factorisation. Letting Gj = K−1Hj, and with gj
i the ith column

of Gj,

Rj = s
(

gj
1 gj

2 gj
1 × gj

2

)
(4.12)

tj = sgj
3 + C̃ (4.13)

s =
1

mean
(
‖gj

1‖ ‖gj
2‖

) (4.14)

where s is a scale factor. The sign of s is chosen so that the planes are located

on the same side of C as the synthetic image plane. Orthonormal rotation

matrices can be obtained via the SVD as in Zhang (1998).

Interestingly, the 15 independent parameters to be computed – 3 for each of

C, R2, t2, R3, t3 – can be determined from a minimum of 4 (Qi1,Qi2,Qi3)

triplets. Therefore the CGSP method’s linear estimation stage provides a
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minimal solution to the calibration problem, something that has only recently

been proposed for the linear estimation stage of the standard generic method

(Ramalingam and Sturm, 2008).

Homographies are determined within a RANSAC framework that selects inliers

as the point sets that are in homographic correspondence with one another. By

calculating homographies in this way, the CGSP method’s linear estimation

stage conveniently rejects outliers as part of the estimation process. The Hjs

are calculated using the standard DLT with normalisation, and the RANSAC

parameters are selected based on the experimental results in Chapter 3. Out-

liers can exist in the decoded data due to image shot noise, non-linearities

in the camera radiometric transfer function, and possible incorrect decoding

of active grids due to sharp local discontinuities. The implementation of the

CGSP method’s linear estimation stage requires the computation of homogra-

phies between large corresponding datasets (the size of the datasets is given by

the number of pixels that see both grids, typically in the region of 20, 000 point

pairs). The homographies are calculated using the standard DLT algorithm

(Hartley and Zisserman, 2003), with the SVD calculated using the Java JAMA

matrix package1, which was found to be more accurate than the OpenCV im-

plementation. For very large corresponding datasets, a random subset of the

point pairs can be used to decrease computation time.

4.1.3 Ray Directions

Once the linear estimation stage is complete, estimates of the camera centre

and the calibration grid poses are available. This information is sufficient to

calculate the rays associated with each camera pixel that views at least one

of the grids. Each ray is defined by the camera centre, through which it must

pass, and by the intersection points with each of the calibration grids in the

world coordinate frame. The weighted centroid of these intersection points, in

conjunction with the centre, are used to determine the Plücker matrices for

each ray. The intersection points of rays with the grids involved in the linear

estimation stage are weighted more heavily than all other intersection points.

This weighting takes account of the greater uncertainty in the intersection

point locations associated with the grids whose poses are themselves estimated

1http://math.nist.gov/javanumerics/jama/ (Accessed December 2007)
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from data resulting from the pose estimation stage (Section 4.2).

It is important to have a computationally efficient method of determining

the intersection points of rays, represented by their Plücker matrices, with

planes. Due to the skew-symmetry of Plücker matrices, the intersection points

of multiple rays with a single plane can be determined from a matrix equation

requiring only a single transpose operation and one matrix multiplication.

Given Plücker matrices, Mi, for each of n rays i, stored in a matrix M such

that M = [M1 M2 M3 . . . Mn], and given a plane, S, the intersection points

Xi of the rays with S are given by

X ' −MT S (4.15)

where X =
[
XT

1 XT
2 XT

3 . . . XT
n

]T
.

4.1.4 Bundle Adjustment

In the standard generic calibration method, bundle adjustment, BA, is applied

to the result of the linear estimation stage in order to improve the quality of

the calibration. The calibration is the look-up table that maps camera pixels

to ray directions in 3-space. Clearly, for the general camera model, it is the

ray directions that should be updated in any bundle adjustment scheme, but

there are several approaches to doing this. The rays are calculated as the join

of the camera centre, C, and the 3-space ray-grid intersection points of ray i

with plane j, Pij, where Pij = TjQij. Thus the parameters that determine the

calibration of each camera pixel are (C, Tj). Consequently the ray directions

can be adjusted directly, or updated by bundle adjusting Tj or both of (C, Tj)

for j = 2 . . . n.

The first possible scheme is to adjust the ray directions directly, based on a

ray-point distance metric. The standard generic calibration method of Rama-

lingam et al. (2005a) uses this scheme. In this case all the rays are forced

to pass through the linearly estimated C. The ray directions and the Tjs,

j = 2 . . . n, are then adjusted to minimise the ray-point distances between

rays and Pijs. A second possible approach is to adjust the ray directions in-

directly by optimising the Tjs, and again forcing the rays to pass through C

and as close as possible to the updated Pijs. For this approach only the Tjs,

j = 2 . . . n, are directly adjusted. In a third possible scheme, a best-fit line
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in 3-space can be determined for the Pij associated with each ray i, so that

adjustments to the location of the camera centre can be made in addition to

adjustments to the Tijs, j = 2 . . . n. This is a centre adjusting bundle adjust-

ment scheme. For the case of only three points a linear least-squares solution

can be determined by fixing a coordinate frame to the plane defined by the

join of the Pijs for each i, given by the null vector of [Pi1 Pi2 Pi3]
T , and then

by applying 2D line fitting on this plane. When more than three points are

available, the least-squares 3-space line fitting method of Barreto et al. (2008)

can be used. This bundle adjustment scheme attempts to find a configura-

tion for the plane poses for which the resulting rays are as close as possible to

concurrent.

The centre adjusting bundle adjustment scheme was implemented but was

found to perform poorly in tests. Stable convergence was generally not achieved,

and many local minima were observed. Due to noise and camera physical

setup, the camera rays will not exactly pass through a single point. This

poor centrality may be the cause of the instability in centre adjusting bundle

adjustment.

In either of the first two approaches a ray-point distance measure can be used

as the error metric. This function measures the perpendicular distance between

the ith ray and the Pij intersection points, and can be determined based on

the dot product. Given the ray direction unit vector ri, the closest point along

ri to P̃ij is parameterised by λij resulting in the constraint

ri · (λijri − (P̃ij − C̃)) = 0 (4.16)

The solution for λij is then

λij = ri · (P̃ij − C̃) (4.17)

The ray-point distance, dij, can then be determined conveniently as

dij = ‖λijri − (P̃ij − C̃)‖
= ‖(ri · (P̃ij − C̃))ri − (P̃ij − C̃)‖ (4.18)

The bundle adjustment method that is applied throughout this thesis for both

the standard generic and CGSP calibration methods is the second approach

described above, where C is fixed and only the Tjs, j = 2 . . . n, are directly

adjusted in order to minimise the geometric ray-point distance. After each
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bundle adjustment iteration, the ray directions are recalculated as the join of

C and the centroid of the new Pijs determined by the updated Tjs. This is

a relaxation optimisation, in which the ray directions are indirectly updated

at each iteration. It involves the minimisation of 6(n − 1) parameters – 6

parameters for each Tj, j = 2 . . . n, using the Rodrigues representation. The

alternative approach described above, in which the ray directions are directly

updated in the bundle adjustment, requires two additional parameters to be

minimised for each camera ray involved in the bundle adjustment (typically

thousands).

4.1.5 Simulated Experiments

A comparison, using synthetic data, of the robustness to Gaussian noise of

the linear estimation stages of the standard generic method, and of the CGSP

method, is shown in Fig. 4.2. Errors in the estimation of the camera centre,

and in the translation and rotation of the second and third grids involved

in the linear estimation stage, are presented (averaged over 50 trials). The

ray-point error is the perpendicular distance between each estimated ray and

its known point of intersection with each calibration grid (see Section 4.1.4).

These results are for a simulated camera with camera centre [0 0 600]T (in

coordinate frame of base grid), and with focal length and distortion parameters

chosen to simulate a wide angle camera with FOV of 100o. Results are shown

for the standard generic method both with and without bundle adjustment

of the grid transformations; bundle adjustment was not applied in the CGSP

method’s linear estimation stage in these experiments.

The results clearly show that the CGSP method’s linear estimation stage with-

out bundle adjustment outperforms that of the standard generic method with

bundle adjustment across all levels of noise tested. The results also indicate

that bundle adjustment does not significantly improve the calibration result

for the standard generic method, although the ray-point error is reduced. Pos-

sibly this is due to error in the linear estimate of the camera centre, C, which

is not updated in the bundle adjustment. The translation and rotation values

are coupled in the transformations, and so their errors can not be considered

independently and are only indicative of the accuracy of the calibrations. In

addition, translation direction is not considered in the translation error. Ex-

amination of the mean errors in the intersection point locations after applying
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the transformations estimated by the standard generic method, and by the

standard generic method with bundle adjustment, reveal that the application

of bundle adjustment does indeed reduce this error, despite the larger rotation

errors for the standard method with bundle adjustment shown in Fig. 4.2.

4.2 Pose Estimation

Pose estimation is required during generic calibration in order to increase the

number of calibrated camera rays. When the pose of an additional grid is esti-

mated, the camera ray associated with each pixel that sees this additional grid

can be included in the calibration. Exact solutions to the general pose estima-

tion problem can be found for either three or four non-collinear point-image

pairs by solving a fourth or higher degree polynomial (Fischler and Bolles,

1981, Haralick et al., 1994). The most common approach to pose estimation

using more than four points is to minimise either the image space error or

the object space error by using standard non-linear minimisation techniques.

Quan and Lan (1999) presented linear methods for determining pose from n

points, and (Lu et al., 2000) proposed an iterative technique. As described in

Section 2.4.2, a geometric three point algorithm that operates for both cen-

tral and non-central cameras is used to estimate pose in the standard generic

method. However, when included in a RANSAC framework, re-estimation of

the pose using all inliers (typically the final step in RANSAC) is not possible

using this algorithm. The algorithm is also very sensitive to additive noise

(although a guided selection of sufficiently separated points can alleviate this

problem). Additionally, the required polynomial solving can be memory inten-

sive – in tests the polynomial solver often did not produce a solution, resulting

in non-linear minimisation being implemented to solve the equations.

A linear least-squares solution to the pose estimation problem for central

generic calibration is therefore described to overcome these issues. Although

the method does not minimise geometric error, it is linear, fast, always gives a

solution, and can conveniently be incorporated within a RANSAC framework.
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Fig. 4.2: Centre and transformation estimation errors versus Gaussian noise

for the standard generic method, the standard generic method with bundle

adjustment, and the CGSP method. The rotation error is defined as the mag-

nitude of the Rodrigues angle of R−1
actualRestimated. Note that the SDs for the

CGSP method in these results are non-zero, but are significantly smaller in

magnitude than the SDs of the standard method.
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4.2.1 CGSP Pose Estimation Procedure

The method allows pinhole pose estimation to be applied to central generic

cameras through the use of a synthetic image plane. By intersecting the pre-

viously calibrated camera rays that see points on the unknown grid with the

synthetic plane, the distortion free pinhole projection of the unknown grid is

formed on that plane. Consider this synthetic plane as the image plane of a

synthetic pinhole camera, where the pinhole camera’s centre is coincident with

the camera centre of the general camera. With reference to Fig. 4.3, given a

grid in the base position with world coordinate points Xi, and given a grid

with an unknown pose T relative to the base grid containing the corresponding

unknown world points X′
i, the goal is to determine the unknown pose T . Al-

though general cameras are usually not pinhole, a solution is possible via the

insertion of the synthetic image plane in a known orientation (the orientation

selection is discussed later) between the camera centre and the grid with un-

known pose, as shown in Fig. 4.3. Since the pose of the synthetic image plane

is chosen, all the intrinsic and extrinsic parameters of the synthetic pinhole

camera are known. They are the camera projection matrix P , camera cali-

bration matrix K, camera rotation Rs, and camera centre C. Pose estimation

can therefore proceed using the established pose estimation method for pin-

hole cameras described by Sturm (2000). Note that the synthetic image plane

is only a mathematical construct, and is not physically realised. The general

pose estimation problem for central cameras is therefore cast as a pinhole pose

estimation problem for which an established solution is available.

Points X′
i can be projected onto the synthetic image plane by intersecting the

previously calibrated rays with this plane. The corresponding projection is

according to the pinhole model

x′i ' PX′
i (4.19)

where x′i are the imaged points on the synthetic image plane. Also, since the

base grid is on the world Z = 0 plane

x′i ' HXi[1 2 4] (4.20)

and

X′
i = TXi (4.21)
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Fig. 4.3: The CGSP method’s linear pose estimation scheme, employing a

synthetic image plane.

where H is a homography. Therefore

HXi[1 2 4] ' PT[1 2 4]Xi[1 2 4]

' KRs[I3×3| − C̃]T[1 2 4]Xi[1 2 4] (4.22)

giving

(KRs)
−1 H '

(
t1 t2 t4 − C̃

)
(4.23)

Letting G = (KRs)
−1H, and applying Eqns. 4.12, 4.13 and 4.14, a solution

for the rotation, R̂, and the translation, t, of the grid with unknown pose can

be determined. An orthonormal rotation R is obtained from R̂ via the SVD.

Non-linear minimisation can subsequently be applied to the linearly estimated

pose using the ray-point error metric described in Section 4.1.4.

One is free to choose the orientation of the synthetic image plane, after which

the synthetic camera parameters are directly determined. Ideally the synthetic

image plane should be as close as possible to perpendicular to the known rays

involved in the pose estimation process. This orientation can be determined

in a least-squares sense by minimising the sum of the angles between the

calibrated rays and the normal of the synthetic image plane, in a similar way

to Ramalingam et al. (2006). The unit plane normal, n, can be found as the

solution to

argmin
n

m∑
i=1

‖[ri]×n‖2 subject to ‖n‖ = 1 (4.24)
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where ri is the unit vector representing ray i, and [ri]× is its corresponding

skew-symmetric matrix.

4.2.2 Evaluation

The robustness to additive Gaussian noise of the pose estimation stage of

the standard generic method, and of the pose estimation stage of the CGSP

method, both embedded in RANSAC frameworks, was evaluated for synthetic

data. The simulated camera centre was fixed at [0 0 600]T , and the transla-

tions and Euler rotations of the grid, whose pose was to be estimated, were

randomly chosen from [−150mm 150mm] and [−30o 30o] respectively. The

mean rotational and mean percentage translational errors over 50 trials are

shown in Fig. 4.4. It is seen that the CGSP method’s pose estimation con-

sistently outperforms that of the standard generic method over all simulated

levels of noise. Embedding the linear method in a RANSAC phase does not

improve the CGSP method’s performance because the synthetic image data in

the experiments does not contain any outliers.

The two pose estimation methods, incorporated in RANSAC frameworks, were

also evaluated against each other using real data so that their robustness to

outliers could be determined. The experiment consisted of a Kodak MegaPlus

1.4i perspective camera imaging an active grid in two orientations, related by

a transformation consisting of a randomly selected rotation and translation.

The camera was pre-calibrated using the plane-based method of Zhang (2000),

allowing the ray-pixel look-up table to be determined directly. A 3D laser scan-

ner (depth resolution < 0.1mm) was used to gather ground truth data for the

scene, from which the pose of the active grid in the second position relative

to the first position was accurately determined. Using the pose estimation

methods of the standard generic and CGSP methods, the poses of the active

grid in each position were determined, allowing the relative pose estimates to

be calculated and compared to the ground truth. The experimental results in

Table 4.1 show the angular and translational errors for each pose estimation

method. The CGSP method’s pose estimates are again seen to be more ac-

curate than the those of the standard generic method. The standard generic

method still performs relatively well due to the small percentage of outliers in

the data (< 0.3%). The results also show the importance of using RANSAC for

the linear pose estimation, since without RANSAC the linear pose estimates
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Fig. 4.4: Performance comparison of the pose estimation stages of the standard

generic method with RANSAC, the CGSP method, and the CGSP method

with RANSAC, for synthetic data with increasing levels of additive Gaussian

noise. The rotation error is defined as the magnitude of the Rodrigues angle

of R−1
actualRestimated.

are seen to degrade significantly due to outliers. Error magnitudes of the real

experimental results are larger than the error magnitudes of the results for

synthetic data due to the smaller grids and larger camera-grid distances used

in the real experiments.

The implementation of the standard generic method’s pose estimation is incor-

porated in a RANSAC framework for all experiments in this section. Corre-

sponding re-estimation using all inliers is performed by non-linearly minimising

ray-point distances. The CGSP method’s pose estimation is also included in

a RANSAC phase unless otherwise indicated. However, for that method re-

estimation is performed linearly using the method described in Section 4.2.1,

and non-linear refinement is not applied.
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Table 4.1: Performance comparison of the pose estimation stages of the stan-

dard generic method with RANSAC, the CGSP method, and the CGSP

method with RANSAC, for real data. The rotation error is defined as the

magnitude of the Rodrigues angle of R−1
ground truthRestimated.

Standard CGSP CGSP

+ RANSAC + RANSAC

Rotation error (o) 1.49 1.53 0.75

Translation error (mm) 9.27 17.77 7.63

4.3 Experiments

Both the standard generic and CGSP methods are analysed for real data with

respect to linear estimation calibration parameters, a ray-point error metric,

camera centrality, distortion correction, and separate motion reconstruction

tasks.

4.3.1 Experimental Setup

An omnidirectional catadioptric camera and a camera with fisheye lens were

used to capture the images for the experiments. The omnidirectional camera

consists of a 360 OneVR hyperboloidal omnidirectional mirror2 mounted on a

Nikon D70 SLR digital camera. With the correct positioning and alignment,

this catadioptric configuration has a single centre of projection. However, the

mirror could not be mounted directly onto the camera due to limitations on the

minimum focusing distance of the camera lens, and thus an external bracket

was used to fix the configuration. The complete omnidirectional camera con-

figuration is shown in Fig. 4.5. Mirror alignment was performed based on the

known position of the closest focus of the hyperboloid, and by alignment of the

mirror outline to the centre of the image. However, accurate alignment could

not be guaranteed (an evaluation of the centrality of the experimental config-

uration is presented in Section 4.3.2). The second camera used was a Nikon

CoolPix 4500 digital camera attached to a Nikon FC-E8 fisheye converter lens,

which has a 183o FOV. For each calibration method approximately 207o of the

horizontal FOV and approximately 82o of the vertical FOV of the omnidirec-

2Kaidan Inc., Feasterville, PA
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tional camera was calibrated; for the fisheye camera approximately 94% of

the entire FOV was calibrated. Three grids were used in each calibration for

the linear estimation stage, and a further three grids for the omnidirectional

and seven grids for the fisheye cameras to extend the calibrated regions to

include additional pixels. A minimal number of grids were used in the linear

estimation stage of calibration in these experiments in order to examine the

relative performance of the standard generic method and the CGSP method

in the most challenging case. For high fidelity calibration more than the min-

imum number of grids should be employed. Lens movement in the Nikon D70

for upright and inverted camera positions exceeded 5 pixels for a 3008× 2000

image, and exceeded 9 pixels for the CoolPix for a 1600 × 1200 image, and

so in order to eliminate this error, camera movement was kept to a minimum

during calibration. Active grids were used for all grids during calibration, and

the same images were used as input to both calibration methods. This ensured

that direct comparisons between the standard generic and CGSP methods are

not influenced by the type of input data. A RANSAC stage is applied to

the locations decoded from the active grids in order to remove outliers from

the decoded location data. Normalisation is applied in the computation of all

homographies.

4.3.2 Experimental Results

For both cameras, the estimates of the camera centre, and the Rodrigues

rotation magnitudes and translation magnitudes for the poses of the second

and third grids used in the linear estimation stages for each calibration method

are shown in Table 4.2. The difference between the estimated values of the

camera centre z coordinate for each method for the omnidirectional camera is

significant. In contrast, all the estimated parameters for the fisheye camera

using both calibration methods are within 2.19% of each other, showing closer

agreement than the omnidirectional parameter estimates.

The ray-point error metric, described in Section 4.1.4, can be applied to each

calibration dataset to give an indication of the relative errors in the calibrations

(ground truths for the camera centres and the second and third grid positions

are not known). Table 4.3 shows the mean and standard deviation of the

ray-point errors for each method and for each camera, both before and after

bundle adjustment. Bundle adjustment is applied to the CGSP method here
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Fig. 4.5: The omnidirectional camera configuration used in the experiments.

for comparative purposes only. For the linear estimation stage, the non-bundle-

adjusted parameters are used in the remainder of the calibrations with the

CGSP method, whereas the bundle adjusted results are used for calibration

with the standard generic method (as per Ramalingam et al. (2005a)). For

the omnidirectional camera the ray-point error results clearly show that the

non-bundle-adjusted configuration of the camera centre and the calibration

grids is in greater geometric agreement for the CGSP method than for the

standard generic method. The ray-point error and its standard deviation after

calibration with the CGSP method are approximately an order of magnitude

smaller than the results for calibration with the standard method, both before

and after bundle adjustment. The difference in the magnitude of the errors

for the calibration methods is less for the calibration of the fisheye camera,

but the mean errors after applying the CGSP method are smaller than for the

standard method. For both cameras, bundle adjustment reduces the ray-point

errors of the standard generic method calibrations significantly. The relatively

small ray-point error of the omnidirectional camera calibrated using the CGSP
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Table 4.2: The camera centre and grid transformation estimates for the omni-

directional and the fisheye camera calibrations. The centre and the translations

are measured in mm, the rotations are measured in degrees.

Camera Parameter Standard method CGSP method

169.29 167.90

C̃ 152.06 159.82

-106.48 -116.21

Omnidirectional R2 34.78 36.83

t2 130.58 139.66

R3 36.55 36.83

t3 182.84 192.13

104.71 107.00

C̃ 161.89 162.29

-125.69 -124.01

Fisheye R2 43.34 42.59

t2 122.18 120.22

R3 37.95 37.28

t3 287.72 282.39

Table 4.3: Ray-point errors (mm) for all rays involved in the linear estimation

stage for each calibration method and for each camera.

Omnidirectional Fisheye

Method Error type Error Error after BA Error Error after BA

Standard Mean 3.22 1.16 0.32 0.09

method SD 1.49 0.66 0.16 0.06

CGSP Mean 0.19 0.13 0.14 0.08

method SD 0.09 0.07 0.09 0.07

method indicates that the misalignment of the omnidirectional mirror with the

camera is not significant. Overall, the difference in performance between the

standard and CGSP calibration methods is less for the fisheye camera than

for the omnidirectional camera. Additionally, the ray-point error is similar

across both camera types after applying the CGSP calibration, but is an order

of magnitude different when standard generic calibration is applied. These

results agree with the simulated results in Section 4.1.
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Centrality of the camera configurations after calibration was examined to get

further insight into the quality of the calibrations. This is done by determining

the best-fit 3-space ray, î, based on the world intersection points Pij of ray i

with grid j for j = 1, 2, 3, which are estimated in the calibration. Least squares

ray fitting for three points in 3-space is performed as described in Section 4.1.4.

Then the rays î are intersected with a plane passing through the estimated

camera centre C that is closest to perpendicular to the îs (see Section 4.2 for a

method of calculating this plane). The distribution of the intersection points

on this plane indicates the extent of centrality of the camera calibration. Since

only the rays that intersect the first three grids are used, the FOV of these rays

is relatively small. Consequently the use of an intersecting plane that is close

to perpendicular to all these rays is important, since in this orientation the

distribution of the intersection points on the plane is most compact (under the

assumption that the rays are affected by Gaussian noise only). Fig. 4.6 shows

plots of these distributions for each calibration method for each camera. These

plots are for the estimated camera centre and grid poses after application of

the linear estimation stage only and before bundle adjustment is applied. It

can be seen that the distribution is highly non-Gaussian and non-isotropic for

the omnidirectional camera calibrated with the standard generic method. In

contrast, the distribution is both more compact and closer to Gaussian for the

same camera calibrated using the CGSP method. The wide distribution for

the standard generic method may partly be a result of inexact camera central-

ity, but importantly the distribution for the CGSP method indicates that it

achieves a solution that is geometrically consistent with an approximately cen-

tral configuration. Therefore misalignment between the camera and the mirror

in the experimental configuration is not significant. For the fisheye camera,

the results using the two calibration methods are very similar, although the

distribution is marginally closer to Gaussian for the CGSP method. Note that

a lower bound exists on the distribution of the intersection points for the fish-

eye camera due to the fisheye diacaustic. An isotropic Gaussian distribution

of the errors indicates that the camera centre estimate and grid poses are in

geometric agreement, with the error resulting solely from the Gaussian noise

in the intersection point locations. The fisheye camera centre estimated in

the CGSP method’s linear estimation stage is within the convex hull of the

intersection points. However this is not the case for the camera centre lin-

early estimated using the standard method, indicating greater inconsistency

between the estimated camera centre and the grid poses for that method.
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Fig. 4.6: Distribution of the intersection points of the best-fit rays for grids 1-3

with a plane that is most perpendicular to these rays and that passes through

the estimated camera centre, for each camera and for each calibration method.

The camera centre is shown with a red +. Note that the scales of the axes are

smaller for the fisheye plots.

Distortion Correction

Two distortion correction experiments are conducted in order to both qualita-

tively and quantitatively evaluate each of the calibration methods.

In the first experiment, the calibration data is used to remove the inherent

non-linear distortion from the calibrated regions of images of real scenes. For

the omnidirectional camera, a portion of a cylindrical image was formed by

intersecting the calibrated rays with a unit cylinder, the axis of which was

coincident with the camera centre, and then by unwrapping the cylinder to

form a planar image. Fig. 4.7 shows the original images and the cylindrically

unwarped images calculated using the calibration data from both the standard

generic and CGSP methods. As expected, real world straight lines that are

parallel to the mirror axis (vertical) are mapped to straight lines in the images
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corrected using either method. However, some abberations are visible in the

images corrected using the standard generic method (highlighted by ellipses).

In contrast, the corrected images formed using the CGSP method have sig-

nificantly less aberration. The FOV of the cylindrically unwarped images in

Figs. 4.7(c) and 4.7(d) is less than that of Figs. 4.7(e) and 4.7(f) due to the

difference in magnitude of the camera centre z coordinate estimated using the

two methods.

Distortion correction for the fisheye camera is best demonstrated by generating

perspectively corrected images from the originals. This is readily achieved

by intersecting the calibrated camera rays with a plane whose orientation is

determined as in Section 4.2. The results after perspective correction using

each calibration dataset, and for the same image pixels, are shown in Fig. 4.8.

Again, real world straight lines properly appear as straight lines in both sets of

corrected images. Similarly to the distortion corrected omnidirectional images,

there are some visible aberrations in the images corresponding to the meeting

points of mis-estimated grids. However, their magnitudes are so small that

they are only noticeable at close inspection. The similarity of the results in

Fig. 4.8 is to be expected given the correlation of the linearly estimated values

for the camera centre and the grid orientations determined by each generic

calibration method, as given in Table 4.2.

Quantitative evaluation of the calibrations was carried out by generating per-

spectively corrected images of planar chessboard grids. The plane onto which

the corrected images were projected was selected as described in Section 4.2.

Distortion residuals were measured for each image after applying a homogra-

phy between the distortion corrected image of the grid and the known metric

grid structure. Fig. 4.9 shows the distortion residuals for both the standard

and CGSP methods for both cameras. In the case of the omnidirectional cam-

era, no radial distortion bias is visible in either vector plot, but the plot for

the standard generic method displays large divergences along roughly vertical

lines at the left and right of Fig. 4.9(a), indicated by dashed lines. These co-

incide with areas where two active grids with mis-estimated pose meet, and

correspond to the aberrations seen in Figs. 4.7(c) and 4.7(d). The divergences

for the omnidirectional camera seen in Fig. 4.9 and the distortion correction

residuals given in Table 4.4 are smaller for the vector plot using the CGSP

method than for the vector plot using the standard generic method, indicating

a better calibration. For the fisheye camera the distortion residual plots are
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7: Omnidirectional camera distortion correction results: (a),(b) original

omnidirectional images; (c),(d) cylindrically unwarped images after standard

generic calibration; (e),(f) cylindrically unwarped images after CGSP calibra-

tion.

almost identical across the two calibration methods. The mean and standard

deviation of the residuals for the fisheye camera using both methods are also

very similar, which is as expected given the similarity in the linear estimated

parameters for each method, and since the distortion correction is applied to

the centre region of the image where the rays are determined by the linear

estimation stage alone. Note that the errors towards the left and right of the

vector plots are amplified due to the increased skew of the rays relative to the

perspective plane in these regions.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.8: Fisheye camera distortion correction results: (a),(b) original fisheye

images; (c),(d) perspectively corrected images after standard generic calibra-

tion; (e),(f) perspectively corrected images after CGSP calibration.
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Fig. 4.9: Vector plots of the residuals after perspective correction of a chess-

board grid: omnidirectional camera using (a) standard generic method cali-

bration data, and (b) CGSP method calibration data; fisheye camera using (c)

standard generic method calibration data, and (d) CGSP method calibration

data. Distortion corrected points are mapped to the same size metric grid for

both cameras so as to enable direct comparison of the residuals. Vectors are

scaled ×15.

Table 4.4: Residuals (mm) after distortion correction for the omnidirectional

and the fisheye cameras using the standard generic and the CGSP methods.

Method Error type Omnidirectional Fisheye

Standard Mean 4.54 2.93

method SD 1.96 1.69

CGSP Mean 2.23 2.72

method SD 1.06 1.68
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Motion Reconstruction

Motion reconstruction experiments were conducted with the omnidirectional

camera for the cases of pure translation and pure rotation. The similarity of

the results for the fisheye camera calibration using the two calibration methods

mean that any motion reconstruction experiments would likely be too similar

for the purpose of comparison.

The experimental setup consisted of a 3D calibration target (two orthogo-

nal planar chessboard grids) rigidly mounted on a stage capable of controlled

rotation and translation. For the translation experiment, the object was trans-

lated 100mm in steps of 20mm, and for the rotation experiment it was rotated

through 110o in steps of 10o. Point matches were extracted from the images

using the CELECT corner detection and ordering method proposed in Chap-

ter 3. These were used to index the Plücker matrix lookup tables for each

calibration method to get the corresponding ray direction information. The

essential matrix, E, between each image pair was linearly estimated using the

ray-based epipolar constraint (Ramalingam et al., 2006)

LT
2 EL1 = 0 (4.25)

where L1 and L2 are the first 3 components of the Plücker vectors derived from

the Plücker matrices. Rotations and translations are extracted from the es-

sential matrices using the method of Nister (2003). The motion reconstruction

results are shown in Fig. 4.10. It can be seen that the motion estimated with

the CGSP method is closer to linear in the case of translation, and closer to

the ground truth value of 110o in the case of rotation, than for the standard

generic method. For visualisation purposes the differences between the average

translation vector and the estimated translation vectors are scaled by 4.

4.4 Discussion

This chapter addresses generic camera calibration for cameras that have a sin-

gle centre of projection, and proposes an efficient method of generic calibration,

the CGSP method, for such cameras. The standard generic method of Sturm

and Ramalingam (2003) was developed such that both central and non-central

cameras can be calibrated within the same framework. Consequently, estab-
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Fig. 4.10: (a) Translation and (b) rotation reconstruction using the calibration

data from the standard generic method and the CGSP method.
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lished parametric calibration techniques are not utilised for the central case.

An improved central generic calibration is proposed that takes advantage of

the geometric constraints resulting from a single centre of projection in order

to enable the utilisation of such techniques. As a result the CGSP calibra-

tion method can obtain greater calibration accuracy and robustness than the

standard generic method.

Firstly, Section 4.1 proposes a novel linear estimation stage for use in the CGSP

calibration method. The linear estimation method enables simple calibration

algorithms to be used instead of the more complicated method that has previ-

ously been promoted, allowing the use of any pinhole calibration technique for

determining the camera centre for any type of central camera. Active grids play

an important role in the proposed linear estimation. Section 4.1.1 describes

how an active grid can be used as a synthetic image plane during calibra-

tion. Exact pinhole images are formed on this synthetic plane by intersecting

camera rays with it, and then by decoding the intersection locations from the

active grid data. The task of determining the camera centre is thus converted

to a simple pinhole calibration problem, for which many solutions exist. Sec-

tion 4.1.2 details the CGSP method’s linear estimation process when applying

the pinhole calibration method of Sturm and Maybank (1999). Bundle ad-

justment is a standard treatment for refining parameters in any calibration

process, and Section 4.1.4 discusses the application of bundle adjustment to

the linearly estimated camera centre and pose estimates. Comparative results

for the standard generic and CGSP linear estimation stages are presented in

Section 4.1.5, where it is shown that the camera centre and initial grid poses

estimated using the CGSP method without bundle adjustment are more accu-

rate in the presence of noise than the equivalent parameters estimated using

the standard method.

Secondly, an alternative pose estimation stage is proposed in Section 4.2 for

application in the CGSP calibration method. Pose estimation of additional

grids is required to expand the calibrated FOV. Section 4.2.1 details how per-

spectivities can be applied to data from a synthetic, unrealised, image plane

in order to determine a linear solution for pose that utilises a standard pin-

hole pose estimation technique. Such a solution enables linear re-estimation of

pose in a RANSAC framework, which is not possible using the pose algorithm

of the standard generic method. The CGSP and standard generic pose esti-

mation methods, both incorporated in RANSAC frameworks, are evaluated
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against each other for both simulated and real data in Section 4.2.2, with the

conclusion that the CGSP method’s pose estimation performs better in terms

of both accuracy and robustness to noise.

The complete CGSP method is evaluated against the standard generic method

in Section 4.3.2, where each method is used to calibrate both an omnidirec-

tional camera and a fisheye camera. When a ray-point error metric is applied

to the calibrated cameras rays involved in the linear estimation stage, it is seen

that the mean residual error, both before and after the application of bundle

adjustment, is always less for the CGSP calibration than for the standard cal-

ibration, which agrees with the simulated results. The mean residual error

before bundle adjustment is approximately 16 times larger for the standard

method than for the CGSP method when applied to the omnidirectional cam-

era, and approximately 2.2 times larger when applied to the fisheye camera.

Qualitative and quantitative improvement in accuracy is particulary notice-

able for the omnidirectional camera. The distortion correction experiments

demonstrate the superior performance of the CGSP method for the omnidi-

rectional camera, whereas the results for the fisheye camera are approximately

equivalent for both methods. Motion reconstruction experiments are also un-

dertaken for the omnidirectional camera, with the results again showing the

accuracy of the CGSP method to be superior to that of the standard method.

It is concluded from the experimental results, both for synthetic and real data,

that the CGSP method should be used instead of the standard generic method

in order to achieve the best results for the generic calibration of central cam-

eras.

A prerequisite to the application of the CGSP calibration method is knowl-

edge of camera centrality. For completely non-central cameras, such as stereo

rigs, the CGSP method is certainly not applicable. However, for near-central

cameras, for example catadioptric configurations with misalignment between

the camera and mirror, the approach taken by Ramalingam et al. (2005a) can

be adopted, whereby the camera is initially treated as central. Therefore the

CGSP method can be applied first, followed by a non-central bundle adjust-

ment scheme to relax the centrality constraint.
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Chapter 5

Calibration of Flexible Mirror

Imaging Systems

There is currently a trend towards new camera designs for use in such areas as

surveillance, mobile robot navigation and virtual reality. These new camera

designs achieve desirable image benefits over perspective cameras. Chapter 4

deals with non-conventional central camera systems, which can provide sig-

nificant benefits over conventional cameras in terms of large FOVs that allow

greater persistence of vision, and specific resolution properties such as equires-

olution. However, the area of flexible catadioptrics, in which the mirrored

surface used is flexible, is only recently receiving attention. Flexible mirror

imaging systems consisting of a perspective camera viewing a scene reflected

in a flexible mirror provide unique camera characteristics that enable a dy-

namic FOV and alterable allocation of the camera sensor area resources to

the imaged scene. Thus flexible mirror cameras can form vision systems that

have not previously been realisable. However, the benefits that they provide

are balanced by an important disadvantage of such systems, which is that they

are difficult to calibrate due to the vast range of possible mirror shapes and due

to the flexible nature of the system. This chapter proposes the fundamentals

of a dynamic calibration approach for flexible mirror imaging systems, leading

to the development of the SPFC2 method – Scene Point based Flexible mirror

Camera Calibration method.

A prerequisite for calibration is a suitable model of the flexible mirror cam-

era. With the exception of the general model, none of the camera models
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discussed in Chapter 2 is applicable in this case due to the non-centrality

and to the unknown, generally non-quadric, mirror shape of flexible mirror

imagers. Considering the general model, the direct mapping between every

image pixel and associated camera ray would require to be updated after each

mirror deflection if applied to a flexible mirror camera. A model with a small

number of parameters and that can cope with a continuum of mirror surface

shapes would be more suitable. This is achieved by directly modelling the

flexed mirror surface using some parametric surface description. Section 5.1

presents two such camera models, one of which models the mirror as a curve

in the plane for constrained deflections, and the second of which models the

mirror surface using a B-spline surface. Therefore the complete camera model

is parametric, where the parameters are the perspective camera parameters

and the parameters describing the mirror surface shape.

The focus of this chapter is on a method for effectively calibrating the above

models. The principles of an alternative calibration method to Kuthirummal

and Nayar (2007) are established, where the aim is to dynamically update the

calibration rather than attempt to recalibrate completely after each mirror

deflection. Key to the proposed SPFC2 method is the use of scene points,

rather than points on the mirror, for calibration. The SPFC2 method takes

its inspiration in part from the field of mirror design for catadioptric sys-

tems. Swaminathan, Nayar and Grossberg (2003) presented a linear method

for determining the catadioptric mirror surface shape necessary to implement

a desired scene to image map. That method employs constraints on the in-

cident and reflected ray directions in order to determine the parameters of a

B-spline surface model of the mirror. Based on the method of Halstead et al.

(1996), the surface is determined directly from the set of surface normals.

Section 5.1.2 describes how this method is applied to flexible mirror camera

calibration. There are scale ambiguities in this surface estimation, and so an

additional constraint based on the fixed points of the mirror is required in

order to completely determine the mirror surface.

Calibration in the SPFC2 method is achieved by separately calibrating the per-

spective camera, determining the flexible mirror shape, and determining the

relative orientations of the perspective camera and the flexible mirror. The

SPFC2 calibration process, described in Section 5.2, consists of an initial pri-

mary calibration stage followed by in-service dynamic calibration. Perspective

camera calibration and the determination of mirror position are performed in
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the primary stage. Then dynamic calibration implements a linear surface ap-

proximation to initialise a non-linear minimisation step, the result of which

is the estimate of the mirror surface shape. Scene information required for

dynamic calibration is obtained by imaging a calibration grid both before and

after the mirror deflection.

In comparison to the only existing flexible mirror camera calibration method

(Kuthirummal and Nayar, 2007), the SPFC2 method has the significant ad-

vantage of a much simpler calibration setup. It does not require a stereo rig

for surface shape estimation, nor is there a large and laborious data collection

procedure required. The SPFC2 method is adaptive where that of Kuthirum-

mal and Nayar (2007) is exhaustive. In addition, the mirror shapes that it can

calibrate are not limited to the set of pre-calibrated deformations nor is there

a requirement for the entire mirror boundary to be visible in the image since

calibration is performed using information from reflected scene points. On the

other hand, the SPFC2 method requires the use of a calibration grid, and cali-

bration is not available in real time unlike the existing method (Kuthirummal

and Nayar, 2007).

The SPFC2 method is most similar in spirit to the corneal reconstruction

method of Halstead et al. (1996), although the methods differ in their imple-

mentations and calibration configurations, and they have different application

domains. In Halstead et al. (1996) the 3-space scene points, whose locations are

fixed and known, lie on the inner surface of a special purpose conical calibra-

tion object that forms part of the videokeratograph configuration for corneal

measurement. In contrast, for the SPFC2 method, the scene point locations

in 3-space are not initially known and are not fixed relative to the perspec-

tive camera, and so they must be estimated based on the previous calibrated

mirror surface. In addition, the locations of the scene points vary between

applications of dynamic calibration in the SPFC2 method. Initialisation of the

surface refinement in Halstead et al. (1996) is performed by guessing a corneal

shape, which is acceptable since the corneal shape is approximately standard.

For the purpose of flexible mirror imager calibration, there is no approximate

shape for the surface to be refined, and so an alternative method is required for

initialisation. Also, for the application in Halstead et al. (1996), the primary

measurement to be recovered is surface shape, and so the accurate recovery of

surface scale is not discussed. In contrast, scale information is important for

calibration and its determination is detailed in the SPFC2 method.
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Results for a simulated camera based on the reduced model, presented and

discussed in Section 5.3.1, demonstrate the robustness of the SPFC2 method

to variations in camera and scene configurations. The applicability of both

the reduced model and the full model for a real flexible mirror camera is ex-

amined in Sections 5.3.2 and 5.3.3, in which extensive experimental evaluation

is conducted. Motion and scene reconstruction experiments are additionally

conducted for the full model. Finally, the application of the SPFC2 method,

with modifications, to the task of flexible mirror self-calibration is investigated

in Section 5.4.

5.1 Flexible Mirror Camera Model

The flexible mirror imaging system dealt with in this chapter consists of a

perspective camera imaging a scene reflected in a thin, flexible, developable

mirror surface. A developable surface is a surface that can be flattened to

a planar surface without any stretching or tearing occurring (Liang et al.,

2008). Experimentation is restricted to such surfaces since non-developable

flexible mirrors are difficult to realise in practice, although the theory of flexible

mirror imaging calibration that follows is equally applicable to non-developable

mirror surfaces. Furthermore, one edge of the flexible mirror is assumed to be

fixed in position and in first derivative relative to the perspective camera.

This is achieved by clamping the mirror at one edge. Apart from providing a

convenient method of holding the mirror, it will be seen that this constraint is

sufficient to remove the ambiguity in the location of the mirror in the camera

coordinate system.

Reflection of light rays from specular surfaces is governed by the law of reflec-

tion, which states that the angle of incidence is equal to the angle of reflection.

Knowledge of the surface normal at any point on the surface allows the re-

flected ray at that point to be calculated for any incident ray. Referring to

Fig. 5.1, reflected light rays entering the perspective camera are termed view-

ing rays and are represented by unit vectors Vl. The corresponding light rays

that fall on the mirror from the scene are called scene rays and are represented

by unit vectors Vr. For any given mirror surface shape, the flexible imager

can be modelled by the general camera model, which maps image pixels (u, v)

to scene rays Vr using a look up table. However, for efficiency reasons a para-
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Fig. 5.1: Schematic of a flexible mirror imaging system.

metric camera model is desirable, and so the look-up table is replaced by a

model of the flexible mirror surface. Similarly to Micusik and Pajdla (2004),

rays anchored to the mirror surface rather than rays on the mirror caustic

are used to represent the camera. By using the mirror surface rather than

the caustic the computation of the Jacobian is not necessary, and high-order

surface parameterisations required to describe caustics resulting from slightly

non-central flexible mirror imager configurations are avoided.

5.1.1 Mirror Shape Model

Two different mirror surface shape models are examined. The reduced model

approximates the mirror surface as a curve in the plane. This imposes re-

strictions on the mirror configuration and deflection, but it is beneficial for

simulation purposes since synthetic mirror shapes can be formed easily. The

full model describes the mirror as a general surface allowing unconstrained mir-

ror deflections, and so it is more useful in practice. For this reason the mirror

shape estimation, the application of the positional constraint, and the method

of calibration are described with respect to the full mirror model. However,

the theory and the calibration are equally applicable to the reduced model.
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Reduced Model

The flexible mirror can be approximated by a thin plate deflection model.

Assume the fixed edge of the mirror is vertical with respect to the perspective

camera viewing it, and is perpendicular to the camera’s principal axis. Then

if deflection of the mirror occurs in a plane perpendicular to the fixed mirror

edge, a reduced model of the mirror shape consisting of a 2D planar curve can

be considered. From structural mechanics beam deflection theory, a cantilever

beam with isotropic material properties, fixed in position and first derivative

at one end and undergoing small deflections, can be modelled by

v =
Px2

6EI
(3m− x) (5.1)

where the deflection v is determined by the applied force P , the material

properties E and I, the distance m from the fixed edge at which the force is

applied, and the distance x from the fixed edge, where x ≤ m. Clearly then

the mirror should be modelled by a curve of at least 3rd order. The reduced

mirror shape model is

S(u) = au3 + bu2 + cu + d (5.2)

where S(u) is the mirror shape curve, u is the horizontal image pixel coordi-

nate, and {a, b, c, d} are the model parameters. This model and the beam

deflection equation are physically accurate for small deflections of the mir-

ror for which
(

dS(u)
du

)2

is much less than unity (Gere and Timoshenko, 1991).

Larger deflections have more complicated shapes that are described by elastica

theory.

Full Model

Whilst the reduced model indicates the type of shape that the mirror model

can assume in a planar scenario, it is limited in that it can be only applied

to single dimensional flexing resulting from a single-point deflection applied at

the free edge of the mirror. In order to allow for greater generality a B-spline

surface model is used to represent the mirror, similar to Kuthirummal and

Nayar (2007) and to Halstead et al. (1996). The form of the reduced model

suggests that splines of at least third order are required, but because multiple

B-splines are used in the full model, the order of the splines can be reduced.
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Lower order B-splines have fewer spline coefficients and so the number of image

points required for calibration is less. In this thesis quadratic B-spline basis

functions are chosen to model the mirror surface across open uniform knot

vectors.

As in Swaminathan, Nayar and Grossberg (2003) and Kuthirummal and Nayar

(2007) the complete mirror surface is described parametrically by the distances,

D(u, v), of the mirror points from the perspective camera centre, described by

a B-spline model, as measured along the viewing rays Vl of the primary optics.

The perspective camera centre is assumed without loss of generality to be at

the world coordinate origin. The full mirror model, S(u, v), is consequently

given by

S(u, v) = D(u, v)Vl(u, v) (5.3)

were

D(u, v) =

Kf∑
i=1

Kg∑
j=1

cijfi(u)gj(v) (5.4)

= f(u)T Cg(v) (5.5)

and

f(u) =
[
f1(u) f2(u) . . . fKf

(u)
]T

(5.6)

g(v) =
[
g1(v) g2(v) . . . gKg(v)

]T
(5.7)

u and v are the horizontal and vertical image pixel coordinates, respectively,

cij are the B-spline surface coefficients, fi(u) and gj(v) are the corresponding

spline basis functions, and Kf and Kg are the number of basis functions in the

u and v directions, respectively. Kf and Kg are determined by the elements

of the knot vectors. In the full mirror model knot vectors are regenerated

after every calibrated change in the mirror shape so as to span the area of the

mirror visible in the image. In this way the complete mirror surface is always

modelled by the same number of basis functions independently of changes in

its apparent size due to deflections. As a consequence of its bi-dimensionality

the full mirror model does not place any restrictions on the orientation of the

fixed mirror edge relative to the camera principal axis.
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5.1.2 Mirror Shape Estimation

The mirror surface is estimated from a set of linear equations as in Swami-

nathan, Nayar and Grossberg (2003) and in Halstead et al. (1996). For known

Vls and Vrs, the unit surface normals, N(u, v), are given by

N(u, v) =
Vl(u, v)−Vr(u, v)

||Vl(u, v)−Vr(u, v)|| (5.8)

The tangents to the surface are given by the first derivative of the surface.

Enforcing orthogonality between normals and tangents leads to the following

∂S(u, v)

∂u
·N(u, v) = 0 (5.9)

∂S(u, v)

∂v
·N(u, v) = 0 (5.10)

Combining Eqns. 5.3, 5.9 and 5.10 gives

(
D(u, v)

∂Vl

∂u
+ Vl

∂D(u, v)

∂u

)
·N(u, v) = 0 (5.11)

(
D(u, v)

∂Vl

∂v
+ Vl

∂D(u, v)

∂v

)
·N(u, v) = 0 (5.12)

Expanding out with the B-spline basis functions and coefficients gives

∂Vl

∂u
·N(u, v)

(
f(u)T Cg(v)

)
+ Vl ·N(u, v)

(
df(u)T

du
Cg(v)

)
= 0 (5.13)

∂Vl

∂v
·N(u, v)

(
f(u)T Cg(v)

)
+ Vl ·N(u, v)

(
f(u)T C

dg(v)

dv

)
= 0 (5.14)

which can be rewritten as
[(

∂Vl

∂u
·N(u, v)

)
vec

(
f(u)g(v)T

)T

+ (Vl ·N(u, v)) vec

(
df(u)

du
g(v)T

)T
]

vec(C) = 0 (5.15)

[(
∂Vl

∂u
·N(u, v)

)
vec

(
f(u)g(v)T

)T

+ (Vl ·N(u, v)) vec

(
f(u)

dg(v)T

dv

)T
]

vec(C) = 0 (5.16)

where vec() is the vectorise operator that converts a matrix to a vector by

stacking the matrix columns. From the pinhole model for the perspective
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camera Vl is given by [u v f ]T

||[u v f ]|| , where f is the camera focal length, and thus

∂Vl

∂u
=

1√
u2 + v2 + f 2

3




v2 + f 2

−uv

−uf


 (5.17)

∂Vl

∂v
=

1√
u2 + v2 + f 2

3




−uv

u2 + f 2

−vf


 (5.18)

Each image point and corresponding mirror surface normal allow one of each

of Eqns. 5.15–5.16 to be formed. By stacking such equations into a matrix

a homogeneous equation of the form Ax = 0 is obtained. This can then be

solved using the SVD with equilibration to determine the B-spline coefficients.

Each {Vl,Vr} pair contributes two independent equations to the data matrix

A, and provides a linear constraint on (k + 1)2 B-spline blending functions,

where k is the degree of the blending functions. The rank of A depends on

the number of {Vl,Vr} pairs, n, for which data is available. A has dimension

2n × KfKg, and must have rank KfKg − 1 in order to enable a non-trivial

solution for the blending functions. The minimum number of {Vl,Vr} pairs

necessary to determine the mirror surface shape is therefore
Kf Kg

2
. In addition,

{Vl,Vr} pairs for a minimum of ceil
(

Kf

k+1

)
× ceil

(
Kg

k+1

)
distinct knot regions

are required, and in this case the {Vl,Vr} pairs must be maximally spread

across the B-spline surface. However, in order to improve estimation accuracy

in the presence of noise, {Vl,Vr} pairs for every (non-zero) knot region should

be included in matrix A.

5.1.3 Incorporating Mirror Positional Constraint

The above solution for the B-spline coefficients shows that a surface solution

can be obtained once the surface normals are known. However, the solution

is only up to scale as the mirror position has not been fixed. In fact two

ambiguities can arise during surface estimation depending on the inputs to the

estimation - mirror depth ambiguity and mirror shape ambiguity.

Firstly, ambiguity arises in the linear equations of the previous section from the

fact that the position of the mirror in the world coordinate frame is not fixed.

The method of mirror shape estimation presented in Section 5.1.2 is solely
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(a) (b)

Fig. 5.2: (a) Mirror depth ambiguity; (b) mirror shape ambiguity.

based on viewing and scene rays, Vl and Vr, from which mirror surface nor-

mals and finally B-spline coefficients are determined. Referring to Fig. 5.2(a),

without a fix on the 3-space position of the scene points the mirror can trans-

late along the Vls whilst the surface normals, and consequently the surface

shape, remain fixed. When either a scene point or a mirror surface point is

known in the world coordinate system, the ambiguity in the distance of the

mirror surface from the camera, given by D(u, v), can be removed through a

direct scaling of C.

The second ambiguity relates to the situation where the Vls and scene points

are known but the Vrs are unknown. This occurs during dynamic calibration,

described in Section 5.2.2. In this case, the mirror surface can translate along

the viewing rays and continue to reflect the scene points along the Vls by

simultaneously changing shape, as illustrated in Fig. 5.2(b). As the distance

of the mirror from the perspective camera increases, the Vr directions must

alter to keep the fixed scene points visible along the Vls. This ambiguity can

not be removed by scaling C since the mirror surface shape alters for different

mirror positions. The two ambiguities can be seen to be related by considering

the Vrs in the mirror depth ambiguity to be meeting in a point at infinity.

Both ambiguities can be removed by incorporating the constraint on the mirror

position described in Section 5.1 into the mirror shape estimation equations.

Note that in Halstead et al. (1996) an interpolation constraint is imposed
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in the estimation equations for the purpose of constraining the solution set,

but its importance and its connection to the depth and shape ambiguities

described above are not discussed there. Assume that a solution for the mirror

surface and scale is available for some position and deflection of the mirror (see

Section 5.2). In this case, for an image point (ue, ve) viewing a fixed point on

the mirror the spline value D(ue, ve) is known. This value is constant for all

mirror deflections so that after a deflection of the mirror the spline equation

associated with (ue, ve) is

D(ue, ve) = f ′(ue)
T C ′g′(ve) (5.19)

= vec
(
f ′(ue)g

′(ve)
T
)T

vec(C ′) (5.20)

where the prime indicates new spline coefficients and basis functions. A least

squares solution for C ′ can thus be extracted in a subspace spanned by (KfKg−
1) basis vectors as

vec(C ′) = cP + CB Φ (5.21)

where cP is the particular solution, CB is a matrix of basis vectors, and Φ is

the new vector of unknowns. Finally, C ′ is incorporated into Eqns. 5.15–5.16,

and after some rearrangement the new equations to be solved for the flexed

mirror surface that incorporate the positional constraint are

EuCB Φ = −EucP (5.22)

EvCB Φ = −EvcP (5.23)

where

Eu =

(
∂Vl

∂u
·N(u, v)

)
vec

(
f ′(u)g′(v)T

)T

+ (Vl ·N(u, v)) vec

(
df ′(u)

du
g′(v)T

)T

(5.24)

Ev =

(
∂Vl

∂u
·N(u, v)

)
vec

(
f ′(u)g′(v)T

)T

+ (Vl ·N(u, v)) vec

(
df ′(u)

du
g′(v)T

)T

(5.25)

A solution for Φ can be determined by stacking Eqns. 5.22–5.23 into a matrix

and solving using standard least squares techniques, as in Section 5.1.2. The

B-spline coefficients are then available from Eqn. 5.21. A single fixed point on

the mirror is sufficient to solve for scale, although for the mirror model in this

thesis the fixed mirror points are the points along the fixed edge of the mirror.
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For the experiments in Section 5.3 the fixed imaged points along the clamped

edge of the mirror are manually selected, and subsequently refined subpixelly

by line-fitting. Refinement is necessary in order to prevent small errors in the

selected fixed points inducing large errors in the estimated surface.

5.2 Flexible Mirror Camera Calibration – the

SPFC2 Method

The goal of calibration is to determine the mapping between viewing rays

Vl and scene rays Vr. This mapping is derived from the mirror surface by

applying the law of reflection, so that calibration of the flexible mirror imager

reduces to the estimation of the mirror surface. The SPFC2 method consists of

two stages: (1) calibration of primary optics and determination of initial mirror

surface, and (2) dynamic updating of calibration after the mirror is flexed. The

primary calibration stage is only executed once, whereas the dynamic stage is

applied after each mirror deflection.

5.2.1 Primary Calibration

Primary calibration aims to determine a complete calibration of the imager for

some initial mirror position and shape. It employs two basic calibration tech-

niques. Firstly the perspective camera is calibrated using a standard method

such as that of Zhang (2000). This information is used to remove radial dis-

tortion from all subsequent perspective camera images so as to enable the Vls,

which remain fixed, to be calculated as described in Section 5.1.2. The com-

plete flexible mirror imager is then calibrated as a general camera for the initial

mirror shape and position using the general calibration method described in

Section 2.3.3. Although general calibration is a time consuming process, it only

needs to be carried out once. As part of the general calibration, an active grid

is imaged in two positions, with a 100mm translation between them. However,

this only enables the determination of the Vrs in the coordinate frame of the

active grids. In order to transform the scene rays into the coordinate frame of

the perspective camera, or equivalently the world coordinate frame, the world

poses of the active grids used in general calibration, TAG
i , are required. This
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is achieved for each active grid position i by taking an image of the active grid

reflected in a planar mirror placed between the perspective camera and the

flexible mirror. A hard disk platter is utilised as a high quality planar mirror

in this application, and is attached directly to a planar chessboard grid. The

platter mirror pose, Pm, can be estimated from the planar grid to which it

is attached by using standard homography based techniques (Sturm, 2000).

Similarly, the virtual pose, P v
i , of the active grid in position i is estimated

directly from the active grid corners reflected in the platter mirror. The trans-

formation, TR, describing reflection in a planar mirror (Bonfire et al., 2006) is

given by

TR =

[
I3×3 − 2nnT −2dn

01×3 1

]
(5.26)

where n is the platter mirror unit plane normal extracted from Pm, and d is

the distance of the platter mirror from the origin, again extracted from Pm.

The active grid world poses are then given by

TAG
i = TRP v

i (5.27)

The translation component of Pm is reduced by the thickness of the platter

mirror to account for the offset between its reflective surface and the calibration

grid to which it is attached. The experimental configuration for pose recovery

and a typical image used in the method are shown in Fig. 5.3. Note that if the

poses of the active grid in each position are determined via planar reflection,

as described above, it is not necessary to know the translation between the

active grids. In that case the calibration setup is more straightforward as

precise motion control is not required. However, the translation is used in the

experiments conducted with real data in Section 5.3.3 in order to provide a

check on the accuracy of the reflection based estimates of the active grid poses.

Finally, the intersection points of the viewing and scene rays, which should

occur on the flexible mirror surface, are estimated so that the flexible mirror

position can be determined in the camera coordinate space. The position

estimates are found by selecting the points that minimise the distance to Vl

and Vr for each corresponding pair of rays.

The initial mirror surface can now be determined using Eqns. 5.15 and 5.16. A

fix on the overall scale of the calibration is made by incorporating the position

estimates into the surface description, and is achieved by scaling the B-spline

surface coefficients C so that S(u, v) matches the position estimates.
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(a) (b)

Fig. 5.3: (a) Method of determining the active grid pose from reflection; (b) ex-

ample image of a hard disk platter mounted on a calibration grid and reflecting

an active grid.

Interestingly, the primary calibration stage could be performed in a single step,

by calibration of the perspective camera, if the initial mirror shape is known

to be planar. The primary calibration stage could also be simplified by using

static grids in place of active grids, since only a subset of all {Vl,Vr} pairs are

required to determine the B-spline surface model. However, the bias resulting

from interpolation on chessboard grids may degrade the surface estimate.

The primary calibration stage is similar to the method for specular surface

triangulation that was proposed by Bonfire et al. (2006). In that work, the

position and orientation of a rigid specular surface is recovered using a single

calibrated perspective camera viewing the reflection of a calibration target in

at least two distinct positions. Similarly to primary calibration, they estimate

the target poses using reflection in a planar mirror, although they show that

the planar mirror’s pose can be estimated indirectly if images of the reflection

of at least three target poses are acquired. Their method can be applied to

calibrate discontinuous specular surfaces, whereas for flexible mirror cameras

the surface is known to be continuous. The SPFC2 method can be seen as an

extension of the work of Bonfire et al. (2006) to the case of flexible specular

surfaces in which the surface estimate is dynamically updated as the surface

deflects.
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5.2.2 Dynamic Calibration

Dynamic calibration estimates the new mirror surface, resulting from deflec-

tion, in two steps. Firstly a linear solution is obtained based on the theory

presented in Sections 5.1.2 and 5.1.3, and subsequently the solution is refined

non-linearly by minimising a geometric scene error metric. It is important

to understand the difference between the two steps. The inputs to the linear

stage are the Vls and Vrs and the position constraint, so no information about

the depth of scene points is utilised. Thus it is applicable to potential self-

calibration directly from a scene. For the non-linear stage, the inputs are the

Vls and the scene points P(u, v) that are seen by the associated scene rays.

In this step the directions of the scene rays are unknown, but the scene depths

are available, so the non-linear step is unsuitable for self-calibration from an

unknown scene. Self-calibration for flexible mirror imagers is discussed further

in Section 5.4.

Any deflection of the mirror requires the calibration to be updated, which

is equivalent to estimating the updated mirror shape, S(u, v)′. In Section

5.1.2 it is shown that knowledge of the scene and viewing rays is sufficient

for reconstructing the mirror surface. The viewing rays V′
l for S(u, v)′ can

be determined directly from the locations of the features in the image after

deflection, as in Section 5.1.2, but the V′
rs are unknown. Referring to Fig. 5.1,

it is clear that if the scene points P(u, v) are at infinity, then the directions

of the scene rays that see the same scene points are the same for all mirror

shapes. Thus the approximation

V′
r ≈ Vr (5.28)

holds for distant scene points, and enables a linear estimation of the mirror

surface using Eqns. 5.3, 5.9–5.10, and 5.22–5.23.

The linearly estimated result, Ŝ(u, v)′, is used to initialise a non-linear estima-

tion step that determines the final mirror surface estimate, S(u, v)′. The non-

linear estimation refines the linear estimate to account for non-infinite scene

points by minimising scene errors, but to do this some information about the

scene is required. Such information is acquired by imaging a calibration grid,

placed in the imager FOV, both before and after mirror deflection. The pose of

this grid is estimated from the first image, which has already been calibrated

(either in the primary calibration stage or in the previous application of dy-

142



Chapter 5 – Calibration of Flexible Mirror Imaging Systems

namic calibration). A non-central pose estimation technique must be applied

in order to estimate the pose. In the experiments presented in this chapter a

modification of the method of Eqn. 2.26 is used that applies non-linear min-

imisation to solve for all grid corners simultaneously. A canonical metric grid

with the estimated pose is subsequently fitted to the data so as to enforce grid

point planarity and improve robustness. This enables a scene-to-image map to

be formed from the 3-space locations of the canonical grid corner scene points,

P(u, v). Non-linear estimation can then proceed by minimising the following

geometric error metric

Γ(S(u, v)′) = || [Vr(u, v)′ · (P(u, v)− S(u, v)′)]Vr(u, v)′+S(u, v)′−P(u, v)||
(5.29)

Γ, which is the ray-point distance metric proposed in Section 4.1.4, measures

the perpendicular distance between Vrs and corresponding P(u, v)s. This

results in the mirror surface estimate, S(u, v)′, for which the distance between

scene rays and the scene points P(u, v) through which they should pass is

minimised. Once the calibration has been updated to S(u, v)′, the mirror can

be flexed again and dynamic calibration reapplied using the V′
rs estimated in

the last iteration. An iterative or non-linear method is necessary for accurately

determining S(u, v)′ since no closed-form solutions exist for determining the

reflection point of a scene point A in a non-spherical curved mirrored surface

viewed from a point B (Roth and Black, 2006, Chen and Arvo, 2000).

A flow diagram outlining the SPFC2 calibration process is shown in Fig. 5.4.

Two factors should be noted in relation to the magnitudes of deflections ap-

plied during dynamic calibration. Firstly, there is an inherent bias due to the

infinity assumption that results in the linearly estimated mirror surface under-

estimating the magnitude of the mirror deflection. However, it is found that

for small mirror deflections the linear estimate is sufficient for the convergence

of the non-linear estimation. Secondly, mirror deflection causes feature points

(imaged scene points) to be displaced between images, as can be clearly seen

in Fig. 5.10. The larger the mirror deflection, the larger is the feature point

displacement. This displacement of feature points should be considered when

choosing the knot vectors, which in turn determine Kf and Kg. A minimum

condition on the locations of feature points in knot regions in order to allow

linear surface estimation is given in Section 5.1.2. Features must exist in at

least the first and last knot interval in the u direction and in the v direction.
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Fig. 5.4: Flowchart of the SPFC2 method.
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Considering the mirror surface as viewed in the image, the knot regions along

the free mirror edge opposite to the constrained edge must contain scene fea-

tures. It is at this edge that mirror deflections will cause the most displacement

of features in the image. Thus, in order to meet the minimum condition when

applying large deflections, the knot region sizes must be increased by reducing

the number of knots in the knot vectors. However, a balance is required be-

tween accuracy and allowable deflection, as a more accurate surface estimate

necessitates more basis function in the B-splines and thus more knots in the

knot vectors. These competing requirements must be considered when select-

ing the knot vectors. Active selection of the knots could be accomplished by

using the observed feature point displacements to determine the number of

knots to be used in both u and v directions.

Due to both the linear estimate bias and the minimum condition on the ex-

istence of image features of scene points across deflected image pairs, small

deflections are favoured and large mirror deflections should be carried out in

stages, with dynamic calibration applied at each stage.

5.3 Experiments

Experiments were carried out using simulated data, to evaluate the effect on

performance of configuration variations, and using real data, so as to charac-

terise the overall performance of the SPFC2 method. The reduced model is

applied in the simulated experiments and in the initial real experiment, with

the full flexible mirror camera model used in the subsequent real experiments.

5.3.1 Simulated Experiments

Experiments with simulated data were conducted using the reduced model

of Eqn. 5.2 with single point deflection at the mirror edge, for variations in

image noise, scene depth (distance between mirror and calibration grid) and

mirror curvature. The simulation results are presented in Fig. 5.5, where the

datapoints in each plot are the average of 100 random trials, and results are

shown for both the linearly estimated surface and the final non-linearly refined

surface.
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Fig. 5.5: Error in the linear and final SPFC2 mirror surface estimates for

varying parameters. The simulated camera has focal length 26mm and image

size 516×656 pixels. The flexible mirror is 420mm in length and is oriented at

67.5o to the camera. Unless otherwise stated, the mirror deflection is 16.7mm,

the scene depth is 1650mm and Gaussian image noise with 1 pixel standard

deviation is added.
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Row 1 shows the error plots for increasing additive Gaussian image noise. Ad-

ditive image noise has a greater impact on the final surface estimate than on

the linear estimate, since the error due to the infinite scene assumption far

outweighs the error introduced by the noise. The final surface estimate error

is linearly proportional to the noise. The error plots for increasing scene depth

are shown in row 2. As expected, the error decreases as the calibration grid

moves further from the mirror, in line with the infinite scene assumption. For

large scene depths (> 3000mm) the final error becomes independent of the

scene depth, indicating that the infinity assumption is an effective approxi-

mation in this range. The error plots for increasing mirror curvature, κ, are

shown in row 3. It is seen that the error in the linear surface estimate in-

creases with increasing curvature due to increasing weakness of the infinite

scene assumption. The error in the final mirror surface estimate for variation

in curvature is larger than the maximum error for either of the other two sim-

ulated experiments principally due to the poor linear estimate. The maximum

value of
(

dS(u)
du

)2

for the simulated experiments is 0.036, which is much less

than unity, and thus the deflections in the simulated experiments are within

the range over which the reduced mirror model is applicable.

5.3.2 Real Experiments with Reduced Model

The SPFC2 method was evaluated for a real flexible imaging system configured

as described in Section 5.1. A flexible plastic mirror1 was attached to an alu-

minium substrate in order to improve rigidity. Deflections were applied to the

back of the substrate through a tensioned wire. Due to its inexpense, the flex-

ible mirror exhibits quality defects in the form of both double reflections and

surface aberrations. Exemplar mirror aberration is visible in Fig. 5.6, which

shows a portion of a chessboard grid, located at a scene depth of approxi-

mately 5m, reflected at the top edge of the flexible mirror. The aberration

causes deviations from the expected scene ray directions, and so the detrimen-

tal impact on image quality increases when reflecting scene points that are at

greater scene depths.

The mirror was deflected by approximately 7.98mm from a nominally planar

position, with high-accuracy comparative reference measurements of the mirror

1Plastic wing mirror replacement mirror from www.carpointeurope.com
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Fig. 5.6: Portion of a flexible mirror image showing aberration in the upper

region due to poor mirror quality.

surface obtained for each position using a 3D laser scanner 2. Fig. 5.7 shows the

estimated and reference mirror surface before and after the mirror deflection.

It can be seen that the primary calibration error is of similar magnitude to

the error for the final mirror surface estimate after flexing, indicating that the

accuracy of the dynamic calibration is very sensitive to the primary calibration.

The primary calibration error can be attributed to the higher order components

of the mirror surface that are not modelled by Eqn. 5.2, and to mirror defects.

The distance from the mirror surface to the calibration grid was approximately

280mm, and as a result the linear estimate of the flexed mirror surface in

Fig. 5.7 is relatively inaccurate, although the final estimate is still good.

The feature points in the image will have both u and v coordinates. For the

reduced model the v coordinates can simply be dropped so that the features

are projected to 2D. The mean error between the laser scanned mirror surface

and the estimated mirror surface using the reduced model is 0.13mm.

5.3.3 Real Experiments with Full Model

Experiments were conducted with a similar flexible mirror imager configura-

tion to that used in Section 5.3.2 in order to assess separately the primary and

dynamic calibration stages for the full mirror surface model of Eqn. 5.5. The

perspective camera used was an Olympus SP-510UZ 7.1 Mpixel digital cam-

era. Deflections were applied to the back of the substrate using two optical

2The non-specular back surface of the mirror substrate was scanned instead of the mir-

rored surface, since a mirrored surface cannot be accurately measured by a laser scanner.
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Fig. 5.7: Mirror surface estimates for real data, using the reduced model, before

and after deflection.

translation stages in series, each having a resolution of 0.01mm. The complete

imager configuration is shown in Fig. 5.8. Since mirror deflection occurs prin-

cipally in a plane perpendicular to the fixed mirror edge, Kf = 7 and Kg = 3

were chosen for the full model used in the experiments. A composite plot of

the 21 resulting B-spline blending functions is shown in Fig. 5.9.

Images of a scene taken with the flexible mirror imager at each of the four 5mm

stages of deflection applied in the real experiments are shown in Fig. 5.10. It

is seen that the FOV for stage 3 is approximately double the FOV of the stage

0 configuration. The fixed edge of the mirror is on the right of the image,

although due to the mirror clamping method, the exact fixed edge is not visible.

This explains why there is some loss of FOV on the right of the images when

progressing from stage 0 to stage 3. At all other mirror edges, a qualitative

examination reveals that the non-linear image distortion rapidly increases with

respect to image regions further from these edges. These edge effects are likely

due to strains induced in the mirror material during the cutting stage after

manufacture.

As discussed in Section 5.2.1, the mirror position is determined in primary

calibration by intersecting the known viewing and scene rays. The mean and
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Fig. 5.8: Experimental configuration of the flexible mirror imager used in the

real experiments with the full model.

Fig. 5.9: B-spline blending functions for the full mirror surface model used in

the real experiments.
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(a) (b)

(c) (d)

Fig. 5.10: Scene images from the flexible mirror imager at different stages of

deflection: (a) stage 0; (b) stage 1; (c) stage 2; (d) stage 3.

standard deviation of the ray-point distances for 1056 estimated mirror points

across the image were 0.86mm and 0.40mm respectively, indicating a good

initial mirror position estimate. The two active grids used in the general cali-

bration step were found to have an estimated relative translation of 99.73mm

and estimated relative rotation of 0.14o, which compares well with the 100mm

pure translation that the translation stage underwent. Differences between the

translation stage transformation and the active grid monitor transformation

are due to vibration of the monitor during travel, and consequently the trans-

lation stage travel cannot be considered a ground truth measurement for the

monitor transformation, although similar values would be expected.
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Table 5.1: Actual and estimated mirror deflections for each deflection stage.

Stage Deflection magnitude (mm)

Actual Linear estimate Final estimate

1 5.0 2.69 4.71

2 5.0 3.07 4.61

3 5.0 3.10 4.74

The accuracy of the SPFC2 method’s primary calibration and the effect of the

initial surface estimation using B-splines were evaluated by comparing directly

measured scene rays with scene rays determined from the calibrated model.

Approximately 160 pixels with corresponding Vls were chosen uniformly from

the image, and the errors in the angles between the measured Vrs and the

Vrs calculated by reflecting these Vls in the estimated mirror surface were

determined. The mean and standard deviation of these errors were 0.19o and

0.13o, respectively.

Multiple Deflections

After primary calibration, the mirror was deflected in three 5mm stages, such

that its shape became increasingly convex, and dynamic calibration was ap-

plied at each stage. Estimated mirror deflections determined from the SPFC2

calibration data for each stage of deflection are presented in Table 5.1. All

the final estimated deflection values show good agreement with the actual de-

flections, with a maximum error of 7.76% in the estimated deflections. The

deflection point is closer to the mirror edge than any of the scene points used

for surface estimation, therefore its displacement magnitude is significantly

influenced by the surface interpolation. For stages 1, 2 and 3 the bias in

the linear estimates causing underestimation of deflection is clearly evident.

This underestimation is due principally to the small scene depths of less than

300mm and it is discussed in Section 5.2.2.

Additional assessment of the accuracy of each dynamic calibration over the

entire mirror surface was made by again comparing directly measured Vrs, de-

termined using active grids as described in Section 5.2.1, with Vrs estimated

from the calibrated model. The estimated relative rotations and translations

between the active grid in the two positions for each deflection stage are pre-
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Table 5.2: Estimated relative translation and relative rotation between active

grids for each deflection stage.

Stage Estimated translation (mm) Estimated rotation (o)

1 100.12 0.04

2 100.36 0.17

3 101.29 0.33

Table 5.3: Maximum measured angular displacements of Vrs, and angular

differences between measured and calibrated Vrs, for each deflection stage.

Stage Approx. max. angular Angular error (o)

displacement (o) Mean SD

0 0.0 0.19 0.13

1 4.1 0.42 0.16

2 8.3 0.24 0.12

3 12.8 0.23 0.15

sented in Table 5.2. As with the primary stage, they show good agreement

with the 100mm pure translation of the translation stage. The mean and stan-

dard deviation of the angular differences between measured and estimated Vrs

for 168 uniformly selected image points, and for each stage of deflection, are

presented in Table 5.3. After 3 deflections and applications of dynamic calibra-

tion the mean angular difference is only marginally greater than the angular

difference for the surface estimate from the primary calibration stage. The

distributions of the magnitudes of the angular differences across the images

are shown in Fig. 5.11. As expected, the minimum angular differences occur

at the fixed edge of the mirror where the positional constraint is enforced.

The largest differences exist spuriously at the remaining edges of the mirror,

and can be explained by the severe mirror distortions at these edges that are

discussed earlier in this section.

The back-projection errors at each deflection stage for between 156 and 182

corner points on a randomly located 252 × 261mm chessboard grid are pre-

sented in Table 5.4. By back-projection error is meant the on-plane error

between the actual scene point and the intersection with the scene plane of

the scene ray associated with the image of that scene point. Back-projection

error vector residuals for the mirror after stage 3 deflection before and after
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Fig. 5.11: Angular differences between measured and calibrated Vrs across the

image at each stage of deflection. The fixed mirror edge is the bottom right

edge.

SPFC2 calibration are shown in Figs. 5.12(a) and 5.12(b), respectively. Most

of the non-linear distortion present before calibration for the 5mm deflection

is seen to be removed after dynamic calibration. As with the angular differ-

ences, the largest residual errors occur along an unconstrained mirror edge,

and they correlate with the severe distortions visible at the bottom edge of the

images in Fig. 5.10. Back-projection error is a useful quantitative evaluation

of calibration accuracy since it does not require the determination of reference

scene rays, but the back-projection error magnitude is still dependent on scene

depth, which is approximately 400mm for the back-projection experiments.

Additionally, since the calibration grid used for determining back-projection

error is randomly located, comparison of back-projection errors for different

deflection stages is not a precise method of evaluating the relative calibrations.

The effect is greatest if high curvature local mirror shape changes exist, since

at such locations a small displacement in the reflection point of a scene ray

can correspond to a large rotation of the scene ray direction. Back-projection

errors are on-plane errors, whereas the cost function, Γ, minimised in the dy-
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Table 5.4: Back-projection errors for a randomly located calibration grid, and

residual errors after non-linear surface estimation.

Stage Back-projection error (mm) Residual error (mm)

Mean SD Mean SD

0 0.56 0.33 – –

1 0.52 0.32 0.68 0.58

2 0.52 0.30 0.67 0.53

3 0.42 0.28 0.80 0.51
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Fig. 5.12: (a) Back-projection error vector residuals before calibration for the

stage 3 deflection (vectors are scaled ×5); (b) back-projection error vector

residuals after calibration for the stage 3 deflection (vectors are scaled ×30).

namic calibration stage measures the ray-point Euclidean distances between

corresponding scene rays and scene points. For each stage, these latter resid-

uals after non-linear surface estimation, for between 132 and 154 grid corner

points, are presented in Table 5.4. Interestingly, both the back-projection error

statistics and the surface estimation residual statistics maintain approximately

similar values across all applications of dynamic calibration.

Repeatability of Multiple Deflections

An experiment to test both the repeatability of the SPFC2 method and its

tolerance to large deflections was conducted next. The mirror was deflected

in 5mm stages from stage 0 to stage 3 as before, increasing the mirror con-

vexity, followed by deflections from stage 3 back through stages 2 and 1 to
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stage 0, which will be termed concave deflections (since they reduce the mirror

convexity). For the concave deflections, the grid used in dynamic calibration

was kept in a fixed position for all deflections, allowing an additional dynamic

calibration to be applied to calibrate directly from stage 3 to stage 0.

The estimated deflections and associated mirror surface estimation residuals

for the stage by stage calibrations are presented in Table 5.5. Estimated deflec-

tions after calibration agree more closely with actual deflections than for the

first experiment conducted in this section (see Table 5.1), despite the similar

deflections and mirror initial positions for each experiment. The variation can

be partly explained by variation in the calibration grid position used to provide

scene points in dynamic calibration, which in turn affects the number of scene

points used in the calibration and thus the spline surface interpolation. By us-

ing a calibration grid with a more dense set of scene points, this variation could

be reduced. Final estimated deflection magnitudes for equivalent stages in the

convex and concave deflections are within 4.74% of each other for all stages,

indicating good repeatability in the dynamic calibration. The hysteresis loop

error for the complete experiment is 0.11mm, or 0.76% of the 15mm deflection.

Residual error after surface estimation is similar across all deflection stages,

with the exception of the last stage of concave deflection. Back-projection er-

rors for the mirror in the stage 0 position, after primary calibration only has

been applied, have mean 0.85mm and SD 0.51mm. The back-projection error

mean and SD increase to 1.84mm and 1.47mm, respectively, for the stage 3

position, but after the three subsequent concave deflections back to stage 0 the

error slightly reduces to have mean 1.84mm and SD 1.37mm.

Next the mirror was dynamically calibrated for the stage 0 position after a

15mm deflection from stage 3, resulting in a linearly estimated deflection of

9.66mm and a final deflection estimate of 15.15mm. The total concave mirror

deflection estimated in 3 stages above is 15.13mm, so the deflection magni-

tude estimated in a single stage is within 0.14% of that estimated in multiple

smaller stages. Such close agreement in estimates indicates that there is a

strong global minimum of the cost function, Γ, at the final surface solution.

The residual after non-linear surface minimisation has mean 2.29mm and SD

3.30mm, which is comparable to the residual error at the same deflection stage

when calibration is performed in stages, whilst the back-projection error for a

randomly located plane has mean 2.74mm and SD 1.53mm for 168 points.
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Table 5.5: Actual and estimated mirror deflections, and surface estimation

residuals, after each deflection stage for 6 consecutive deflections (3 convex

and 3 concave).

Stage Deflection magnitude (mm) Residual error (mm)

Actual Linear estimate Final estimate Mean SD

1 5.0 2.90 5.14 0.80 0.50

2 5.0 3.25 5.04 1.68 0.90

3 5.0 3.21 5.06 1.25 0.63

2 5.0 3.23 5.29 1.03 0.61

1 5.0 3.17 4.93 0.98 0.58

0 5.0 2.96 4.91 2.20 3.24

Due to the multiple surface shape variations across the mirror, the back-

projection error vector residuals reveal more about the relative quality of the

calibrations than the back-projection error statistics. Vector residuals for the

back-projection errors for stages 0 and 3 are presented in Fig. 5.13. The accu-

mulation of error after multiple deflections is evident when comparing the back-

projection error residuals before deflection, shown in Fig. 5.13(a), with the

residuals after six applications of dynamic calibration, shown in Fig. 5.13(c).

However, the multistage concave deflections do not appear to introduce signif-

icant error (compare Fig. 5.13(b) with Fig. 5.13(c)). For concave deflections,

the scene points that are visible in the image both before and after deflection

are distributed across a larger portion of the mirror than for convex deflec-

tions. A more even set of {Vl,Vr} improves the conditioning of the data

matrix in linear estimation and results in more accurate surface estimation.

The largest back-projection error tends to occur around the grid periphery,

or equivalently along the mirror edges, and it is seen that the error is con-

sistently less at the grid edge that is viewed by scene rays incident on the

mirror close to the constrained edge (left edge), as expected. Figs. 5.13(c)

and 5.13(d) show the back-projection error residuals for stage 0 calibration

after three applications of dynamic calibration, and after a single application

of dynamic calibration, respectively. The dissimilarity between these vector

plots indicates that although the surface error is small at the point of mir-

ror deflection, error is significantly larger at other mirror surface points when

calibration is performed from a single large deflection. Residual distortions

visible in Fig. 5.13(a) are due to high order surface shape components that
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Fig. 5.13: Back-projection error vector residuals for (a) stage 0 before deflec-

tions; (b) stage 3 after three convex deflections; (c) stage 0 after three convex

and three concave deflections; (d) stage 0 after three convex deflections and a

single concave deflection. All vectors are scaled ×10.

are not captured by the camera model configured with the chosen set of basis

functions. The repeated application of dynamic calibration can amplify any

distortions present since the plane pose of the scene points used for dynamic

calibration is determined from the current calibration estimate. However, the

amplification effect is reduced by the limited self-correction that occurs in the

pose estimation stage of dynamic calibration, where the known metrics of the

calibration grid are imposed on the estimated scene points.

Three conclusions can be drawn from the preceding experimental results.

Firstly, the convergence of the cost function applied in dynamic calibration

is not very sensitive to the accuracy of the linear surface estimate. This is

despite the known bias in the linear estimate and the close proximity of the

scene points to the mirror. Secondly, in contrast to multiple smaller deflec-
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tions, back-projection error is shown to increase in size for dynamic calibration

with a larger deflection. The increase in error can be attributed partly to the

fewer imaged scene points that are common to the images before and after a

larger deflection. Thirdly, although dynamic calibration introduces error into

the calibration results, the results do not reveal the presence of any significant

cumulative error due to multiple applications of dynamic calibration. Instead

a step error is seen in the results, which is possibly due to the varied positions

of the scene point features in the image. Considering the initial multiple de-

flection experiment, the error in deflection magnitudes, the angular differences

of scene rays, the magnitudes of the back-projection errors, and the magni-

tudes of the residuals after final non-linear surface estimation, do not show

any significant trend across the different stages of deflection. For the experi-

ment examining the repeatability of multiple deflections, the low cumulative

error is evidenced by the increase in back-projection error of only 12.76% be-

tween the first and last applications of dynamic calibration, and by the small

hysteresis loop error.

The angular differences presented in the above results are contingent on mea-

sured reference angles whose accuracy is difficult to quantify, and these ref-

erence angles may themselves contain error. The measured back-projection

errors depend on the proximity of the calibration grid location with respect

to the mirror. Consequently, alternative methods of quantitatively evaluating

the calibrations that enable a more consistent and more relevant measure of

the accuracy of the SPFC2 method across experiments are considered in the

next sections. These experiments evaluate the overall performance of the cali-

bration through the application of the calibrated flexible mirror to real vision

tasks, specifically distortion correction and motion and structure estimation.

5.3.4 Distortion Correction

Exact perspective correction of an image of a scene taken by a multi-perspective

camera, such as a flexible mirror imager, requires an a-priori model of scene

geometry. When knowledge of scene geometry is unavailable, methods for

generating nearly perspectively correct images can be applied (Kuthirummal

and Nayar, 2007, Swaminathan, Grossberg and Nayar, 2003), but these are

not straightforward. Swaminathan, Grossberg and Nayar (2003) introduced

the concept of shape priors that approximate a scene using a small set of ba-
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sic geometric entities. By intersecting scene rays with the estimated shape

priors, near-perspective images can be formed from multi-perspective cam-

eras. Clearly, exact perspective correction can be performed easily for a pla-

nar scene when the scene plane’s pose is available, and this is the approach

used here to evaluate the calibration quality. A planar evaluation target con-

sisting of a chessboard calibration grid with a superimposed circle, as shown

in Fig. 5.14(a), was printed using a laser printer and then was mounted on a

glass substrate. After capturing an image of the evaluation target with the

flexible mirror imager at each stage of mirror deflection, the target’s pose was

estimated using a non-central pose estimation technique applied to the chess-

board corners visible in the image. Then distortion correction of the circle on

the calibration target was performed by intersecting the calibrated scene rays

with a plane in the estimated pose.

Perspective distortion alone applied to a circle results in a proper conic. Any

non-linear distortion present causes the fit of this conic to deteriorate. Subfig-

ures (a) of Figs. 5.14-5.17 show flexible mirror camera images of the calibration

target at each deflection stage, overlaid with a best-fit conic. The conics are

fitted to the subpixelly detected circle edge points using linear least-squares

to minimise the algebraic error – optimal conic fitting is not performed as the

fits are only indicative of the extent of the non-linear distortion. Mismatches

between the overlaid conics and the calibration target circles highlight the

extent of the non-linear distortion, which clearly is seen to increase with in-

creasing deflection. The error residuals, and best-fit circles, after fitting circles

to the distortion corrected circle edge points, are shown in subfigures (b) of

Figs. 5.14-5.17, from which it is seen that there is no systematic error in the

residuals across the four stages of deflection. Optimal circles were fitted to

the corrected data subpixel edge points by non-linearly minimising geometric

error. The estimated circle radii for the distortion corrected images, presented

in Table 5.6, agree closely with the measured circle radius of 87.21mm for all

deflection stages. Additionally, the fit residuals shown in Table 5.6 do not

display significant error accumulation resulting from repeated application of

dynamic calibration. The radius error and fit residual statistics for stage 3 are

smaller than those for both stages 1 and 2.

These distortion correction tests actually evaluate the calibration quality twice

– once when determining the pose of the grid plane, and again when deter-

mining the fit of the circle to the distortion corrected circle on this plane.
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Table 5.6: Error residuals and estimated circle radii after circle fitting to the

distortion corrected circle edge points.

Stage Residual error (mm) Estimated Radius Radius error

Mean SD (mm) (%)

0 0.15 0.11 86.96 0.28

1 0.21 0.16 86.88 0.37

2 0.29 0.21 86.20 1.15

3 0.18 0.13 87.04 0.19

Alternative testing could be undertaken that evaluates the calibration quality

only once, by selecting a random plane on which to generate the intersection

points, and then by directly fitting a conic to these points. However, since there

is only one integrated parameter set changing between tests – the calibration

data itself – the double evaluation is valid.

The distortion corrected image of the calibration target for the stage 3 de-

flection, which contains the most non-linear distortion, is shown in Fig. 5.18.

The circle appears qualitatively correct, although some residual distortion is

evident in the grid squares along the bottom of the image.

If scenes with low depth relief are loosely modelled as planes, approximate per-

spectively corrected images of such scenes can be generated, although due to

non-planarity they will still contain caustic distortion (Swaminathan, Gross-

berg and Nayar, 2003). Fig. 5.19 shows a face image from the flexible mirror

imager both before and after such approximate perspective correction. The

majority of the non-linear distortion of the face is seen to have been removed

in the corrected image.

5.3.5 Motion and Object Reconstruction

A structure-from-motion experiment was conducted with the flexible mirror

imager calibrated for the stage 3 deflection using the SPFC2 method. The

flexible mirror imager in general configuration is non-central, so non-central

structure-from-motion must be applied. This is based on the 6 × 6 general

essential matrix, E , that operates on Plücker coordinate vectors L1 and L2 as

LT
2 EL1 = 0 (5.30)
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Fig. 5.14: Perspective correction for stage 0 deflection. (a) Original image

with best-fit conic; (b) vector residual errors for best-fit circle applied to the

undistorted circle edge points. Vectors are scaled ×50.
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Fig. 5.15: Perspective correction for stage 1 deflection. (a) Original image

with best-fit conic; (b) vector residual errors for best-fit circle applied to the

undistorted circle edge points. Vectors are scaled ×50.
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Fig. 5.16: Perspective correction for stage 2 deflection. (a) Original image

with best-fit conic; (b) vector residual errors for best-fit circle applied to the

undistorted circle edge points. Vectors are scaled ×50.
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Fig. 5.17: Perspective correction for stage 3 deflection. (a) Original image

with best-fit conic; (b) vector residual errors for best-fit circle applied to the

undistorted circle edge points. Vectors are scaled ×50.
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Fig. 5.18: Stage 3 deflection circle image after distortion correction.

(a) (b)

Fig. 5.19: (a) Face image from the flexible mirror imager after a 12mm deflec-

tion; (b) Near-perspective face image with non-linear distortion removed using

the SPFC2 calibration data. Note the large distortion at the top right of the

image that was not captured by the calibration.
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For each image correspondence point, the associated viewing ray is intersected

with the calibrated mirror surface to establish a scene ray and a point on

that ray. The Plücker vector is then determined as described in Section 2.3.2.

Ramalingam et al. (2006) detail how the calculation of E differs from that

of the standard essential matrix, and their method with bundle adjustment

is applied here to generate the experimental results. The results for pairwise

motion estimation of a cylindrical objected translated in 25mm steps from

0mm to 125mm are presented in Table 5.7, where the mean estimated trans-

lation is scaled to 25mm. Fig. 5.20 shows the actual translation and estimated

reconstructed motion for the cylinder. By pairwise is meant that essential ma-

trices are calculated only between consecutive pairs of images, and not relative

to a datum image. The estimated translations and rotations shown in Table

5.7 are accumulated for each stage, as would be done in a real application of

structure-from-motion. Estimation error after all 5 translations is 4.05mm. All

the cumulative motion estimates show good agreement with the corresponding

ground truth values, further validating the SPFC2 method. Since the deflected

flexible mirror imager is non-central, the calibration information actually con-

tains metric scale information by way of the skew scene rays, although the

closer the mirror is to planar, the more central it becomes and the less reliable

is the scale information. In the experiment the mean estimated translation

for the pairwise estimates before scaling is 31.34mm rather than the actual

25mm. This estimation error, which is due to error in the calibration, is ex-

tremely sensitive to calibration accuracy for cameras that are close to central,

as in the configuration for this experiment.

The best fit cylinder to the points reconstructed in the experiment, and the

reconstructed points themselves, are shown in Fig. 5.21. Fitting is performed

non-linearly by minimising geometric error. The reconstructed points, which

are represented by spheres with radius 3mm in order to aid visualisation, are

seen to intersect the estimated cylinder in all cases except one. The best-fit

cylinder radius for the pairwise experiment before scaling is 73.90mm, and

after scaling to match the mean translation to 25mm is 58.96mm, which both

compare well with the measured cylinder radius of 62.98mm. The mean and

standard deviation of the cylinder fit are 0.94mm and 0.81mm respectively.

These experimental results indicate that the accuracy of the flexible mirror

calibration is sufficient for practical structure estimation in a structure-from-

motion framework, especially considering that only 25 cylinder points are in-
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Table 5.7: Ground truth translations and estimated translations and rotations

for the structure-from-motion experiment. The mean estimated translation is

scaled to the ground truth value.

Ground truth Pairwise estimates

translation (mm) translation (mm) rotation (o)

25 25.05 0.38

50 50.53 0.72

75 72.94 1.56

100 102.96 0.46

125 123.14 1.66

0
20

40
60

0
20

40
60

0

10

20

30

40

50

60

70

mm
mm

m
m

estimated motion
actual motion

Fig. 5.20: Actual and estimated translations for pairwise motion estimation.

volved in the experiment.

Object reconstruction for the SPFC2 calibrated flexible mirror imager after the

stage 3 deflection was performed by imaging an approximately cuboidal ‘coffee

tin’ before and after a 100mm translation of the imager. Structure is estimated

by triangulation, whereby each reconstructed point is determined as the point

closest on average to all the scene rays associated with pixels that see that

point. Two-view reconstruction is applied here, so there are two scene rays
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Fig. 5.21: Estimated structure for pairwise motion estimation.

per scene point, and triangulation is performed linearly for each reconstructed

point using the method presented by Ramalingam et al. (2006). Image feature

points on the object were automatically extracted using a SIFT feature de-

tector executable3, and feature matches were established semi-automatically

by thresholding on angular differences between feature vectors and subsequent

manual outlier removal. This resulted in 460 feature matches, which were tri-

angulated to generate a sparse reconstruction of three mutually adjacent sides

of the tin. Plane fitting was performed for each reconstructed side to form sur-

faces, and texture mapping was accomplished by intersecting calibrated scene

rays with these planes and colouring the inter-point patches accordingly. The

final texture mapped ‘coffee tin’ model is shown in Fig. 5.22. Texture on each

side of the reconstruction appears geometrically correct, giving a qualitative

indication that the calibration is accurate. The mutual angles between the

planes fitted to each side are presented in Table 5.8, alongside reference an-

gles determined by fitting planes to 3D points obtained from laser scanner

measurements of the tin. The agreement between the estimated and reference

angles is good, with the maximum angular difference being 1.65o. Histograms

of the signed Euclidean distance from each reconstructed point to the best fit

3http://www.cs.ubc.ca/∼lowe/keypoints/ (Accessed January 2006)
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Table 5.8: Angles between planes fitted to each side of the ‘coffee tin’ recon-

structions for both the estimated structure using the flexible mirror imager

and the laser scanner reference structure measurements.

Planes Angle (o)

Estimated Reference

top—left 88.63 90.28

top—right 88.74 89.15

left—right 88.09 89.17

Fig. 5.22: Reconstructed and textured ‘coffee tin’.

plane for each reconstructed side of the ‘coffee tin’ are presented in Fig. 5.23,

with superimposed normal distribution plots. Some outlier histogram bins are

present, but in general the distribution is normal.

5.4 Flexible Mirror Camera Self-Calibration

The SPFC2 method requires that a calibration grid be imaged in the same

position both before and after each mirror deflection. Although not time con-

suming, this necessitates a calibration object in the scene and human interven-

170



Chapter 5 – Calibration of Flexible Mirror Imaging Systems

−5−4−3−2−1 0 1 2 3 4 5
0

10

20

30

40

50
Top plane

N
um

be
r 

of
 p

oi
nt

s

Error (mm)
−5−4−3−2−1 0 1 2 3 4 5
0

5

10

15

20

25

30

35
Left plane

Error (mm)
−5−4−3−2−1 0 1 2 3 4 5
0

50

100

150

200
Right plane

Error (mm)

Fig. 5.23: Signed point-plane error histograms and superimposed normal dis-

tributions for each side plane of the reconstructed ‘coffee tin’.

tion to place and remove it. A self-calibration method, in which a camera is

calibrated from image correspondences across multiple images of an unknown

scene, clearly would be advantageous for the calibration of flexible mirror im-

agers.

One step towards flexible mirror imager self-calibration would be to eliminate

the need for the calibration grid during dynamic calibration. This calibration

problem is less constrained than the original calibration problem since no in-

formation is immediately available on scene point depths. Consequently the

error metric, Γ, is inapplicable and the proposed non-linear minimisation in

dynamic calibration can not be performed. However, the linear surface esti-

mation, based on the assumption of infinite scene depth, is still possible. As

discussed in Section 5.2.2, the linearly estimated surface is biased, and the

extent of the bias is inversely proportional to the depth of the scene. This bias

is evident in the presented results that evaluate the SPFC2 method. Those

results show that for scene depths of approximately 400mm the linear surface

estimates are between 30.32% and 42.90% in error relative to the final esti-

mate, which indicates that self-calibration based on linear estimation alone is

likely to contain significant error.

In order to verify this, dynamic calibration from an unknown distant scene,

using the linear estimate alone, was undertaken. It was found that an uneven

distribution of scene points across the image caused the fit to be biased. This

bias was evident in the estimated surfaces as an erroneous curvature of the

mirror surface in the vertical direction. The error was amplified at each appli-
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Table 5.9: Actual and estimated mirror deflections for the self-calibration ex-

periment, for forwards deflections from stage 0 to stage 3.

Stage Deflection magnitude (mm)

Actual Self-calibration estimate

1 5.0 3.98

2 5.0 3.48

3 5.0 3.08

cation of dynamic calibration, such that the stage 3 surface estimate contains

over 20mm of incorrect vertical curvature at the deflected mirror edge. Despite

this, due to a rich feature set across the middle of the mirror image, deflec-

tion estimates and curvature could be examined along a horizontal line on the

mirror passing through the point of deflection. The estimated deflections after

self-calibration from a distant scene are presented in Table 5.9. Estimated

deflections for stages 1 and 2 are substantially better than the corresponding

linear estimates given in Table 5.1 for the experiment using the SPFC2 method.

This improvement is due to the larger scene depths of the scene points, and

agrees with the simulated results from Section 5.3.1. By stage 3 the self-

calibration has degraded to contain the same error as the linear estimate of

the full method, since cumulative linear estimation error is not corrected by

a non-linear minimisation. Fig. 5.24 shows the estimated shape of the mirror

along the horizontal line passing through the deflection point. The inflexion

point evident in the deflection curve for the stage 2 and stage 3 deflections

can be attributed to the depth of the scene points used in the calibration. As

the mirror was deflected from stage 0 to stage 3, new scene points became

visible in the image (at the deflected mirror edge) that were at a smaller scene

depth than the other scene points in the calibration. The smaller depths cause

increased error in the infinite scene assumption, and consequently introduce

phantom shape changes in the mirror surface estimate.

If an even distribution of scene points exists, and the scene depth variation is

small, then a potential route for correcting the linear estimation bias is to build

up a scene model and feed this information back into the calibration process,

by way of estimated scene points, to update the calibration. This approach has

similarity with the structure-from-motion methods used for self-calibration of

conventional and catadioptric cameras (Fitzgibbon, 2001, Micusik and Pajdla,
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Fig. 5.24: 2D plot of the estimated deflections for a horizontal line on the mirror

passing through the deflection point, for forwards deflections from stage 0 to

stage 3.

2006, 2004), although in this case the camera ‘motion’ is the mirror deflection

and a low-order projection function for the flexible mirror camera is not avail-

able. Consider two images from a flexible mirror camera, one before and the

other after a mirror deflection. If the calibration at each deflection is known,

then the two images constitute a stereo pair, and using stereo triangulation

some reconstruction of the scene is possible. However, unlike standard stereo,

the baseline for this stereo pair can change both in magnitude and direction

across the images, depending on how the mirror is deflected. Let this config-

uration be called variable baseline stereo. At the fixed point or points of the

mirror, corresponding rays are parallel and so no scene depth information is

available. Moving away from any fixed points of the mirror, the reconstruc-

tion becomes more reliable as the baseline lengthens. However, the baseline

is typically very small, in the order of several millimetres, and so the angles

between corresponding skew scene rays in the stereo pair are very acute. As

a result any variable baseline stereo reconstructions can be expected to have

large error, which would impact severely on a feedback-based self-calibration

scheme. In order to quantify the extent of the error, variable baseline stereo

experiments for the calibrated flexible mirror imager were conducted. Stereo

reconstructions from pairs of deflected mirror images of the chessboard grids

used in dynamic calibration are shown in Fig. 5.25. Even for these grids, on

which the calibrations themselves are based, the reconstruction error is sub-

stantial, indicating the high sensitivity of the variable baseline flexible mirror

imager stereo pair to noise and calibration errors.

One further experiment was conducted in order to investigate the possibility
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Fig. 5.25: Stereo reconstructions for calibrated flexible mirror image pairs.

The fixed mirror edge is on the right of the mirror surface.
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of reconstructing a scene from several flexible mirror camera images with de-

flections between them. Multiple view reconstruction by triangulation, as used

in the structure-from-motion experiments, was applied to images from all four

calibrated deflected mirror stages. The resulting estimated scene is shown in

plan view in Fig. 5.26. Red and blue points lie on parallel vertical planes,

and the green points are features on an object that is located between the two

planes, as can be seen in Fig. 5.27. The very large error in the reconstructed

points is clearly apparent in the ∼ 2.1m spread in scene depth of the points

on the front plane, and the ∼ 3.85m spread in scene depth of points on the

rear plane. Some of this error is attributable to error in feature point selection,

which was performed manually and without sub-pixel refinement. The sparsity

of the selected object features also impacts negatively on the results. If only

the centroids of the reconstructed points, shown in Fig. 5.26, are considered,

then the order of the objects in terms of their depths from the mirror is correct.

The last two experiments were conducted for calibrated configurations of the

deflected flexible mirror imager. They indicate that any type of multi-view

reconstruction from configurations that differ solely by mirror deflections is

likely to contain very large error. It is concluded from the experimental results

that self-calibration of flexible mirror cameras using the SPFC2 method with

the linear solution alone does not give acceptable results. Also, multi-view

reconstruction from flexible mirror images differing solely by mirror deflec-

tions is unreliable due to the very short, variable, view baselines. Therefore,

self-calibration by simultaneous scene reconstruction and mirror surface linear

estimation is unlikely to be accurate enough for even a rudimentary calibration

without at least some a-priori knowledge of scene geometry.

5.5 Discussion

This chapter details a proposed novel calibration method for flexible mirror

imagers, termed the SPFC2 method. The only existing method for specifi-

cally calibrating such systems operates offline by directly acquiring 3D mirror

surface shape measurements for a very large set of possible mirror deforma-

tions. The SPFC2 method does not require a significant offline stage, since the

current calibration is dynamically updated after each mirror deflection. The

main idea of the SPFC2 method is the use of scene features rather than mirror
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Fig. 5.26: Plan view of the multi-view reconstruction of a background scene

from a flexible mirror image at each of four deflection stages. The estimated

mirror-centroid distances of the wall, plane, and object are 4104mm, 3247mm

and 3268mm, respectively. The corresponding measured distances are approx-

imately 5000mm, 3980mm and 4950mm, respectively.
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Fig. 5.27: Features used in the multi-view reconstruction shown for the stage

2 deflection image.
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features for calibration.

Both a reduced 2D model and a full 3D model of the mirror surface are pre-

sented and discussed in Section 5.1. The reduced camera model is derived from

a physical model for cantilever beam deflection, which indicates that a cubic

polynomial is sufficient to represent the deflected mirror as a planar curve.

The flexible mirror is modelled by a B-spline surface in the full model. While

each model can be calibrated using the SPFC2 technique, the full model al-

lows for greater flexibility in mirror deflection, for multi-point deflection, and

for multi-dimensional deflection, and thus it is in terms of the full model that

the mirror surface estimation equations in Section 5.1.2 are presented. These

equations allow the mirror surface shape to be conveniently determined, but

it is explained in Section 5.1.3 that both mirror shape ambiguity and mirror

depth ambiguity exist in the solution. A method of removing these ambiguities

by incorporating information on the fixed points of the mirror into the surface

estimation equations is demonstrated.

The SPFC2 calibration scheme presented in Section 5.2 consists of primary

and dynamic calibration stages. The primary stage determines the optical

configuration for an initial mirror position, and is only applied once. This is

achieved by the application of a standard camera calibration method for the

perspective camera, and subsequently by general calibration for the complete

imager followed by linear mirror surface estimation. Poses of the active grids

used in general calibration are recovered using reflections in a planar mirror.

Dynamic calibration is applied once for each mirror deflection. It requires a

single image of a planar grid both before and after mirror deflection in order

to update the calibration. A linear surface estimate is made that is based

on an assumption of infinite scene depths, and Section 5.2.2 describes how

this is used to initialise a non-linear minimisation of a ray-point cost function.

Further deflections of the mirror are calibrated by reapplication of dynamic

calibration.

Simulated results demonstrate the performance of the method under variations

in image noise, scene depth and mirror curvature, and they validate the use of

the linear estimate for initialising the non-linear minimisation process. Cali-

bration of the reduced model for a real flexible mirror camera is shown through

experimentation in Section 5.3.2 to achieve good agreement with laser scanner

reference data. Extensive real testing is subsequently conducted for the cali-
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bration of the full camera model. Sections 5.3.3 and 5.3.4 detail experiments

and results for multiple applications of dynamic calibration. Evaluation is per-

formed with respect to deflection estimates, to differences between measured

and estimated scene ray angles, to back-projection errors, and to distortion

residuals.

It is apparent from these results that dynamic calibration increases the error

in the calibration estimate relative to that present after primary calibration.

Nevertheless, a consistent trend in the results of the convex and concave de-

flection experiments is that the error after successive applications of dynamic

calibration does not accumulate significantly. After 6 consecutive deflections

and calibrations, the calibrated surface at the deflection point is accurately

estimated, although in some regions of the mirror surface the corresponding

back-projection errors begin to show large magnitude increases. For best re-

sults, multiple smaller deflections are recommended rather than a single large

deflection. The distortion correction of a circular target is presented in order to

evaluate the calibration quality across the complete surface. For 3 consecutive

mirror deflections the correction does not exhibit any degradation in accuracy.

Overall, the results indicate that the method achieves good calibration accu-

racy for the single-point deflection tests conducted. However, depending on

the accuracy demanded for a particular application, the calibration may re-

quire correction by general calibration after many consecutive deflections have

occurred.

In Section 5.3.5 structure-from-motion and object reconstruction are performed

with the mirror in its most deflected position in order to validate the calibration

by the SPFC2 method. The geometric correctness of the reconstructions with

respect to ground truth data further indicates the good accuracy achieved by

the calibration. A structure-from-motion experiment, and object reconstruc-

tion by triangulation, both demonstrate how generic structure-from-motion

techniques can be applied directly to calibrated flexible mirror imagers for the

solution of practical computer vision tasks.

Experimental evaluation proved that the SPFC2 method of flexible mirror cam-

era calibration can achieve a good level of accuracy for multiple small mirror

deflections. Due to a lack of quantitative performance data for the only ex-

isting method of flexible mirror calibration (Kuthirummal and Nayar, 2007),

benchmarking against other methods is not possible. However, results for the
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distortion correction, structure and motion estimation, and object reconstruc-

tion experiments validate the calibration accuracy for real world vision appli-

cations. Kuthirummal and Nayar (2007) approach calibration for the purpose

of FOV variation in order to make better use of sensor resources, whereas the

SPFC2 method approaches calibration as the task itself to allow application

to problems such as motion estimation, tracking and structure from motion.

Unlike the method of Kuthirummal and Nayar (2007), the SPFC2 method is

applicable even when the boundary of the mirror is not in the image FOV,

although the fixed point(s) must still be visible. The SPFC2 method should

be applied to flexible mirror cameras for scenarios in which the mirror flex-

ing is intermittent, and in which either a significant offline calibration stage

is unsuitable, or the mirror boundary is not visible. The SPFC2 method is

particularly suitable for the calibration of reconfigurable vision systems where

the camera FOV is varied occasionally rather than continuously. In this case

the camera calibration can be updated easily by a non-expert using only a

calibration grid. The requirement for images of the calibration grid before

and after each deflection is the major drawback of the SPFC2 method, both

because of the need to place and remove the grid and because of the limited

range of deflections for which the grid provides sufficient scene features across

the image.

The presented principles of flexible mirror calibration and the SPFC2 method

are important steps towards complete unconstrained calibration of flexible

imaging systems. However the requirement in dynamic calibration for the

placement and removal of a calibration grid from the camera FOV reduces the

convenience of the method for the practitioner. Section 5.4 examines whether

self-calibration could be achieved by removing the non-linear estimation stage

from the SPFC2 method so as to eliminate the need for the calibration grid.

Experiments indicate that camera self-calibration based only on linear estima-

tion contains significant cumulative estimation error and thus is not practical

beyond single small deflections. Furthermore, the presented results for stereo

and multi-view reconstruction from deflected mirror images indicate that si-

multaneous linear estimation of calibration and scene structure is likely to fail

due to large reconstruction error. The error is shown to be a consequence of

the very short variable baselines between deflected mirror images used in the

reconstruction. Therefore, self-calibration of flexible mirror cameras is still an

open problem, although it should be noted that in the case of known scene
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geometry, the SPFC2 method can be applied without the need for a calibration

grid. Additionally, if the known scene is static, there is no accumulation of

error in dynamic calibration due to scene point uncertainty.

Very large deflections of the mirror are not considered during the evaluation

of the SPFC2 method. As outlined in Section 5.2.2, large deflections reduce

the number of feature points common to the two images, and consequently

features do not exist in each knot region, preventing accurate mirror surface

estimation. For a similar reason, calibration grids with small square sizes

should be used so as to obtain dense corner feature sets and a large number

of scene point matches across images. Mirror deflections that result in large

mirror curvatures should be avoided, as it is difficult to present scene points

that cover the resulting large FOVs.
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Conclusions and Future Work

Calibration of cameras is of paramount importance for many computer vision

tasks. Whilst the field of photogrammetry deals with precise calibration of

cameras, the application of calibration in computer vision is focussed more on

functionality and applicability at the cost of some precision degradation. This

is reflected in the literature, where the most common calibration methods are

those that are easily implemented without the requirement for dedicated cal-

ibration apparatus. It is exactly this balance between accuracy and function-

ality that has resulted in the ongoing development of new and unique imaging

systems and modalities in computer vision. Perspective cameras are no longer

the automatic choice of imager for every vision task, since the benefits of non-

conventional cameras, or cameras that depart from the pinhole-plus-distortion

model, are being increasingly realised and demonstrated.

This thesis deals with methods for the calibration of two different types of

non-conventional cameras. Wide-angle and central catadioptric cameras are

achieving growing use in security and mobile robot applications, where the

large FOV of up to 360o affords a greater persistence of vision of feature

points, and enables multiple non-coherent feature tracking. The large body

of literature dealing with the calibration of these cameras reflects the interest

in such cameras, but it is also indicative of the many different models that

have been proposed to cope with the various implementations of wide-angle

and catadioptric cameras. In contrast, generic calibration for the general cam-

era model is not camera specific, and thus it is an appealing method for the

practitioner to use. Clearly ease of implementation and accuracy are still of
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primary importance, and the objective of part of the work in this thesis is to

increase the efficiency of generic calibration for central cameras and to improve

calibration accuracy.

Flexible mirror imaging systems are a type of non-central catadioptric imager

that stand apart from all other catadioptric cameras due to their deformable

nature. Their grounding in computer vision is so recent that contemporary

real world applications utilising flexible mirror imagers have yet to be realised.

Nevertheless, they have clear advantages over other camera types, namely

an alterable FOV and the ability to easily reallocate pixel resources between

different portions of the scene. Demonstration of a flexible mirror camera for

video streams has been achieved, with potential implementation in security

applications. The work, presented in this thesis, on calibrating flexible mirror

cameras focuses more on calibration of reconfigurable cameras, where the FOV

is altered occasionally rather than continuously. A potential application is in

teleconferencing, where the mirror could be deflected as required so as to ensure

that all conference participants are visible within the camera FOV. A simple

calibration method requiring only basic calibration apparatus is presented,

providing the means for the practitioner to implement flexible mirror cameras

for application specific problems.

The key contributions and outcomes of the thesis are summarised in Section

6.1 and a list of publications resulting from the thesis work is presented in

Section 6.2. Possible directions for further work are outlined in Section 6.3.

6.1 Thesis Contributions

This thesis deals with three distinct but related camera calibration problems

for non-conventional cameras. For each problem a solution is proposed, eval-

uated through real and simulated experimentation, and then validated by the

results from these experiments. Integral to the solutions are several other less

significant contributions. The contributions are summarised in the following

sections.
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6.1.1 Planar Chessboard Grids for Non-Conventional

Camera Calibration

Planar grids have been established as the dominant and preferred type of

calibration target for camera calibration, principally due to their ease of man-

ufacture and to the many methods available for calibrating from such targets.

All methods require the extraction of the grid feature points from images of

the grid. Chessboard grids have been shown to provide the most robust fea-

tures, and Chapter 3 first focusses on the extraction and ordering of grid corner

points in images with high distortion. Automatic grid corner detection and or-

dering has been solved for the case of perspective cameras, but until recently

the only successful approach to extracting corners from images with severe

distortion was manual selection. Chapter 3 presents the CELECT method,

a novel semi-automatic method for corner detection and ordering that is not

based on any a-priori knowledge or guess of the image distortion present. The

CELECT method traces along grid row and grid column edge contours and

detects corners locally, so that the only requirement is for the image distortion

to be smooth. The method is of significant value to the practitioner when per-

forming grid based calibration of non-conventional cameras that contain severe

distortion. Conducted experiments demonstrate that the CELECT method is

robust to degradations in image quality due to Gaussian additive noise, per-

spective distortion, fisheye distortion, and scale changes. Results for corner

extraction on real image sets from four different types of non-conventional

camera show how the CELECT method correctly detects and orders corners

when the OpenCV method, used as a benchmark, fails. An investigation of the

relationship between inter-corner distances and window sizes for localisation

was undertaken, with the conclusion that there is no performance enhancement

to be obtained by incorporating the detection results into any subsequent lo-

calisation using standard schemes.

Despite their ease of manufacture, standard planar calibration grids, when

used to acquire input data for calibrating cameras with high distortion, have

a drawback, which is that data obtained by interpolation between the imaged

grid corners can be biased due to distortion. Chapter 3 demonstrates this

effect, and as an alternative to the standard grids it presents an examination

of active grids. These are spatio-temporally varying patterns displayed on a flat

screen monitor, allowing for unbiased localisation of every pixel in the pattern.
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An implementation of active grids is described, and is subsequently compared,

with respect to both robustness and accuracy, to the standard derivative based

and saddle point based corner localisation methods. Results show conclusively

how active grids can outperform static grids with corner localisation applied.

Since encoding in active grids is per-pixel, these grids enable localisation for

discontinuous cameras, something that is not possible using static chessboard

grids. This is effectively demonstrated for a camera viewing a multi-faceted

mirror.

6.1.2 Central Generic Calibration

The pixel level bias-free data achieved with active grids makes them beneficial

for application to the non-parametric generic calibration method for central

general cameras. Due to the relatively recent evolution of generic camera cal-

ibration, there is a lack of comparative data on its performance and accuracy

attributes with respect to more conventional methods of calibration. Chap-

ter 2 addresses this shortcoming by presenting a performance comparison of

generic camera calibration with a standard pinhole-plus-distortion calibration

for a fisheye camera. Results for both real and simulated data show that

at low distortions, the two parameter radial distortion model can outperform

the general model. However, for more severe fisheye distortions, the generic

calibration provides significantly better calibration results. In particular it is

shown that the generic calibration method achieves consistent accuracy across

all levels of distortion, in contrast to the pinhole-plus-distortion model.

Standard central generic calibration is a specialisation of general generic cali-

bration, and thus it does not facilitate the application of established calibration

techniques to the calibration process. Chapter 4 presents novel improvements

to the central generic method to achieve enhanced central generic calibration,

resulting in the proposed CGSP method. A completely new linear estima-

tion stage, based on a novel interpretation of an existing technique that allows

pinhole calibration methods to be applied to the calibration of non-pinhole

cameras, is described. An active grid applied as a synthetic image plane en-

ables the calibration to be moved from the non-linear optical domain to its

linear equivalent on the scene side of the camera. Standard methods for dis-

tortion free calibration can then be applied to determine the centre, something

that was not possible previously. Linear estimation using the CGSP method is
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shown through simulation to be more robust to Gaussian noise than the linear

estimation stage of standard central generic calibration. The application of an

alternative pose estimation stage is shown to allow the pose of additional grids

used in generic calibration to be determined linearly in the CGSP method,

improving the accuracy when compared to the generic non-linear pose estima-

tion. Significantly, the CGSP method’s pose estimation is more amenable to

being included in a RANSAC stage than the non-linear approach, since linear

re-estimation using all inlier data is easily achieved with the CGSP method’s

pose estimation.

Test results for the CGSP calibration method are presented for a hyperboloidal

catadioptric camera and a fisheye camera. For both cameras, the mean ray-

point error after calibration with the CGSP method is smaller than the same

error for the standard generic method, both before and after the application of

bundle adjustment. The distribution of the camera rays around the estimated

centre is more compact and more uniform for both cameras after applying the

CGSP method than it is after applying standard generic calibration. Distortion

correction and motion reconstruction experiments for the catadioptric camera

further demonstrate the accuracy improvements that are achieved using the

CGSP method. It is concluded that the CGSP calibration method should be

used when generically calibrating central cameras in order to achieve the most

accurate results.

6.1.3 Calibration of Flexible Mirror Imagers

For a flexible mirror imager, consisting of a perspective camera viewing a

flexible mirror, the calibration must be updated after each mirror deflection.

Currently the only method for calibrating such systems requires an offline

stage in which the mapping between a descriptor of the mirror boundary and

the mirror surface shape is determined for all mirror shapes. Chapter 5 pro-

poses a method that approaches the calibration problem using scene features

rather than the boundary description, so that the large offline stage, and the

requirement for the mirror boundary to always be visible, can be eliminated.

The proposed SPFC2 method of calibration for flexible mirror imagers consists

first of a primary calibration stage entailing both a perspective camera cali-

bration and a general camera calibration, followed by linear estimation of the
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mirror surface. The mirror surface is then updated after each deflection in a

dynamic calibration stage by using both linear least-squares and non-linear sur-

face estimation. Crucially, Section 5.1.3 describes two types of ambiguity that

arise during mirror surface estimation, and it shows how to incorporate fixed

mirror points into the linear surface estimation equations so that these ambi-

guities can be removed. The linear intermediate surface estimate is predicated

on an assumption of infinitely distant scene points that allows the previous

calibration result to inform the current calibration. Non-linear minimisation

is applied subsequently to this linear surface estimate using a ray-point cost

function, so that Euclidean error between scene points on a calibration grid

and corresponding camera scene rays is minimised.

Simulations for a derived 2D mirror model show that mirror surface error in-

creases with increased mirror curvature, and decreases with increasing scene

depth. Extensive evaluation of each stage of the method is performed for a

real camera configuration by applying a full 3D camera model that models

the mirror as a B-spline surface. The results for six consecutive deflections of

the mirror indicate that the magnitudes of the error in the SPFC2 method do

not accumulate significantly for differences between measured and estimated

angles, for chessboard grid back-projection errors, for surface deflections, or

for surface fitting residuals. Quantitative and qualitative evaluation results

for distortion correction of a circle confirm that non-linear distortion across

a large portion of the original image is removed by the calibration. Motion

estimation, structure estimation and object reconstruction are demonstrated

for the calibrated flexible mirror imager by applying existing multi-view tech-

niques for general cameras. The accuracy of the results confirms the suitability

of the SPFC2 method for use in practical applications.

Section 5.4 investigates self-calibration for flexible mirror cameras based on the

SPFC2 method. Basic experiments indicate that calibration from a distant

scene using linear estimation alone is not practical beyond a single mirror

deflection due to error attenuation over successive calibrations. Potentially,

scene points reconstructed from deflected mirror images could be fed back into

calibration in an iterative scheme in order to improve the calibration result, but

it is demonstrated that such reconstructions have large depth errors due to the

very small variable baselines formed by mirror deflections. It is concluded that

neither simultaneous estimation of calibration and structure, nor calibration

without a non-linear refinement stage, are likely to succeed as approaches to
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self-calibration.

6.2 Publications Arising

All publications are full length papers that have been peer reviewed.

A Comparison of new Generic Camera Calibration with the Stan-

dard Parametric Approach, Dunne, A. K., Mallon, J. and Whelan, P. F.,

‘Proceedings of the IAPR Conference on Machine Vision Applications, Tokyo,

Japan’, Vol. 1, pp. 114–117, 2007.

Efficient Generic Calibration Method for General Cameras with Sin-

gle Centre of Projection, Dunne, A. K., Mallon, J. and Whelan, P. F.,

‘Proceedings of the IEEE 11th International Conference on Computer Vision,

Rio de Janeiro, Brazil’, 2007.

Towards Dynamic Camera Calibration for Constrained Flexible Mir-

ror Imaging, Dunne, A. K., Mallon, J. and Whelan, P. F., ‘Proceedings of the

8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical

Cameras, Marseille, France’, 2008.

Accepted publications

Efficient Generic Calibration Method for General Cameras with Sin-

gle Centre of Projection, Dunne, A. K., Mallon, J. and Whelan, P. F.,

Computer Vision and Image Understanding, (Accepted May 15th, 2008).

6.3 Directions for Further Work

Each of the main topics investigated in this thesis has potential for further

examination in order to achieve additional improvements, and some ideas for

these directions are outlined below.
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6.3.1 Corner Detection and Ordering

It is demonstrated through experimentation in Sections 3.3.1 and 3.3.2 that the

CELECT algorithm resulted in a corner detection error of less than 8 pixels,

which is sufficient for effective subsequent localisation. However, it may be

possible to reduce this initial detection error by modifying the Harris corner

detector, which was not optimised for chessboard corner detection. A single

chessboard grid corner can appear in the image as two separate corners due

to blur, and when this happens the single grid corner is sometimes detected

as two distinct corners by the Harris detector. This characteristic is taken

into account in the corner merging stage of the CELECT algorithm, before

corner localisation is applied. However, the algorithm could achieve greater

accuracy in initial corner detection if the corner detector was to account for

this corner splitting due to blur. Use of the multi-scale Harris corner detector

in conjunction with a measure of symmetry may merit examination for this

application. Concerning the merging task itself, the application of a supervised

clustering approach to cluster detected corners, rather than direct thresholding

on separation distance, could improve the CELECT algorithm’s robustness.

In relation to parameter selection, the initially detected outer contours could

potentially be used to better select parameters for the remaining detection

based on the side curvatures. In the current implementation the data driven

parameters are derived from the square side lengths. It may be beneficial to

use the contour curvatures to additionally inform the parameter selection, as

some of the failure modes are caused by contours having very large curvature

in conjunction with large search windows. Ideally r should be chosen based on

both the square size and the contour curvature, and while this is not possible for

the outer edge contours since there is no information available about contour

curvature when performing outer edge contour tracing, it would be possible

for column edge contour tracing.

An interesting direction for further research would be to examine options for

the application of the CELECT method to non-chessboard grids. Spatially en-

coded grids were briefly discussed in Section 1.2.1, where their requirement for

local image regularity was highlighted as a disadvantage for their application

to non-conventional camera images that induce severe distortion. By using a

spatial encoding scheme with a grid-like topology, CELECT could be applied

to the encoded calibration grid in order to recover the connectivity of all the

188



Chapter 6 – Conclusions and Future Work

features, thereby enabling location decoding even in severely warped images.

Such an approach would have the potential to provide calibration data similar

to, though less dense than, that provided by active grids but requiring only a

single image of the grid.

6.3.2 Central Generic Calibration

Bundle adjustment is applied to the linearly estimated grid transformations in

Section 4.1.4 in order to improve the overall coherence of the estimated cam-

era calibration geometry. The bundle adjustment scheme used in this thesis

adjusts the ray directions indirectly at each iteration through updates to the

grid transformations. However, all rays are forced to be coincident with the

linearly estimated camera centre, which is not itself adjusted. Although CGSP

calibration is shown to estimate the effective camera centre location more ac-

curately than the standard method, non-linear refinement of the centre po-

tentially would improve results further. A centre adjusting bundle adjustment

scheme proposed in 4.1.4 performed poorly in initial tests on real data, with

results indicating a weak global minimum. Further work on centre adjusting

bundle adjustment using simulated data may be beneficial in order to deter-

mine the impact of inexact camera centrality on such a bundle adjustment

scheme.

6.3.3 Flexible Mirror Camera Calibration

The SPFC2 method is evaluated on both simulated and real experiments for

the case of single-point deflection. Experimentation for multi-point deflections

would be beneficial to further evaluate the robustness of the method. However,

gathering ground truth deflection data for multiple simultaneous deflections is

difficult since the developable surface property of the mirror results in inter-

dependence between the deflection vectors.

Due to the low optical quality and poor flexural rigidity of most flexible mir-

rors, the surfaces formed after mirror deflection have surface non-uniformities

that are difficult to capture in the camera model. This is seen in Chapter

5, where abberations other than those due to deflection are highlighted both

qualitatively in the raw images and quantitatively in the distortion correc-
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tion results. It may be possible to achieve improved calibration by capturing

these non-uniformities using a guided selection of both the knot vectors of

the B-spline surfaces and the order of the spline basis functions. During their

corneal surface estimation using B-spline surfaces, Halstead et al. (1996) itera-

tively apply their surface estimation procedure while simultaneously increasing

the number of knots used so as to capture surface aberrations more precisely.

The use of active grids in place of standard chessboard grids during dynamic

calibration, so as to acquire denser surface normal data, could aid with the

guided selection process. However, it must be kept in mind that increases

in the number of knot vectors and in the spline orders necessarily requires a

denser set of feature points to perform calibration.

As discussed in Section 5.4, flexible mirror camera self-calibration is a difficult

problem since the unknown depth of scene points introduces a further degree

of freedom into the calibration task. A method of refining the linear estimate

that does not require known scene points would certainly be an important

step towards self-calibration. Investigation of the reformulation of the surface

refinement in dynamic calibration in order to operate on scene geometries

rather than scene points may be beneficial in achieving this step. Borrowing an

idea from conventional camera distortion calibration, information from straight

edges in the scene could be utilised by way of a cost function that measures

the non-planarity of scene rays corresponding to the image pixels that see each

straight edge. The self-calibration experimental results presented in Section 5.4

demonstrate that linear estimation of the updated mirror surface without some

additional correction results in unacceptable cumulative error. By applying the

straight line constraint in the dynamic stage, with scene rays calculated from

the linearly estimated surface, progress towards the goal of self-calibration

may be possible. Detecting image lines in distorted images corresponding to

straight edges in the scene is itself a problem, although detection could be

aided by first removing distortion using the linear calibration result.

Deformable mirrored surfaces are currently used in adaptive optics systems

in astronomical imaging applications. The magnitudes of the deformations

applied in these systems is significantly smaller that those applied in the ex-

periments in Chapter 5. However, it would be interesting to apply the SPFC2

method to systems of this nature, as they would facilitate a direct and ac-

curate evaluation method due to the precisely known deformations that can

be applied. The SPFC2 method may be well suited to such systems as they
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readily provide very large smoothly varying flexible mirrors.
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Appendix A

Decoding Location from Active

Grids Sinusoidal Patterns

The intensity profile of an active grids sinusoidal pattern can be represented

by a Fourier series as

I(φ) =
a0

2
+

∞∑
n=1

ancos(nφ) + bn sin(nφ) (A.1)

The constant term reduces to 0 in Eqn. 3.23 and therefore it is dropped for

simplicity. Also, the intensity profile is known to be an approximate sinusoid,

so an = 0 ∀n is assumed. The simplified intensity profile is therefore described

by

I(φ) =
∞∑

n=1

bn sin(nφ) (A.2)

The four intensity profiles for a single period are thus

I1(φ) =
∞∑

n=1

bn sin(nφ) (A.3)

I2(φ) =
∞∑

n=1

bn sin
(
nφ +

nπ

2

)
(A.4)

I3(φ) =
∞∑

n=1

bn sin(nφ + nπ) (A.5)

I4(φ) =
∞∑

n=1

bn sin

(
nφ +

3nπ

2

)
(A.6)
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Taking the numerator and denominator of the intensity ratio in Eqn. 3.23 and

expanding using trigonometric identities results in

I1(φ)− I3(φ) =
∞∑

n=1

bn sin(nφ)−
∞∑

n=1

bn sin(nφ) cos(nπ)

=
∞∑

n=1

bn sin(nφ)[1− (−1)n]

=

{
0 n even

2
∑∞

n=1 bn sin(nφ) n odd
(A.7)

and

I2(φ)− I4(φ) =
∞∑

n=1

bn

[
sin(nφ) cos

(nπ

2

)
+ cos(nφ) sin

(nπ

2

)]

−
∞∑

n=1

bn

[
sin(nφ) cos(nπ) cos

(nπ

2

)

+ cos(nφ) cos(nπ) sin
(nπ

2

)]

=
∞∑

n=1

bn

[
sin(nφ) cos

(nπ

2

)
+ cos(nφ) sin

(nπ

2

)]
[1− (−1)n]

=

{
0 n even

2
∑∞

n=1 bn cos(nφ)(−1
n−1

2 ) n odd
(A.8)

Consequently the intensity ratio of Eqn. 3.23 is

I1(φ)− I3(φ)

I2(φ)− I4(φ)
=

∞∑
n+1

2
=1

tan(nφ)(−1
n−1

2 )

= tan(φ)− tan(3φ) + tan(5φ)− . . . (A.9)

Therefore the first harmonic (n = 2) of the intensity profile does not alter

the value of the intensity ratio, and thus it does not affect the value of the

sublocation, d, decoded from Eqn. 3.23.
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