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Abstract 
 
 
 

 
While both work with images, computer graphics and computer vision are inverse 

problems. Computer graphics starts traditionally with input geometric models and 

produces image sequences. Computer vision starts with input image sequences and 

produces geometric models. In the last few years, there has been a convergence of 

research to bridge the gap between the two fields. 

This convergence has produced a new field called Image-based Rendering and 

Modeling (IBMR). IBMR represents the effort of using the geometric information 

recovered from real images to generate new images with the hope that the synthesized 

ones appear photorealistic, as well as reducing the time spent on model creation.   

In this dissertation, the capturing, geometric and photometric aspects of an IBMR 

system are studied.  A versatile framework was developed that enables the reconstruction 

of scenes from images acquired with a handheld digital camera. The proposed system 

targets applications in areas such as Computer Gaming and Virtual Reality, from a low-

cost perspective. In the spirit of IBMR, the human operator is allowed to provide the 

high-level information, while underlying algorithms are used to perform low-level 

computational work. Conforming to the latest architecture trends, we propose a streaming 

voxel carving method, allowing a fast GPU-based processing on commodity hardware. 
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Chapter 1 Overview 
 
 
 

 
1. 1 Introduction 
 
The quest for visual fidelity has been the ultimate drive of computer 

graphics, ever since its beginnings.  In the ever changing landscape of computer 

graphics systems, the last decade has seen the most significant transformation. 

Previously, dedicated hardware for computer graphics was only available in 

expensive workstations. Today, the vast majority of personal computers include 

high-performance graphics hardware as a standard component.   

Consequently, the ubiquity of high performance hardware has spawn an 

impressive growth of fields like computer games, special effects, virtual reality, 

which in turn has triggered an insatiable demand for visual realism.   

Image-based modeling and rendering (IBMR) has emerged as a field about 

half a decade ago, as an alternative to traditional geometry-based techniques. Its 

main purpose is to bridge the gap between computer graphics and computer 
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vision in an effort to use real world images to create visually compelling photo-

realistic images, while diminishing the time and effort needed to achieve this 

goal. The technology became mature enough to support successful commercial 

ventures, such as REALVIZ or 2D3 [Web1, Web2]. However, IBMR is still 

primarily a privilege of research laboratories and high-end studios.  

There is an increasing demand for flexibility in IBMR tools, to allow their 

use under less restrictive conditions and minimize expert guidance. Novel 

methods for acquiring, reconstruction, and representing geometries and images 

are necessary in addition to new algorithms to efficiently analyze and process 

the input data.  

In this context, the proposed research is focused on developing new 

techniques that will get us closer to the ultimate goal of a low-cost, interactive 

tool allowing non-expert users to build their own models and utilize the 

authored data for applications that simulate physical interaction with the real 

world. The system we designed to accomplish this goal presents the IBMR 

characteristic computer vision and computer graphics elements.  

The computer vision component consists of a camera self-calibration method 

that relies only on information from an extended sequence of images acquired 

with a single digital camera. 

The computer graphics component relies on a voxel carving method for 

achieving 3D reconstruction. Voxel carving techniques have become very 

popular in the IBMR field, as they provide a powerful tool for computing the 

volumetric model of the scene. However, due to their high computational costs 

they are traditionally the main bottleneck in IBMR pipelines, leading to a trade-

off between performance and accuracy.  

These computational costs are tackled in this work from two perspectives, 

both of which embody the interactive character of IBMR. Our first approach 

addresses the extended computational cost by locally adjusting the level of 

detail. More specifically, our approach introduces the novel feature of user-
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driven interactive refinement, resulting in a model reconstructed at varying 

resolution -and hence level of detail- across the voxel structure. Besides 

processing speed, the development of this feature is motivated by a second 

factor: scalability over various environments.  

For the second technique, we focused exclusively on the processing speed. 

Here we have developed a GPU-based voxel carving method, motivated by the 

rapid increase in the performance of graphics hardware compared to the CPU, 

coupled with their recently exposed programmability. Both have made graphics 

hardware arguably today’s most powerful commodity computational platform. 

As such, the computational power of GPUs has been harnessed for demanding 

tasks like ray tracing and photon-mapping, performed traditionally off-line on 

the CPU. Moreover, GPUs have transcended the boundaries of computer 

graphics and have been employed for general-purpose computing in a wide 

variety of domains ranging from physically-based simulations to sparse matrix 

multiplications techniques.  

With our GPU-based work, we describe a method that provides 

interactive user involvement possibilities, and delivers high performance and 

flexibility, one that can be adapted for future graphics hardware.  

 

 
1.2 3D Reconstruction Pipeline  
 
The input to our system is a set of uncalibrated images of a scene acquired 

with a single moving digital camera, so that we need to perform self-calibration 

prior to the 3D reconstruction in order to recover the camera intrinsic and 

extrinsic parameters. The reconstruction pipeline is outlined in Figure 1.1. A 

number of relevant points are selected manually in a reference view, and then 

their corresponding points are tracked throughout the sequence. These identified 

correspondences are the only information from images needed to recover the 
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position and orientation of the camera views. Within the camera self-calibration 

process, first the 3D structure of the tracked points and the camera parameters 

are retrieved in a projective frame through a rank-4 iterative factorization, 

followed by an upgrade to Euclidean structure by imposing metric constraints on 

the intrinsic camera parameters. Self-calibration is concluded by a sparse 

Levenberg-Marquardt optimization, providing a maximum likelihood estimation 

that minimizes the reprojection error with respect to all 3D points and camera 

parameters. 

The voxel-based 3D model building is achieved through a Space 

Carving method, also called voxel carving in the literature. Space Carving 

approaches represent the space in which the scene occurs through a discretized 

volume of voxels and make occupancy decisions about whether voxels belong to 

the objects in the scene.  The decision mechanism consists of a color similarity 

check of the pixels a visible voxel projects onto. The resulting 3D shape is the 

photo hull, the union of all possible photo-consistent scene reconstructions. We 

have developed two voxel carving formulations: a multi-resolution software 

(CPU-based) implementation and a GPU based carving engine. 

 

 
1.3 Contributions  

 

This dissertation makes several contributions to the areas of computer vision 

and computer graphics.  

The thesis makes the following theoretical contribution:  

� Quaternion-parameterized optimization of the metric solution 

Structure from motion (SFM) methods process images over time, observing 

spatial and temporal changes that are caused by relative motion between camera 

and scene. We have employed robust digital image processing and computer 



 5 

vision techniques that allow the use of low-end acquisition systems such as 

standard photo or video cameras.  Also, no information about the camera nor the 

scene is known a priori and the only requirement regarding the scene is that it 

will be assumed to be rigid.  

Each step of the SFM analysis creates a more abstract and thus flexible 

representation, but each of these steps often introduces large errors and biases. 

The different solutions are computationally expensive and noise sensitive, and 

one of the goals of this work was to obtain more reliable methods based on a 

combination of linear techniques and non-linear bundle adjustment methods.  

As such, we applied a linear stratified approach to compute the 

parameters of the camera and achieve Euclidean camera self-calibration. We 

followed up this work by implementing a sparse Levenberg-Marquardt 

optimization method with a quaternion-based parameterization of the camera 

rotations. This final non-linear optimization process is required in order to 

reduce the reprojection error accounting for all the non-linearities not recovered 

in the metric solution. 

Moreover, if a more complete camera intrinsic parameters description is 

required (e.g. adding the principal point) it can be incorporated into the 

optimization process as well.  
This method brings computational and memory usage benefits over the 

general variant of the Levenberg-Marquardt algorithm, by exploiting the sparse 

nature of the problem and reducing the number of overall parameters, 

respectively. 

This dissertation also makes the following practical contributions: 

 

Voxel carving:  

The common characteristic for these approaches is that they carve a 

piece of voxelized virtual material that contains the object, similar to an artist 

sculpting a raw block of marble. The voxel carving process is based on the 
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classification of thousands of discrete elements in scene space according to 

photo-consistency within scene images, leading to a typical trade-off between 

performance and accuracy.   

 

 
 

Figure 1.1  3D reconstruction pipeline. 
* Labeling and multi-resolution reconstruction pertain to the CPU-based 

implementation 
 

It is important to note here that this work focuses on uniformly lit scenes, 

therefore operates under the Lambertian assumption. The reconstruction of non-

Lambertian scenes is an exciting area of future research described in more detail 

in Chapter 8, § 8.2. 
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� Multi-resolution voxel carving  

Our initial approach addressed the extended computational cost by 

locally adjusting the level of detail [Bri04a, Bri04b]. Since perceptual 

importance is ultimately determined by the human factor, we have developed a 

multi-resolution approach that allows users to selectively control the complexity 

of different surface regions, while requiring only common image editing 

operations. An initial reconstruction at coarse resolution is followed by an 

iterative refining of the surface areas corresponding to the selected regions. 

 

� Voxel carving on the graphics processing unit  

We have developed a streaming, GPU-based voxel carving method, 

tackling the aforementioned computational costs in the context of the latest 

graphics hardware trends. The bandwidth efficient carving engine highlighted 

the importance of both the CPU and GPU to work in concert to carry out the 

given task. The philosophy behind this research was to partition the problem 

domain based on which computational components were better suited to each 

processor type while being mindful of the cost of inter-processor 

communication. Unlike previous approaches [LiMS04, WoeKoch04, ZacKar04] 

our method creates an explicit volume that can be modified interactively and 

eliminates the 3D texture inherent drawbacks by employing only surface voxels 

in a two-dimensional data representation that matches the two-dimensional data 

layout on the GPU.   

 

� A complete system for acquisition of metric 3D surface models from 

uncalibrated image sequences  

The self-calibration and reconstruction techniques mentioned earlier were 

incorporated into this system allowing for great flexibility in the acquisition of 

3D models from images [Bri03, BriWhe04, BBS*04]. To our knowledge, this is 

the first system to integrate unconstrained structure from motion, self-calibration 

and GPU-based voxel reconstruction algorithms. This combination results in 
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highly realistic 3D surface models obtained from images taken with an 

uncalibrated hand-held camera, without restriction on zoom or focus, and 

confers real-time characteristics to the 3D reconstruction process. 

 

 
1.4 A Note on the CPU-based, 

Hardware Accelerated and GPU-
based Paradigms 

 
 

We provide in the following a brief consideration of the above concepts, 

in the order corresponding to the evolvement of computer graphics.  

“CPU-based” applications, also called “software-based” in the literature, 

are processed entirely on the CPU, and therefore do not employ graphics 

hardware acceleration or computation.   

It is especially important to emphasize the distinction between the 

“hardware accelerated” and “GPU-based” concepts. The former refers to 

employing graphics hardware exclusively for graphics processing purposes, 

while other generic operations are performed on the CPU, in a sequential 

manner.  “GPU-based” on the other hand, refers to employing graphics 

hardware to process such general operations, in addition to processing graphics 

primitives.   

 

 
1.5 Outline 

 
We begin in Chapter 2 with a background discussion on structure from 

motion, volumetric reconstruction, and modern programmable graphics 

hardware.  
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Chapter 3 deals with the self-calibration of a single moving camera. After 

introducing several theoretical derivations, a flexible calibration method is 

presented that can deal with unknown motion and varying intrinsic camera 

parameters. Then, we present the formulation of the Levenberg-Marquardt 

optimization technique we have developed. 

We examine the theoretical foundations of Space Carving and describe our 

CPU-based implementation of a voxel carving algorithm in Chapter 4. Chapter 5 

is concerned with programmable graphics hardware concepts and 

characteristics. We describe the stream programming model and then present the 

abstraction of the programmable graphics processor as a stream processor.  

We continue with the description of our streaming voxel carving method on 

the graphics processing unit in Chapter 6. In Chapter 7 results and applications 

of the system are presented. The flexibility and the potential of our approach is 

shown in several examples. Finally, we suggest areas of future research, and 

present the conclusions of our work in Chapter 8.  

Throughout this dissertation the words ‘metric’ and ‘Euclidean’ will be used 

interchangeably. 
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Chapter 2 Related Work 
 
 
 
 
Introduction 
 
Previous work related to the work in this dissertation falls into three categories. First, 

structures from motion approaches have provided the basis for our camera calibration 

method. Second, our 3D reconstruction approach belongs to the generic framework of 

volumetric techniques, and more specifically to voxel carving techniques. Finally, 

previous work involving programmability in graphics hardware has inspired the GPU-

based features of the implementation described in this dissertation. 

 
 

2.1 Structure from Motion   
 

Structure from motion methods seek to determine the relative motion of a moving 

camera from the acquired image sequence, as well as the shape, or structure of the 

observed objects. No information about the camera or the scene is known a priori and the 
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only requirement regarding the scene is that it will be assumed to be rigid. Quite an 

impressive amount of research has appeared in the literature on structure from motion. 

We focus here on methods designed for full perspective (projective) cameras, arbitrary 

motion (equivalent to arbitrarily placed cameras), static scene, small baseline of the views 

and 3D model synthesis.  

 

 
2.1.1 Camera Self-calibration 
 

Self-calibration is the computation of metric properties of the cameras and/or scene 

from a set of uncalibrated images. Unlike conventional calibration, where these 

properties are determined from the image of a known calibration grid, self-calibration 

computes them directly from constraints on the intrinsic/extrinsic parameters.  

Earlier reconstruction methods either worked only for the minimal number of views 

(typically two), or singled out a few ‘privileged’ views for initialization before being 

extended to the multi-view case [Hartley93, McLauMur95]. Shashua was the first to 

extend the two-image epipolar constraint to a trilinear constraint between matching points 

in three images [Shashua95]. Hartley [Hartley94a] showed that this constraint also 

applies to lines in three images, and Triggs [Triggs95a, 95b] studied the constraints for 

lines and points in any number of images.  

For robustness and accuracy, there was a need for methods that uniformly take  into 

account all the data in all the images, without relying on privileged features or images for 

initialization.  The early factorization methods, developed by Tomasi and Kanade 

[TomKan92] for orthographic views and extended by Poelman and Kanade [PoeKan97] 

to weak perspective views partially fulfill these requirements, but they only apply when 

cameras are viewing small, distant scenes, which is seldom the case in practice.   Triggs 

presented a key aspect in [Triggs96], namely that projective reconstruction is essentially 

a matter of recovering a coherent set of projective depths - projective scale factors 

representing the depth information lost during image projection.  

The projective factorization method proposed by Triggs presents two key attractions:  
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• No initialization is required  

• All of the data in all of the images is treated uniformly - there is no need to single 

out ‘privileged’ features or images  

 
When nothing is known about the camera intrinsic parameters, the extrinsic 

parameters or the object, it is only possible to compute a reconstruction up to an unknown 

projective transformation (projective ambiguity) [Hartley94b].  The upgrade to Euclidean 

reconstruction requires some additional information about either camera or object, in 

order to be mathematically tractable. Since such information is not available, some 

assumptions need to be made, translating into constraints imposed on the camera views.   

The earlier studies of self-calibration assumed unknown, but constant camera 

parameters [HeyAst96]. This has the disadvantage that zooming/focusing is prohibited. 

However, in the last decade there has been significant progress in the case of varying 

intrinsic parameters. Pollefeys and Van Gool [PolGol97] proposed a stratified approach 

for the case of varying focal length, which requires a pure translation motion for 

initialization.  Triggs [Triggs97] introduced the concept of absolute quadric, and 

proposed a self-calibration method which relies on its invariant properties. Pollefeys et al. 

[PKG98] have shown that the absence of skew alone is sufficient for self-calibration and 

proposed a flexible method based on Trigg’s concept, which can deal with various 

constraints, but needs an initialization and is biased towards the first view in the image 

sequence. Heyden and Astrom [HeyAst99] proved that self-calibration can be achieved 

when only the aspect ratio  was known and no skew was present (i.e. the sensor pixels 

have rectangular form).   

The work presented in this dissertation is similar to the method presented in 

[HanKan00], which is computationally equivalent to recovering the absolute quadric. 

Their representation is explicit in the motion parameters (rotation axes and translation 

vectors) and enables the geometric constraints to be naturally enforced.                                                                                                   
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2.1.2 Bundle Adjustment 
 

Bundle adjustment was employed initially in photogrammetry estimation 

problems [Sla80] and became gradually the technique of choice for structure and motion 

refinement in computer vision.  

 The groundwork for this transition was laid by Hartley [Hartley93]. Earlier 

structure from motion approaches required extreme computational accuracy and were 

difficult to work with for more than three or four views, because the number of solutions 

presented an exponential growth in the number of views [Luong92, MayFau92]. Hartley 

proposed an efficient solution based on a variant of the Levenberg-Marquardt algorithm, 

applicable to a large number of views. Building on the sparse block structure of the 

normal equations, Hartley presented his method in two flavors: as a direct Euclidean 

reconstruction iterative method, and as a bundle adjustment intermediary refinement step 

for projective reconstruction followed by Euclidean upgrade. Since then, variations of 

Hartley`s sparse bundle adjustment approach were frequently employed both as an 

intermediary and as a final optimization step in the literature.   

 Fitzgibbon and Zisserman [FitZis98] developed a system that employs a 

hierarchical strategy starting with image triplets, registered to sub-sequences and 

eventually to long open or closed sequences, with bundle adjustment applied after each of 

these processing stages.  

 Zhang and Shan [ZhaSha01] also employed triplet views, but in a sliding window 

format and formulated the refinement problem as a series of local bundle adjustments in 

such a way that the estimated parameters are consistent across the whole sequence.  

Sainz [Sainz03] proposed a system that processed a large number of views 

simultaneously through projective factorization [HanKan00] and refined the structure 

prior to the Euclidean upgrade. 

 Pollefeys et al. [PGV*04] presented a reconstruction system from a sequence of 

uncalibrated images where the 3D structure retrieval is initiated with two views in a 

projective framework. The remaining views are incorporated sequentially in the process 

and the obtained structure and motion are then refined through bundle adjustment.   
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 Lourakis provided in [LouArg04] an implementation with a detailed design 

description of Hartley’s sparse bundle adjustment method [Hartley93]. 

 Our work is similar to the approach presented in [Sainz03], in that it follows the 

projective factorization method in [HanKan00] and applies a sparse LM optimization; 

however, our method differs by using a quaternion-based parameterization in order to 

recover the camera rotation matrices.  

 Among the various ways to represent rotation, we mention here Euler angles, 

orthonormal matrices, and Hamilton's quaternions. Of these representations, orthonormal 

matrices have been used most often in photogrammetry and vision. The quaternion 

formulation, however, presents a number of advantages. Besides the reduced number of 

necessary parameters, it is much simpler to enforce the unit magnitude constraint for 

quaternions than it is to ensure that a matrix is orthonormal.  

 The application of quaternions in stereo photogrammetry was pioneered by Schut 

[Schut59] and Thompson [Thompson59], who recovered the relative orientation of two 

coordinate systems with the help of three given common points. Horn developed a 

closed-form solution for more than three points in [Horn87] and later introduced 

quaternions to vision applications presenting an iterative scheme for recovering the 

relative orientation of two calibrated cameras [Horn90, 91].   

 Further research work explored most notably stereo systems with either pre-

calibrated cameras, or calibrated through traditional methods during processing [Chou94, 

BacKam97, ZPA03]. Relative to these quaternion-based approaches, our method differs 

by using uncalibrated cameras and solving simultaneously for a large number of views.  

  

 
2.2 Volumetric Reconstruction 
 
All volumetric reconstruction algorithms assume a discrete and bounded 3D space 

containing the scene to be reconstructed. Typically, the initial reconstruction volume is 

divided into voxels and the task is to correctly classify the set of voxels that represent the 

different objects contained in the scene.  
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All these algorithms require a set of calibrated input images, and some of the 

approaches require additional classification of the pixels in background/foreground. A 

common assumption is that the objects contained in the scene are Lambertian or nearly 

Lambertian, so they reflect light equally in all directions. The following subsections 

present a review of some of the most significant methods based on volumetric 

reconstruction. 

 

 
2.2.1 Volumetric Intersection  
 
Volumetric intersection algorithms reconstruct the surface and interior space of an 

object using its silhouettes from the different reference views. The process is performed 

by tracing rays from the center of projection of each camera through the contour of the 

object projection in the corresponding image plane. The resulting bounding volume is the 

reconstructed scene. 

The earliest attempts at volumetric model reconstruction from images were 

approximating the visual hull of the objects [Laurentini 94]. Such techniques are also 

referred to as shape-from-silhouette in the literature. The intersection of the generalized 

cones associated with a set of cameras defines a volume of space in which the object is 

guaranteed to lie. The visual hull is guaranteed to enclose the actual object. However, the 

volume only approximates the true 3D shape, depending on the number of views and the 

complexity of the object. Consequently, the accuracy of the reconstruction increases 

monotonically with the number of views. 

Matusik et al. [MBR*00] describe an efficient real-time image-based approach to 

compute and shade visual hulls from silhouette image data. They use an ingenious 

traversing of pixels between camera images to reconstruct models. Taking advantage of 

epipolar geometry and incremental computation they achieve a constant rendering cost 

per rendered pixel. In a later work [MBM01], the same authors present new algorithms 

for creating and rendering visual hulls in real-time where an exact polyhedral 

representation for the visual hull is computed directly from the silhouettes.  
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Other recent real-time systems employing hardware-accelerated techniques:  Lok 

presents [Lok 01] a system that renders a set of planes to generate novel views of visual 

hulls, and Li et al [LiMS03a] rasterize generalized cones with projective texturing to 

achieve real-time rendering frame rates.   

Volumetric intersection methods are fast and simple algorithms but effective at 

reconstructing multi-view scenes. However, their inherent limitation is that they fail to 

recover concave regions that are not visible in the silhouette of the reference images.  

 

 
 2.2.2 Voxel Carving  
 
Voxel carving methods have proven to be a strong alternative to traditional 

correspondence-based methods due to their flexible visibility models and explicit 

handling of occlusions.  

Traditional reconstruction methods are using image matching techniques, such as 

multi-view stereo methods that compute correspondence across images and then recover 

3D structure by triangulation and surface fitting.  These approaches are especially 

effective with short video sequences, where tracking techniques simplify the 

correspondence problem. Some of the shortcomings of these methods are:  

 

• small baseline (i.e. views must be close together) so that correspondence 

techniques are effective  

• many partial models must often be computed with respect to a set of base 

viewpoints, and these surface patches must then be fused into a single, consistent 

model 

• if sparse features are used, a parameterized surface model must be fitted to the 3D 

points to obtain the final dense surface reconstruction 

• there is no explicit handling of occlusion differences between views 
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Volumetric methods avoid the listed disadvantages by replacing the image-based 

search problem used in the above approaches with a three-dimensional space-based 

search. 

We can distinguish three main voxel carving implementation types, corresponding 

historically to the processing trends in computer graphics: CPU-based, hardware 

accelerated and GPU-based (please view note 1.4 at page 9).  

Our voxel carving related work consists of two techniques that fall into the CPU-

based and GPU-based categories, respectively. More specifically, we have developed a 

CPU-based multi-resolution voxel carving method and a GPU-based carving engine. In 

this context, we first relate our multi-resolution approach to other CPU-based methods, 

and then we position the carving engine relative to previous GPU-based research.   

 

CPU-based Voxel Carving 
 
Seitz and Dyer [SeiDye97] demonstrated that a colorful scene (assuming Lambertian 

illumination) could be reconstructed using full color-based consistency alone, without 

volume intersection. They introduced with the Voxel Coloring algorithm the color 

consistency criterion to distinguish points belonging to the object surface from other 

points in a scene. The Voxel Coloring algorithm begins with a reconstruction volume of 

initially opaque voxels that contains the scene to be reconstructed. As the algorithm runs, 

opaque voxels are tested for color consistency and those that are found to be inconsistent 

are carved, i.e. made transparent. The algorithm stops when all the remaining opaque 

voxels are color consistent.   

The voxels need to be traversed in a monotonic order for a correct visibility 

handling. To simplify the voxel visibility computation and to allow reconstruction in a 

single scan of the voxels, Seitz and Dyer imposed an ordinal visibility constraint on the 

camera locations. The constraint implies however a limitation : since the voxels have to 

be visited in a single scan in near-to-far order relative to every camera, the cameras 

cannot surround the scene, so that surfaces that are not visible in any image cannot be 

reconstructed.  
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The Space Carving algorithm developed by Kutulakos and Seitz [KutSei99] 

achieves the goal of allowing arbitrary camera placement. Unlike Voxel Coloring, Space 

Carving evaluates one plane of voxels at a time, using multiple scans, typically along the 

positive and negative directions of each of the three axes. The scans are performed in 

near-to-far order relative to the cameras, by using only views behind the scanning plane 

(Figure 2.1).  

 

 

 

Thus, when a voxel is evaluated, its visibility is already known relative to other 

voxels that might occlude it from the current camera. Space Carving never carves voxels 

it shouldn’t, but it is likely to produce a model that includes some color-inconsistent 

voxels. This is because cameras that are ahead of the scanning plane are not used for 

consistency checking, even when the voxels being checked are visible from those 

cameras. Hence, the color consistency of a voxel is, in general, never checked over the 

entire set of images from which it is visible. (A later paper, [Kutulakos 00b], describes 

additional book keeping that eliminates this shortcoming). 

Culbertson et al. [CMS99] developed the Generalized Voxel Coloring (GVC), that 

obtains a color consistent model by computing visibility exactly. They provide 

experimental results that show that exact visibility, when compared with the approximate 

visibility computed by Space Carving, can result in better looking reconstructions that are 

numerically more consistent with the input images. Two variants of the algorithm, called 

Figure 2.1 Only cameras behind the sweeping plane are used   
for photo-consistency check 
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GVC-IB and GVC-LDI, have been developed. They use different data structures, called 

item buffers (IBs) and layered depth images (LDIs), to compute the visibility of voxels. 

An item buffer records for every pixel in an image, the surface voxel that is visible from 

the pixel. An LDI records for every pixel in an image, a depth-sorted list of all surface 

voxels that project to the pixel. The information in an LDI is a superset of the information 

in an item buffer and generally consumes considerably more memory.  

The GVC-IB variant of the voxel coloring algorithm lies at the core of our multi-

resolution carving method. However, our approach introduces the novel feature of user-

driven interactive refinement, resulting in a model reconstructed at varying resolution -

and hence level of detail- across the voxel structure. The development of this feature is 

motivated by two factors: processing speed and scalability over various environments.  

First, voxel carving is a computationally expensive procedure, which typically 

requires at least tens of seconds up to tens of minutes to compute the reconstruction, 

implying a trade-off between processing speed and accuracy. Prock and Dyer [ProDye98] 

utilize a hierachical octree representation to speed up voxel coloring. Their method starts 

with a low resolution voxel structure, refined further to higher resolutions. Their method 

needs approximately 15 s to generate a reconstruction with 3256  voxels. Unlike Prock 

and Dyer’s approach, our method does not process the entire model at uniform resolution, 

but introduces a perceptual saliency component in order to represent the information in a 

hierarchical order similar to that the human perceives.  

Second, the delivery and rendering of 3D content over different types of 

connections to clients with various graphics capabilities requires scalable 3D models that 

can be approximated through representations of varying complexity. However, automatic 

simplification algorithms generate approximations that do not preserve the visual 

appearance of the original model in certain cases. For example, features such as eyes in a 

face are semantically crucial, but geometrically small.  Kho and Garland [KhoGar03] 

developed a human-guided simplification method where the user can guide the vertex 

placement of a 3D model by directly interacting with the underlying algorithm. 

 The multi-resolution method developed for our framework relies similarly on the 

human factor to assign perceptual significance to selected features. Only simple 2D 

image editing operations are required to manipulate the complexity of different surface 
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regions. Seitz and Kutulakos [SeiKut98] presented an image editing approach for 

multiple images of a scene. However, their method focuses on modifying and 

propagating changes to input images, rather than the voxel structure. The voxel model is 

used only as a proxy for these modifications, without its structure being altered.  

  In the following we mention several extensions and improvements that have been 

investigated in recent years. For a detailed review we suggest [SCM*01].  

Eisert et. al [ESG99] proposed the multi-hypothesis voxel coloring technique. A 

hypothesis is a possible coloring of a voxel. Their approach begins with a hypothesis 

assignment step that identifies a set of hypotheses for each voxel. The algorithm then 

narrows down the hypotheses during a hypothesis removal step, which carves 

inconsistent voxels. Slabaugh [Slabaugh00b] presents a volumetric optimization using 

greedy and simulated annealing methods to refine the reconstruction. While the previous 

algorithms assumed opaque object voxels, the Roxels algorithm [DebVio99] attempts to 

reconstruct semi-transparent voxels.  

All Space Carving approaches listed above need the input of accurately calibrated 

cameras. The Approximate Space Carving was defined later by Kutulakos [Kutulakos00] 

as an extension to the original algorithm which is capable of handling calibration errors.  

Slabaugh [SMC00a] developed a method that warps the voxel space so that large 

scale scenes can be modeled without an excessive number of voxels (e.g. outdoors 

scenes). Vedula [VBS*00] presents a voxel coloring method that reconstructs a time-

varying scene by linking  two time-consecutive 3D voxel spaces together, forming a 6D 

space. The Cell Carving algorithm developed by Ziegler et al. [ZMP*03] uses 

correspondence between arbitrary image regions to enable the reconstruction of 

concavities that are difficult or impossible to reconstruct with other methods.  

 

    
GPU-based Voxel Carving 
 
While we focus in the following on GPU-based research, we also mention here 

briefly the preceding and rapidly superseded hardware-accelerated work.  
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Culbertson has pointed out in [Culbertson99] the possibility to perform hardware 

acceleration on voxel carving approaches. Sainz et al. [SBS02] present a fast hardware 

accelerated Space Carving method that uses texture mapping features of the graphic card. 

Their design is optimized further by the use of an octree structure and adaptive 

subdivision methods to keep track of the set of consistent voxels throughout the carving 

process. The authors do not provide a CPU/hardware acceleration speedup comparison, 

but they did not report interactive or real-time framerates.  

With the advent of programmable graphics hardware [MGA*03], the research efforts 

shifted towards GPU-based processing. Li et al. proposed initially a GPU-based method 

to render visual hulls in [LMS03b, LMS03a], followed by a voxel-based approach that 

retrieves the photo-hull of a shape [LiMS04]. By adopting a view-dependent plane-

sweeping strategy, they achieve rendering frame rates of 2-3 frames per second. A 

drawback of this approach is that since no branching support was available at that time, 

photo-consistency check is performed on each fragment, regardless whether it was 

rejected or not by the silhouette/background test. Also, their method produces no explicit 

volume, since rendering and reconstruction are combined into a single step.  

Woetzel and Koch proposed a live system for image capturing and dense depth 

estimation in [WoeKoch04]. Their plane-sweep algorithm runs almost entirely on the 

GPU, leaving the main CPU free for other tasks such as image capture and higher level 

recognition. Dense depth maps are computed with up to 20 frames per second; however, 

their system is limited to only four camera views.  

Zach and Karner [Zach04] describe hardware accelerated techniques for two 

scenarios: Voxel Coloring and Space Carving. Their implementation runs entirely on the 

GPU, with the exception of the latter, when they are performing independent sweeps and 

no prior information is used in the current sweep. In this specific case, the intersection of 

the obtained voxel models is performed on the CPU. The first one doesn`t produce an 

explicit volume, the second one does but at the expense of using two 3D textures 

simultaneously – one for the current, one for the precedent model – that are interesected 

at each main iteration. Besides the doubled memory consumption, the performance of the 

implementation is affected by the continuous access of a 3D texture. The authors report 

interactive framerates for 256 x 256 x 128 scene voxel resolution. 
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We have developed a streaming GPU-based voxel carving method, tackling the 

aforementioned computational costs of voxel carving in the context of the latest graphics 

hardware trends. Unlike previous approaches [LiMS04, WoeKoch04, ZacKar04] our 

method doesn’t sacrifice interactivity for speed, creating an explicit volume that can be 

modified interactively and avoids the 3D texture inherent drawbacks (continuous access, 

using two 3D textures simultaneously) by employing only surface voxels in a GPU-

optimal two-dimensional data representation. Moreover, our bandwidth efficient method 

is the first to minimize the GPU-CPU data transfer, employing a form of effective load 

balancing and combining the optimal features of both CPU and GPU while being mindful 

of the cost of inter-processor communication.   

 

2.3 Graphics Hardware and 
Programmability   

 

The graphics pipeline was historically a fixed-function pipeline, where the limited 

number of operations available at each stage of the graphics pipeline was hardwired for 

specific tasks. 

One of the earliest efforts toward formalizing a programmable framework for 

graphics was Rob Cook’s seminal work on shade trees [Cook84], which generalized the 

wide variety of shading and texturing models at the time into an abstract model. He 

provided a set of basic operations which could be combined into shaders of arbitrary 

complexity. His work was the basis of today’s shading languages, which in turn 

contributed ideas to the widely-used RenderMan shading language [Upstill90].  

       RenderMan’s success demonstrated the benefit of more flexible operations, 

particularly in the areas of lighting and shading. Instead of limiting lighting and shading 

operations to a few fixed functions, RenderMan evaluated a user-defined shader program 

on each primitive, with impressive visual results. 

Over the past few years, graphic cards vendors have transformed the fixed-function 

pipeline into a more flexible programmable pipeline. This effort has been primarily 

concentrated on two stages of the graphics pipeline: the vertex stage and the fragment 
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stage. In the programmable pipeline, the fixed-function operations are replaced with a 

user-defined vertex program and a user-defined fragment program, respectively. Each 

new generation of GPUs has exposed additional levels of programmability, precision and 

functionality of these two programmable stages.  

The vital step for enabling not only graphics-specific, but also general-purpose 

computation on the graphics processing unit (GPGPU) was the introduction of fully 

programmable hardware and an assembly language for specifying programs to run on 

each vertex [LKM01] or fragment.  The raw speed resulting from an abundant parallelism 

and rapidly expanding programmability of the graphics hardware make it an attractive 

platform for general-purpose computation. However, harnessing the power of the GPU 

goes well beyond simply “porting” applications from the CPU, due to its dissimilar 

programming model (the GPU-characteristic streaming programming model is detailed in 

Chapter 5).  

A significant boost was gained from the appearance of high level languages to 

support the new programmability of the vertex and pixel pipelines [MGA*03, BFH*04]. 

An active, vibrant community of GPGPU developers has emerged [Web3] and quite an 

impressive amount of research has appeared already in the literature.  

GPGPU applications range from computer graphics processes such as ray tracing 

[Purcell04], photon-mapping [PDC*03, LarChr04], collision detection [GLM05] to 

numeric computing operations such as dense and sparse matrix multiplications 

[KruWes03], physically-based simulations [Harris04, LFW*05] and computer vision 

[FunMan04], to name only a few. For an excellent review we suggest [OLG*05].   

Kipfer, Segal and Westermann presented a versatile GPU-based particle system 

engine [KSW04]. They have efficiently implemented on the GPU algorithms used for 

particle manipulations, i.e. inter-particle collisions and visibility sorting algorithms.  The 

analogy between the constant update and handling of a large number of primitives in a 

particle system and in a voxel carving application has inspired the GPU-based work 

presented in this dissertation. Also, our implementation capitalizes on recent GPU 

features that allow graphics memory objects to be treated as vertex data, texture or render 

target. [ARB03, NV04]. 
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Conclusion  
 

The surveyed structure from motion approaches depend on, one way or the other, 

recovering some kind of geometric structure of the scene. Original attempts of self-

calibration have yielded successful examples only for special cases. For general cases, 

new algorithms needed to be developed that output explicit Euclidean structures from 

uncalibrated images.  

Also, a review of the different volumetric methods for scene reconstruction from N 

views has been presented, with a focus on the family of methods based on space carving 

and color consistency. Finally, we presented a graphics hardware evolvement timeline, 

from the fixed to the modern flexible programmable pipeline.  

 

 
 
 
 
 
 
 
 
 
 
 
 



 25 

 
 
 
 
 
Chapter 3 Camera Calibration 
 
 
 
 

Introduction 
 
Generally speaking, 3D reconstruction can be defined as the problem of using 2D 

measurements arising from a set of images of a scene, aiming to derive information 

related to the 3D scene geometry as well as the relative motion and the characteristics of 

the cameras employed to acquire these images.  
Original results on this area come from researchers in the computer vision field, 

however, recent interest on the problem was raised because of the implicit applications in 

building 3D models for virtual and augmented reality or other interactive applications. 

Also, in the film and multimedia field, there has been an increased demand for computer-

graphics based special effects consisting of the combination of 2D digital image 

sequences with 3D computer graphics that require a perfect synchronization only 

obtained with a calibration procedure. The common denominator of all these applications 

is that they require an accurate 3D scene reconstruction from the 2D source images. 

The traditional way of performing such a calibration process is to use special setups 

and hardware devices in a controlled environment to mount and move the cameras 

around. Moreover, expert knowledge is required in order to operate such systems. 
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Since we aim to achieve a flexible, low-cost solution, operated by non-expert users, 

we will focus on the use of off-the-shelf devices, namely single digital still cameras. 

Additionally, we will assume that no prior knowledge of the camera or its relative motion 

in the scene is known. Therefore, the calibration process is based entirely on 

measurements taken from the input images.  

We conclude this chapter with the description of a sparse variant of the Levenberg-

Marquardt algorithm we have implemented to efficiently minimize the reprojection error 

between the observed and predicted image points, with the purpose of producing optimal 

estimates with respect to both 3D structure and viewing parameters. 

 

Structure from motion  
 
Structure From Motion (SFM) refers to the problem of recovering the 3D structure 

and motion of a scene from its two-dimensional projection onto the image plane of a 

moving camera. No information about the camera or the scene is known a-priori and the 

only assumption made is that the scene is required to be rigid.  

The SFM analysis is based on preprocessing the set of reference views to 

consistently extract and label 2D salient points in the scene. These points can be detected 

automatically or manually on each image and then associated with their correspondents in 

the other images.  

We can distinguish two main correspondence methods, depending on the number of 

points tracked along the image sequence. Thus, sparse correspondence methods evaluate 

a small set of points, while dense correspondence methods evaluate all the pixels in the 

sequence. The latter methods are based on determining the optical flow between frames, 

which limits the baseline or distance between each reference image. Moreover, it is 

argued in [BFA98] that the determination of the optical flow is an ill-posed problem due 

to inherent differences between 2-D motion field and intensity variations. It is reflected in 

[Chen00] that none of the optical flow based techniques produce low error and high 

density correspondences in all testing cases. 

The presented work and the reviewed literature focuses on sparse correspondence 

methods such as the ones presented in [HanKan00], [Chen00], [PKG99], [Triggs96].  
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The fundamentals of epipolar and projective geometry, as well as related notions are 

covered in [Pollefeys00a] and [HarZis00]. Furthermore, a good review of projective and 

Euclidean reconstruction can be found in [Triggs96] and [Fusiello00], respectively.  

 

 
3.1 Camera Geometry 

  
This section briefly describes the pinhole camera model, perhaps the most widely 

used in computer vision to model the imaging process (Figure 3.1). In general, a pinhole 

camera projects a 3D world point with the homogeneous coordinates 

[ , , ,1]TX Y Z=M onto an image point [ , ,1]Tx y=m , where a line joining the point M  to 

the centre of projection intersects the image plane. The world coordinates of the 3D point 

and its image coordinates are related by:  

 

1
1

X
x

Y
y P

Z
λ

 
   
   =   
    

 

  (3.1), where λ  is an arbitrary scale factor, and P  is a 3x4 matrix, 

called the projective camera matrix, or simply camera matrix.   

 
 

 
 

Figure 3.1 The pinhole camera model [HarZis00] 
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The projective matrix P  is effectively modelling the camera, containing both its 

intrinsic and extrinsic parameters. P  can be decomposed as [HarZis00]:  

 

[ ]|P K R t=   (3.2) ,  

where:  

- ,R t  - are the rotation and translation from the world coordinate system to the 

camera coordinate system, representing the extrinsic camera parameters 

 

- K  is the calibration matrix, encoding the intrinsic camera parameters:  
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 (3.3)    

where:  

x xf fk= − , y yf fk= −  are the focal lengths in horizontal and vertical pixels, 

respectively ( f is the focal length in mm, while xk and yk  are the effective number of 

pixels/mm along the x  and y  axes)  

       s is the skew parameter , which is considered 0 for most cameras 

      α  is the aspect ratio, which is considered 1 for most cameras 

0u , 0v  are the coordinates of the principal point, given by the intersection of the 

optical axes with the image plane (fig. 3.1) and the world reference frame.  

 

 
3.2 Conics and Quadrics  
 
 
The self-calibration method employed in our work is based on the recovery of the 

absolute quadric. In the following, we present the geometric entities and derive the 

equations underlying this processing step.   
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The absolute conic, ∞Ω  is a pure imaginary point conic situated on the plane at 

infinity π ∞  (the plane at infinity has in a metric frame the canonical form  

(0,0,0,1)Tπ ∞ =  [Pollefeys00a]).  A key property of the absolute conic is that it is fixed 

under any Euclidean transformation [Triggs97, HarZis00].  

The absolute conic projects in the camera views to the image of the absolute conic, 

which is also an imaginary point conic (Figure 3.3), depending only on the intrinsic 

parameters of the camera:  

 

  1( )TKKϖ −=   (3.4) 

 

 
 
 
 
 
 

We also define the dual image of the absolute conic (DIAC), which is a line conic 

(i.e. consisting of the lines tangent to  ϖ  ) as [HarZis00]:        

 

1 TKKϖ ϖ∗ −= =    (3.5) 
 
The equation above is one of the most important in self-calibration and it shows that 

once ϖ  or ϖ ∗  is identified, then K can be also determined by decomposition (e.g. 

Cholesky factorization). 

Figure 3.2 The absolute conic ∞Ω   and the absolute dual quadric ∗Ω  situated on the 

plane at infinity π∞  in 3D space [Pollefeys00a] 
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The absolute dual quadric ∗Ω  (or shortly the absolute quadric) is the dual of the 

absolute conic and is a degenerate dual quadric in 3-space [HarZis00]. Geometrically, it 

consists of the planes tangent to ∞Ω  (Figure 3.2) and its projection in the image plane is 

ω∗ .  ∗Ω   gives a concise way to compute the calibration parameters , since it’s encoding 

both the plane at infinity π∞  and the absolute conic ∞Ω , and it projects to the dual image 

of the absolute conic, so that :   

 
TP Pω ∗ ∗= Ω   (3.6) 

 

The absolute quadric is invariant under all Euclidean transformations, so that its 

relative position to a moving camera is constant (in a similar way we perceive the very 

distant objects as being fixed, for example a person driving on a road and observing the 

moon, will have the impression that the moon is following him). 

If a projective reconstruction iP  was retrieved for n  camera views, the next step is 

to determine the intrinsic camera parameters through self-calibration and to achieve a 

metric reconstruction.  

In a metric frame, the absolute quadric’s canonical form is a 4x4 symmetric matrix 

of rank 3: 

Figure 3.3. The image of the absolute conic (left) and the dual image of 
the absolute conic (right) [Pollefeys00a] 
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3 3 0

0 0
xI

I∗  
Ω = =  

 
ɶ   (3.7)    

 

where 3 3xI  is the 3x3 identity matrix. 

In a projective frame, the absolute quadric is altered by a projective transformationH :  

 

TH H∗ ∗Ω → Ω    (3.8) 

 

Therefore, once ∗Ω  has been determined, the rectifying transformation can be easily 

computed by decomposing it as:  

 

THIH∗Ω = ɶ   (3.9) 

 

H  upgrades the projective matrices to metric ones :  

M
i iP PH= , such that a 3D point MX  from the Euclidean world frame is projected to the 

image points M M
i ix P X= in each view.  

 
   

3.3 Camera Self-calibration 
  

We now tackle the 3D motion and structure determination using a two-step stratified 

progression. As a pre-processing step we divide the complete sequence into sub-

sequences, enforcing a common frame for consecutive fragments in order to increase the 

robustness of reconstruction [Sainz03]. In each of these subsequences we will use the 

aforementioned stratified approach to recover both camera and scene structure similar to 

methods presented in [Pollefeys99, HanKan00].  
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First, an initial projective reconstruction is obtained, which is computed from the set 

of correspondences. Then, depending on assumptions translating to constraints an 

upgrade to metric structure is computed. One advantage of the presented approach is that 

it allows recovery of a Euclidean reconstruction of the scene without relying on any 

initial solution, which is one of the drawbacks of most existing methods. Another 

important feature is that the entire calibration process relies on solving linear systems 

using Singular Value Decomposition.    

When the different subsequences have been successfully calibrated, a merging 

process groups them into a single set of cameras and reconstructed features of the scene.  

 

Figure 3.4: The absolute conic and its projection in the images 
[Pollefeys00a] 
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3.3.1 Projective Reconstruction 
 
Given n  distinct camera views of m  object points represented by homogeneous 

coordinates jx , 1...j m= , the task is to compute their 3D their projective structure.   

Under the pinhole camera model assumption (§ 3.1), the projective mapping between 

a 3D world point jx  and its 2D projection in images ( , )ij iju v  is given by:  

 

1
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ij i j

u

v P

 
 
 
  

x∼   , which holds only up to a constant factor.  

 

Writing this factor explicitely, we have:     
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x  (3.10), where ijλ  are non-zero scale factors called projective depths.  

 

 

We may stack the above equation for n  perspective cameras and m  object points, 

obtaining the equivalent matrix:  
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where:  

 

sW  is the 3n m× scaled measurement matrix 

       P  is the 3 4n×  perspective matrix   

X  is the 4 m×  shape matrix.    

 

sW  should have rank-4 matrix (since it’s the product of two matrices with 4 columns 

and rows, respectively), so that a rank-4 factorization of it produces a projective 

reconstruction of the points.  However, in reality, due to noise and measurement errors its 

rank will be different and the rank-4 constraint has to be enforced.  

On the other hand, equation (3.11) holds only if the correct scale factors ijλ  are 

applied to each of the measured points ijx . In order to fulfil both requirements, a rank-4 

factorization needs to be applied on sW  until the recovered projective depths make 

equation (3.11) consistent.  

There exist different approaches [StuTri96, Triggs96, HanKan00] to construct an 

iterative algorithm that converges to a rank-4 decomposition of the measurement 

matrix sW . A popular example of the factorization strategy is outlined below:  

 

1.  Initialize 1ijλ =  for 1i n= …  and 1j m= …  

2. Compute the current scaled measurement matrix sW  by equation (3.11) 

3. Perform rank-4 factorization on sW , generate the projective motion and shape 

4. Reset (3)
ij i jPλ = x  where (3)

iP  denotes the third row of the projection matrix iP  

5. If  ijλ ’s are the same as the previous iteration, stop; else go to step 2.  

 

In order to avoid the trivial solution, a ‘balancing’ step is required for each iteration 

[HarZis00] that brings all matrix rows and columns to the same order of magnitude. 

Unfortunately, because of this step there is no guarantee that the above algorithm will 

converge, even to a local minimum [MahHeb00, MHO*01, Oliensis99].  
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 We are performing factorization using an iterative approach similar to the one 

proposed in [Chen00], where the projective depths are rescaled at each iteration to give a 

closer rank-4 approximation of sW . While there is no theoretical proof of convergence, 

[Oliensis99] has shown that the algorithm minimizes an error function that measures the 

size of the non-rank-4 fraction of sW . Also, [Oliensis99] and [Sainz03] have reported 

excellent results both with accurate and noisy data.  

The overall sequence of processing steps of the employed Iterative Factorization 

Algorithm (IFA) is the following:  

1. Initialize 1ijλ =  for 1i n= …  and 1j m= …  

2. The current scaled measurement matrix k
sW  (with 0

s sW W= )  is determined by 

equation (3.11). An initial Singular Value Decomposition of k
sW  is computed:   

 

k T
sW UDV=  ,  

  

 where :  

 

              U  is a 3m n×  matrix with orthogonal columns  

              V  is a  n n×  orthogonal matrix  

              D        is a n n×  diagonal matrix, its elements iσ  are the singular values of ksW   

 

3. We update the measurement matrix k
sW  with its rank-4 approximation k

sWɶ :  

We denote 4
kP U= , where 4U is the submatrix obtained from U  by truncating only 

the 4 first columns ( associated to the 4 largest singular values 1,...,4σ ).  

  Similarly, 4 4
kX D V= ,  and from that we estimate :  

 

k k k
sW P X=ɶ .   
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This solution guarantees [Golub96] that we get the best rank-4 approximation of the 

measurement matrix k
sW , and the spectral distance (using 

2
) from the subspace of 

the rank-4 is exactly 5σ , the 5th largest singular value.  

 

4.  We scale the matrix k
sW  by the k

ijλ  coefficients of  k
sWɶ in order to bring each 

depth  factor as close as possible to the ideal rank-4 decomposition. In order to 

maintain the projection to the image points ijx , we only need to scale kijλ  along the 

ray from the centre of projection through ijx . Hence, the new depth 1k
ijλ + will 

coincide with the projection of k
jX  into the projection ray. The projective update 

formula [Chen00] is:  

 

1 ( )

( )

k T k
s ij s ijk k

ij ij k T k
s ij s ij

W W

W W
λ λ+ ⋅

=
⋅

ɶ

,    

 

where k
s ijWɶ  and k

s ijW  are 3-vectors corresponding the the ij -th element of the 

respective matrices.  

  

5.  The measurement matrix is updated with the new depth values: 1 1k k
s ij ij ijW x λ+ +=ɶ .  

We repeat the process until the corresponding 1
5
kσ +  value is either small enough or it 

is stabilized.  Of course, due to noise in the image measurements, 5σ  can reach small 

values, but will always be different from zero.  

 

In our implementation, we are working with pre-conditioned image coordinates and 

we are balancing the projective depth matrix before each iteration. The pre-conditioning 

and balancing processes are described in more detail in chapter 7.  
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3.3.2 Upgrade to Metric Structure 
 

The factorization of Equation (3.11) is not unique, but presents a projective 

ambiguity. That is, we can recover motion and shape only up to an unknown projective 

transformation:  

  

1ˆ ˆ ˆ ˆ M M
sW PX PHH X P X−= = =   (3.12)    

 

with ˆMP PH= and 1 ˆMX H X−= ,  

 

where P̂  and X̂ are the projective motion and the projective shape, respectively.  

 

This projective ambiguity refers to the fact that any non-singular 4x4 matrix could be 

inserted between ̂P  andX̂ leading to another motion and shape pair. The upgrade to 

metric structure is reduced then to the recovery of the rectifying transformationH , called 

the projective distortion matrix (PDM).   

  

As mentioned previously in (3.2, § 3.1), in a metric frame the camera matrix iP  can 

be decomposed as:  

 

~ [ | ], 1,...,M
i i i iP K R t i n=  (3.13) 

 

where :  

 

0

0

0

0

0 0 1

i i

i i i i

f u

K f vα
 
 =  
  

, the calibration matrix (see also Eq. 3.3, § 3.1) encoding the 

intrinsic parameters of the i-th camera:  
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if  represents the focal length, 0 0( , )i iu v  are the image coordinates of the principal 

point, iα  is the aspect ratio,  

  

 while iR  and it  encode the extrinsic camera parameters :  

    

T
i

T
i i

T
i

i

R j

k

 
 =  
 
 

 is the i-th rotation matrix with , ,i i ii j k  denoting the rotation axes,   

 

xi

i yi

zi

t

t t

t

 
 =  
  

 is the i-th translation vector. 

 

We choose the world coordinate frame to coincide with the first camera, since we are 

not concerned here with the absolute scaling, rotation and translation of the scene.  

Therefore, the rotation and translation for the first camera become 1 3 3xR I=  and 

1 0t = , while Equation (3.13) will have the simplified form:  1 1[ | 0]MP K I= . The same 

similarity components can be factored out from the projective reconstruction, with 

1 [ | 0]P I= . The condition  1 1
MP PH=  becomes 1[ | 0] [ | 0]K I=  and we can write H  as:  

  

1 0

1T

K
H

ν
 

=  
 

   

 

The submatrix formed by the first column, i.e. vectors ν  together with 1K , specifies 

the plane at infinity in the projective space. Since the coordinates of π∞  in the metric 

space are (0,0,0,1)Tπ∞ = , in the  projective space they will be transformed by H , so that 

we can recover π∞ as :  
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 1 1 1

0 0

0 0( ) ( ) ( )

0 00 1 1

1 1

T T T
T K K K

H
ν νπ

− −
−

∞

   
   

   − −   = = =         
      
   

 

 

 Writing the plane at infinity as ( ,1)T Tpπ ∞ = , where 1( ) Tp K ν−= − , the projective 

distortion matrix H  can be written as :  

 

 1

1

0

1T

K
H

p K

 
=  − 

  (3.14).  

 

 From Equation 3.14 results that the projective to metric upgrade involves the 

recovery of eight parameters: three parameters for p and five for 1K , respectively. This 

corresponds to a counting argument: the plane at infinity and the absolute conic have 3 

and 5 degrees of freedom, respectively.  

To recover these parameters, we start by identifying the self-calibration equations. 

We partition the camera matrices of the projective reconstruction into [ | ]i i iP S s= , 

distinguishing between the first three and last columns.  From M
i iP PH= and from 

Equation (3.14) we obtain:  

 

 1( ) , 2,...,T
i i i iK R S s p K i m= − =   (3.15) 

 

which can be rearranged as :  

 

 1
1( ) ( ) , 2,...,T

i i i iR K S s p K i m−= − =  

 

and considering that TRR I=  (since rotation matrices are orthogonal) , we obtain :  

 

 1 1( ) ( ), 2,....,T T T T
i i i i i iK K S s p K K S s p i m= − − =   (3.16) 
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From the equation of the dual image of the absolute conic (Eq. 3.5, §3.2): * T
i i iK Kϖ = , 

and substituting in (3.16) we obtain the basic equation for self-calibration:  

 

 * *
1( ) ( )T T T

i i i i iS s p S s pϖ ϖ= − − ,   (3.17) 

 

relating the unknown entries of *iϖ and unknown parameters p with the known entries of 

the projective cameras iS , is .  

 

The dual image of the absolute conic is related to the absolute (dual) quadric by:  

 

 * * T
i i iP Pϖ = Ω   (3.18)   

 

The absolute quadric has in the Euclidean space the canonical form  3 3* 0

0 0
xI

I
 

Ω = =  
 

ɶ , 

while in a projective space it will follow the projective transformation rule for dual 

quadrics, giving :   

 

3 3* 0

0 0
x T TI

H H HIH
 

Ω = = 
 

ɶ   (Eq. 3.9, §3.2).  

 

Using Equation (3.14) the projective reconstruction gives the relation:  

 

* *
* 1 1 1 1 1 1

* *
1 1 1 1 1 1

T T

T T T T T T

K K K K p p

p K K p K K p p p p

ϖ ϖ
ϖ ϖ

   − −
Ω = =   − −   

   (3.19).  

 

If we substitute the above relation in Equation (3.18) we obtain once again the self-

calibration equation (3.17). This corresponds to the interpretation provided in § 3.2 of the 
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absolute dual quadric*Ω  as being fixed under the camera motion and each of the dual 

images of the absolute conic *iω  are the respective images of *Ω  for each of the views.  

The most important consequence is that imposing certain constraints on *
iω , we can 

translate them to *Ω  using Equation (3.18) via the known matrices iP  and solve for *Ω in 

projective space, using the resulting matrices from the projective factorization. 

 

A linear system can be obtained making some assumptions on the camera intrinsic 

parameters:  

• if principal point is at the center of the image plane, then * *
13 23( ) ( ) 0i iϖ ϖ= =  

• zero skew of the pixels implies *
12( ) 0iϖ =  

• aspect ratio equal to 1 implies * *
11 22( ) ( )i iϖ ϖ=  

 

These assumptions leave only the focal length as a variable parameter and generate 

four linear constraints on *Ω  available from each view. The self-calibration equations 

become an overdetermined linear system of 4 m×  equations that can be solved by 

Singular Value Decomposition, with a unique solution for 3m≥ . After obtaining *Ω , 

H can be easily determined by decomposition and back-substituting it in (3.12) a final 

metric reconstruction is computed under the above assumptions of known principal 

points and skew values. 

 
 

3.4 Non-linear Optimization of the 
Metric Reconstruction 

  
 

3.4.1 Bundle Adjustment  
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Our aim here is to minimize the reprojection error between the observed and 

predicted image points, with the goal to produce jointly optimal estimates with respect to 

both 3D structure and viewing parameters (camera pose and/or calibration). This kind of 

problems can be treated by non-linear least-squares methods, often referred to as bundle 

adjustment in the literature since all of the values of an initial guess of the solution are 

modified together. Such methods can be summarized as having two distinct phases: 

initial parameter estimation and then iterative refinement, protecting the refinement 

process against divergence.  

More specifically, we are employing the Levenberg-Marquardt (LM) optimization, 

a non-linear least-squares technique which has proven to be most successful due to its use 

of effective damping strategy that confers it the ability to converge quickly from a wide 

range of initial guesses.  

In the general case, least-squares methods are used to solve a set of non-linear 

equations that have been linearized using a first order Taylor expansion, resulting in a 

system known as the normal equations. The computational stages may become quite 

expensive, due to the fact that the iterative solving of the normal equations amounts to 

computing the solution to a dense linear system, with a complexity 3( )O n in the number 

of unknown parameters. Fortunately, due to the lack of interaction between parameters 

for different points and cameras, the Jacobian matrix of the objective function has a 

sparse structure we can exploit in implementing the LM method.   

 

 
3.4.2 The Levenberg-Marquardt 

Algorithm  
 

We will provide here a brief description of the LM algorithm, for an extensive 

analysis we suggest [NocWri99, LawHan95]. 

As mentioned in the introduction, the non-linear computational model is an iterative 

process. Let f  be an assumed functional relation ( )f=X P , where N∈ℜX is a 



 43 

measurement vector and M∈ℜP is a parameter vector. We start by assigning initial 

values to the parameter vector, 0P  and to the measurement vectorX̂ . Our aim is to 

determine the parameter vector P̂  that best satisfies this functional relation locally. That 

is, we seek the vector P̂  satisfying ˆ ˆ( )f ε= −X P  for which the squared distance ε  is 

minimized.  

We assume that for a parameter shift vector∆P , f  is approximated by:  

( ) ( )f f+ ∆ ≈ + ∆P P P J P, where J  is the Jacobian matrix of f , /f= ∂ ∂J P .  

We set up the normal equations and solve for the shift vector ∆P : 

ε∆ =T TJ J P J  

In order to improve the direction of the shift vector, it needs to be rotated so that it 

point towards the minimum. A way of rotating the shift vector towards the direction of 

steepest descent was proposed independently by Levenberg [Levenberg44] and later by 

Marquardt [Marquardt63]. Marquardt introduced a new parameter λ ,  so that the normal 

equations become:  

 ( )λ ε+ ∆ =T TJ J I P J ,   (3.20)   

where λ  is a strictly positive scalar called damping parameter.   

The damping parameter is added to the diagonal elements of the TJ J  matrix, and is then 

adjusted at each iteration so as to ensure that the error decreases. LM is an adaptive 

algorithm that controls its own damping: it increases the damping if the step vector ∆P  

fails to reduce the sum of squaresTε ε ; otherwise it reduces the damping. In this way LM 

can navigate difficult model nonlinearities, although at low speed, behaving in a steepest 

descent manner. Yet, it can also rapidly approach a local minimum with nearly quadratic 

convergence speed, becoming a Gauss-Newton method. The process of repeatedly 

solving the normal equations for different values of the damping term until an acceptable 

update +P ∆P  to the parameter vector is found corresponds to an iteration of the LM 

algorithm.  
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3.4.3 Refinement of the Metric 
Reconstruction 
 

The camera self-calibration process presented in §3.3 is a closed form least squares 

constrained approximation of the structure from motion problem. We have extended the 

self-calibration process by implementing a final non-linear optimization process in order 

to reduce the reprojection error accounting for all the non-linearities not recovered in the 

metric solution.  

Additionally, if during the preprocessing of the measurement matrix some of the 

measurements have been left out because they were not present in all the views, we have 

the possibility to include them in this nonlinear analysis to improve the overall error.  

We employ bundle adjustment in order to obtain a maximum likelihood estimation 

that minimizes the reprojection error with respect to all 3D points and camera parameters, 

i.e. the mean squared distances between the measurements ijx and the reprojected image 

points from a new estimation of MiP  and jX . The minimization criterion can be 

expressed as:  

 

2
,

1 1

min ( , )
m n

M
i j i j

i j

d x P X
= =
∑ ∑    (3.21) 

 
 

The non-linear functions to minimize in our case are the pinhole camera projection 

equations (Equation 3.13, §3.3.2) for the different measurements and frames, which can 

be written in the following form: 

 

0( ) ( ) ( )x y z x x y z y x y z z

x y z z

f i X i Y i Z t j X j Y j Z t u k X k Y k Z t
x

k X k Y k Z t

β+ + + + + + + + + + +
=

+ + +
 

 

0( ) ( )x y z y x y z z

x y z z

f j X j Y j Z t v k X k Y k Z t
y

k X k Y k Z t

α + + + + + + +
=

+ + +
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Under the following common assumptions: no skew (0β = ), the central point perfectly 

centered on the image plane (0 0 0u v= = ), and normalized coordinates ( 1α = ), the above 

equations have a simplified representation: 

 

( )x y z x

x y z z

f i X i Y i Z t
x

k X k Y k Z t

+ + +
=

+ + +
 

( )x y z y

x y z z

f j X j Y j Z t
y

k X k Y k Z t

+ + +
=

+ + +
  

 

The general strategy for adjustment of the damping parameter is as follows: We start 

by initializing λ to 310− , following Hartley’s approach in [Hartley93] and [HarZis00]. A 

large initial value – for example 1 or 10 – would initially step LM in a more nearly 

steepest-descent direction, whereas a smaller value, e.g. 310−  or 210− , will begin in a more 

nearly quadratic Gauss-Newton solution direction.  

If the solution obtained for i∆P  decreases the error, the solution is accepted and the 

value of λ  is divided by 10 before the next iteration. If the case is that the error 

increases, λ  is multiplied by 10 and the normal equations are solved again until an 

effective value for λ  is obtained that decreases the iteration error.  

We define our parameter vector M∈ℜP by concatenating all parameters describing 

the mcamera projection matrices (see § 3.1 for camera matrix) and the n  3D points in 

Eq. 3.21. 

In order to reduce the overall number of parameters, we have replaced the camera 

rotation matrices with quaternions of unit length and have imposed the orthonormality of 

the camera axes. Quaternions are extensions of complex numbers that can be represented 

as a 4-component vector: 

 0 1 2 3( , , , )q q q q q= ,    

where the first three components are real numbers, and the last one is an imaginary 

number. Regarding memory usage, quaternions require only four floating point values, 

compared to the nine floating point values of a 3x3 rotation matrix.  Thus, they take up 

less space but can still be quickly converted to rotation matrices. Additionally, in our 
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parameterization scheme, the fourth component 3q is fixed under the unit length 

condition, therefore we can write the camera matrices in the following parameterized 

form:  

 

0 1 2( , , , , , , )Ti x y za t t t q q q f=  

 
Also, each 3D point i is parametrized by a vector:  
 
       ( , , )T

j x y zb X X X=  

 
We shape the parameter vector P  as:  
 
       1 1( ,..., , ,..., )T T T T T

m nP a a b b=  

 
We accumulate the measured image point coordinates across all cameras in order to 

construct a vector of measurements X ∈ℜN :   

 

1,1 1, ,1 ,( , , , , , , )Tn m m nX x x x x= … … …  

 
For each parameter vector, an estimated measurement vector X̂  is generated by our 

functional relation ˆ ( )X f P=  :  
 

1,1 1, ,1 ,
ˆ ˆ ˆ ˆ ˆ( , , , , , , )Tn m m nX x x x x= … … …  

 
Since an image point ijx  depends only on the parameters of the j-th camera, ˆ / 0ij kx a∂ ∂ = , 

j k∀ ≠  and  ˆ / 0ij kx b∂ ∂ = , i k∀ ≠  

The step vector P∆  and the residual vector ε  can be further partitioned into 

camera and 3D structure blocks as ( , )
a

T T T
bP δ δ∆ =  and ( , )T

a bε ε ε=  respectively.  

Given the above partitioning, the form of the resulting Jacobian matrix 
X

J
P

∂=
∂

 and the 

normal equation T TJ J J ε∆ =  are shown in Figure 3.5 a) and b), respectively.  

Figure 3.5 a) illustrates the sparse structure of the Jacobian matrix and of the normal 

equations TN = J J (Figure 3.5 b).  

The blocks that form these matrices can be written down as follows:  
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ˆ ˆ
T

ki ki
k

i k k

x x
U

a a

δ δ
δ δ
   

=    
   

∑  

 

ˆ ˆ
T

ki ki
i

k i i

x x
V

b b

δ δ
δ δ

   
=    

   
∑  

 

ˆ ˆki ki
ki

k i

x x
W

a b

δ δ
δ δ
  

=   
  

 

 

ˆ
k

T

ki
ki

i k

x

a

δε ε
δ
 

=  
 

∑a  

 

i

T

ki
ki

i i

x

b

δε ε
δ

 
=  

 
∑b  

 
We can write the normal equations in the partitioned form:  
 

a a

T
b b

U W

W V

δ ε
δ ε

∗

∗

     
=     

    
   (3.22) 

 
Both aε  and bε are sparse matrices, since measured image points ijx are affected only 

by the i-th camera and 3D point jX . Consequently, both U  and V are block-diagonal 

matrices, while W is in general not sparse (Figure 3.5 b).  

We perform a Gaussian elimination step, by left multiplying both sides of the 

equation with the block matrix 
1

0

I WV

I

−∗ −
 
 

, assuming that V ∗  is invertible. This yields 

a lower triangular block matrix:   

 
11

0T
a a b

T
b b

WVU WV W

W V

δ ε ε
δ ε

−− ∗∗ ∗

∗

     −− =     
     

  (3.23) 

 
We can determine the motion update vector aδ  by solving the upper block of (3.23):  

1 1

( )T
a a bU WV W WVδ ε ε

− −∗ ∗ ∗− = −   , (eq. 3.24) 
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Equation 3.24 can be efficiently solved using the Cholesky factorization of 

1 TS U WV W
−∗ ∗≡ − .  

 

 
 a).                

  

 
b).  

 
Figure 3.5 Sparse structures of the Jacobian (a) and normal equations (b).              

This particular example illustrates the matrices for 3 images and 6 points [NocWri99]. 
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Having solved for aδ , the structure update vectorbδ  can then be computed by 

substitution into the bottom half of Eq. 3.23, obtaining:  

 
T

b b aV Wδ ε δ∗ = −  

 
In our calibration problem, V ∗ is a 3m x 3m matrix, composed of diagonal blocks of 3 

x 3, making the calculation of 
1

V
−∗  very efficient. The matrix W is a set of blocks of  7 x 3 

giving a final matrix of 7m x 3n. The most expensive operation to solve Equation 3.20 is 

the inversion of the term  
1

( )TU WV W
−∗ ∗−  which turns to be a matrix of 7m x 7m 

elements, where m is the number of reference images and n  is the number of measured 

features.  

Keeping in mind that usually n >> m in order to obtain statistically stable solutions, 

the sparse approach we have developed provides a better solution than solving directly 

the normal equations which require inverting  the 3n x 3n sized TJ J  matrix.  

 

 
3.5 Sequence Merging  
 
As mentioned in §3.3, we fragment long sequences into subsequences sharing at least 

one common frame, and each of them is calibrated into a metric reconstruction. The next 

step is to merge the information of the individual fragments to recover a complete scene 

structure (Figure 3.6). 

Therefore the merging of two sub-sequences is performed in metric space by 

determining the set of common points, between the last frame of one sub-sequence and 

the first of the next one, which by construction corresponds to the same camera and 

measurements. Any pair of corresponding image points X  and X '  representing the 

same 3D point M  in two consecutive frames is related by a homography H , according 

to the equations:  

'X HX≅   and  ' -1P P H≅   
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Figure 3.6 An example showing three merged sub-sequences.  
 

where P  and 'P  are the metric camera projection matrices representing the same 

reference view expressed in different basis. H  is a homography that maps the points 

from one basis to the other one. We want to determine H  minimizing the following 

distance:  

 
2( )'

i

d PHX ,PX∑  

 
for all common overlapping points M  between the two subsequences. The distance 

function is assumed to be the standard Euclidean distance. Considering that we have two 

reconstructed metric frames P , 'P , we can bring them to a common reference basis. We 

can multiply each of the camera matrices by its inverse as follows:  
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-1PX = PP PX = [I |0]PX = [I |0]Xɶ   

 
' ' ' ' -1 ' ' ' ' 'P X = P P P X = [I |0]P X = [I |0]Xɶ  

 
Since the two sets of points are representations of the same set of real points and they 

share identical 2D projections, we can restrict the homography H to be a uniform scale 

and a translation, yielding the following expression:  

 

x

y

z

s 0 0 t

0 s 0 t
H =

0 0 s t

0 0 0 1

 
 
 
 
 
 

 

 
 
The homography can be recovered by establishing the correspondence between four 

known points. An overdetermined equation system can be built and a least squares 

solution can be obtained.  

 

 
Conclusion  

 
In order to extract the 3D information of a scene from a sequence of images, we 

have to completely recover the camera external and intrinsic parameters, i.e. position and 

orientation as well as at least the focal length that were used during the acquisition 

process. In this context, camera calibration is a critical problem in the absence of prior 

geometric information. We described a robust stratified linear based algorithm that 

calibrates each of the subsequences to a metric structure. Further, in order to deal with the 

errors accounting for all the non-linearities not recovered in the self-calibration solution, 

we described a maximum likelihood optimization implementation that minimizes the 

reprojection error between the observed and predicted image points.  
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Chapter 4 Voxel Carving  
 

 

 

 
Introduction   

 
Volumetric models are a natural choice for scene reconstruction, the task of 

generating a 3D model of a scene from multiple 2D images. Three broad classes of 

volumetric reconstruction techniques have been developed based on geometric 

intersections, color-consistency, and stereo matching. Some of these techniques have 

spawn a number of variations and undergone considerable refinement.  

  The focus of this work lies in the second class of techniques, that obtain shape from 

color-consistency, which have the generic name of Space Carving or simply voxel 

carving. As noted in the introductory chapter, we operate under the Lambertian 

assumption. In this chapter, we present the theoretical foundations of Space Carving as 

introduced by Kutulakos and Seitz [KutSei99] followed by a description of our multi-

resolution solution that tackles the extended computational costs from a human 

perception point of view. 
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4.1 Background 
 

 

4.1.1 Theoretical Foundations of 
Space Carving  

 
Kutulakos and Seitz have proposed in [KutSei99] a novel approach for 

reconstructing 3D scenes from a set of N camera views that gracefully handles shape 

recovery when no constraints are placed upon the shape of the scene or the placement of 

the cameras.  

The Space Carving theory addresses the problem of reconstructing scenes from a 

set of N views for the case when:   

� there are no constraints on the scene geometry,  

� also, there are no constraints on the position of the input views,  

� no information is available of any type of salient features in the input 

photographs (i.e. edges, lines, points, etc) 

� there is no prior correspondence information.  

The authors note in [KutSei99] that a first requirement is that the viewpoint of each 

image is known (i.e. calibrated reference views are needed). A second requirement is that 

the radiance of the scene is locally computable, that is, the scene has a parameterized 

radiance model (e.g. Lambertian, Phong).  

 
There are many advantages of this family of scene reconstruction: 

•  The Space Carving algorithm is the only provably correct method that handles 

shape reconstruction from arbitrarily placed cameras. 

•  The solution volume provides the tightest possible bound of the scene that can be 

extracted from the set of N given views, regardless of the specific algorithm employed to 

obtain it. 

•  Since no constraints on the camera positions are imposed, the solution is a global 

reconstruction, eliminating the need of partial reconstructions and merges.  
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•  Since the recovered shape is guaranteed to be photo-consistent with the reference 

views, visually accurate reprojections can be obtained. 

In the following, we present a summary of the Space Carving theory introduced in 

[KutSei99].  

We assume a volume in space with an unknown shape υ  defined by a closed and 

opaque set of points. We also assume that there exists a set of N perspective projection 

views 1, , NI I…  taken respectively from a set of known locations1, , NC C… . 

The points on the surface of the shape are contained in ( )Surf υ  and the radiance 

of a point ( )p Surf υ∈  in this surface is described by a function ( )PRad r  that maps 

every oriented ray r  passing through the point to the color of light reflected from p along 

that direction. The set of radiance functions ( , )Rad r p for every point ( )p Surf υ∈ and υ  

form the shape-radiance scene description, which can reproduce uniquely any image 

from any viewpoint. 

The set of all possible shape-radiance descriptions can be partitioned in two sets, 

based on whether they reproduce or not the input images. This constraint is defined for a 

given shape and a given scene radiance as photo-consistency and was formalized by 

Kutulakos and Seitz in the following set of definitions: 

 

Point Photo-Consistency:  

Let S be an arbitrary subset of3R . A point p S∈  visible from iC  is photo-consistent 

with the image iI  if it does not project to a background pixel and the color of the 

projection of p  is equal to ( )PRad r . If p  is not visible from iC  it will be conservatively 

considered as photo-consistent.  

 

Shape-Radiance Photo-Consistency:  

A shape-radiance scene description is photo-consistent with a reference image iI  

obtained from iC , if all points visible from iC  are photo-consistent and every non-

background pixel is the projection of a point inυ . 
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Shape Photo-Consistency:  

A shape υ  is photo-consistent with a set of N reference views if there is an 

assignment of radiance functions ( , )Rad r p  to the visible points in υ  that produce a 

photo-consistent shape-radiance description with all the reference images. 

 

The constraints that photo-consistency imposes on the shape of a scene in order to 

obtain a valid reconstruction are the following: 

 

Background constraint:  

Since photo-consistency requires that no point of υ  projects to a background pixel, 

in the case an image I  obtained from C has identifiable background pixels, υ  is 

restricted to the cone defined by C and the non-background pixels ofI .  

This constraint exploits the information about the background pixels and is very 

powerful when such information is available. Given a set of N such images, the scene is 

then restricted to a useful volume obtained by intersecting their respective cones, known 

as the the visual hull [Laur94]. However, this constraint becomes useless when we have 

no information on background pixels, and the visual hull degenerates to3R . 

The main drawback of the visual hull is that it does not model the shape concavities. 

The following constraints are needed in order to enable the reconstruction of shape 

concavities: 

 

Radiance constraints  

To model these restrictions let’s define the following consistency criteria 

[KutSei99]:  

 

� A method Kconsistency  is available that takes as input k N≤  colors 

1, , kcol col… ,   k  vectors 1, , kr r…  and the known light source positions (if non-

Lambertian models are used) and determines if it is possible for a surface point 

( )p Surf υ∈ to reflect light of icol  in direction ir  for all 1, ,i k= …  at the same time. 
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� Kconsistency  is monotonic, i.e. if 1 1( , , , )K j jconsistency col col r r… … is true, then 

1 1 1 1( , , , )K j jconsistency col col r r− −… … for every permutation set of 1, , j… is also 

true. 

 

These criteria define a locally computable class of radiance models, that is, they 

present a locality property: the radiance at any point is independent of the radiance of all 

other points in the scene. Given a locally computable radiance model and a Kconsistency  

function, the photo-consistency status of every point ( )p Surf υ∈ of the scene from a set 

of N images can be fully determined, and more importantly, the non-photo consistency, 

which conveys significant information about the underlying shape of the scene, is known 

too.  

With the following lemmas Kutulakos and Seitz, describe how the non-photo-

consistency of a shape υ  affects the photo-consistency of its sub-sets.  

 

Visibility lemma  
Let ( )p Surf υ∈  , and let ( )Vis pυ be the set of reference views in which p is not 

occluded by υ . If 'υ υ⊂  is a shape that contains p, then '( ) ( )Vis p Vis pυ υ⊂  

 

Non-photo consistency lemma  
If ( )p Surf υ∈  is not photo-consistent with a subset of ( )Vis pυ , it is not photo-

consistent with ( )Vis pυ . 

These lemmas (illustrated in Figure 4.1) show the underlying monotonic tendency 

exhibited by the family of Space Carving algorithms: the set of reference views from 

which a given point ( )p Surf υ∈ is visible, strictly expands as υ  gets smaller.  

Also, if more reference images are available, new constraints are added, which 

means that once a point fails to be photo-consistent, there is no additional reference view 

that can re-establish photo-consistency.  

This is stated in the following theorem [KutSei99]: 
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Subset theorem  

If ( )p Surf υ∈  is not photo-consistent, no photo-consistent subset of υ  contains p. 

 

These concepts can be further developed to lead to the following theorem 

[KutSei99], which states that for any shape υ  there is a unique photo-consistent shape 

that contains any other photo-consistent within its volume, giving a least commitment 

reconstruction. 

 

Photo hull theorem 

Let υ  be an arbitrary subset of 3R . If *υ  is the union of all photo-consistent shapes 

in υ , every point on the surface of *υ  is photo-consistent. The set *υ  is called the photo 

hull. 

 

When we have a finite scene that can be contained in a discretized volume, these set 

of properties can be used to define a generic algorithm that will compute the photo-hull 

by iteratively removing elements of the initial volume υ  until it converges to the photo-

hull. The decision mechanism is the photo-consistency criterion, where voxel evaluation 

is done with the help of a sweeping plane moving along preset directions (usually the 

XYZ axes). For each position of the plane voxels are evaluated by projecting them onto 

camera views that are behind the sweeping plane (Figure 2.1, §2.2.2, Chapter 2). This is a 

convenient method of keeping track of voxel visibility, i.e. occluders are visited before 

the voxels that they occlude. 

The space carving algorithm requires a number of photo-consistency tests that is 

upper bounded by n x m, where n is the number of reference views and m is the initial 

number of voxels in the uncarved volume.  
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Figure 4.1 Illustration of the visibility and non-photo-consistency lemmas. If P is non-photo-
consistent with the views at 1 2 3C ,C ,C , it is also non-photo-consistent with the entire set 

,
υ ' 1 2 3 4Vis (P) = {C ,C ,C C }  

 
 

The different implementations that follow this procedure belong to the family of 

space carving algorithms. In order to specify a useful algorithm we need to specify the 

following issues:  

� How can we select the initial volume υ  that contains the scene 

� What representation of that volume facilitates carving. 

� How the carving process is carried in each iteration to guarantee the convergence 

to the photo-hull. 

� What conditions are needed to terminate the carving process. 

 
 

4.2 Multi-resolution Voxel Carving 
 

Space Carving [KutSei99] is conservative, it never carves voxels it shouldn’t, but it 

may produce a model that includes some color-inconsistent voxels. This is because 

cameras that are ahead of the scanning plane are not used for consistency checking, even 

when the voxels being checked are visible from those cameras. Hence, the color 

consistency of a voxel is, in general, never checked over the entire set of images from 

which it is visible.  

Our work builds on an alternative approach proposed in [CMS99]. The Generalized 

Voxel Coloring (GVC) provides an efficient implementation of the space carving 
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algorithm that computes visibility exactly in order to obtain a color-consistent model. The 

authors provide experimental results that show that exact visibility, when compared with 

the approximate visibility computed by Space Carving, can result in visually more 

accurate reconstructions that are numerically more consistent with the input images. 

The algorithm operates only on surface voxels, providing a two-way mapping between 

border voxels and image pixels.  We exploit this bidirectional relationship to propose a 

user-guided method for creating multi-resolution 3D models, with varying level of detail 

across the surface.  

Voxel carving approaches imply the classification of a large number of discrete 

elements, implying a trade-off between performance and accuracy. Moreover, the 

delivery and rendering of 3D digital content over different types of connections to clients 

with various graphics capabilities requires scalable 3D models that can be approximated 

through representations of varying complexity.  

The automatic simplification algorithms developed in the last decade generate an 

approximation of fewer polygons from complex models. However, their approximations 

do not preserve the visual appearance of the original model in certain cases. For example, 

features such as eyes in a face are semantically crucial, but geometrically small. Kho and 

Garland [KhoGar03] developed a human-guided simplification method where the user 

can guide the vertex placement of a 3D model by directly interacting with the underlying 

algorithm.  

The multi-resolution method developed for our framework relies similarly on the 

human factor to assign perceptual importance to selected features. However, by 

exploiting the two-way voxel-pixel mapping provided by the surface voxel list and the 

image buffer, only simple 2D image editing operations are required to control the 

complexity of different surface regions. 

The size of the initial volume of voxels containing the 3D scene is determined by 

upscaling the spatial bounds of the recovered 3D points during self-calibration (Figure 

4.2). First, we assign every voxel a unique ID. We also assume that initially all voxels are 

opaque, i.e. uncarved. We are considering a point voxel projection, so that only the voxel 

center is projected to the input images, leading to a single pixel in each view.  
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Figure 4.2 The initial bounding box of voxels is containing the 3D scene. 

0 ... j
M MP P  denote the camera projection matrices 

 

 
 
 

 
 

   
 

           
 
 
 
 
 

 

Figure 4.3 a. An example showing two images (out of a sequence of seven) with 
the regions corresponding to a box, a checkerboard area and a plastic object 
selected and labeled with the final resolution (r=6). The resolution of the initial 
reconstruction is the upper left corner (r=16). 

Figure 4.3 b. Left: The coarse 3D reconstruction of the scene at r=16.  Right: 
The multi-resolution reconstruction with the selected regions refined to r=6, 
respectively. 
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• User Input 
 
The user selects polygonal regions (e.g. corresponding to salient features) in one or 

more images using common selection tools, such as polylines and scissors, and assigns 

them a label ID corresponding to the chosen resolution (Figure 4.3a). Adjacent polygons 

must intersect along a set of common edges. 

 

• Visibility 
 

A correct visibility handling is required to compute photo-consistency. As shown in 

Figure 4.4, a voxel that does model a scene surface could erroneously be declared 

inconsistent if visibility is not taken into consideration. The voxel is not visible to the 

rightmost camera, which observes a blue color resulting from occluding geometry in the 

scene. Only the viewpoints where a voxel is visible should be taken into account during 

the photo-consistency check. 

 

 
 

Figure 4.4 Correct visibility determination is required  
to compute photo-consistency 

 
 

As mentioned previously, we operate only on surface voxels that are embedded in a 

surface voxel list (SVL). The SVL is initialized with the outside layer of voxels of the 

bounding box and is then updated at each iteration: carved voxels are removed from the 

SVL, while adjacent uncarved voxels which become visible are added to the SVL (Figure 

4.5). 
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Figure 4.5 Voxels that change visibility [CMS99] 

 

 
 

Figure 4.6 The item buffer records for each pixel the ID of the closest 
visible voxel that projects onto it [CMS99] 

 
 

In order to determine the visibility set ( )vis V  of pixels from which a voxel is visible, 

an image buffer is computed for each reference view as follows: the SVL is examined 

sequentially in order to find all the pixels that a voxel V  projects onto and a comparison 

is done with the depth value already stored at the respective pixels. If V  is closer to the 

camera than the distance previously recorded for the pixel, then its distance and ID are 

stored and included in the visibility set, while the previous pixel statistics are discarded. 
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If the new pixel’s depth is greater than the current pixel, the voxel is not visible from that 

view and the voxel information will not be included in the visibility set (Figure 4.6).  

 

The pseudo-code is outlined in Figure 4.7. The bidirectional voxel-pixel mapping 

enabled by the SVL and the IB allows the identification of voxels projecting to pixels 

belonging to labeled regions. First we perform a coarse reconstruction, in order to isolate 

and differentiate the voxel groups that project to labeled regions. The 3D bounds of each 

voxel group are computed and a spatial constraint grid is applied, which restricts further 

refining to labeled voxels. The resolution is increased by tesselating each voxel into eight 

subvoxels [ProDye98]. Next, voxel carving is performed on the higher resolution voxels. 

The above steps are repeated iteratively until the required resolution is obtained (Figure 

4.7). The algorithm stops when every voxel is found to be color-consistent and no carving 

occurs. 

• The Photo-consistency Criterion 
 
The 3D shape of the scene is constructed by carving voxels that are not photo-

consistent with the reference views. According to the photo-consistency definitions, in 

order to be photo-consistent (Figure 4.8), a voxel must not project to background in any 

reference view, and has to be color-consistent. Although the use of other reflectance 

models [Chhabra01] is possible, we will assume here that the scene is or nearly is 

Lambertian.  

More specifically, the color-consistency check is done by computing a dissimilarity 

metric σ  of the color components 1 ,...,c ck of the pixels from the set ( )vis V . The voxel is 

consistent if  σ τ<  , where τ  is a predefined threshold. Voxels found to be consistent 

are assigned the mean value of the color components, while inconsistent voxels are 

carved. The photo-consistency metric we have chosen is the true color variance value of 

corresponding visible voxels in reference views. 
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int LRN ;  //number of labeled regions  

int[] resolutions //array of the user-required resolutions   

 
//compute initial low resolution reconstruction  
initialize loresSVL  

 
loop{  

  until no further voxels are carved 
   for all images i n…  

compute image buffer 
      

for every voxel V SVL∈  {  

   compute VVis  

          determine label status VLR  

         record color statistics for V  
        } 
       perform photo-consistency check 

    delete inconsistent voxels from loresSVL  

  add uncarved adjacent voxels to loresSVL  

     } 
} 

 
//identify voxels belonging to labeled regions and bu ild 
separate SVLs for each region 

 
for  ( int 0i = ; i<resolutions.length; i + + ) {   

  while _ _i icurrent resolution final resolution<  {  

   increase resolution by voxel subdivision 

initialize i
hiresSVL  

   
//perform voxel carving at the higher   
resolution  

   loop{  
        until no further voxels are carved       

    for all images 
    compute image buffer 

 
                  -continued on the next page  
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           for every voxel i
hiresV SVL∈  {  

         compute VVis  

               record color statistics for V  
           } 
 

     perform photo-consistency check 

       delete inconsistent voxels from i
hiresSVL  

     add uncarved adjacent voxels to i
hiresSVL   

 } 
         } 

} 
 

Figure 4.7 The multi-resolution voxel carving pseudo-code 
 

The photo-consistency metric we have chosen is the true color variance value of 

corresponding visible voxels in reference views. We compute the variance 2σ  according 

to the following equation:  

 
 

 
Where N   is the number of those active views in which the voxel is visible, ( , , )i i iR B G  

is the sampled pixel color from the i-th view, and ( , , )m m mR G B  is the mean color of the 

corresponding pixels in all N  views. The photo-consistency can then be expressed as a 

threshold function: 

 

21,

0,otherwise
photo consistency

σ τ <
− = 


 

 
where τ  is a user-defined threshold. In our current implementation, the variance 

computation is based on a single sample from each reference view. Therefore, calibration 

errors and image noise can introduce instabilities to the photo-consistency check process. 

Incorporating local neighborhood information will provide more robust results.  

 

2 2 2 2

1 1 1

( ) ( ) ( ) / ( 1)
N n n

i m i m i m
i i i

R R G G B B Nσ
= = =

 = − + − + − − 
 
∑ ∑ ∑
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Conclusion   

 
In this chapter, we have focused on the family of methods based on space carving 

and color consistency. We have presented the underlying theory that supports and 

guarantees a valid space carving algorithm. A multi-resolution voxel carving 

implementation has been described, that aims to reduce the computational cost of the 

voxel carving algorithm by enabling the human factor to assign various perceptual 

importance levels to surface regions of the reconstructed model. 

   

 

Figure 4.8 Top - the voxel projects in two views to background.  
Bottom - the voxel projects to the same color in all three views. 
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Chapter 5 Programmable Graphics 
Hardware  
 
 

 
 

Introduction      
 

The classical programming model used in languages like C/C++ has been very 

successful for the development of non-parallel applications as it provides an efficient 

mapping to the classical von Neumann architecture. However, this model does not map 

very well to next generation parallel architectures. For developing efficient applications 

on such architectures with maximum efficiency, alternative programming paradigms are 

required. The stream programming model has shown to be a promising approach going in 

this direction. Furthermore, the stream programming model provided the foundations for 

the architecture of modern programmable high-performance graphics hardware.  

The GPU, just like a CPU, has its own caches and registers to accelerate data 

access during computation and also its own main memory before beginning program 

execution. This memory hierarchy, however, is designed for accelerating graphics 

operations that fit into the stream programming model rather than the general, serial 
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computational model. Moreover, graphics APIs such as OpenGL and Direct3D further 

limit the use of this graphics memory to graphics-specific primitives such as vertices, 

textures and frame buffers. This chapter gives an overview of the current memory model 

on GPUs and how stream-based computation fits into it.  

 

 
5.1 The Stream Programming Model   

 
The key to using the GPU for purposes other than real-time rendering is to view it 

as a streaming, data parallel processor. The Stream Programming Model (SPM) is of 

great importance to the way in which we structure computation and access memory on 

the GPU. As such, we will give an overview of this model in the following.  

Streaming processors are programmed in a fundamentally different way than 

serial processors like today’s CPUs [HHN*02, KDR*03, PAB*05]. In the stream 

programming model, applications are organized into streams and kernels (Figure 5.1). 

Streams are defined as ordered arrays of data, while kernels are small programs (or 

specialized functions calls) that perform operations on such streams, loading one or more 

streams as inputs and writing one or more streams as outputs. Applications are 

constructed by chaining multiple kernels together. The distinctive characteristic of the 

SPM – as opposed to the CPU general programming model – is that a kernel operates on 

entire streams and the same kernel is executed on each element of a stream in parallel.  

The SPM constrains the way software is written such that parallelism and locality 

are explicit within a program, enabling compilers to optimize automatically the code to 

take advantage of the underlying hardware. 

• Parallelism  

Parallelism is ensured by two effective kernel independence constraints, allowing 

the underlying hardware to exploit parallelism both at task and data level. First, within a 

kernel, computations on one stream element are independent of computations on another 

element. Second, kernel outputs are functions of only their kernel inputs.   
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          Figure 5.1.The stream programming model 
 
Task-level parallelism is the ability to have multiple stream processors divide the 

work of a kernel, or to have different kernels run on different stream processors. Thus, 

the first processor in the pipeline executes one or more kernels to generate output stream 

that is passed to the next processor. As the next processor operates on those streams, the 

original processor repeats its kernels on the next set of input data. GPUs exploit task 

parallelism through processor specialization, i.e. by mapping kernels to separate 

processors placed on a single chip allowing efficient communication between kernels, by 

avoiding off-chip memory access. 

Data-level parallelism: Since kernels perform the same instructions on each 

element of a stream, data-level parallelism can be exploited by performing these 

instructions on many stream elements at the same time. Moreover, due to kernel 

independence, every stream may be processed by a separate processing unit. Data 

parallelism is employed effectively by GPUs through the addition of more execution 

units.  

Therefore, task- and data-level parallelism potentially allow the processing 

pipeline to be arbitrarily wide – in terms of the number of processors executing the same 

kernels across the data, or arbitrarily deep – in terms of the number of processors in the 

pipeline.  
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• Locality 
 
There are two main types of locality exposed by the SPM: kernel locality and 

producer-consumer locality.  

Kernel locality refers to the SPM constraint that intermediate values exist only 

temporarily and strictly within a kernel. Producer-consumer locality refers to streams 

produced by one kernel and consumed by subsequent kernels without going back to the 

main memory. This type of locality enables GPUs to fill regions of memory with 

contiguous data blocks, which is extremely useful when applied to one of the key tasks of 

the GPU: loading texture data in the memory.  

 

   
5.2 The GPU as a Stream Processor  

 
The stream processing model maps to a large number of different high performance 

processing models: multithreaded, pipelined SIMD, distributed and shared memory 

parallel architectures.  

Furthermore, since graphics applications can be expressed as a series of computations 

performed on streams of data, the SPM stream and kernel paradigms naturally fit the 

graphics pipeline (Figure 5.2). 

The computation involved in each stage of the graphics pipeline is uniform across 

data primitives, allowing these stages to be mapped to kernels. Similarly to the SPM, data 

flow between stages in the graphics pipeline is highly localized, with data generated by a 

stage immediately consumed by the next stage.  

In the following we detail the major blocks of the modern programmable graphics 

pipeline, starting with input arriving from the CPU and finishing with pixels being drawn 

to the frame buffer (or render target). 
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Figure 5.2 The stream formulation of the graphics pipeline:  
data are expressed as streams  (indicated by arrows) and  

computations are expressed as kernels (indicated by blue boxes).  
 
 

The Vertex Processor  
 
GPUs support multiple vertex processors that are fully programmable and operate 

in either SIMD or MIMD fashion on the input vertex stream referenced by the CPU 

rendering commands. The vertex processors apply a vertex program to each vertex in the 

object, transforming the vertices into a common model space and performing any other 

user-specified per-vertex operation. 

Vertex processors are capable of scatter, i.e. they can control where in memory 

data will be written [LBC*05]. Thus, vertex processors are capable of changing the 
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position of input vertices, deciding ultimately where the image pixels will be drawn.  

Traditionally, vertex processors were able to fetch information strictly from the current 

input stream and no other memory location, therefore they were not able to gather. 

However, the latest GPUs (i.e. with Shader Model 3.0 support), have a limited gather 

feature, called vertex texture fetch [GFG04], enabling vertex processors to perform 

texture memory reads for up to four textures.  

GPU-writable streams are another recent hardware feature addition. Previously, 

vertex streams could be updated only on the CPU, requiring a bandwidth consuming 

GPU-CPU data transfer. This functionality, called “render-to-vertex-array” is of vital 

importance for GPGPU computations and will be detailed in a separate section (§ 5.6).  

 

   
The Rasterizer 
 
The transformed vertex stream produced by the vertex processor is converted by 

the rasterizer into fragments. Typically, three vertices groups are used to compute 

triangles (the triangle is the basic primitive for 3D representations), transformed then into 

fragments. From a GPGPU point of view, the rasterizer may act as a data amplifier, since 

it generates an increased output of elements from only a few input elements. 

At this stage, each fragment can be considered a “proto-pixel” [Harris05] that 

encapsulates all information needed to generate a shaded pixel in the final image, 

including color, coordinates and possibly depth.  

  

 
 

The Fragment Processor 
 

        Modern GPUs support a scalable number of fragment processors. Fragment 

processors are also fully programmable and work in SIMD fashion on input elements 

[LBC*05]. The fragment processors apply a fragment program (i.e. pixel shader) to each 

fragment in the stream to compute the final characteristics of each pixel.  
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Fragment processors have the ability to fetch data from textures, therefore they 

are capable of gather. They are however not capable of scatter (i.e. change the output 

location of a pixel) - since the output address of a fragment is determined prior to 

reaching the fragment processor.   

GPUs have typically more fragment processors than vertex processors, in order to 

handle the amplified data load generated by the rasterizer. Consequently, GPGPU 

applications put a heavier emphasis on the usage of fragment processors compared to 

vertex processors. 

 

Render Targets  
 
Pixels are typically rendered on-screen to the frame-buffer or alternatively to an 

off-screen render target called a pixel buffer or a framebuffer object. Due to recent API 

features, the pixel buffer can consist of frame buffers, vertex buffers or textures. All of 

these three types of data can be associated with a texture (render-to-texture) enabling 

them to be bound either as render targets or input textures for further processing. 

Therefore, while the traditional use of pixel streams is to hold pixels for display to 

the screen, GPGPU computations rather use these pixel buffers to hold the results of 

intermediate computational stages. 

 

Texture Units  
 

GPUs support a number of texture units, which determines how many textures 

may be simultaneously applied in the same render pass. Textures are bridging the random 

access into vertex, fragment, or pixel streams, since all these stream types need to be 

converted to textures to allow random indexing. Textures can be read from and written to 

by either the CPU or the GPU.  On the GPU side, textures are the only memory that is 

randomly accessible by fragment programs and also vertex programs, though the latter 

refers to the limited access provided by the vertex texture fetch functionality.  

 



 74 

5.3 GPU Computations 
In order to activate kernels, we simply draw geometry so that the vertex and 

fragment processors will operate on the input primitives and output the result as pixels. 

Besides specialized computations on primitives as dictated by program requirements, the 

most generic invocation in GPGPU programming is a rectangle, typically processing 

every element of a stream of fragments representing a grid [Harris04].  

The GPU equivalent of CPU array data structures consists of streams, therefore, 

anywhere we would use an array of data on the CPU, we can use one of these streams on 

the GPU. 

On the CPU, in order to perform serial processing, we would use a loop to iterate 

over the elements of an array. In the GPU case, the instructions inside the loop are the 

kernel, while the streams replace the array structures. That is, on the GPU, we write 

similar instructions inside a fragment or vertex program, which are applied to all 

elements of the stream.  

Conforming to the SPMs task-level parallelism, a kernel must process an entire 

stream to generate output for the next kernel in the pipeline, therefore, each step depends 

on the output of the previous step. The feedback needed to proceed with each step is 

trivial to implement on the CPU, where memory can be accessed anywhere in a program. 

As we discussed previously, on the GPU we need a texture to bridge our access, i.e. we 

must use the render-to-texture technique to write the results of a fragment program to 

memory so they can then be used as input to future programs. Texture coordinates are 

stored for each vertex and are used in GPGPU as indices for texture fetches (see next 

paragraph for more details).  

 

   
5.4   Dependent Texturing 
 
Modern graphics processors have the ability to perform dependent texture 

lookups. Purcell [PDC*03]  has introduced the abstraction of texture memory that 
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enables us to load a complex data structure into memory and use fragment programs to 

navigate through it via dependent texture lookups.  

Algorithms may involve complex data structures and lookup of elements within 

these structures.  Dependent texture fetching allows the address being fetched from 

texture memory to be computed by the fragment program. It also allows the results of a 

memory lookup to be used to compute another memory address (Figure 5.3). 

More importantly, it allows us to think about texture memory on the GPU as 

general read-only memory. Rather than worry about texture management and texture 

coordinates, etc. we can think about memory and addresses. 

 

 
 

Figure 5.3 Dependent texturing [PDC*03]  

 
 

5.5 Render-to-vertex-array  
 

General processing on the GPU relies on computing intermediate stream results 

on the GPU, saving them in graphics memory (off-screen targets), and then feeding them 

again as vertex data textures to the geometry engine to render images in the frame buffer.  

This process requires application control over the allocation and use of the graphics 

memory.  

Recent features of graphics hardware blur the boundaries between textures, vertex 

data and render targets, allowing graphics memory to be treated as any of such objects. 

These features are exposed to the application through a set of supporting OpenGL 

extensions: Vertex Buffer Objects and Pixel Buffer Objects [ARB03, NV04].  
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The Vertex Buffer Objects (VBO) interface enables the application to allocate 

high-performance graphics memory on the GPU, and to specify how that memory is to be 

used. Buffer objects can be used as either data sources or sinks for any graphics API 

command that takes a pointer as an argument. The VBO extension binds buffer objects to 

given targets and then instead of treating the argument as a pointer to memory, it is used 

as an offset into the buffer object’s data store.  

Previously to the PBO addition, the VBO targets consisted of buffers containing 

either vertex attributes, such as vertex coordinates, texture coordinates data, per vertex-

color data, and normals, or only indices of elements, respectively.  The recent Pixel 

Buffer Objects extension (PBO) expands the VBO functionality with two new read/write 

targets, permitting buffer objects to be used not only with vertex array data, but also with 

pixel data.  

 
 

Figure 5.4 VBO targets [Nvidia03] 
 

“Render-to-vertex-array” is one of the most interesting optimizations provided by 

the VBO/ PBO combination. Buffer objects are viewed at application level simply as 

arrays of bytes, differentiated only by the targets they are bound to. Therefore, a vertex 

buffer can be bound to a pixel buffer target and then use this buffer as a source of pixel 

data and vice versa (Figure 5.4). From a GPGPU point of view, the VBO/PBO 
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combination enable GPUs, for the first time to loop streams results from the end to the 

top of the pipeline (Figure 5.5). 

Moreover, VBO/PBO avoids the GPU-CPU bandwidth taxing transfer,  which has 

traditionally been  a bottleneck for many applications: the VBO/PBO mechanism keeps 

all the data flow inside the server, avoiding copying the pixel buffer on the client’s side 

and putting it back on the server’s side as an input for a vertex program.  

 

 

Figure 5.5 Render-to-Vertex-Array: writing renderin g results to vertex array 
allows the GPU to loop back to the top of the pipeline [LBC*05] 

 

 

      5.6 Shading Languages  
 
 

Originally, GPUs could only be programmed using assembly languages. Early 

work at Stanford University [PMT*01] provided valuable research, producing the Real 

Time Shading Language (RTSL). RTSL provided an abstraction layer over the (at the 

time) fixed-function hardware that would compile to GPU assembly, reducing the 

difficulty of GPU programming. 

GPU and 3D API vendors soon followed suit, releasing their own languages and 

compilers. Nvidia was the first to expose a more general programming model for GPUs, 

starting with the vertex unit [LKM01]. The fragment unit was also made gradually 

programmable, having eventually a full programming model very similar to that initially 

supported on the vertex unit.   
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Varying degrees of programmability had been appearing in OpenGL as vendor-

specific extensions. These finally converged in the ARB_vertex_program and 

ARB_fragment_program extensions [ARBa]. The assembly-level shaders were 

naturally followed by higher level shading languages, having a C-like syntax with minor 

differences. Nvidia and Microsoft worked closely to develop Cg and HLSL [MGA*03, 

BFH*04]. After an almost two year refinement by the the OpenGL Architecture review 

board, the OpenGL Shading Language, was released as part of OpenGL 2.0 core at 

SIGGRAPH 2004.  

All the above languages require thorough understanding of the features and 

limitations of latest graphics hardware and graphics APIs, making the general-purpose 

GPU computing accessible to only the most advanced graphics developers.  Two general 

purpose shading languages have been developed, trying to overcome these drawbacks by 

hiding the details of the runtime: Brook at Stanford University [BFR*04] and Sh at 

Waterloo University [McD04].  

Following the development of the Imagine stream processor [KDR*02] Brook 

exploits the stream aspect of GPUs explicitly. Brook targets scientific applications, 

comes with an associated compiler (brcc) and is implemented as a preprocessor that maps 

programs to a C++ and Cg implementation.  

Sh is also supporting the stream programming model, however it targets not only 

scientific but also graphics computation. Sh is embedded inside C++, so that no compile 

tools are necessary and parameter passing into streams is seamless eliminating the need 

for parameter binding code. 

At the time of writing both Sh and Brook are under heavy development. Brook 

has performances close to hand-written code [BFR*04], however many special GPU 

features cannot be expressed cleanly and it lags in the timely updates.  

Sh lacks certain features that affect its efficiency and are intended to be added in 

the future. For example, downloading the data between the host program and the 

processor running the Sh kernel can be a very expensive operation. [MD04]  

Therefore, low-level shaders are still needed to extract the best performance from 

the GPU. RTSL is no longer active and under development, having evolved into Cg 

practically, HLSL is DirectX specific and GLSL is OpenGL specific.  
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The Cg language is multiplatform, API neutral and independent of the generation 

of GPU that it is running on. Moreover, it has the important benefit of constant updates 

according to the rapidly evolving GPU technologies. These features have made Cg the 

language of choice for the GPU shaders developed for our work.  

 

     
Conclusion 

 
In this chapter, we have touched concepts of modern programmable graphics 

hardware and the main differences between the CPU and GPU memory and programming 

model. The GPU memory model is based on a streaming computational model that 

supports a high degree of parallelism and memory locality. This implies a number of 

restrictions on when, how and where memory can be used. Many of these restrictions 

exist to guarantee parallelism, but some exist because GPUs are designed and optimized 

for real-time rendering rather than general high-performance computing. Nonetheless, 

many of these constraints are likely to be relaxed in the future. We have also reviewed 

several recent hardware features that broaden the use of GPUs within the general 

processing realm. 
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Chapter 6 Voxel Carving on the GPU 

 
 
 
 
Introduction 

 
The primary goal in developing the carving engine is to design a method that 

allows voxel carving to occur at real-time rates. GPUs power real-time systems with a 

peak performance about two orders of magnitude greater than that of the CPU, however 

this performance implies the constraints of the streaming programming model.   

One major challenge in developing GPGPU algorithms is to design appropriate 

data representations and develop techniques that fully utilize the graphics pipeline, 

multiple vertex and fragment processors and high inner memory bandwidth. 

Another issue to overcome is the GPU-CPU transfer rate, the traditional 

bottleneck for many applications – due to the asymmetric interconnecting AGP bus that 

delivers performant bandwidth only from the CPU to the GPU. The advent of the new 

bidirectional-transfer capable PCI Express bus standard may make sharing memory 

between the CPU and GPU a more feasible possibility in the future. Nevertheless, 

attaining low bandwidth consumption is of great importance.  



 81 

Our approach is designed for a high utilization of the graphics pipeline 

parallelization and employs an efficient external and inner bandwidth strategy. More 

specifically, the output format is designed to return as little data as necessary, limiting 

itself to surface voxels rather than the entire volume, while the input format corresponds 

to the optimal two-dimensional data layout on the GPU. 

If carving progresses at more than 20 frames per second, we claim that real-time 

performance is achieved. Interactive frame rates are considered to be between 2 and 20 

frames per second. Depending on the voxel resolution and the number of reference views, 

the algorithm that we will present runs at least interactively, and in several cases achieves 

real-time frame rates. Compared to a purely CPU-based implementation, the performance 

is approximately 3-8 times faster.  

 

      
6.1 The Carving Engine 

 
 

This section outlines the encapsulation of the voxel carving process into a carving 

engine. We structured the carving engine to perform image sampling, 

background/silhouette test, visibility test and photo-consistency check on the GPU and let 

the CPU host manage the resulting output and organize the dynamic update of the voxel 

structure. Since the bulk of the computational resources are spent on the former 

operations, the management of results and of voxel state is a relatively small overhead for 

the CPU, certainly smaller than performing the entire voxel carving on the CPU.  

We determine the original size of the volume of voxels containing the 3D scene by 

upscaling the spatial bounds of the recovered 3D points during self-calibration. Voxels 

are assigned a unique ID and only voxels that belong to the surface are processed. We are 

considering a point voxel projection, i.e. only the voxel centre is projected to the input 

images, leading to a single pixel in each view.  

The pseudocode for the algorithm presented in Figure 6.1. reveals that the algorithm is 

compliant with the  generic space carving method. Given a set of voxels in the surface, 

each voxel is examined and tested for consistency. During each iteration of the algorithm, 
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we perform an outer loop where the surface voxel structure is rasterized against each 

camera view, followed by voxel sorting, as a precalculating step towards determining 

( )vis V of each voxel. This results in a set of image buffers for each of the views for every 

loop iteration. The calculation of ( )vis V is embedded within the photo-consistency check. 

Once ( )vis V has been determined, the color consistency function computes the color 

statistics and decides the consistency status of the voxel. If it is consistent it will be kept 

and re-examined in further iterations until it is rejected or it remains as part of the 

reconstructed object. Following the conservative approach of this family of methods, in 

case of uncertainty, the voxel is left unprocessed, expecting that later on its situation will 

become better defined. 

The employed data representations, kernels and computational stages will be 

detailed in the following paragraphs. 

 

 
6.2 Memory Layout   

 
The voxel structure and its attributes correspond to 1D and 3D data arrays. 

However, we will pack this data in two-dimensional textures, which is the optimal layout 

to utilize the high memory bandwidth available in GPUs. That is, GPUs provide only 2D 

rasterization and 2D frame buffers, meaning the bidimensionality of such textures ensures 

a maximum efficiency update during processing. 

Graphics processors currently offer only scarce support for simple 1D texturing. 

Many data structures will overflow the maximum size of a 1D texture, since current 

GPUs do not support textures with more than 4096 elements. However, the use of 2D 

textures requires address translation to convert an n-D array address into a 2D texture 

address, similar to a virtual to physical memory translation.  

That is, each time this packed array is accessed from a fragment or vertex 

program, the 1D address must be converted to a 2D texture coordinate. It is important to 

note that these conversions are performed very efficiently, because the GPU’s texture-
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addressing hardware actually minimizes the cost of address translations to look up values 

in the underlying 1D array 

 

loop {  
  until no further voxels are carved {  

update voxel state map and generate SVL  
    for each voxel {  

  delete rejected voxels from SVL 
  add adjacent uncarved voxels 
  mark modified voxel state  

    }  
 enable depth test 
 transfer voxel state map to GPU 
 transfer SVL map to GPU  
  
 for all images i … n  {   

//projective texture mapping 

bind image buffer IB i  as the target 

 bind camera imageCi  as input texture  
     render SVL to image buffer  
     load camera parameters 
         run projective texturing kernels  

  transform object-space coordinates 

  to texture coordinatesTEXxy  (VP); 

            query Ci   at  TEXxy  and draw vertex  

  with the found color (FP);  
 
//sort by pixel routing 
set viewport to routing buffer dimensions 
transfer image buffer to vertex array 
bind routing buffer as the target 
render image buffer to routing buffer 
    run pixel routing kernels 
    compute new vertex address(VP) 
   draw vertex at the new position(FP)  

 } 
 //perform photo-consistency check   
 bind routing buffer as input texture 
 bind photo-consistency buffer as the target 
 run photo-consistency kernel 

determine Vis(V) 
 compute color statics for V 

output photo-consistency status 
  

-continued on the next page 
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 read-back to CPU photo-consistency buffer 
 //display consistent voxels 
 render SVL to frame-buffer  

set photo-consistency buffer as the color 
attribute  

 discard inconsistent/background voxels  
   } 
} 

 
 
Figure 6.1 Carving engine pseudo-code 

 

 
 

Figure 6.2 1D array packed into a 2D texture 
 

3D texture maps are the easiest way to store 3D arrays, however, they present 

several drawbacks. 3D textures tend to take up a large amount of texture memory, and 

they grow rapidly in size with increases in resolution. For example, the memory cost of a 

32-bit 3256  texture is 64 MB representing a considerable burden on most current 

graphics systems. As a consequence, 3D textures are expensive to change dynamically 

which can affect multipass algorithms requiring multiple passes with different textures, as 

in our specific case. 

Alternatively, each volume slice can be stored separately in a 2D texture 

[HCT*02], or the entire volume can be packed in a single 2D texture [HBS*03]. We have 

employed the latter method, which unlike the 2D slice layout, allows the entire array to 

be updated in a single render pass and eliminates the need of a “render to slice” 

functionality. This may allow a significant performance improvement, since it implies 
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processing large streams that use more efficiently the GPU parallelism. Also, such “flat 

3D textures” provide a performance and scalability advantage over true 3D textures on 

current hardware [HBS*03].  

 Moreover, the entire 3D array can be randomly accessed from within a kernel. 

The procedure is identical to the one used with 1D arrays, with the 3D address being 

converted to a large 1D address space, previous to packing the 1D space into a 2D texture 

[BuckPur04]. 

During address conversions and look-ups, precision issues need to be treated 

carefully: current GPUs do not have integer data types, therefore we have to avoid poor 

address calculations caused by the limitations of floating-point addressing.  Additionally, 

the number of bits dedicated to floating point mantissa that limits the size of our 1D 

virtual address space varies from architecture to architecture.  

 
VBO/PBO state  

Render 
target 

Input 
texture 

Vertex 
array 

CPU data 
 

GPU data 

1 - Yes - 3D array Voxel state map 
2 - - Yes 1D array SVL map 
3 Yes - Yes - Image buffer  

 
4 Yes Yes - - Routing map  

 
5 Yes - Yes 

(color 
attribute) 

1D array Photo-consistency map  

 
Table 6.1 Data layout for the carving engine 

 
 

Table 6.1 shows the data storage layout we have employed for the carving engine. As 

mentioned above, the voxel attributes and processing data are stored in 32-bit floating 

point textures. Conforming to the stream programming model (chapter 5, § 5.2), textures 

represent either the input or the output data stream. Several of these textures will be 

treated alternatively as render targets, input textures or vertex arrays via the VBO/PBO 

interface. 

In the following, we detail the memory objects employed by the carving engine.  
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� Voxel state map  

The discretized voxel cube corresponds to a 3D array of voxel coordinates which is 

stored in a three-component floating point texture reflecting the state of each voxel and 

containing its unique voxel ID.   

Due to the serial nature of this process, the voxel state map is updated on the 

CPU. The voxel state map will be bound as an input texture and will be fetched by most 

of the kernels during processing, for voxel ID and position/voxel ID conversions. 

However, for readability reasons it is not represented in Figure 6.1.  

During the carving process, each voxel can be found in one of the following three 

states:  

� active: voxel has been added to the surface set of voxels and was found consistent 

at each evaluation 

� undefined: it is surrounded by uncarved voxels, so it is visible from no images 

and its consistency is undefined (wasn’t added to the surface voxel set) 

� carved: it has been found to be inconsistent and has been carved. 

 

� Surface Voxel List map (SVL map) 

The SVL map stores the XYZposition coordinates of all currently active voxels and 

will be found in a single VBO/PBO state on the GPU, namely as a vertex array that will 

be used to replicate each camera view. This occurs by rasterizing the SVL to a pixel 

buffer and applying projective texturing with corresponding camera-based rendering 

parameters. Similarly to the voxel state texture, the SVL map will be updated on the 

CPU, due to the serial nature of this process.  

 

� Image buffer  

The image buffer is a pixel buffer with the same dimensions as the reference images 

bound as a render target for the SVL texture. As mentioned above, the SVL texture is 

rendered as a vertex array for each reference view by a kernel that loads the current  

camera parameters and performs projective texturing to sample the respective view. The 

image buffer will eventually store voxels that survive a visibility, i.e. a depth test. During 
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the next processing step – pixel routing – the image buffer will undergo a VBO/PBO 

transfer to a vertex array and will be rendered to the routing map.  

 

� Routing map   

The routing map represents a render target for the voxel sorting rendering pass. 

Sorting is performed by a pixel routing kernel that outputs fragments to the 4-component 

routing map in a tightly packed format, according to their ID and camera view. The 

routing map will be bound as an input texture during the photo-consistency check 

process. 

 
� Photo-consistency map  

The photo-consistency map forms a render target for a kernel that computes the 

consistency status of each voxel on the current SVL, the mean average color for 

consistent voxels and a marking value for voxels that have been found inconsistent or 

belonging to the background. While the currently consistent voxels are displayed on-

screen, the photo-consistency map will be employed as a color attribute for the 

corresponding vertex array. 

 

 
6.3 Computational Stages and Kernels  
 

The vertex and fragment processors run computational kernels producing output for 

all rendered pixels to the currently active memory surface of the render target. Among the 

techniques used by the carving engine are the following:  

� Bind two-dimensional textures, forming the input for the kernel. 

� Set the target surface for rendering. This surface forms the output of the kernel. 

� Activate a vertex or fragment program, i.e. set up the vertex or fragment pipeline 

to perform the kernel computation on every vertex or fragment, respectively. 

We have implemented our carving engine on a GPU supporting the Shader Model 3.0 

standard that supports conditional branching and looping, allowing for more flexible 

kernels. 
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As mentioned previously, the lack of integer operations needs to be treated carefully. 

The carving engine has to access specific texture addresses, and we need to compensate 

the floating point arithmetic units whenever integer data types are needed (all of our data 

structures use integer addresses) That is, we need to simulate integer operations with 

floating point operations.  

We can compute most integer operations by taking the floor of the result of a 

floating point operation. Integer modulus operations, however, require a few more 

operations including frac which returns the fractional part of a floating point number: 

 

mod floor(frac( ) )X Y X/Y Y= ∗  

 

In the following, we will describe the three main computational blocks (Figure 

6.3) and their corresponding kernels, where this applies. 

 

 
6.3.1 Process Voxel Birth and Death  

 
We have employed a particle system paradigm to describe the computational 

stage of updating voxel state, i.e. activating and carving voxels in order to generate the 

surface structure.  

As mentioned previously, each voxel can be found in one of three states during 

the carving process: active, undefined and carved. In order to activate a voxel we need to 

associate new data with an available index in the voxel state texture.   

Due to the serial nature of our problem, this cannot be done efficiently with a 

data-parallel algorithm on the GPU. Therefore, the voxel emitter module, responsible for 

determining an available index, is placed on the CPU. 
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Figure 6.3 Carving engine computational stages 
 

    
We initiate the SVL with the outer layer of the discretized voxel volume, and the 

activated voxels are marked on the voxel state map.  In order to perform a voxel state 

update, we read-back the photo-consistency buffer, containing the information of the 

current SVL and perform the necessary modifications on the voxel state map, as well as 

add/delete operations on the SVL array. More specifically, carved voxels are deleted 

from the SVL, while their adjacent voxels are activated and added to the SVL. 

Voxels are registered for deactivation independently on the CPU and GPU: 

The CPU registers the deactivation of a voxel and adds the freed index to the allocator, 

while the GPU discards deactivated voxels with an early z-kill during rendering the 

current SVL to the on-screen framebuffer.  
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6.3.2 Projective Texturing  
 

During projective texture mapping we render the SVL vertex array to the image 

pixel buffer, for each input view. A vertex and a fragment program are needed to perform 

projective texturing. Camera reference images are loaded as textures, and their 

corresponding camera matrix is set as the projective texture matrix.  

The vertex program works by applying a sequence of transformations, that map 

object-space coordinates into the 2D space of a texture, i.e. the loaded camera image. 

This computed position is assigned as the texture coordinate for the vertex, and then the 

appropriate sampled color from the texture is applied by the fragment program. In order 

to account for voxel visibility, we enable depth testing in the supporting OpenGL API. 

The built-in z-test is used so that the voxels will overwrite the value stored in the z-buffer 

if the new value is smaller, i.e. they are closer to the camera. 

Projective texturing also serves as a background or silhouette test step, performed in 

the fragment program. For background testing, the alpha value assigned to the output 

fragments is set to 1 for foreground objects and 0 for the background.  

In case we are employing silhouettes, the procedure is identical to the one 

described above: the silhouette images are loaded as textures and their corresponding 

texture matrix is set from the calibration data associated with that view. Similar to 

background testing, the alpha value of the texture is set to 1 for foreground objects and 0 

for the background.  

These values will be considered during the photo-consistency check, as pixels that 

don’t survive the background/alpha test will be eliminated.  

 

 
6.3.3 Sort by Pixel Routing  
 
In order to perform a coherent photo-consistency check, we need to sort the 

voxels contained in the camera pixel buffer and arrange them in a tightly packed texture 

(Figure 6.4), according to their identifier and camera view.  
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Several authors have proposed implementations of sorting algorithms on graphic 

processors [PDC*03, KipWes05]. However, sorting algorithms require a high number of 

iterations, resulting in a high number of rendering passes on the GPU. For example, 

bitonic merge sort needs O(log2 n) rendering passes and  O(n log2 n) bandwidth 

[PDC*03].  

Since we strive to achieve real-time framerates, we need to avoid the latency of 

several hundred rendering passes when generating the photo-consistency map. We would 

also prefer an algorithm with less bandwidth consumption. To address these problems, 

we have employed an alternate algorithm for constructing a photo-consistency map that 

runs in a single pass and only requires O(n) bandwidth.  

Although fragment programs cannot change the address to which they are writing, 

vertex programs have the ability to write to a computed destination address, i.e. to 

perform scatter (Chapter 5, §5.2).  

That is, if we know the exact destination address for each voxel, we could route 

them all into the buffer in a single rendering pass by drawing each of them as a point. 

Essentially, drawing points allows us to solve a one-to-one routing problem in a single 

rendering pass. 

While we render the image buffer as a vertex array, the application issues points 

(glPoint for the OpenGL API) to render and the vertex program computes the scatter 

address based on the voxelID and assigns it to the point’s destination address with the 

appropriate scatter data.  

 

 
Figure 6.4 The tightly packed routing buffer for an example data set 

(empty pointers are shown in red) 
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In the OpenGL API we have adopted, we set the viewport to the buffer’s 

rectangular dimensions and disable depth testing. We generally use a routing buffer with 

the same dimensions as the image buffers, in order to ensure the necessary number of 

available positions.  The idea is to draw each voxel (i.e. vertex) as a glPoint over the 

entire footprint of its destination cell, so we draw with glPointSize set to 1 which when 

transformed by the vertex program will cause the voxel to cover the grid cell. The vertex 

program computes the new vertex address based on the routing texture width and height, 

pixel-texel ratio, SVL index and size, and also camera view index. The depth component 

of the output fragments is set uniformly to 0, in order to avoid collisions.  

 

 

 
 

Figure 6.5 Pixel routing  
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6.3.4 Photo-consistency Check  

 
We perform the photo-consistency check in a single rendering pass. The routing  

pixel buffer containing the sorted voxels is fetched by a fragment program that  computes 

the variance of corresponding visible pixel samples in reference views, which we chose 

as the photo-consistency metric. 

We mentioned the photo-consistency computation previously in chapter 4, 

however for readability reasons we will present it here in the context of GPU-based 

processing. 

The fragment program computes the variance 2σ  according to the following 

equation:  

2 2 2 2

1 1 1

( ) ( ) ( ) / ( 1)
N n n

i m i m i m
i i i

R R G G B B Nσ
= = =

 = − + − + − − 
 
∑ ∑ ∑  

 
 
where N   is the number of those active views in which the 3D point associated with the 

fragment is visible , ( , , )i i iR B G  is the sampled pixel color from the i-th view, and 

( , , )m m mR G B  is the mean color of the corresponding pixels in all N  views.  

The photo-consistency can then be expressed as a threshold function: 

 
21,

0,otherwise
photo consistency

σ τ <
− = 


 

 
where τ  is a user-defined threshold. In our current implementation, the variance 

computation is based on a single sample from each reference view. Therefore, calibration 

errors and image noise can introduce instabilities to the photo-consistency check process. 

Just like in the CPU-based case, incorporating local neighborhood information will 

provide more robust reconstruction results. The mipmapping technique utilized in 

[YanPol03] could be adopted in this context.  
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Finally, if a fragment passes both the background/silhouette (performed during 

projective texturing) and the photo- consistency check, color values are assigned to the 

fragment by computing the mean average of the sampled colors.  

Table 6.2 illustrates the instructions count of the principal computational kernels. 
 
 

 
Process 

 

 
Kernel 

 
Number of 
instructions 

Vertex program 72 Projective texturing 
Fragment program 36 

Photo-consistency check Fragment program 148 
Vertex program 25 Pixel routing 

Fragment program 10 
 

          Table 6.2 Instruction count for the main kernels of the voxel carving engine 
 

     
6.3.5 Display Consistent Voxels  

 
Optionally, the SVL can be rendered to the display during processing. In order to 

reduce the workload of the fragment unit, voxels are rendered as point sprites. The photo-

consistency buffer will be set as a color attribute for the vertex array, and a fragment 

program will discard fragments corresponding to voxels that were marked for rejection.  

 

    
Conclusion 

  
We presented in this chapter the carving engine, a GPU-based algorithm that 

extracts a voxelized representation of a scene from a set of images depicting that scene. 

The bandwidth efficient carving engine produces an explicit volume at frame-rates 

ranging from interactive to real-time. 

Our approach employs a form of effective load balancing that allows the GPU to 

do what it does best (perform the same computation on arrays of data), and lets the CPU 

do what the GPU does worst (reorganize the data into efficient structures). By 
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partitioning computation between the CPU and GPU, we combined the optimal features 

of both.  
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Chapter 7 Experimental Results  
  
 
 
 
 
 
Introduction 
 

In the following we will present results obtained by the system described in the 

previous chapters. Several results on self-calibration from photographs are given, 

including the Levenberg-Marquardt refinement of the initial estimates of the 3D 

Euclidean structure and camera motions. We present voxel carving results, both in CPU 

and GPU context, with a focus on performance. The flexibility of our approach is shown 

by reconstructing a 3D model from an extended sequence of camera views. 

 

 
7.1 Self-calibration  
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7.1.1 Conditioning and Balancing  
 

The scaled measurement matrix sW  (chapter3, §3.3.1, Equation 3.11) is poorly 

conditioned, mainly because of the lack of homogeneity in the image coordinates. To 

ensure good numerical conditioning, we work with normalized image coordinates, as 

described in [Hartley95]. This normalization consists of applying a similarity 

transformation (translation and uniform scaling) iT  to each image, so that the transformed 

points are centred at the origin and the mean distance from the origin is 2 . The 

projective motion and shape are computed for the transformed image points i ijT x ,  

~i ij ij i ij i ijPX T x T xλ= , therefore the resulting projective estimates iP  must be corrected : 

' 1
i i iP T P−= . The matrices '

iP  and ijX  then represent projective motion and shape 

corresponding to the measured image points ijx . Figure 7.1 illustrates the reconstructed 

correspondences of a checker board without/with pre-conditioning (bottom row, left and 

right image, respectively). 

Another technique applied to ensure good numerical conditioning was balancing, i.e. 

rescaling the projective depth matrix [StuTri96] so that all matrix rows and columns have 

on average the same order of magnitude. We achieved this by the following scheme:  

  

1. Rescale each column l so that 
3 2

1
( ) 1

m

rlr
λ

=
=∑  

2. Rescale each triplet of rows (3k-2, 3k-1, 3k)  so that 
3 2

1 3 2
1

n k

ill i k
λ

= = −
=∑ ∑  
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Figure 7.1 Upper row: the 6-image sequence of a checker board . Lower row: the 
reconstructed structure of the corresponding features (the colored corners of the pattern) 

without/with pre-conditioning (left and right image, respectively) 
 

 
7.1.2 Iterative Factorization 
Algorithm  
 

Several experiments have been carried out to observe the convergence of the 

Iterative Factorization Algorithm (IFA).   

A set of experiments were conducted on the CIL–0001 dataset [Web7] provided by 

the Calibrated Imaging Laboratory of Carnegie Mellon University (Figure 7.2 left). The 

CIL-0001 sequence consists of 11 views, 28 corresponding points, the mean calibration 

error is within 0.1 pixels.  

The 2D coordinates of the image points were perturbed with Gaussian noise of zero 

mean and standard deviation ranging from 0.5 3σ = … .  The number of iterations and 2D 

reprojection error vs. noise level are shown in Figure 7.3. The 2D reprojection errors 



 99 

result from projecting the recovered points using the recovered camera geometry and 

parameters and are measured in pixels.  

The convergence of IFA is illustrated in Figure 7.4 where the residual of Equation 

(3.11) is plotted against number of iterations.  

 

     
Figure 7.2 Images belonging to the  CIL–0001 (left),  corridor (middle)  

and model house (right) datasets 
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Figure 7.3 Number of iterations and 2D error vs. noise level 
 

We have also performed a number of tests on image sequences acquired with a 

Canon G2 camera with varying focal length. The main features of the data sets are 

described in table 7.1. The convergence of IFA is illustrated in Figure 7.5 where the 

residual of  Equation (3.11) is plotted against the number of iterations.  
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Figure 7.4 Residual vs. number of iterations 
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Figure 7.5 Residual vs. number of iterations 
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Data set 
 

Description Images Tracked 
points Iterations 

2D 
error 

(pixels) 
Sequence 

1 
objects,  

checker board 
7 41 73 0.55 

Sequence 
2 

human subject 
with markers, 
checker board 

6 56 173 1.28 

Sequence 
3 

human subject 
with markers, 
checker board 

7 51 88 0.91 

Sequence 
4 

checker board 5 108 290 0.49 

Sequence 
5 

 
checker board 

 
6 108 158 0.46 

Sequence 
6 

 
checker board 

 
6 108 321 0.48 

 
Table 7.1 Experimental data sets 

 
 

We have observed that with high accuracy data the IFA method requires a large 

number of iterations, and when noise is added, it stabilizes with much less iterations. This 

is because when data is accurate a very accurate solution can be achieved, taking more 

processing time. We consider this to be a good behavior of our system.  

  

 
7.2 Bundle Adjustment  
 
In order to investigate the performance of the quaternion-parameterized sparse LM 

algorithm we have conducted comparison experiments with a dense, general version as 

well as a sparse version of the LM algorithm, available at [Web4]. We have employed the 

corridor and model house datasets (Figure 7.2 middle and right, respectively) of the 

Oxford’s Visual Geometry Group [Web6], frequently used for benchmarking in the 

vision literature. Since we operate under the assumption that the tracked features are 
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visible in all views, we have restricted the sequences to the number of points and frames 

shown in table 7.2.  

Table 7.2 illustrates several statistics: the average reprojection error of the initial 

reconstruction and the average reprojection error after sparse LM refinement, the number 

of iterations as well as the processing time. 

The corresponding processing times using dense bundle adjustment were 89.58 and 

112.1 seconds, respectively. The processing times for the general sparse bundle 

adjustment were 0.42 and 0.65 seconds, respectively. Compared to the processing times 

needed by our method, these results show performances close to the general sparse LM 

implementation and also the computational benefits achieved by the exploiting the 

sparsity of the problem.  

 
 

Data set 
 

Images 
Tracked 
points 

Initial 2D 
error 

(pixels) 

Final 2D 
error 

(pixels) 

Time (s) 
 

Corridor 6 100 0.87 0.41 0.63 
Model house 7 76 1.76 0.23 0.94 

 
Table 7.2 Sparse Levenberg-Marquardt optimization statistics for  

the benchmark sequences 
 
 

 
Data set 

 
Images 

Tracked 
points 

Initial 2D 
error (pixels) 

Final 2D 
error (pixels) 

Time  
(s) 

Sequence 1 7 41 0.55 0.24 0.20 
Sequence 2 6 56 1.28 0.59 0.31 
Sequence 3 7 51 0.91 0.33 0.23 
Sequence 4 5 108 0.49 0.19 0.44 
Sequence 5 6 108 0.52 0.17 0.58 
Sequence 6 6 108 0.48 0.17 0.52 

 
Table 7.3 Sparse Levenberg-Marquardt optimization statistics 

 

Table 7.3 presents experimental results gathered from the application of the sparse 

Levenberg-Marquardt optimization to the initial 3D structure estimates of our test 

sequences (i.e. sequences 1-6). The benchmark sequences experiments were conducted 

on a Microsoft Windows XP, 1.66 GHz Intel Dual Core T5500 platform. The sequences 

1-6 experiments were conducted on a Microsoft Windows XP, 3.2 GHz Intel P4 platform. 
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In all cases, the sparse LM algorithm terminated due to the magnitude of the computed 

step ∆  being very small. 

    

 
7.3 Voxel Carving  
 
The following voxel carving-related experiments are partitioned in two main subsets, 

corresponding to the CPU-based and GPU-based aspects, respectively.  

At the time of writing, GPGPU researchers - including voxel-carving related work 

[LiMS04, WoeKoch04, ZacKar04] - provide strictly GPU vs. CPU performance 

comparisons of own implementations. Besides the extremely fast-paced hardware 

features changes, the major reason behind this is the lack of disclosed manufacturer 

details and of a unified framework for the existing graphic cards and shading languages 

that would make GPU vs. GPU comparisons of related approaches meaningful. We will 

provide accordingly a GPU vs. CPU performance comparison.   

    

 
7.3.1 Multi-resolution 3D 

Reconstruction 
 

We will present in the following a multi-resolution 3D reconstruction using a data set 

of five images acquired at resolution 1704 x 2272, with a human subject with placed 

markers for easier point selection. The set of frames used to reconstruct the object are 

shown in Figure 7.6.   

The set of tracked features and their correspondences were set manually. Also, the 

background of the images is segmented manually to facilitate the reconstruction process. 

Details of the sequence and preceding self-calibration are provided in Table 7.4. The 

initial and final 2D errors are the values obtained after the IFA algorithm and after bundle 

adjustment, respectively. The left image in Figure 7.7 shows the selected corresponding 
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points, while the right image shows the recovered metric structure of the 

correspondences, as well as the camera positions.  

 

Data set Description Images Tracked 
points 

Initial  
2D error 
(pixels) 

Final  
2D error 
(pixels) 

Sequence 7 

 
human subject 
with markers, 
checker board 

 

5 63 1.02 0.47 

 

Table 7.4 Human subject data set description 

 
 

 
 
 
 
 

 
 

Figure 7.7 Left: A sequence image with the tracked points. 
Right: The recovered metric structure of the tracked points and the camera positions 

 
 

Figure 7.6 The 5-image input sequence 
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Figure 7.8 Two sequence frames with the user-labeled regions. 
 
 

       
 

Figure 7.9 Left: the reconstructed human model at resolution r=25. 
Right: same 3D model with the face region refined at resolution r=6 

 
 

Voxel carving was initialized with a bounding box with the volume 168 x 160 x 72 

voxels.  The left image in figure 7.9 shows the 3D shape reconstructed at resolution r=25.  

With the face area of the subject selected for refinement in only two frames (Figure 7.8), 

we performed the algorithm for two resolution increases, resulting  in a final resolution 
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r=6. The multi-resolution reconstruction is shown in the right image of Figure 7.9.  

Figure 7.10 presents detail views of the above reconstructions.  

 

      
 

Figure 7.10 Detail views of the above left and right images, respectively. 
 

     
7.3.2 Reconstruction from Extended 
Sequences 

 
In order to investigate an extended sequence we have employed a set of frames 

consisting of 16 images captured at resolution 1704 x 2272, which were divided into four 

subsequences, illustrated together with the number of tracked points for each of them in 

Figure 7.11. Point tracking and background segmentation in a few frames is performed 

manually. In order to increase the stability of sequence merging we have chosen two 

overlapping frames between sequences 3 and 4, and three overlapping frames between 

sequences 2 and 3.  

 
Dataset Initial 2D error 

(pixels) 
Final 2D error 

(pixels) 
Sequence 1 0.60 0.25 
Sequence 2 1.15 0.47 
Sequence 3 0.83 0.32 
Sequence 4 1.29 0.36 

Table 7.5 Calibration and bundle adjustment statistics  
for the subsequences of the extended sequence 
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Table 7.5 shows the calibration and LM optimization results for all 

subsequences.We have performed reconstructions with 4 different voxel resolutions in 

order to observe the relation between the model size and processing times for the CPU- 

and GPU-based algorithms.  The statistics illustrated in Table 7.6 show that the 

computation times achieved by the carving engine are approximately three to eight times 

faster than the software-based algorithm, depending on the model complexity. 

The experiments were conducted on a Microsoft Windows XP, 3.2 GHz Intel P4 

platform and a Nvidia Quadro FX 3400 graphics unit. Figure 7.12 shows the final 

reconstructed object in novel rendering positions. 

 
Voxel resolution CPU time (s) GPU time (s) 

330  125.49 16.24 
340  187.26 29.82 
350  240.06 73.42 
380  523.22 168.10 

 
Table 7.6 Reconstruction CPU and GPU statistics for voxel carving 

  

 
 

Figure 7.11 The division scheme of the extended sequence 
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Figure 7.12 Novel rendering positions and a detail view of the human subject  
 
 

7.3.3 Carving Engine Analysis  
 

In order to observe exhaustively the performance parameters of the carving 

engine, we have used a calibrated dataset available at [Web5]. The Millie dataset consists 

of a set of 10 images, obtained by placing the object on a turn table and rotating the 

platform with angle increments from the starting position. The sequence presents a 720 x 

480 resolution. Background segmentation occurs with the help of alpha-map silhouettes. 

For performance tuning, we have disabled during the experiments the render to display 

function, that is, voxels will be rendered on screen only after processing terminates. 

Table 7.7 shows the global reconstruction statistics, namely the iterations number, 

processing time and the highest framerate value, since the framerates are varying during 

reconstruction with the number of surface voxels. The obtained results show that the 

carving engine is capable of achieving real-time or at least interactive framerates.  
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Voxel 

resolution 
Time  

(s) 
Max 

framerate 
(frames/s) 

315  8.34 23 
325  13.09 21 
335  34.63 16 
345  65.23 7 

         Table 7.7 Carving engine performance on a Quadro FX 3400 
 

Furthemore, our method is adaptable to the rapidly evolving hardware features. 

Pending or very recently added graphics hardware functions may enhance further the 

performance of the carving engine.  

 
 

 
Figure 7.13 Several images of the Millie  dataset 

 
 

 
Figure 7.14 Visualization of image buffers with their corresponding  

camera views and silhouette alpha maps during the projective texturing stage.  
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Figure 7.15 Novel rendering positions of the Millie  dataset 

 

Figure 7.14 represents a visualization of the projective texture mapping stage 

(Chapter 4, § 6.3.2). The upper row shows three image buffers (bound as render targets 

during this step), while the middle the bottom row show their corresponding camera 

views and silhouette alpha maps (bound as input textures). Magenta pixels represent 

voxels that didn’t survive the alpha test.  

Figure 7.15 shows the final reconstructed object in novel rendering positions. 

The carving engine was written using Cg [MGA*03], OpenGL, OpenGL 

extensions and graphic card vendor specific extensions. The carving results were 

measured on a Microsoft Windows XP, 3.2 GHz Intel P4 machine with 1 GB RAM, with 

an Nvidia Quadro FX 3400 graphic card.  

In the following, we analyze the carving engine in terms of memory bandwidth 

and computational complexity. 

    

 
Bandwidth considerations 

 
In order to investigate the potential bandwidth limitations for our method, we first 

distinguish between the two bandwidth types of modern GPUs. The external bandwidth 

is the rate at which data may be transferred between the GPU and the main system 

memory.  Conversely, the internal bandwidth is the rate at which the GPU may read and 

write from its own internal memory. The external bandwidth of the GPU presents 

importance for our application mainly during the read-back of the photo-consistency 

computation results from the card to the CPU, into main memory. As discussed 
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previously, the carving engine output format is designed to return minimal data to the 

main memory. For the Millie  example, we have measured transfer times between 38-61 

milliseconds, amounting to about 8-11% of the total processing time. Thus, external 

bandwidth transfer is a significant, but fairly small fraction of the total time. 

Concerning the internal bandwidth transfers, we have considered the main 

processing stages of the carving engine. In our algorithm, every memory operation 

transfers 4 bytes of data. The projective texturing step requires three texture fetches and 

writes one value per fragment. The pixel routing step requires only one write per 

fragment. The photo-consistency step performs an inner loop over the number of camera 

views, and requires two texture fetches per each iteration and then one write per 

fragment. 

Table 7.8 summarizes these results and shows the total internal bandwidth in 

bytes transferred by each method, which is the product of the number of passes, the 

fragments per pass and the bytes per fragment. 

The parameters are as follows: s is the current SVL size, n is the number of 

reference images, v represents the size of the image buffer (i.e. texture width x height). 

 
Process Fragments Passes Bytes/ 

fragment 
Total bytes 

Projective texturing  s n 16 16sn 
Photo-consistency  s 1 8n+4 8sn+4 
Pixel routing  v n 4 4vn 
                                                                                             Total : 4n(6s+v)+4 

 
Table 7.8 Bytes transferred internally by the rendering passes 

 
 

Process 
Arithmetic 
operations/ 
fragment 

 
Fragments 

 
Passes 

 
Total operations 

Projective 
texturing 

96 s n 96sn 

Photo-
consistency  

52n+58 s 1 52 58sn s+  

Pixel routing 27 v n 27vn 
                                                                              Total: 148 27 58sn vn s+ +  

 
    Table 7.9 Floating point operations required by each main rendering pass 
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Arithmetic complexity  
 

The GPU uses the fact that the same instructions are being executed on a large 

number of fragments simultaneously.  As no communication between executions of the 

kernels is needed, an abundant amount of parallelism is available. This parallelism is 

used to hide the latency of memory operations and other bottleneck causes.   

As a result, when enough fragments are available - as in our case - the running 

time of a kernel is approximately linear in the number of instructions executed. 

Therefore, we have summarized the number of instructions required by each 

computational stage of our algorithm in Table 7.8 

Similarly to Table 7.7, the parameters are as follows: s is the current SVL size, n 

is the number of reference images, v represents the size of the image buffer (i.e. texture 

width x height). The projective texturing and pixel routing perform 96 and 27 arithmetic 

instructions per rendering pass. The photo-consistency check performs 52 arithmetic 

instructions within the loop over camera views mentioned above, and 58 instruction 

outside the loop, amounting to 52n+58 operations per fragment .  
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Chapter 8 Conclusions and Future 
Work 

 
 
 
 
Introduction  
 
The previous chapters have introduced the theoretical considerations of a complete 

pipeline for reconstruction of objects from images. We described the implementation 

details and presented the achieved results. In this chapter we point out the advantages as 

well as the limitations of the system. Additionally, as a conclusion, some reflections on 

the work, its limitations, its applicability and future work are discussed. 

 
 

     8.1 Conclusions 
 
The principal objective of this work is to develop a software pipeline, based on 

IBMR techniques, that allows the reconstruction of real objects with their shape and color 

properties recovered.  
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The first stage of the proposed system requires a set of features tracked across a 

sequence of images. Keeping in mind that we target non-expert users, we have used 

different techniques to achieve a reliable calibration from a set of manually selected 

features in sequences which usually contain less frames.  However, the proposed solution 

equally allows the use of automatically tracked video sequences, entailing an extended 

number of frames.  

The complete sequence is divided into subsequences and, in each of them, a set of 

keyframes is selected and calibrated, recovering both camera parameters and structure of 

the scene. A Levenberg-Marquardt non-linear optimization is performed in order to 

reduce the overall reprojection error. When the different subsequences have been 

successfully calibrated a merging process groups them into a single set of cameras and 

reconstructed 3D features of the scene.  

The camera calibration process is a critical problem in our application. One 

advantage of the presented calibration approach is that it allows to recover an Euclidean 

reconstruction of the scene without any initial solution or prior information and it 

amounts to solving only linear systems. The knowledge of the geometric meaning and 

rank properties of the different transformations represented by the matrices allows to 

enforce a valid Euclidean reconstruction. The presented solution is designed to be 

flexible with respect to the input data allowing the use of varying focal length throughout 

the sequence.  

There are however several directions of vast investigation in this stage of the 

pipeline, a couple of them concerning the analysis of critical camera configurations 

[Pollefeys00b, CPV02, CVG04] and the sensitivity of bundle adjustment to false 

matches. Related to this, the spatial distribution of the image feature points represents a 

further examination direction. For example, situations where points are chosen too close 

to each other, or are biased towards an image region should be avoided because the 

estimation of the epipolar and projective geometry becomes highly unstable [Zhang98].  

Another important aspect is that the “perspective effect” present in many of our 

experiments reveals the necessity of modeling lens distortion. Unmodeled camera lens 

distortions cause a warp- or bend-like error in the recovered structure and motion since 

the self-calibration pipeline expects the camera to comply to a purely perspective 
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projection model. While the bundle adjustment stage performs a minimization of the 

reprojection error, it cannot remove the effect of lens distortion [CPV02]. Therefore, the 

camera model needs to be extended with at least one parameter for radial distortion in 

order to improve the recovered metric structure [PVV*04].  

Also, further analysis should be conducted on the sequence merging. When two 

consecutive subsequences present very different focal length settings, this process 

becomes extremely difficult, even impossible.  

The second stage of the pipeline, the scene reconstruction, has the objective of 

extracting a voxelized reconstruction based on the reference views and the calibration 

information. As one can imagine this is tedious task, because reconstruction from images 

is an ill-posed problem unless a large number of images is provided, covering all possible 

features of the model, or additional information is introduced in the pipeline. Carving 

algorithms proved to be a decent approach, however they are highly dependent on the 

implementation and on the quality of the input images. A further direction to explore 

could be a hybrid approach that integrates space carving and long baseline multi-view 

reconstruction, in such a way that the methods complement each other introducing 

constraints on the final shape. 

The voxel carving process requires the analysis of a large number of discrete 

elements. The main reason we introduced the multi-resolution calculation was to address 

this extended computational cost by restricting locally the level of detail, with the help of 

common image editing operations. Moreover, as we have seen in the previous examples, 

the complete sequence does not need to be edited, but only a few frames. Therefore, the 

user can manually process 2 or 3 frames and use those as a starting point for a refinement 

process.  

Conversely, the voxel carving engine, tackles the aforementioned computational 

costs  from a different angle, capitalizing on the abundant parallelism offered by modern 

graphics hardware. Our approach eliminates the 3D texture restrictions and efficiently 

uses the GPU-CPU bandwidth as well as the GPU inner bandwidth by returning only 

compact data and employing a two-dimensional data representation that fits the two-

dimensional data layout on the GPU.   
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        The performance of the carving engine would benefit from the recently introduced 

framebuffer object (FBO) extension [EXT05], an enhanced and simplified method of 

doing render-to-texture.  The frequent pixel buffer swaps during the carving process 

imply an equal number of expensive context switches, since pixel buffers require their 

own rendering context within the graphics API. One of the main advantages of FBOs is 

that they only require a single graphics API context, so that switching between 

framebuffers is at least twice as fast as switching between pixel buffers, depending on the 

employed technique.  

 

The principal theoretical contribution of this body of work is a quaternion 

parameterized Levenberg-Marquardt optimization technique. Furthermore, we made the 

following practical contributions:  

� A multi-resolution, user-guided voxel carving method 

� A GPU-based voxel carving engine 

� A complete system for flexible retrieval of metric 3D surface models from 

uncalibrated image sequences 

This work is relevant for the fields of structure from motion, voxel-based 3D 

reconstruction, and also for general processing on the graphics processing unit. The 

presented tailored sparse optimization and GPU-based voxel carving methods bring 

significant computational gains compared to dense and software-based techniques, 

respectively. Additionally, our system would scale well and benefit from the graphics 

hardware trend of expanding the number of fragment and vertex processors, and texture 

units, as well as other future enhancements. Moreover, both developed voxel carving 

approaches present potential for the field of human-computer interaction due to the 

interactive user involvement possibilities they provide. 

 

 
 8.2 Future Work  
 
 Until now we have focused on the geometric and processing performance aspects 

of IBMR, leaving the rendering part almost untackled. Rendering together with geometric 
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accuracy and non-Lambertian lighting conditions remain areas to be further explored and 

developed.  In the following, we will outline several future work directions investigating 

possible improvements which are still needed for an accurate and efficient recovery of 

the 3D scene.  

    

 
Robust Self-calibration of Long 
Baseline Sequences 
 
The self-calibration method presented in Chapter 3 starts from the assumptions that 

the tracked correspondences are static points present in all views (i.e. all features are 

valid for calibration). However, due to camera paths around objects, we have to deal with 

large amounts of frames and the features will not be visible in all of them. Therefore, we 

need to develop a strategy for dividing long sequences into manageable sub-sequences 

suitable for self-calibration. Sequence division and self-calibration will be followed by 

sequence merging in order to recover the complete scene structure. Moreover, often 

consecutive frames reflect very little changes, so that for computational cost reasons it 

would be useful to detect the keyframes that introduce significant 3D information. 

Also, a crucial aspect of the self-calibration process is the convergence of the 

projective factorization. Further analysis should be conducted on the projective 

reconstruction stage that could be enhanced with an algorithm that presents a faster 

convergence.  

    

 
Volumetric Reconstruction Using an 
Evolution Surface  

  
Incomplete surface data can produce reconstructions with missing areas (Figure 8.1), 

requiring a post-processing step with hole-filling algorithms. 
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Furthermore, reconstructions produced by space carving can present ragged surfaces 

with floating voxels, especially for high curvature surfaces. Rather than post-process the 

reconstructed surface, the level set approach for surface evolution proposed in [SSH02] 

mitigates the above problems during reconstruction and obtains a smooth, watertight 

geometry.  An initial surface is embedded as the zero level set of a volumetric function 

that moves along its inwardly pointing normal, with a speed based on a photo-consistency 

measure of surface points. Level set theory [Sethian99] provides a numerical scheme that 

solves the partial differential equations that characterize the motion of the surface. 

Space carving with an evolution surface employing a function that includes a flow 

term modeling a non-Lambertian color-consistency measure (discussed below) could 

represent a direction of future investigations. 

 

 
Figure 8.1 Detail of holes in the reconstructed surface, 

caused by grazing view angles 
    

 
Reconstruction of Non-Lambertian  
Scenes 
 
Currently we rely on the Lambertian assumption, commonly made in reconstruction 

algorithms, that simplifies the problem, but limits the class of scenes that can be 

reconstructed. However, real surfaces interact with light in complex ways, producing 

view-dependent effects such as specularities and reflections. Thus, more sophisticated 

modeling of the bidirectional reflectance distribution function (BRDFs) will be required 



 119 

to improve the flexibility of the reconstruction algorithm. Work on this problem has 

started to emerge in the literature [CarKut01, Chhabra01, Magda01, JSY03, YPW03, 

THS04].  

Issues that need to be further explored are handling general BRDFs, and possibly 

employing new cues, like orientation-consistency within the voxel coloring framework 

(the orientation-consistency cue introduced in [HerSei03] states that under orthographic 

projection and distant lighting, two surface points with the same surface normal and 

material exhibit the same radiance).  

    

 
GPU-based IBMR Pipeline 
 
Our IBMR system features mainly a CPU-based component encapsulating computer 

vision algorithms and a GPU-based component, enclosing computer graphics algorithms.  

An exciting area of investigation is the prospect of a full GPU-based reconstruction 

pipeline. Early work on efficiently mapping computer vision algorithms for a stereo pair 

of images to the GPU has been presented in [FMA04, FM05]. The sparse Levenberg-

Marquardt optimization requires solving repeatedly a sparse equation system. Recently,  

GPUs have been used for linear algebra, including programs for matrix multiplication 

[JH03], an iterative sparse system solver [BFGS03],  and a direct dense system solver 

[GGHM05]. 

Our system performs a serial update on the CPU due to the insert/delete operations 

required by the update of the dynamic surface voxel structure. However, dynamic 

complex data structures on the GPU are an area of active research, as they have 

applications in many computer graphics areas. In [LKH*04], [CHL04] the authors 

describe efficient GPU-based dynamic algorithms that use the CPU only as a memory 

manager. A system that builds on the work enumerated above would undoubtedly bring 

benefits to the field of IBMR. 
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