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Abstract

While both work with images, computer graphics @othputer vision are inverse
problems. Computer graphics starts traditionallythwinput geometric models and
produces image sequences. Computer vision statts imput image sequences and
produces geometric models. In the last few yedrsret has been a convergence of
research to bridge the gap between the two fields.

This convergence has produced a new field caliedge-based Rendering and
Modeling (IBMR). IBMR represents the effort of using theogeetric information
recovered from real images to generate new imaggstie hope that the synthesized
ones appear photorealistic, as well as reducinginieespent on model creation.

In this dissertation, the capturing, geometric ahdtometric aspects of an IBMR
system are studied. A versatile framework was ldgeel that enables the reconstruction
of scenes from images acquired with a handheldaligamera. The proposed system
targets applications in areas such as Computer i@@parid Virtual Reality, from a low-
cost perspective. In the spirit of IBMR, the humgperator is allowed to provide the
high-level information, while underlying algorithmare used to perform low-level
computational work. Conforming to the latest aretiitire trends, we propose a streaming

voxel carving method, allowing a fast GPU-baseagssing on commodity hardware.
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Chapter 1 Overview

1. 1 Introduction

The quest for visual fidelity has been the ultimabéve of computer
graphics, ever since its beginnings. In the ehanging landscape of computer
graphics systems, the last decade has seen thesigosicant transformation.
Previously, dedicated hardware for computer graplvas only available in
expensive workstations. Today, the vast majoritperfsonal computers include
high-performance graphics hardware as a standang@oent.

Consequently, the ubiquity of high performance wemd has spawn an
impressive growth of fields like computer gamegcsgl effects, virtual reality,
which in turn has triggered an insatiable demamdigual realism.

Image-based modeling and rendering (IBMR) has eetegs a field about
half a decade ago, as an alternative to traditigaametry-based techniques. Its

main purpose is to bridge the gap between compuregrhics and computer



vision in an effort to use real world images toateevisually compelling photo-
realistic images, while diminishing the time andodf needed to achieve this
goal. The technology became mature enough to suppocessful commercial
ventures, such as REALVIZ or 2D3 [Webl, Web2]. Hoere IBMR is still
primarily a privilege of research laboratories &ngh-end studios.

There is an increasing demand for flexibility inMR tools, to allow their
use under less restrictive conditions and minimezgert guidance. Novel
methods for acquiring, reconstruction, and repréisgrgeometries and images
are necessary in addition to new algorithms tccieffitly analyze and process
the input data.

In this context, the proposed research is focuseddeveloping new
techniques that will get us closer to the ultimgdal of a low-cost, interactive
tool allowing non-expert users to build their owrodels and utilize the
authored data for applications that simulate pla}sicteraction with the real
world. The system we designed to accomplish thial gwesents the IBMR
characteristic computer vision and computer grapbiements.

The computer vision component consists of a casefecalibration method
that relies only on information from an extendedqusce of images acquired
with a single digital camera.

The computer graphics component relies on a voa&elimg method for
achieving 3D reconstruction. Voxel carving techmisuhave become very
popular in the IBMR field, as they provide a powgrool for computing the
volumetric model of the scene. However, due torthgh computational costs
they are traditionally the main bottleneck in IBMdipelines, leading to a trade-
off between performance and accuracy.

These computational costs are tackled in this Wik two perspectives,
both of which embody the interactive character B¥MR. Our first approach
addresses the extended computational cost by yoealjusting the level of

detail. More specifically, our approach introdudbe novel feature of user-
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driven interactive refinement, resulting in a modetonstructed at varying
resolution -and hence level of detail- across tloxeV structure. Besides
processing speed, the development of this featrmativated by a second
factor: scalability over various environments.

For the second technique, we focused exclusivelyhernprocessing speed.
Here we have developed a GPU-based voxel carvirtbademotivated by the
rapid increase in the performance of graphics hardwompared to the CPU,
coupled with their recently exposed programmabiBgth have made graphics
hardware arguably today’s most powerful commodiynputational platform.
As such, the computational power of GPUs has beenelssed for demanding
tasks like ray tracing and photon-mapping, perfarmraditionally off-line on
the CPU. Moreover, GPUs have transcended the boesdaf computer
graphics and have been employed general-purposecomputing in a wide
variety of domains ranging from physically-basechidations to sparse matrix
multiplications techniques.

With our GPU-based work, we describe a method thatvides
interactive user involvement possibilities, andivd@k high performance and

flexibility, one that can be adapted for futuregrecs hardware.

1.2 3D Reconstruction Pipeline

The input to our system is a set of uncalibratedges of a scene acquired
with a single moving digital camera, so that wecheeperform self-calibration
prior to the 3D reconstruction in order to recotvlee camera intrinsic and
extrinsic parameters. The reconstruction pipelmeutlined in Figure 1.1. A
number of relevant points are selected manuallgt neference view, and then
their corresponding points are tracked throughbetsequence. These identified

correspondences are the only information from ireageeded to recover the
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position and orientation of the camera views. Witthie camera self-calibration
process, first the 3D structure of the tracked {oand the camera parameters
are retrieved in a projective frame through a rdnkerative factorization,
followed by an upgrade to Euclidean structure bgasing metric constraints on
the intrinsic camera parameters. Self-calibratisnconcluded by a sparse
Levenberg-Marquardt optimization, providing a madimlikelihood estimation
that minimizes the reprojection error with resptectll 3D points and camera
parameters.

The voxel-based 3D model building is achieved thloua Space
Carving method, also calledoxel carvingin the literature. Space Carving
approaches represent the space in which the soenesahrough a discretized
volume of voxels and make occupancy decisions alvbather voxels belong to
the objects in the scene. The decision mechanismists of a color similarity
check of the pixels a visible voxel projects orifbe resulting 3D shape is the
photo hul] the union of all possible photo-consistent sagmenstructions. We
have developed two voxel carving formulations: altmrasolution software

(CPU-based) implementation and a GPU based caerigme.

1.3 Contributions

This dissertation makes several contributions ¢oaiteas of computer vision
and computer graphics.

The thesis makes the following theoretical contidiu

» Quaternion-parameterized optimization of the metricsolution

Structure from motion (SFM) methods process images time, observing
spatial and temporal changes that are caused dyveemotion between camera

and scene. We have employed robust digital imageegsing and computer



vision techniques that allow the use of low-endugsition systems such as
standard photo or video cameras. Also, no infolonabout the camera nor the
scene is knowm priori and the only requirement regarding the sceneasith
will be assumed to be rigid.

Each step of the SFM analysis creates a more abstnd thus flexible
representation, but each of these steps oftendintes large errors and biases.
The different solutions are computationally expeasand noise sensitive, and
one of the goals of this work was to obtain moilelé methods based on a
combination of linear techniques and non-linearddeadjustment methods.

As such, we applied a linear stratified approach ctonpute the
parameters of the camera and achieve Euclideanraasedf-calibration. We
followed up this work by implementing a sparse Lewerg-Marquardt
optimization method with a quaternion-based paranetion of the camera
rotations. This final non-linear optimization preseis required in order to
reduce the reprojection error accounting for a#l tlon-linearities not recovered
in the metric solution.

Moreover, if a more complete camera intrinsic pagtars description is
required (e.g. adding the principal point) it cam mcorporated into the
optimization process as well.

This method brings computational and memory usagefits over the
general variant of the Levenberg-Marquardt algamitiy exploiting the sparse
nature of the problem and reducing the number oérall/ parameters,
respectively.

This dissertation also makes the following pra¢tooatributions:

Voxel carving:
The common characteristic for these approachesas they carve a
piece of voxelized virtual material that contaihg bject, similar to an artist

sculpting a raw block of marble. The voxel carvipigcess is based on the
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classification of thousands of discrete elementsdane space according to

photo-consistency within scene images, leading tgpecal trade-off between

performance and accuracy.

Feature tracking,
labeling*

l

Projective reconstruction

+

Upgrade to metric structure

\

Levenberg-Marquardt refinement

3D model huilding/
Voxel canving

Corresponding points

Camera self- callbratmn

Projective 3D structure

Metric 3D structure

Optimized metric 3D structure

Scene reconstmctmn

(Multi-resoluti nn“}
3D voxel model

Figure 1.1 3D reconstruction pipeline.
* Labeling and multi-resolution reconstruction peain to the CPU-based
implementation

It is important to note here that this work focusasuniformly lit scenes,

therefore operates under the Lambertian assumpiitos reconstruction of non-

Lambertian scenes is an exciting area of futureareh described in more detalil

in Chapter 8, § 8.2.



= Multi-resolution voxel carving

Our initial approach addressed the extended coripoéh cost by
locally adjusting the level of detail [BriO4a, B4iB]. Since perceptual
importance is ultimately determined by the humaridia we have developed a
multi-resolution approach that allows users tocalely control the complexity
of different surface regions, while requiring ontpmmon image editing
operations. An initial reconstruction at coarseola$on is followed by an
iterative refining of the surface areas correspogdo the selected regions.

= Voxel carving on the graphics processing unit

We have developed a streaming, GPU-based voxelingamwethod,
tackling the aforementioned computational costsh@ context of the latest
graphics hardware trends. The bandwidth efficigarving enginehighlighted
the importance of both the CPU and GPU to workadncert to carry out the
given task. The philosophy behind this research twagartition the problem
domain based on which computational components Wweteer suited to each
processor type while being mindful of the cost ofiter-processor
communication. Unlike previous approaches [LiIMSO0/HeKoch04, ZacKar04]
our method creates an explicit volume that can lbelified interactively and
eliminates the 3D texture inherent drawbacks byleypg only surface voxels
in a two-dimensional data representation that nest¢he two-dimensional data
layout on the GPU.

= A complete system for acquisitiorof metric 3D surface models from

uncalibrated image sequences

The self-calibration and reconstruction techniquentioned earlier were
incorporated into this system allowing for grea&xfbility in the acquisition of
3D models from images [Bri03, Briwhe04, BBS*04]. ®ar knowledge, this is
the first system to integrate unconstrained stnecktom motion, self-calibration

and GPU-based voxel reconstruction algorithms. Tombination results in
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highly realistic 3D surface models obtained fromages taken with an
uncalibrated hand-held camera, without restrictmm zoom or focus, and

confers real-time characteristics to the 3D regoesibn process.

1.4 A Note on the CPU-based,
Hardware Accelerated and GPU-
based Paradigms

We provide in the following a brief consideratiohtloe above concepts,
in the order corresponding to the evolvement of pot@r graphics.

“CPU-based” applications, also called “softwaredatisn the literature,
are processed entirely on the CPU, and thereforexatoemploy graphics
hardware acceleration or computation.

It is especially important to emphasize the digtonc between the
“hardware accelerated” and “GPU-based” conceptse Térmer refers to
employing graphics hardware exclusively for graphpgrocessing purposes,
while other generic operations are performed on @J, in a sequential
manner. “GPU-based” on the other hand, refers npl@ying graphics
hardware to process such general operations, iti@udo processing graphics

primitives.

1.5 Outline

We begin in Chapter 2 with a background discussianstructure from
motion, volumetric reconstruction, and modern paogmable graphics

hardware.



Chapter 3 deals with the self-calibration of a Engoving camera. After
introducing several theoretical derivations, a ifdx calibration method is
presented that can deal with unknown motion andingrintrinsic camera
parameters. Then, we present the formulation of ltheenberg-Marquardt
optimization technique we have developed.

We examine the theoretical foundations of Spacei@grand describe our
CPU-based implementation of a voxel carving algoniin Chapter 4. Chapter 5
is concerned with programmable graphics hardwarencejats and
characteristics. We describe the stream programmidgel and then present the
abstraction of the programmable graphics processarstream processor.

We continue with the description of our streamingel carving method on
the graphics processing unit in Chapter 6. In Graptresults and applications
of the system are presented. The flexibility angl potential of our approach is
shown in several examples. Finally, we suggestsaoéduture research, and
present the conclusions of our work in Chapter 8.

Throughout this dissertation the words ‘metric’ aBdclidean’ will be used

interchangeably.



Chapter 2 Related Work

Introduction

Previous work related to the work in this disséotafalls into three categories. First,
structures from motion approaches have providedbtses for our camera calibration
method. Second, our 3D reconstruction approachnsld@o the generic framework of
volumetric techniques, and more specifically to eloxarving techniques. Finally,
previous work involving programmability in graphibsrdware has inspired the GPU-
based features of the implementation describelisndissertation.

2.1 Structure from Motion

Structure from motiormethods seek to determine the relative motion ofoaing
camera from the acquired image sequence, as wdheashape, ostructure of the

observed objects. No information about the camethescene is knowa priori and the
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only requirement regarding the scene is that it @ assumed to be rigid. Quite an
impressive amoundf research has appeared in the literature ontateiérom motion.
We focus here on methods designed for full perspe¢projective) cameras, arbitrary
motion (equivalent to arbitrarily placed cameragjfic scene, small baseline of the views

and 3D model synthesis.

2.1.1 Camera Self-calibration

Self-calibration is the computation of metric prdps of the cameras and/or scene
from a set of uncalibrated images. Unlike converdlocalibration, where these
properties are determined from the image of a knoalibration grid, self-calibration
computes them directly from constraints on thdnstc/extrinsic parameters.

Earlier reconstruction methods either worked dolythe minimal number of views
(typically two), or singled out a few ‘privileged/iiews for initialization before being
extended to the multi-view case [Hartley93, McLauBk]. Shashua was the first to
extend the two-image epipolar constraint to antedir constraint between matching points
in three images [Shashua95]. Hartley [Hartley94lapweed that this constraint also
applies to lines in three images, and Triggs [T8&#ftp, 95b] studied the constraints for
lines and points in any number of images.

For robustness and accuracy, there was a needeftrods that uniformly take into
account all the data in all the images, withowirg) on privileged features or images for
initialization. The early factorization methodseveloped by Tomasi and Kanade
[TomKan92] for orthographic views and extended loglman and Kanade [PoeKan97]
to weak perspective views partially fulfill theseguirements, but they only apply when
cameras are viewing small, distant scenes, whigleldom the case in practice. Triggs
presented a key aspect in [Triggs96], namely thajeptive reconstruction is essentially
a matter of recovering a coherent setpobjective depths projective scale factors
representing the depth information lost during isnagojection.

The projective factorization method proposed bydsipresents two key attractions:

11



* No initialization is required
» All of the data in all of the images is treatedfarmly - there is no need to single

out ‘privileged’ features or images

When nothing is known about the camera intrinsicapeeters, the extrinsic
parameters or the object, it is only possible tmpote a reconstruction up to an unknown
projective transformation (projective ambiguity)diley94b]. The upgrade to Euclidean
reconstruction requires some additional informatatout either camera or object, in
order to be mathematically tractable. Since sudbrimmation is not available, some
assumptions need to be made, translating into i@nts imposed on the camera views

The earlier studies of self-calibration assumed nomkn, but constant camera
parameters [HeyAst96]. This has the disadvantage zboming/focusing is prohibited.
However, in the last decade there has been signtfiprogress in the case of varying
intrinsic parameters. Pollefeys and Van Gool [Pd#@pproposed a stratified approach
for the case of varying focal length, which regsira pure translation motion for
initialization.  Triggs [Triggs97] introduced theomcept of absolute quadric and
proposed a self-calibration method which reliest®mvariant properties. Pollefeys et al.
[PKG98] have shown that the absence of skew al@sefficient for self-calibration and
proposed a flexible method based on Trigg's concegtich can deal with various
constraints, but needs an initialization and isé&iatowards the first view in the image
sequence. Heyden and Astrom [HeyAst99] proved $kHtcalibration can be achieved
when only the aspect ratio was known and no skew present (i.e. the sensor pixels
have rectangular form).

The work presented in this dissertation is similarthe method presented in
[HanKan00], which is computationally equivalent necovering the absolute quadric.
Their representation is explicit in the motion paeders (rotation axes and translation

vectors) and enables the geometric constrainte twakurally enforced.
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2.1.2 Bundle Adjustment

Bundle adjustment was employed initially in photogmetry estimation
problems [Sla80] and became gradually the technadfuaoice for structure and motion
refinement in computer vision.

The groundwork for this transition was laid by tikey [Hartley93]. Earlier
structure from motion approaches required extreorapuitational accuracy and were
difficult to work with for more than three or fourews, because the number of solutions
presented an exponential growth in the number evsi[Luong92, MayFau92]. Hartley
proposed an efficient solution based on a variathe Levenberg-Marquardt algorithm,
applicable to a large number of views. Building the sparse block structure of the
normal equations, Hartley presented his methodvim flavors: as a direct Euclidean
reconstruction iterative method, and as a bundlestdent intermediary refinement step
for projective reconstruction followed by Euclideapgrade. Since then, variations of
Hartley's sparse bundle adjustment approach werguéntly employed both as an
intermediary and as a final optimization step ia literature.

Fitzgibbon and Zisserman [FitZis98] developed astamy that employs a
hierarchical strategy starting with image tripletggistered to sub-sequences and
eventually to long open or closed sequences, witidle adjustment applied after each of
these processing stages.

Zhang and Shan [ZhaSha01l] also employed trip&t/sj but in a sliding window
format and formulated the refinement problem aerees oflocal bundle adjustments in
such a way that the estimated parameters are temséross the whole sequence.

Sainz [Sainz03] proposed a system that processétga number of views
simultaneously through projective factorization flf@n00] and refined the structure
prior to the Euclidean upgrade.

Pollefeys et al. [PGV*04] presented a reconstarc8ystem from a sequence of
uncalibrated images where the 3D structure retrie/anitiated with two views in a
projective framework. The remaining views are ipmated sequentially in the process

and the obtained structure and motion are thenedfthrough bundle adjustment.
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Lourakis provided in [LouArg04] an implementatiomith a detailed design
description of Hartley’s sparse bundle adjustmesithod [Hartley93].

Our work is similar to the approach presentedSaifz03], in that it follows the
projective factorization method in [HanKan00] amgbles a sparse LM optimization;
however, our method differs by using a quaterniasddl parameterization in order to
recover the camera rotation matrices.

Among the various ways to represent rotation, wention here Euler angles,
orthonormal matrices, and Hamilton's quaterniorfh@se representations, orthonormal
matrices have been used most often in photogramnaetd vision. The quaternion
formulation, however, presents a number of advastaBesides the reduced number of
necessary parameters, it is much simpler to enftreeunit magnitude constraint for
guaternions than it is to ensure that a matrixtisamormal.

The application of quaternions in stereo photognatny was pioneered by Schut
[Schut59] and Thompson [Thompson59], who recovehedrelative orientation of two
coordinate systems with the help of three given room points. Horn developed a
closed-form solution for more than three points [Horn87] and later introduced
guaternions to vision applications presenting amative scheme for recovering the
relative orientation of two calibrated cameras [i#81), 91].

Further research work explored most notably stesgstems with either pre-
calibrated cameras, or calibrated through tradaionethods during processing [Chou94,
BacKam97, ZPA03]. Relative to these quaternion-thaggproaches, our method differs

by using uncalibrated cameras and solving simuttaslg for a large number of views.

2.2 VVolumetric Reconstruction

All volumetric reconstruction algorithms assumeisceete and bounded 3D space
containing the scene to be reconstructed. Typic#tky initial reconstruction volume is
divided into voxels and the task is to correctlysslify the set of voxels that represent the

different objects contained in the scene.
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All these algorithms require a set of calibrateguinimages, and some of the
approaches require additional classification of piresls in background/foreground. A
common assumption is that the objects containdtienscene are Lambertian or nearly
Lambertian, so they reflect light equally in allrefitions. The following subsections
present a review of some of the most significantthogs based on volumetric

reconstruction.

2.2.1 Volumetric Intersection

Volumetric intersection algorithms reconstruct gwface and interior space of an
object using its silhouettes from the differenterehce views. The process is performed
by tracing rays from the center of projection ofle@amera through the contour of the
object projection in the corresponding image plare resulting bounding volume is the
reconstructed scene.

The earliest attempts at volumetric model recoesttn from images were
approximating thevisual hull of the objects [Laurentini 94]. Such techniques also
referred to ashape-from-silhouetten the literature. The intersection of the geneeal
cones associated with a set of cameras definesumgoof space in which the object is
guaranteed to lie. The visual hull is guaranteeendose the actual object. However, the
volume only approximates the true 3D shape, depgnain the number of views and the
complexity of the object. Consequently, the accyrat the reconstruction increases
monotonically with the number of views.

Matusik et al. [MBR*00] describe an efficient real-time image-bas&pproach to
compute and shade visual hulls from silhouette endgta. They use an ingenious
traversing of pixels between camera images to #oact models. Taking advantage of
epipolar geometry and incremental computation thelyieve a constant rendering cost
per rendered pixel. In a later work [MBMO1], thexeaauthors present new algorithms
for creating and rendering visual hulls in realginwhere an exact polyhedral

representation for the visual hull is computedalyefrom the silhouettes.
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Other recent real-time systems employing hardweacelarated techniques: Lok
presents [Lok 01] a system that renders a setawfesl to generate novel views of visual
hulls, and Li et al [LiIMS03a] rasterize generalizeashes with projective texturing to
achieve real-time rendering frame rates.

Volumetric intersection methods are fast and simgdigorithms but effective at
reconstructing multi-view scenes. However, theherent limitation is that they fail to

recover concave regions that are not visible irstt®uette of the reference images.

2.2.2 Voxel Carving

Voxel carving methods have proven to be a strong alternativeraditional
correspondence-based methods due to their flewidaility models and explicit
handling of occlusions.

Traditional reconstruction methods are using imageching techniques, such as
multi-view stereo methods that compute correspocel@tross images and then recover
3D structure by triangulation and surface fittingThese approaches are especially
effective with short video sequences, where tragkitechniques simplify the

correspondence problem. Some of the shortcomingsese methods are:

 small baseline (i.e. views must be close togetlsr)that correspondence
techniques are effective

* many partial models must often be computed wittpees to a set of base
viewpoints, and these surface patches must théaded into a single, consistent
model

» if sparse features are used, a parameterized surfadel must be fitted to the 3D
points to obtain the final dense surface reconstmc

» there is no explicit handling of occlusion diffeces between views
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Volumetric methods avoid the listed disadvantaggsrdplacing the image-based
search problem used in the above approaches withreg-dimensional space-based
search.

We can distinguish three main voxel carving implatagon types, corresponding
historically to the processing trends in computeapbics: CPU-based, hardware
accelerated and GPU-based (please view note paigat9).

Our voxel carving related work consists of two tagles that fall into the CPU-
based and GPU-based categories, respectively. bpweifically, we have developed a
CPU-based multi-resolution voxel carving method an@PU-based carving engine. In
this context, we first relate our multi-resolutiapproach to other CPU-based methods,

and then we position the carving engine relativeravious GPU-based research.

CPU-based Voxel Carving

Seitz and Dyer [SeiDye97] demonstrated that a @dlscene (assuming Lambertian
illumination) could be reconstructed using full @ebased consistency alone, without
volume intersection. They introduced with tM®xel Coloring algorithm thecolor
consistency criteriorto distinguish points belonging to the object aoef from other
points in a scene. The Voxel Coloring algorithmibhegvith a reconstruction volume of
initially opaque voxels that contains the scenbdaeconstructed. As the algorithm runs,
opaque voxels are tested for color consistencytlaose that are found to be inconsistent
are carved, i.e. made transparent. The algoritlopsstvhen all the remaining opaque
voxels are color consistent.

The voxels need to be traversed in a monotonicrofde a correct visibility
handling. To simplify the voxel visibility computah and to allow reconstruction in a
single scan of the voxels, Seitz and Dyer imposedrdinal visibility constrainton the
camera locations. The constraint implies howeviemaation : since the voxels have to
be visited in a single scan in near-to-far orddatiee to every camera, the cameras
cannot surround the scene, so that surfaces teatarvisible in any image cannot be

reconstructed.
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The Space Carvingalgorithm developed by Kutulakos and Seitz [KueSgi
achieves the goal of allowing arbitrary camera @taent. Unlike Voxel Coloring, Space
Carving evaluates one plane of voxels at a timegusultiple scans, typically along the
positive and negative directions of each of thed¢haxes. The scans are performed in
near-to-far order relative to the cameras, by usinly views behind the scanning plane
(Figure 2.1).
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Figure 2.1 Only cameras behind thesweeping plane are usec
for photo-consistency check

Thus, when a voxel is evaluated, its visibilityakeady known relative to other
voxels that might occlude it from the current camaé&pace Carving never carves voxels
it shouldn’t, but it is likely to produce a moddiat includes some color-inconsistent
voxels. This is because cameras that are aheadeasdanning plane are not used for
consistency checking, even when the voxels beingclad are visible from those
cameras. Hence, the color consistency of a voxehigeneral, never checked over the
entire set of images from which it is visible. (&tdr paper, [Kutulakos 00b], describes
additional book keeping that eliminates this shmrtmng).

Culbertson et al. [CMS99] developed the Generalizedel Coloring (GVC), that
obtains a color consistent model by computing Wuigb exactly. They provide
experimental results that show that exact visipilithen compared with the approximate
visibility computed by Space Carving, can resulbétter looking reconstructions that are

numerically more consistent with the input imagBso variants of the algorithm, called
18



GVC-IB and GVC-LDI, have been developed. They udker@nt data structures, called
item buffers (IBs) and layered depth images (LDis)compute the visibility of voxels.
An item buffer records for every pixel in an imagjee surface voxel that is visible from
the pixel. An LDI records for every pixel in an ige a depth-sorted list of all surface
voxels that project to the pixel. The informationan LDI is a superset of the information
in an item buffer and generally consumes considgrabre memory.

The GVC-IB variant of the voxel coloring algorithires at the core of our multi-
resolution carving method. However, our approadioduces the novel feature of user-
driven interactive refinement, resulting in a modestonstructed at varying resolution -
and hence level of detail- across the voxel strectlihe development of this feature is
motivated by two factors: processing speed andibidy over various environments.

First, voxel carving is a computationally expenspmcedure, which typically
requires at least tens of seconds up to tens ofitesnto compute the reconstruction,
implying a trade-off between processing speed acdracy. Prock and Dyer [ProDye98]
utilize a hierachical octree representation to dpgevoxel coloring. Their method starts

with a low resolution voxel structure, refined fugt to higher resolutions. Their method

needs approximately 15 s to generate a reconsiruetith 256° voxels. Unlike Prock
and Dyer’s approach, our method does not processritire model at uniform resolution,
but introduces a perceptual saliency componentderao represent the information in a
hierarchical order similar to that the human peregi

Second, the delivery and rendering of 3D contenerodifferent types of
connections to clients with various graphics calads requires scalable 3D models that
can be approximated through representations ofngugomplexity. However, automatic
simplification algorithms generate approximatiorigatt do not preserve the visual
appearance of the original model in certain caSesexample, features such as eyes in a
face are semantically crucial, but geometricallyabm Kho and Garland [KhoGar03]
developed a human-guided simplification method whiye user can guide the vertex
placement of a 3D model by directly interactinghatite underlying algorithm.

The multi-resolution method developed for our feavork relies similarly on the
human factor to assign perceptual significance élecsed features. Only simple 2D
image editing operations are required to manipufaégecomplexity of different surface
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regions. Seitz and Kutulakos [SeiKut98] presented image editing approach for
multiple images of a scene. However, their methodu$es on modifying and
propagating changes to input images, rather thavalel structure. The voxel model is
used only as a proxy for these modifications, withits structure being altered.

In the following we mention several extensiond anprovements that have been
investigated in recent years. For a detailed reviensuggest [SCM*01].

Eisert et. al [ESG99] proposed thaulti-hypothesis voxel coloringechnique. A
hypothesiss a possible coloring of a voxel. Their approaduyibs with ahypothesis
assignmenstep that identifies a set of hypotheses for eawtelv The algorithm then
narrows down the hypotheses during hgpothesis removalstep, which carves
inconsistent voxels. Slabaugh [SlabaughOOb] presantolumetric optimization using
greedy and simulated annealing methods to refiagdgbonstruction. While the previous
algorithms assumed opaque object voxels,Rbrelsalgorithm [DebVio99] attempts to
reconstruct semi-transparent voxels.

All Space Carving approaches listed above neednihg of accurately calibrated
cameras. Thé&pproximate Space Carvingas defined later by Kutulakos [Kutulakos00]
as an extension to the original algorithm whichapable of handling calibration errors.

Slabaugh [SMCO00a] developed a method that warpvalkel space so that large
scale scenes can be modeled without an excessivianuof voxels (e.g. outdoors
scenes). Vedula [VBS*00] presents a voxel colonngthod that reconstructs a time-
varying scene by linking two time-consecutive 3@xe&l spaces together, forming a 6D
space. TheCell Carving algorithm developed by Ziegler et al. [ZMP*03] sse
correspondence between arbitrary image regions nable the reconstruction of

concavities that are difficult or impossible togastruct with other methods.

GPU-based Voxel Carving

While we focus in the following on GPU-based reskawe also mention here

briefly the preceding and rapidly superseded harevaacelerated work.
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Culbertson has pointed out in [Culbertson99] thespulity to perform hardware
acceleration on voxel carving approaches. Saird.g6BS02] present a fast hardware
accelerated Space Carving method that uses taxiapping features of the graphic card.
Their design is optimized further by the use of @ctree structure and adaptive
subdivision methods to keep track of the set ofstant voxels throughout the carving
process. The authors do not provide a CPU/hardeeceleration speedup comparison,
but they did not report interactive or real-timanfrerates.

With the advent of programmable graphics hardwst@A*03], the research efforts
shifted towards GPU-based processing. Li et alpgsed initially a GPU-based method
to render visual hulls in [LMS03b, LMS03a], follodidy a voxel-based approach that
retrieves the photo-hull of a shape [LIMS04]. Byopting a view-dependent plane-
sweeping strategy, they achieve rendering framesraf 2-3 frames per second. A
drawback of this approach is that since no bramchupport was available at that time,
photo-consistency check is performed on each fragmegardless whether it was
rejected or not by the silhouette/background #lso, their method produces no explicit
volume, since rendering and reconstruction are aoedhkinto a single step.

Woetzel and Koch proposed a live system for imagetwing and dense depth
estimation in [WoeKoch04]. Their plane-sweep altjon runs almost entirely on the
GPU, leaving the main CPU free for other tasks saglmage capture and higher level
recognition. Dense depth maps are computed witto % frames per second; however,
their system is limited to only four camera views.

Zach and Karner [ZachO4] describe hardware acdekbréechniques for two
scenarios: Voxel Coloring and Space Carving. Timeplementation runs entirely on the
GPU, with the exception of the latter, when they performing independent sweeps and
no prior information is used in the current sweepthis specific case, the intersection of
the obtained voxel models is performed on the CPhé first one doesn’t produce an
explicit volume, the second one does but at theees® of using two 3D textures
simultaneously — one for the current, one for trec@dent model — that are interesected
at each main iteration. Besides the doubled memangumption, the performance of the
implementation is affected by the continuous accéss 3D texture. The authors report

interactive framerates for 256 x 256 x 128 scenebiesolution.
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We have developed a streaming GPU-based voxelngamiethod, tackling the
aforementioned computational costs of voxel carinthe context of the latest graphics
hardware trends. Unlike previous approaches [LiMS®&eKoch04, ZacKar04] our
method doesn’t sacrifice interactivity for speeckating an explicit volume that can be
modified interactively and avoids the 3D texturbarent drawbacks (continuous access,
using two 3D textures simultaneously) by employogy surface voxels in a GPU-
optimal two-dimensional data representation. Moegpwur bandwidth efficient method
is the first to minimize the GPU-CPU data transénploying a form of effective load
balancing and combining the optimal features ohlgoPU and GPU while being mindful

of the cost of inter-processor communication.

2.3 Graphics Hardware and
Programmability

The graphics pipeline was historically a fixed-ftioo pipeline, where the limited
number of operations available at each stage ofjthghics pipeline was hardwired for
specific tasks.

One of the earliest efforts toward formalizing aognammable framework for
graphics was Rob Cook’s seminal work on shade {@esk84], which generalized the
wide variety of shading and texturing models at tinge into an abstract model. He
provided a set of basic operations which could thined into shaders of arbitrary
complexity. His work was the basis of today’s shadilanguages, which in turn
contributed ideas to the widely-used RenderMan isigddnguage [Upstill90].

RenderMan’s success demonstrated the bewéfimore flexible operations,
particularly in the areas of lighting and shadilgstead of limiting lighting and shading
operations to a few fixed functions, RenderMan eatdd a user-defined shader program
on each primitive, with impressive visual results.

Over the past few years, graphic cards vendors tramsformed the fixed-function
pipeline into a more flexible programmable pipelifiéghis effort has been primarily

concentrated on two stages of the graphics pipetlree vertex stage and the fragment
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stage. In the programmable pipeline, the fixed-fiomcoperations are replaced with a
user-definedvertex programand a user-defineffagment programrespectively. Each
new generation of GPUs has exposed additionaldesfgbrogrammability, precision and
functionality of these two programmable stages.

The vital step for enabling not only graphics-specibut alsogeneral-purpose
computation on the graphics processing unit (GPGRBS the introduction of fully
programmable hardware and an assembly languagsp@mifying programs to run on
each vertex [LKMO1] or fragment. The raw speediitasy from an abundant parallelism
and rapidly expanding programmability of the graghhardware make it an attractive
platform for general-purpose computation. Howevernessing the power of the GPU
goes well beyond simply “porting” applications frothe CPU, due to its dissimilar
programming model (the GPU-characteristic streamnmagramming model is detailed in
Chapter 5).

A significant boost was gained from the appearaoichigh level languages to
support the new programmability of the vertex anelppipelines [MGA*03, BFH*04].
An active, vibrant community of GPGPU developers baerged [Web3] and quite an
impressive amount of research has appeared alnedldy literature.

GPGPU applications range from computer graphicegs®es such as ray tracing
[Purcell04], photon-mapping [PDC*03, LarChr04], libn detection [GLMO5] to
numeric computing operations such as dense andsesparatrix multiplications
[KruWes03], physically-based simulations [HarrisQ@&W*05] and computer vision
[FunMan04], to name only a few. For an excellentaw we suggest [OLG*05].

Kipfer, Segal and Westermann presented a vers@tié)-based particle system
engine [KSWO04]. They have efficiently implemented the GPU algorithms used for
particle manipulations, i.e. inter-particle coltiss and visibility sorting algorithms. The
analogy between the constant update and handlirglafge number of primitives in a
particle system and in a voxel carving applicatitas inspired the GPU-based work
presented in this dissertation. Also, our impleragah capitalizes on recent GPU
features that allow graphics memory objects toréatéd as vertex data, texture or render
target. [ARBO3, NVO04].
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Conclusion

The surveyed structure from motion approaches akpen one way or the other,
recovering some kind of geometric structure of stene. Original attempts of self-
calibration have yielded successful examples oatyspecial cases. For general cases,
new algorithms needed to be developed that outpplicéd Euclidean structures from
uncalibrated images.

Also, a review of the different volumetric methdds scene reconstruction froi
views has been presented, with a focus on the yashimethods based on space carving
and color consistency. Finally, we presented ahgcaphardware evolvement timeline,

from the fixed to the modern flexible programmapleeline.
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Chapter 3 Camera Calibration

Introduction

Generally speaking, 3D reconstruction can be ddfia® the problem of using 2D
measurements arising from a set of images of aesa@ming to derive information
related to the 3D scene geometry as well as tlagivelmotion and the characteristics of
the cameras employed to acquire these images.

Original results on this area come from researcirerthe computer vision field,
however, recent interest on the problem was rdigeduse of the implicit applications in
building 3D models for virtual and augmented rgabt other interactive applications.
Also, in the film and multimedia field, there haselm an increased demand for computer-
graphics based special effects consisting of theabamation of 2D digital image
sequences with 3D computer graphics that requirpedect synchronization only
obtained with a calibration procedure. The commemnodninator of all these applications
is that they require an accurate 3D scene recartginufrom the 2D source images.

The traditional way of performing such a calibratjorocess is to use special setups
and hardware devices in a controlled environmenmtunt and move the cameras

around. Moreover, expert knowledge is requiredrdeoto operate such systems.
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Since we aim to achieve a flexible, low-cost santioperated by non-expert users,
we will focus on the use of off-the-shelf devicesmely single digital still cameras.
Additionally, we will assume that no prior knowlexlgf the camera or its relative motion
in the scene is known. Therefore, the -calibratiomcess is based entirely on
measurements taken from the input images.

We conclude this chapter with the description gparse variant of the Levenberg-
Marquardt algorithm we have implemented to effideminimize the reprojection error
between the observed and predicted image pointls,thié purpose of producing optimal

estimates with respect to both 3D structure andivig parameters.

Structure from motion

Structure From Motior(SFM) refers to the problem of recovering the 3@icure
and motion of a scene from its two-dimensional getipn onto the image plane of a
moving camera. No information about the cameréerscene is known a-priori and the
only assumption made is that the scene is reqtorée rigid.

The SFM analysis is based on preprocessing theoketeference views to
consistently extract and label 2D salient pointthescene. These points can be detected
automatically or manually on each image and then@ated with their correspondents in
the other images.

We can distinguish two main correspondence methaefsending on the number of
points tracked along the image sequence. T$pe;secorrespondence methods evaluate
a small set of points, whildensecorrespondence methods evaluate all the pixeflsan
sequence. The latter methods are based on detagrime optical flow between frames,
which limits the baseline or distance between eafhrence image. Moreover, it is
argued in [BFA98] that the determination of theicgdtflow is an ill-posed problem due
to inherent differences between 2-D motion field artensity variations. It is reflected in
[Chen00] that none of the optical flow based teghas produce low error and high
density correspondences in all testing cases.

The presented work and the reviewed literature desuwon sparse correspondence
methods such as the ones presented in [HanKar@i@gn00], [PKG99], [Triggs96].
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The fundamentals of epipolar and projective geoyneis well as related notions are
covered in [Pollefeys00a] and [HarZis00]. Furtherem@ good review of projective and

Euclidean reconstruction can be found in [Triggs®&d [Fusiello00], respectively.

3.1 Camera Geometry

This section briefly describes tipenhole cameramodel, perhaps the most widely
used in computer vision to model the imaging pred¢€sgure 3.1). In general, a pinhole
camera projects a 3D world point with the homogeseocoordinates
M =[X,Y, Z1] onto an image poinin =[x, y,1]', where a line joining the poir¥l to
the centre of projection intersects the image plahe world coordinates of the 3D point
and its image coordinates are related by:

X
Aly|=P (3.1), whereA is an arbitrary scale factor, amlis a 3x4 matrix,
1

P N < x

called theprojective camera matrpor simplycamera matrix

A
Y
oV
C <
- principal
f axis

image plane

Figure 3.1 The pinhole camera model [HarZis00]
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The projective matrixP is effectively modelling the camera, containingthbdats

intrinsic and extrinsic parameterB. can be decomposed as [HarZis00]:

P=K[R|{] (3.2),
where:

- Rt - are the rotation and translation from the wactbrdinate system to the

camera coordinate system, representingitensic camera parameters

- K is the calibration matrix, encoding thgrinsic camera parameters

fo. s 4
K=10 af, v |(33)
0 0 1

where:

f.=-tk,, f,=-fk, are the focal lengths in horizontal and verticakefs,
respectively (f is the focal length in mm, whilk, and k, are the effective number of

pixels/mm along thex and y axes)

s is theskew parameterwhich is considered 0 for most cameras
a is the aspect ratio, which is considered 1 fortroameras

U,, v, are the coordinates of th®incipal point given by the intersection of the

optical axes with the image plane (fig. 3.1) arelworld reference frame.

3.2 Conics and Quadrics

The self-calibration method employed in our workbased on the recovery of the
absolute quadric In the following, we present the geometric easitiand derive the

equations underlying this processing step.
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The absolute conicQ_ is a pure imaginary point conic situated on thangl at
infinity 7z, (the plane at infinity has in a metric frame thanenical form

, =(0,0,0,1) [Pollefeys00a]). A key property of the absolutmic is that it is fixed

under any Euclidean transformation [Triggs97, Hs0g.
The absolute conic projects in the camera viewthéomage of the absolute conic
which is also an imaginary point conic (Figure 3.3), depbeg only on the intrinsic

parameters of the camera:

w=(KK")" (3.4)

Figure 3.2 The absolute conid),, and the absolute dual quadricQ" situated on the
plane at infinity 77, in 3D space [Pollefeys00a]

We also define theéual image of the absolute conic (DIA@)hich is a line conic

(i.e. consisting of the lines tangent to ) as [HarZis00]:

@’ =@t =KK" (3.5)

The equation above is one of the most importaselficalibration and it shows that

oncew or @ is identified, then K can be also determined bygodeposition (e.g.

Cholesky factorization).

29



L L
Thpan”™

Figure 3.3. The image of the absolute conic (lefand the dual image of
the absolute conic (right) [Pollefeys00a]

The absolute dual quadri®@" (or shortly theabsolute quadrigis the dual of the
absolute conic and is a degenerate dual quad@esipace [HarZis00]. Geometrically, it

consists of the planes tangent®q (Figure 3.2) and its projection in the image plae

w'. Q" gives a concise way to compute the calibratiorupaters , since it's encoding
both the plane at infinityz, and the absolute con@_, and it projects to the dual image

of the absolute conic, so that :

w'=PQ"P" (3.6)

The absolute quadric is invariant under all Eudiddransformations, so that its
relative position to a moving camera is constamta(isimilar way we perceive the very
distant objects as being fixed, for example a pedrving on a road and observing the
moon, will have the impression that the moon ifeing him).

If a projective reconstructio® was retrieved fon camera views, the next step is
to determine the intrinsic camera parameters thraalf-calibration and to achieve a
metric reconstruction.

In a metric frame, the absolute quadric’s canonicah is a 4x4 symmetric matrix
of rank 3:

30



O 7 — |3X3 0
Q"= _( J oj (3.7)

where,,, is the 3x3 identity matrix.

In a projective frame, the absolute quadric isralleoy a projective transformatiéh:
Q" - HQ"H" (3.8)

Therefore, onceQ” has been determined, the rectifying transformatian be easily
computed by decomposing it as:

QU=HIHT (3.9)

H upgrades the projective matrices to metric ones :

P" = PH, such that a 3D poink" from the Euclidean world frame is projected to the

image pointsx = P" X" in each view.

3.3 Camera Self-calibration

We now tackle the 3D motion and structure detertionausing a two-step stratified
progression. As a pre-processing step we divide dbmplete sequence into sub-
sequences, enforcing a common frame for consecfrigenents in order to increase the
robustness of reconstruction [Sainz03]. In eaclthete subsequences we will use the
aforementioned stratified approach to recover loathhera and scene structure similar to
methods presented in [Pollefeys99, HanKan00].
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Figure 3.4: The absolute conic and its projectiomi the images
[Pollefeys00a]

First, an initial projective reconstruction is abtd, which is computed from the set
of correspondences. Then, depending on assumpti@amslating to constraints an
upgrade to metric structure is computed. One adgantf the presented approach is that
it allows recovery of a Euclidean reconstructiontie scene without relying on any
initial solution, which is one of the drawbacks wiost existing methods. Another
important feature is that the entire calibratiomgass relies on solving linear systems
using Singular Value Decomposition.

When the different subsequences have been suckgssélibrated, a merging

process groups them into a single set of camesezmonstructed features of the scene.
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3.3.1 Projective Reconstruction

Given n distinct camera views of object points represented by homogeneous

coordinateg;, j =1..m, the task is to compute their 3D their projecsueicture.

Under the pinhole camera model assumption (8 8&)projective mapping between

a 3D world pointx; and its 2D projection in imagds, , v, ) is given by:

V. |~ Px. , which holds only up to a constant factor.

Writing this factor explicitely, we have:
u;

A1V |[=RX (3.10), wherel, are non-zero scale factors calfgojectivedepths

We may stack the above equation forperspective cameras amd object points,
obtaining the equivalent matrix:

I _ull_ I ]m__
/]11 Vll /]In V]m
|1 1] R
W, = : : : = | |[%..%,] = PX (3.11)
_unl_ I nm_ Pn
Anl an Anm Vnm
_1_ - -
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where:

W, is the 3nx mscaled measurement matrix

P is the3nx 4 perspective matrix

X is the4xm shape matrix.

W, should have rank-4 matrix (since it's the prodofdiwo matrices with 4 columns

and rows, respectively), so that a rank-4 facttiomaof it produces a projective
reconstruction of the points. However, in realdyge to noise and measurement errors its
rank will be different and the rank-4 constrains @ be enforced.

On the other hand, equation (3.11) holds only & torrect scale factord, are
applied to each of the measured poixts In order to fulfil both requirements, a rank-4

factorization needs to be applied &, until the recovered projective depths make

equation (3.11) consistent.
There exist different approaches [StuTri96, TriggsBlanKan00] to construct an

iterative algorithm that converges to a rank-4 deoosition of the measurement

matrixW,. A popular example of the factorization strateggutlined below:

1. Initialize A, =1 for i=1...n and j=1...m

2. Compute the current scaled measurement méfriy equation (3.11)

3. Perform rank-4 factorization oW, generate the projective motion and shape
4. Reset), = R®x, where P® denotes the third row of the projection matfx

5. If A;’s are the same as the previous iteration, steg; @b to step 2.

In order to avoid the trivial solution, a ‘balangirstep is required for each iteration
[HarzZis00] that brings all matrix rows and columitsthe same order of magnitude.
Unfortunately, because of this step there is naantae that the above algorithm will

converge, even to a local minimum [MahHeb00, MHQ*Oliensis99].
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We are performing factorization using an iterataygoroach similar to the one
proposed in [Chen00], where the projective depthg@scaled at each iteration to give a

closer rank-4 approximation of/,. While there is no theoretical proof of convergence,

[Oliensis99] has shown that the algorithm minimiaaserror function that measures the

size of the non-rank-4 fraction &/ . Also, [Oliensis99] and [Sainz03] have reported

excellent results both with accurate and noisy.data
The overall sequence of processing steps of thelogmegb Iterative Factorization
Algorithm (IFA) is the following:

1. Initialize A, =1 for i=1...n and j=1...m
2. The current scaled measurement mawjix (with W° =W,) is determined by

equation (3.11)An initial Singular Value Decomposition * is computed:

WS =UDV'",

where :

U is a3mx n matrix with orthogonal columns
\% Is a nxn orthogonal matrix

D is anx n diagonal matrix, its elements, are the singular values Wf*

3. We update the measurement matx with its rank-4 approximation.* :

We denoteP* =U,, whereU, is the submatrix obtained frobd by truncating only

Similarly, X* =D,V,, and from that we estimate :

WS = PX X,
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This solution guarantees [Golub96] that we getltbst rank-4 approximation of the

measurement matr/, and the spectral distance (usjhg,) from the subspace of

the rank-4 is exactly,, the #" largest singular value.

4. We scale the matriw/* by the A¢ coefficients of W, in order to bring each
depth factor as close as possible to the ided-4adecomposition. In order to

maintain the projection to the image poins we only need to scal&ik along the

ray from the centre of projection througl) . Hence, the new deptlﬂijk+1 will
coincide with the projection of(}‘ into the projection ray. The projective update

formula [Chen00] is:

e e ) O]
T W)W
where VY/SkIJ and W}, are 3-vectors corresponding the theth element of the

respective matrices.

5. The measurement matrix is updated with the depth valuesW.* = x A<
We repeat the process until the corresponditig value is either small enough or it
is stabilized. Of course, due to noise in the ienagasurements;, can reach small

values, but will always be different from zero.
In our implementation, we are working with pre-ciimhed image coordinates and

we are balancing the projective depth matrix beaeh iteration. The pre-conditioning

and balancing processes are described in mord ohethiapter 7.
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3.3.2 Upgrade to Metric Structure

The factorization of Equation (3.11) is not uniqueyt presents grojective

ambiguity That is, we can recover motion and shape onlyougn unknown projective
transformation:

W, = PX= PHH'X= P' X' (3.12)

with PM = PHand X" = H*X,
where P and X are the projective motion and the projective shapspectively.
This projective ambiguity refers to the fact thaty anon-singular 4x4 matrix could be
inserted betwee® andX leading to another motion and shape pair. The wegta

metric structure is reduced then to the recovemhefrectifying transformatiod , called
the projective distortion matriPDM).

As mentioned previously in (3.2, § 3.1), in a neframe the camera matri? can

be decomposed as:

P ~K[R|t], i=1,..,n (3.13)

where :
f. 0 u

Ki=|0 af v, |, the calibration matrix (see also Eq. 3.3, § &igoding the
0O 0 1

intrinsic parameters of theth camera:
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f. represents the focal lengtfu,,v,) are the image coordinates of the principal

point, a; is the aspect ratio,

while R andt, encode the extrinsic camera parameters :

R =| | | is thei-th rotation matrix withi,, j, k. denoting the rotation axes,

Xi

t =|t, | is thei-th translation vector.

zi

We choose the world coordinate frame to coincidd tie first camera, since we are
not concerned here with the absolute scaling,iortatnd translation of the scene.

Therefore, the rotation and translation for thestficamera becom& =1, , and
t, =0, while Equation (3.13) will have the simplifiedrfo: B" = K/[1]0]. The same
similarity components can be factored out from fhvejective reconstruction, with

P =[1]0]. The condition B" = RH becomegK,|0]=[I | 0] and we can writH as:

L[k O
vl

The submatrix formed by the first column, i.e. westv together withK,, specifies
the plane at infinity in the projective space. ®irthe coordinates of, in the metric
space arer, =(0,0,0,1), in the projective space they will be transfornbgdH , so that

we can recoverr, as .
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0 0

_— :{(KJT —(Ko*v} 0 :L—u<o*vj
0 0 1 0 1
1 1

Writing the plane at infinity asr, =(p',1)", where p=-(K,)"v, the projective

distortion matrixH can be written as :

K, O
H:[ ; } (3.14).
-pK 1

From Equation 3.14 results that the projectivemtetric upgrade involves the

recovery of eight parameters: three parametergpfand five forK,, respectively. This

corresponds to a counting argument: the planefiaitinand the absolute conic have 3
and 5 degrees of freedom, respectively.
To recover these parameters, we start by idengfthie self-calibration equations.

We partition the camera matrices of the projectreeonstruction intd® =[S| ],
distinguishing between the first three and lastugois. FromP" = PH and from

Equation (3.14) we obtain:
KR=(S-spP) K E2..n (3.15)
which can be rearranged as :
R=(K)($-sP) K F2..n
and considering thaRR = | (since rotation matrices are orthogonal) , weialta

KK =(S-sF) KK(S-sP, #2t (3.16)

39



From the equation of the dual image of the absatotdc (Eq. 3.5, 83.2) =K KT,

and substituting in (3.16) we obtain the basic &équdor self-calibration:
@ =(§-$B)@ (s~ sP, (3.17)

relating the unknown entries af and unknown parameterswith the known entries of

the projective cameras, s.
The dual image of the absolute conic is relatettieécabsolute (dual) quadric by:

@ =PQ P’ (3.18)

.~ 0
The absolute quadric has in the Euclidean spaceahenical form Q" = =[ 383 0]

while in a projective space it will follow the peative transformation rule for dual

quadrics, giving :
* |3x3 0 T gT
Q =H 0 HT =HIH (Eq. 3.9, §3.2).

Using Equation (3.14) the projective reconstructjores the relation:

o =| KKI -KKip|_| @ -@p (3.19).
-p'KK] P'KKp] [-p@  p@,p

If we substitute the above relation in Equatiorii®3.we obtain once again the self-

calibration equation (3.17). This corresponds wittterpretation provided in § 3.2 of the
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absolute dual quadr®” as being fixed under the camera motion and eadheoflual

images of the absolute conig are the respective images @f for each of the views.
The most important consequence is that imposintpiceconstraints oy , we can

translate them t®" using Equation (3.18) via the known matridesand solve forQ’in

projective space, using the resulting matrices ftioenprojective factorization.

A linear system can be obtained making some assomspbn the camera intrinsic
parameters:

« if principal point is at the center of the imagams, then@ ),, = (@ ),,=0
« zero skew of the pixels impliggr ),, =0

« aspect ratio equal to 1 impli¢a ),, = (@ ),

These assumptions leave only the focal length iable parameter and generate
four linear constraints o®" available from each view. The self-calibration @ipns

become an overdetermined linear system4®in equations that can be solved by

Singular Value Decomposition, with a unique solatior m>3. After obtainingQ’,
H can be easily determined by decomposition and babktituting it in (3.12) a final
metric reconstruction is computed under the abm&uraptions of known principal

points and skew values.

3.4 Non-linear Optimization of the
Metric Reconstruction

3.4.1 Bundle Adjustment
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Our aim here is to minimize the reprojection erb@tween the observed and
predicted image points, with the goal to produéetp optimal estimates with respect to
both 3D structure and viewing parameters (camesa pod/or calibration). This kind of
problems can be treated by non-linear least-squaetsods, often referred to bandle
adjustmentn the literature since all of the values of aitiah guess of the solution are
modified together. Such methods can be summarizetia@ing two distinct phases:
initial parameter estimation and then iterativeinexhent, protecting the refinement
process against divergence.

More specifically, we are employing the Levenbergetyuardt (LM) optimization,
a non-linear least-squares technique which haseprtévbe most successful due to its use
of effective damping strategy that confers it thdity to converge quickly from a wide
range of initial guesses.

In the general case, least-squares methods aretossolve a set of non-linear
equations that have been linearized using a fidéroTaylor expansion, resulting in a
system known as theormal equationsThe computational stages may become quite

expensive, due to the fact that the iterative sghof the normal equations amounts to
computing the solution to a dense linear systerth wicomplexityO(n®) in the number

of unknown parameters. Fortunately, due to the tHckteraction between parameters
for different points and cameras, the Jacobian iraitr the objective function has a

sparse structure we can exploit in implementing-fdemethod.

3.4.2 The Levenberg-Marquardt
Algorithm

We will provide here a brief description of the LBgorithm, for an extensive
analysis we suggest [NocWri99, LawHan95].
As mentioned in the introduction, the non-lineampaitational model is an iterative

process. Letf be an assumed functional relati¥n=f(P) , where XOO" is a
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measurement vector arfll0" is a parameter vectoklVe start by assigning initial

values to the parameter vectd, and to the measurement veckor Our aim is to

determine the parameter vec®rthat best satisfies this functional relation lbcalhat
is, we seek the vectd? satisfying)? = f(lf’)—f for which the squared distanh‘d| is
minimized.

We assume that for a parameter shift ves®y f is approximated by:

f(P+AP)= f(P)+ JAP, whereJ is the Jacobian matrix of , J =0df /0P .

We set up the normal equations and solve for tievattor AP :

JIAP=T"¢

In order to improve the direction of the shift vagctit needs to be rotated so that it
point towards the minimum. A way of rotating theftskiector towards the direction of
steepest descent was proposed independently bynbexg [Levenberg44] and later by
Marquardt [Marquardt63]. Marquardt introduced a rgawameterd, so that the normal
equations become:

QTI+AN AP =]0"¢, (3.20)

where A is a strictly positive scalar callethmping parameter

The damping parameter is added to the diagonalezienof thel'J matrix, and is then

adjusted at each iteration so as to ensure thaerioe decreases. LM is an adaptive

algorithm that controls its own damping: it increaghe damping if the step vectoP

fails to reduce the sum of squarés ; otherwise it reduces the damping. In this way LM
can navigate difficult model nonlinearities, altigbuat low speed, behaving in a steepest
descent manner. Yet, it can also rapidly approalcica minimum with nearly quadratic
convergence speed, becoming a Gauss-Newton meffwal. process of repeatedly

solving the normal equations for different valuéshe damping term until an acceptable

updateP + AP to the parameter vector is found corresponds t@temation of the LM
algorithm.
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3.4.3 Refinement of the Metric
Reconstruction

The camera self-calibration process presented .id i§3a closed form least squares
constrained approximation of the structure fromioroproblem. We have extended the
self-calibration process by implementing a finahfdimear optimization process in order
to reduce the reprojection error accounting fotttadl non-linearities not recovered in the
metric solution.

Additionally, if during the preprocessing of the asarement matrix some of the
measurements have been left out because they wepgasent in all the views, we have
the possibility to include them in this nonlineaabysis to improve the overall error.

We employ bundle adjustment in order to obtain imam likelihood estimation
that minimizes the reprojection error with resgecall 3D points and camera parameters,

i.e. the mean squared distances between the messs; and the reprojected image

points from a new estimation d?" and X;. The minimization criterion can be

expressed as:

m n

min). > d(x;, P" X ) (3.21)

izl j=1

The non-linear functions to minimize in our case #re pinhole camera projection
equations (Equation 3.13, 83.3.2) for the differer@asurements and frames, which can

be written in the following form:

_FAX Y+ ZA) + BIX+ Y+ JZ+) (K X+ K Y+ K2 )
- k X+K Y+ k Z+ ¢

X

_af (XA Y+ Z+t) (K X+ K Y+ K 2+ )
Y= k X +K Y+ k Z+

44



Under the following common assumptions: no skg#=(0), the central point perfectly
centered on the image plang € v, =0), and normalized coordinateg €1), the above

equations have a simplified representation:

L TEX Y +iZ )
Tk XK Y+ K Z+

_fUX+jY+jZ+t)
kXK Y+ K Z+

The general strategy for adjustment of the dampargmeter is as follows: We start
by initializing At0107°, following Hartley’'s approach in [Hartley93] anHigrZis00]. A
large initial value — for example 1 or 10 — wouldtially step LM in a more nearly
steepest-descent direction, whereas a smaller valgd.0° or10?, will begin in a more
nearly quadratic Gauss-Newton solution direction.

If the solution obtained foAP, decreases the error, the solution is acceptedtand

value of A is divided by 10 before the next iteration. If thase is that the error
increasesA is multiplied by 10 and the normal equations arlvesb again until an

effective value forA is obtained that decreases the iteration error.

We define our parameter vectBrd " by concatenating all parameters describing
the mcamera projection matrices (see 8 3.1 for cameraixpand then 3D points in
Eq. 3.21.

In order to reduce the overall number of parameteeshave replaced the camera
rotation matrices with quaternions of unit lengtiddave imposed the orthonormality of
the camera axes. Quaternions are extensions ofleempmbers that can be represented

as a 4-component vector:

q4=(% G4 G &),

where the first three components are real numlagid, the last one is an imaginary
number. Regarding memory usage, quaternions requise four floating point values,
compared to the nine floating point values of a Bx&tion matrix. Thus, they take up

less space but can still be quickly converted tatrmn matrices. Additionally, in our
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parameterization scheme, the fourth compongnts fixed under the unit length

condition, therefore we can write the camera medgrio the following parameterized

form:

&=ttt 6, g, g, f)

Also, each 3D pointis parametrized by a vector:
by = (X X0 X))

We shape the parameter vec®ras:

P=(d o o] ]

We accumulate the measured image point coordiretesss all cameras in order to

construct a vector of measuremedtsl OV :

X = (Xgreeer Xpreees Kuaoeee s Kun)

For each parameter vector, an estimated measureveetdr X is generated by our
functional relationX = f(P) :

A

X = (Kaseees Kepseees Xoareens X

Since an image point; depends only on the parameters ofjttiecameragx; /dg =0,
Oj#k and 0%, /0h =0, Oi #k
The step vectoAP and the residual vectar can be further partitioned into

camera and 3D structure blocks&8=(J",d,)" and & = (&,,5,)" respectively.
Given the above partitioning, the form of the résgl Jacobian matrix :g—ﬁ and the

normal equation)” JA = J'¢ are shown in Figure 3.5 a) and b), respectively.
Figure 3.5 a) illustrates the sparse structurdeflacobian matrix and of the normal
equationsN = J" J (Figure 3.5 b).

The blocks that form these matrices can be writimmn as follows:
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We can write the normal equations in the partittbfem:

u® wild|_|&
v vals] e

Both £, and ,are sparse matrices, since measured image pjiate affected only
by thei-th camera and 3D poirX;. Consequently, bott) andV are block-diagonal
matrices, while W is in general not sparse (FiguEeb).

We perform a Gaussian elimination step, by left tiplying both sides of the

Ul
equation with the block matriE) I } assuming thav" is invertible. This yields

a lower triangular block matrix:

{U WVTW 0 }[ﬂ _ {aa WV,

. . (3.23)
w V7| S, g,

We can determine the motion update vediphby solving the upper block of (3.23):
U -WVTW)J, =¢,- WV g, , (eq.3.24)
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Equation 3.24 can be efficiently solved using théolesky factorization of

s=U-wWVv' W.

2x7 2x3
2x7 2x3
2x7 2x3
2x7 2x3
2x7 2x3
2x7 2x3
2x7 2x3
2xT 2%3
2xT 2x1
2xT 2%3
2xT 2x3
2xT 2x3
2xT 2x3
2xT 2x3
2xT 2x3
2xT 2x3
2xT 2x3
2xT 2x3
a).
W, 73
U
1
U
1 ad
7x7 \‘V % |Za
Y, X
7x7 —
vV, |
16'2
} ilj Vs ? .
v, O, ‘-L’b
V.
Vv,
V. 3X3

1

b).

Figure 3.5 Sparse structures of the Jacobian (a) dmormal equations (b).
This particular example illustrates the matrices fo 3 images and 6 points [NocWri99].
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Having solved fo, , the structure update vectdy can then be computed by

substitution into the bottom half of Eq. 3.23, obitag:
V9, =¢,-W'J,

In our calibration problemy “is a3m x 3mmatrix, composed of diagonal blocks ®f

x 3, making the calculation of 7 very efficient. The matrixVis a set of blocks of7 x 3

giving a final matrix of7m x 3n The most expensive operation to solve Equati@n &

the inversion of the term(U”-WV™” W') which turns to be a matrix ofm x 7m

elements, wherenis the number of reference images and the number of measured
features.
Keeping in mind that usually >> m in order to obtain statistically stable solutions,

the sparse approach we have developed providestea belution than solving directly

the normal equations which require inverting 3hex 3nsizedJ'J matrix.

3.5 Sequence Merging

As mentioned in 83.3, we fragment long sequendessinbsequences sharing at least
one common frame, and each of them is calibratedammetric reconstruction. The next
step is to merge the information of the individfralgments to recover a complete scene
structure (Figure 3.6).

Therefore the merging of two sub-sequences is pedd in metric space by
determining the set of common points, between &lsé frame of one sub-sequence and
the first of the next one, which by constructionresponds to the same camera and

measurements. Any pair of corresponding image paiit and X representing the

same 3D poinM in two consecutive frames is related by a homdwyag , according

to the equations:

X OHX and P OPH*
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Figure 3.6 An example showing three merged sub-segpces.

where P and P are the metric camera projection matrices reptagprthe same

reference view expressed in different basisis a homography that maps the points
from one basis to the other one. We want to deterii minimizing the following

distance:
> d*(PHX ,PX)

for all common overlapping pointM between the two subsequences. The distance
function is assumed to be the standard Euclidestartte. Considering that we have two

reconstructed metric frame®, P, we can bring them to a common reference basis. We

can multiply each of the camera matrices by iteisg as follows:
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PX =PP'PX =[I|0]PX =[1|0]X
PX =PP'P X =[I|0]P' X =[1]0]X
Since the two sets of points are representatiotisecfame set of real points and they

share identical 2D projections, we can restrictlibenographyH to be a uniform scale

and a translation, yielding the following expressio

s 0 0t
0

= s 04
0 0 st
0 00 1

The homography can be recovered by establishingctiieespondence between four
known points. An overdetermined equation system lganbuilt and a least squares

solution can be obtained.

Conclusion

In order to extract the 3D information of a scermnf a sequence of images, we
have to completely recover the camera externalisnidsic parameters, i.e. position and
orientation as well as at least the focal lengtht twere used during the acquisition
process. In this context, camera calibration igitécal problem in the absence of prior
geometric information. We described a robust dieati linear based algorithm that
calibrates each of the subsequences to a meuictste. Further, in order to deal with the
errors accounting for all the non-linearities netavered in the self-calibration solution,
we described a maximum likelihood optimization isrpkntation that minimizes the

reprojection error between the observed and predlichage points.
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Chapter 4 Voxel Carving

Introduction

Volumetric models are a natural choice for sceneonstruction, the task of
generating a 3D model of a scene from multiple Biages. Three broad classes of
volumetric reconstruction techniques have been |dped based on geometric
intersections, color-consistency, and stereo magchSome of these techniques have
spawn a number of variations and undergone corabtierefinement.

The focus of this work lies in the second clalsgeohniques, that obtain shape from
color-consistency, which have the generic name éc8 Carving or simply voxel
carving. As noted in the introductory chapter, wpemte under the Lambertian
assumption. In this chapter, we present the theatdbundations of Space Carving as
introduced by Kutulakos and Seitz [KutSei99] folledvby a description of our multi-
resolution solution that tackles the extended cdatmnal costs from a human

perception point of view.
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4.1 Background

4.1.1 Theoretical Foundations of
Space Carving

Kutulakos and Seitz have proposed in [KutSei99] @veh approach for
reconstructing 3D scenes from a set of N camerasvithat gracefully handles shape
recovery when no constraints are placed upon thpesbf the scene or the placement of
the cameras.

The Space Carvingheory addresses the problem of reconstructingescéom a
set ofN views for the case when:

= there are no constraints on the scene geometry,

» also, there are no constraints on the positioh®friput views,

* no information is available of any type of salidattures in the input

photographs (i.e. edges, lines, points, etc)
» there is no prior correspondence information.
The authors note in [KutSei99] that a first requiemt is that the viewpoint of each

image is known (i.e. calibrated reference viewsrmeded). A second requirement is that
the radiance of the scenelacally computablethat is, the scene has a parameterized

radiance model (e.g. Lambertian, Phong).

There are many advantages of this family of scenenstruction:

. The Space Carving algorithm is the only provabdyrect method that handles
shape reconstruction from arbitrarily placed carpera

. The solution volume provides the tightest pdssilmund of the scene that can be
extracted from the set &f given views, regardless of the specific algorithmpéoyed to
obtain it.

. Since no constraints on the camera positionsngpesed, the solution is a global

reconstruction, eliminating the need of partialomstructions and merges.
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. Since the recovered shape is guaranteed to dte-pbnsistent with the reference
views, visually accurate reprojections can be oletehi

In the following, we present a summary of the Sp@eeving theory introduced in
[KutSei99].

We assume a volume in space with an unknown shagefined by a closed and
opaque set of points. We also assume that thestsexiset oN perspective projection
views |,,...,l taken respectively from a set of known locatiGps..,C, .

The points on the surface of the shape are comtam8urf(v) and the radiance
of a point pO Surf(v) in this surface is described by a functi®ad,(r) that maps
every oriented ray passing through the point to the color of lighteefed fromp along
that direction. The set of radiance functiétel( r, p) for every pointp [ Surf(v) and v

form the shape-radiance scene descriptiomhich can reproduce uniquely any image
from any viewpoint.

The set of all possible shape-radiance descripttansbe partitioned in two sets,
based on whether they reproduce or not the inpag@s. This constraint is defined for a
given shape and a given scene radiancehedo-consistencand was formalized by

Kutulakos and Seitz in the following set of defioits:

Point Photo-Consistency

Let S be an arbitrary subsetR¥. A point pO S visible from C is photo-consistent
with the imagel, if it does not project to a background pixel ané ttolor of the
projection of p is equal tdRad,(1). If p is not visible fromC, it will be conservatively

considered as photo-consistent

Shape-Radiance Photo-Consistency:

A shape-radiance scene description is photo-ce@mistith a reference image
obtained fronC, , if all points visible fromC are photo-consistent and every non-

background pixel is the projection of a poinvin
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Shape Photo-Consistency:
A shapev is photo-consistent with a set &f reference views if there is an

assignment of radiance functiomad(r, p to the visible points iv that produce a

photo-consistent shape-radiance description witthalreference images.

The constraints that photo-consistency imposeshershape of a scene in order to

obtain a valid reconstruction are the following:

Background constraint:

Since photo-consistency requires that no point girojects to a background pixel,
in the case an imagé obtained fromC has identifiable background pixels, is
restrictedto the cone defined b@ and the non-background pixelslaf

This constraint exploits the information about theckground pixels and is very
powerful when such information is available. Giveset ofN suchimages, the scene is
then restricted to a useful volume obtained byrgseting their respective cones, known
as the thevisual hull[Laur94]. However, this constraint becomes useldssn we have
no information on background pixels, and the visudl degenerates ®".

The main drawback of the visual hull is that it se®t model the shape concavities.
The following constraints are needed in order tabdém the reconstruction of shape

concavities:

Radiance constraints
To model these restrictions let's define the foilogv consistency criteria
[KutSei99]:

* A methodconsistency is available that takes as inpkic N colors

col,...,col , k vectorsr,...,r, and the known light source positions (if non-

Lambertian models are used) and determines if passible for a surface point

p O Surf(v) to reflect light ofcol in directionr, for all i =1,... k at the same time.
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= consistency is monotonic, i.e. ifconsistency( col... col .. )is true, then
consistency( cgl... col, k.. r,)for every permutation set df...,jis also

true.

These criteria define cally computableclass of radiance models, that is, they
present a locality property: the radiance at anptge independent of the radiance of all

other points in the scene. Given a locally completaidiance model and @nsistency

function, the photo-consistency status of everymp@il] Surf(v) of the scene from a set
of N images can be fully determined, and more imporngaritle non-photo consistency,
which conveys significant information about the eriging shape of the scene, is known
too.

With the following lemmas Kutulakos and Seitz, ddse how the non-photo-

consistency of a shape affects the photo-consistency of its sub-sets.

Visibility lemma
Let pO Surf(v) , and letVis,( p) be the set of reference views in which p is not

occluded byv. If v'0v is a shape that contains p, thés, (p) O Vis.( P

Non-photo consistency lemma

If pOSurf(v) is not photo-consistent with a subseVisf( p), it is not photo-

consistent withVis, ( p) .

These lemmas (illustrated in Figure 4.1) show thdeulying monotonic tendency
exhibited by the family of Space Carving algorithrtise set of reference views from
which a given pointp [0 Surf(v) is visible, strictly expands as gets smaller.

Also, if more reference images are available, nenstraints are added, which
means that once a point fails to be photo-condistkeare is no additional reference view
that can re-establish photo-consistency.

This is stated in the following theorem [KutSei99]:
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Subset theorem

If pOSurf(v) is not photo-consistent, no photo-consistent dulifse containsp.

These concepts can be further developed to leadhé¢o following theorem
[KutSei99], which states that for any shapehere is a unique photo-consistent shape
that contains any other photo-consistent withinvitdume, giving a least commitment

reconstruction.

Photo hull theorem

Let v be an arbitrary subset . If v* is the union of all photo-consistent shapes
in v, every point on the surface of is photo-consistent. The set is called the photo
hull.

When we have a finite scene that can be contameddiscretized volume, these set
of properties can be used to define a generic dhgorthat will compute the photo-hull
by iteratively removing elements of the initial uole v until it converges to the photo-
hull. The decision mechanism is the photo-consestamiterion, where voxel evaluation
is done with the help of a sweeping plane moviranglpreset directions (usually the
XYZ axes). For each position of the plane voxels aeduated by projecting them onto
camera views that aleehindthe sweeping plane (Figure 2.1, 82.2.2, Chapteftdy is a
convenient method of keeping track of voxel visipjli.e. occluders are visited before
the voxels that they occlude.

The space carving algorithm requires a number otghbonsistency tests that is
upper bounded bg x m wheren is the number of reference views amds the initial

number of voxels in the uncarved volume.
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Figure 4.1 lllustration of the visibility and non-photo-consistency lemmas. If P is non-photo-
consistent with the views a€,,C,,C,, it is also non-photo-consistent with the entire set

Vis, (P)={C,.C;.C,,C,}

The different implementations that follow this pedare belong to the family of
space carving algorithms. In order to specify afulsgorithm we need to specify the
following issues:

= How can we select the initial volume that contains the scene

= What representation of that volume facilitates sagv

= How the carving process is carried in each iterat@oguarantee the convergence

to the photo-hull.

= What conditions are needed to terminate the camingess.

4.2 Multi-resolution Voxel Carving

Space Carving [KutSei99] is conservative, it nevaves voxels it shouldn’t, but it
may produce a model that includes some color-insterg voxels. This is because
cameras that are ahead of the scanning plane atsed for consistency checking, even
when the voxels being checked are visible from ¢hcameras. Hence, the color
consistency of a voxel is, in general, never cheaikeer the entire set of images from
which it is visible.

Our work builds on an alternative approach propdsefCMS99]. TheGeneralized
Voxel Coloring (GVC) provides an efficient implementation of tlspace carving
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algorithm that computes visibility exactly in orderobtain a color-consistent model. The
authors provide experimental results that show élkatt visibility, when compared with
the approximate visibility computed by Space Cagyican result in visually more
accurate reconstructions that are numerically moresistent with the input images.

The algorithm operates only on surface voxels, ipiing a two-way mapping between
border voxels and image pixels. We exploit thidireictional relationship to propose a
user-guided method for creating multi-resolution BDdels, with varying level of detail
across the surface.

Voxel carving approaches imply the classificatidnaolarge number of discrete
elements, implying a trade-off between performareel accuracy. Moreover, the
delivery and rendering of 3D digital content ovéfedlent types of connections to clients
with various graphics capabilities requires sca&iD models that can be approximated
through representations of varying complexity.

The automatic simplification algorithms developedthe last decade generate an
approximation of fewer polygons from complex modélswever, their approximations
do not preserve the visual appearance of the @lignodel in certain cases. For example,
features such as eyes in a face are semanticaltjatrbut geometrically small. Kho and
Garland [KhoGar03] developed a human-guided singplion method where the user
can guide the vertex placement of a 3D model bgotly interacting with the underlying
algorithm.

The multi-resolution method developed for our fraraek relies similarly on the
human factor to assign perceptual importance tecsall features. However, by
exploiting the two-way voxel-pixel mapping providég the surface voxel list and the
image buffer, only simple 2D image editing openasioare required to control the
complexity of different surface regions.

The size of the initial volume of voxels containitige 3D scene is determined by
upscaling the spatial bounds of the recovered 3tpaluring self-calibration (Figure
4.2). First, we assign every voxel a unique ID. &l&® assume that initially all voxels are
opaque, i.e. uncarved. We are considering a poix¢hprojection, so that only the voxel

center is projected to the input images, leading $ogle pixel in each view.
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R Y N Y .

Figure 4.2 The initial bounding box of voxels is aataining the 3D scene.
P>...R) denote the camera projection matrices

Figure 4.3 a. An example showing two images (out afsequence of seven) with
the regions corresponding to a box, a checkerboardrea and a plastic object
selected and labeled with the final resolutionr&6). The resolution of the initial
reconstruction is the upper left corner ¢(=16).

Y

Figure 4.3 b.Left: The coarse 3D reconstruction of the scene at16. Right:
The multi-resolution reconstruction with the seleced regions refined to r=6,
respectively.
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e User Input

The user selects polygonal regions (e.g. correspgrid salient features) in one or
more images using common selection tools, suchobdines and scissors, and assigns
them a label ID corresponding to the chosen resolyFigure 4.3a). Adjacent polygons

must intersect along a set of common edges.

. Visibility

A correct visibility handling is required to compuphoto-consistency. As shown in
Figure 4.4, a voxel that does model a scene surfacdd erroneously be declared
inconsistent if visibility is not taken into considtion. The voxel is not visible to the
rightmost camera, which observes a blue color tiegufrom occluding geometry in the
scene. Only the viewpoints where a voxel is vis#iteuld be taken into account during

the photo-consistency check.

Red

Blue

Shape surface

Figure 4.4 Correct visibility determination is required
to compute photo-consistency

As mentioned previously, we operate only on surfameels that are embedded in a
surface voxel lis{SVL). The SVL is initialized with the outside kayof voxels of the
bounding box and is then updated at each iteratarved voxels are removed from the
SVL, while adjacent uncarved voxels which beconsthle are added to the SVL (Figure
4.5).
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surface voxel
interior voxel

voxel to be carved

HE[A

voxel that changes visibility

Figure 4.5 Voxels that change visibility [CMS99]

SVWL Item buffer

Camera

Figure 4.6 The item buffer records for each pixellte ID of the closest
visible voxel that projects onto itf CMS99]

In order to determine the visibility seis(V) of pixels from which a voxel is visible,

an image buffer is computed for each reference \aswollows: the SVL is examined
sequentially in order to find all the pixels that@el V projects onto and a comparison
is done with the depth value already stored atéispective pixels. IV is closer to the

camera than the distance previously recorded ®rmikel, then its distance and ID are

stored and included in the visibility set, whileethrevious pixel statistics are discarded.
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If the new pixel's depth is greater than the curperel, the voxel is not visible from that

view and the voxel information will not be includedthe visibility set (Figure 4.6).

The pseudo-code is outlined in Figure 4.7. Therbddional voxel-pixel mapping
enabled by the SVL and the IB allows the identtima of voxels projecting to pixels
belonging to labeled regions. First we perform arse reconstruction, in order to isolate
and differentiate the voxel groups that projeclatmeled regions. The 3D bounds of each
voxel group are computed and a spatial constraidtig applied, which restricts further
refining to labeled voxels. The resolution is irased by tesselating each voxel into eight
subvoxels [ProDye98]. Next, voxel carving is pemfied on the higher resolution voxels.
The above steps are repeated iteratively untikélgeired resolution is obtained (Figure
4.7). The algorithm stops when every voxel is fotmbe color-consistent and no carving

OCcCurs.

* The Photo-consistency Criterion

The 3D shape of the scene is constructed by camvingls that are not photo-
consistent with the reference views. Accordinghe photo-consistency definitions, in
order to be photo-consistent (Figure 4.8), a vawast not project to background in any
reference view, and has to be color-consistenthcdigh the use of other reflectance
models [Chhabra0Ol] is possible, we will assume libe¢ the scene is or nearly is
Lambertian.

More specifically, the color-consistency check e by computing a dissimilarity

metric o of the color components, ..., of the pixels from the setis(V) . The voxel is
consistent if o <7 , wherer is a predefined threshold. Voxels found to be =test

are assigned the mean value of the color compgnertte inconsistent voxels are
carved. The photo-consistency metric we have ch@s#re true color variance value of

corresponding visible voxels in reference views.
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int N ; //number of labeled regions

int[] resolutions //array of the user-required resolutions

/ | compute initial low resolution reconstruction
initialize SVl

| oop{
until no further voxels are carved

for all inmages i...n
conmpute i mage buffer

for every voxel VIOSVL {
conput e Vis,

determ ne | abel status LR,
record color statistics for V

}

per f orm phot o- consi st ency check
del ete inconsistent voxels from SVl

add uncarved adj acent voxels to SVl

}
}

/ I identify voxels belonging to labeled regions and bu
separate SVLs for each region

for (inti=0; i<resolutions.length; i++) {
whi | e current_ resolution< final_ resolutiqr {
i ncrease resol ution by voxel subdivision
initialize SVL, .

!/ | perform voxel carving at the higher
resolution
| oop{
until no further voxels are carved

for all inmages
conmpute i mage buffer

ild

-continued on the next page
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for every voxel VOSVL, {
conput e Vis,
record color statistics for V

}

per f orm phot o- consi st ency check
del ete inconsistent voxels from SVL,

add uncarved adj acent voxels to SVL

Figure 4.7 The multi-resolution voxel carving pseud-code

The photo-consistency metric we have chosen idrtieecolor variance value of

corresponding visible voxels in reference views. 8epute the variance® according

to the following equation:

o {i(a R+ Y(G- G)+ 3 (8- %)2}/( N

Where N is the number of those active views in which tbgel is visible,(R, B, G)
is the sampled pixel color from the i-th view, aff§,, G,, B,) is the mean color of the

corresponding pixels in alN views. The photo-consistency can then be expreaseu
threshold function:

1, o°’<r

hoto— consisten
g 7 {0, otherwise

where 7 is a user-defined threshold. In our current imm@atation, the variance
computation is based on a single sample from eafeence view. Therefore, calibration
errors and image noise can introduce instabiliiiethe photo-consistency check process.

Incorporating local neighborhood information witibpide more robust results.
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Figure 4.8 Top - the voxel projects in two views tbackground.
Bottom - the voxel projects to the same color in bthree views.

Conclusion

In this chapter, we have focused on the family ethnds based on space carving
and color consistency. We have presented the wagrtheory that supports and
guarantees a valid space carving algorithm. A rmaHolution voxel carving
implementation has been described, that aims taceethe computational cost of the
voxel carving algorithm by enabling the human facto assign various perceptual
importance levels to surface regions of the recanttd model.
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Chapter 5 Programmable Graphics
Hardware

Introduction

The classical programming model used in languadges C/C++ has been very
successful for the development of non-parallel igppbns as it provides an efficient
mapping to the classical von Neumann architectdmvever, this model does not map
very well to next generation parallel architecturésr developing efficient applications
on such architectures with maximum efficiency, ralédive programming paradigms are
required. The stream programming model has shovae @ promising approach going in
this direction. Furthermore, the stream programnmiaglel provided the foundations for
the architecture of modern programmable high-peréorce graphics hardware.

The GPU, just like a CPU, has its own caches agdtess to accelerate data
access during computation and also its own main emgrbefore beginning program
execution. This memory hierarchy, however, is desig for accelerating graphics

operations that fit into the stream programming eta@ther than the general, serial
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computational model. Moreover, graphics APIs susiOpenGL and Direct3D further
limit the use of this graphics memory to graphipsesfic primitives such as vertices,
textures and frame buffers. This chapter gives\emew of the current memory model

on GPUs and how stream-based computation fitsiinto

5.1 The Stream Programming Model

The key to using the GPU for purposes other thahtm@e rendering is to view it
as a streaming, data parallel processor. The StRagramming Model (SPM) is of
great importance to the way in which we structusenputation and access memory on
the GPU. As such, we will give an overview of thiedel in the following.

Streaming processors are programmed in a fundaltyenlifferent way than
serial processors like today's CPUs [HHN*02, KDR}OBAB*05]. In the stream
programming model, applications are organized stteamsand kernels(Figure 5.1).
Streamsare defined as ordered arrays of data, wkdenelsare small programs (or
specialized functions calls) that perform operaion such streams, loading one or more
streams as inputs and writing one or more streamsowputs. Applications are
constructed by chaining multiple kernels togethdre distinctive characteristic of the
SPM — as opposed to the CPU general programminglimod that a kernel operates on
entirestreams and the same kernel is executed on eacies of a stream in parallel.

The SPM constrains the way software is written ghel parallelism and locality
are explicit within a program, enabling compileosaptimize automatically the code to
take advantage of the underlying hardware.

» Parallelism

Parallelism is ensured by two effective kernel peledence constraints, allowing
the underlying hardware to exploit parallelism bathask and data level. First, within a
kernel, computations on one stream element argemtkent of computations on another

element. Second, kernel outputs are functions lyftheeir kernel inputs.
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Figure 5.1The stream programming model

Task-level parallelisnis the ability to have multiple stream processovadd the
work of a kernel, or to have different kernels m different stream processoithus,
the first processor in the pipeline executes onmaore kernels to generate output stream
that is passed to the next processor. As the mexepsor operates on those streams, the
original processor repeats its kernels on the sektof input data. GPUs exploit task
parallelism throughprocessor specializationi.e. by mapping kernels to separate
processors placed on a single chip allowing efficammunication between kernels, by
avoiding off-chip memory access.

Data-level parallelism:Since kernels perform the same instructions orh eac
element of a stream, data-level parallelism canekploited by performing these
instructions on many stream elements at the same. tMoreover, due to kernel
independence, every stream may be processed byaase processing unit. Data
parallelism is employed effectively by GPUs throutje addition of more execution
units.

Therefore, task- and data-level parallelism pogdigti allow the processing
pipeline to be arbitrarily wide — in terms of thenmber of processors executing the same
kernels across the data, or arbitrarily deep -eims$ of the number of processors in the
pipeline.
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* Locality

There are two main types of locality exposed by $RM: kernel locality and
producer-consumer locality

Kernel locality refers to the SPM constraint that intermediataiemlexist only
temporarily and strictly within a kerneProducer-consumer localityefers to streams
produced by one kernel and consumed by subseqeemtlk without going back to the
main memory. This type of locality enables GPUsfitb regions of memory with
contiguous data blocks, which is extremely usefaémwapplied to one of the key tasks of

the GPU: loading texture data in the memory.

5.2 The GPU as a Stream Processor

The stream processing model maps to a large nuofbdifferent high performance
processing models: multithreaded, pipelined SIMDstrdbuted and shared memory
parallel architectures.

Furthermore, since graphics applications can beesspd as a series of computations
performed on streams of data, the SPM stream antklkparadigms naturally fit the
graphics pipeline (Figure 5.2).

The computation involved in each stage of the gcaphipeline is uniform across
data primitives, allowing these stages to be mappéernels. Similarly to the SPM, data
flow between stages in the graphics pipeline islgi¢pcalized, with data generated by a
stage immediately consumed by the next stage.

In the following we detail the major blocks of theodern programmable graphics
pipeline, starting with input arriving from the CRidd finishing with pixels being drawn

to the frame buffer (or render target).
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Vertex stream GPU
Vertex
‘—
processor
Transfomed
vertex stream l
Hasterizer
Rasterzed Tt
unpr ocesserl exiure
fragment
stream
Fragment
processor
Transfomed
fragment
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Render target(s):

Frame huffer/ .
Pixel buffer(s)

Figure 5.2 The stream formulation of the graphics jpeline:
data are expressed as streams (indicated by arropand
computations are expressed as kernels (indicated Injue boxes).

The Vertex Processor

GPUs support multiple vertex processors that dhg fuogrammable and operate
in either SIMD or MIMD fashion on the input vertestream referenced by the CPU
rendering commands. The vertex processors appéytaxvprogram t@achvertex in the
object, transforming the vertices into a common el@pace and performing any other
user-specified per-vertex operation.

Vertex processors are capableschtter i.e. they can control where in memory

data will be written [LBC*05]. Thus, vertex process are capable of changing the
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position of input vertices, deciding ultimately wbhethe image pixels will be drawn.
Traditionally, vertex processors were able to fatdormation strictly from the current
input stream and no other memory location, theeefiney were not able tgather
However, the latest GPUs (i.e. with Shader Mod®8l Support), have a limited gather
feature, calledvertex texture fetcHGFGO4], enabling vertex processors to perform
texture memory reads for up to four textures.

GPU-writable streams are another recent hardwartirke addition. Previously,
vertex streams could be updated only on the CPglinag a bandwidth consuming
GPU-CPU data transfer. This functionality, calle@rider-to-vertex-arrayis of vital

importance for GPGPU computations and will be diedbin a separate section (8 5.6).

The Rasterizer

The transformed vertex stream produced by the xgntecessor is converted by
the rasterizer intdragments Typically, three vertices groups are used to aaep
triangles (the triangle is the basic primitive 8 representations), transformed then into
fragments. From a GPGPU point of view, the raséenmay act as a data amplifier, since
it generates an increased output of elements fradgnaofew input elements.

At this stage, each fragment can be consideredr@tdipixel” [Harris05] that
encapsulates all information needed to generatdaalesl pixel in the final image,

including color, coordinates and possibly depth.

The Fragment Processor

Modern GPUs support a scalable number of fragmentessors. Fragment
processors are also fully programmable and worSIMD fashion on input elements
[LBC*05]. The fragment processors applyragment progran{i.e. pixel shadey to each

fragment in the stream to compute the final charéstics of each pixel.
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Fragment processors have the ability to fetch fata textures, therefore they
are capable of gather. They are however not capebdeatter (i.e. change the output
location of a pixel) - since the output addressaofragment is determined prior to
reaching the fragment processor.

GPUs have typically more fragment processors tleatex processors, in order to
handle the amplified data load generated by théenasr. Consequently, GPGPU
applications put a heavier emphasis on the usageagient processors compared to
vertex processors.

Render Targets

Pixels are typically rendered on-screen to the &duffer or alternatively to an
off-screen render target callecpeel bufferor aframebuffer objectDue to recent API
features, the pixel buffer can consist of framefdrgf vertex buffers or textures. All of
these three types of data can be associated wihtare (ender-to-texturg enabling
them to be bound either as render targets or teptiires for further processing.

Therefore, while the traditional use of pixel strsais to hold pixels for display to
the screen, GPGPU computations rather use thest Ipistfers to hold the results of

intermediate computational stages.

Texture Units

GPUs support a number of texture units, which detezs how many textures
may be simultaneously applied in the same rendss. gaxtures are bridging the random
access into vertex, fragment, or pixel streams;esall these stream types need to be
converted to textures to allow random indexing.tliees can be read from and written to
by either the CPU or the GPU. On the GPU siddguteg are the only memory that is
randomly accessible by fragment programs and astex programs, though the latter

refers to the limited access provided by vkeex texture fetcfunctionality.
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5.3 GPU Computations

In order to activate kernels, we simply draw geomnesb that the vertex and
fragment processors will operate on the input giu@s and output the result as pixels.
Besides specialized computations on primitivesietsigd by program requirements, the
most generic invocation in GPGPU programming iseetangle, typically processing
every element of a stream of fragments represeatmid [HarrisO4].

The GPU equivalent of CPU array data structuresistsof streams, therefore,
anywhere we would use an array of data on the @RlLan use one of these streams on
the GPU.

On the CPU, in order to perform serial processimgwould use a loop to iterate
over the elements of an array. In the GPU caseingteuctions inside the loop are the
kernel, while the streams replace the array strastuThat is, on the GPU, we write
similar instructions inside a fragment or verteogram, which are applied to all
elements of the stream.

Conforming to the SPMs task-level parallelism, anké must process an entire
stream to generate output for the next kernel énpilpeline, therefore, each step depends
on the output of the previous step. The feedbaddee to proceed with each step is
trivial to implement on the CPU, where memory camabcessed anywhere in a program.
As we discussed previously, on the GPU we needtarteto bridge our access, i.e. we
must use theender-to-texturetechnique to write the results of a fragment paogito
memory so they can then be used as input to fygrograms. Texture coordinates are
stored for each vertex and are used in GPGPU asemdor texture fetches (see next
paragraph for more details).

5.4 Dependent Texturing

Modern graphics processors have the ability to qoerf dependent texture
lookups. Purcell [PDC*03] has introduced the aagion of texture memory that
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enables us to load a complex data structure intmong and use fragment programs to
navigate through it via dependent texture lookups.

Algorithms may involve complex data structures #&akup of elements within
these structures. Dependent texture fetching allthe address being fetched from
texture memory to be computed by the fragment arognt also allows the results of a
memory lookup to be used to compute another mesuddyess (Figure 5.3).

More importantly, it allows us to think about tesdumemory on the GPU as
general read-only memory. Rather than worry abewtute management and texture

coordinates, etc. we can think about memory andesdds.

Address Data
Texture Texture
0 3 Data 0
1 3 Data 1
2 1 Data 2
3 1 Data 3

Figure 5.3 Dependent texturing [PDC*03]

5.5 Render-to-vertex-array

General processing on the GPU relies on computiteymediate stream results
on the GPU, saving them in graphics memory (ofésartargets), and then feeding them
again as vertex data textures to the geometry ertginender images in the frame buffer.
This process requires application control over @flecation and use of the graphics
memory.

Recent features of graphics hardware blur the baniesl between textures, vertex
data and render targets, allowing graphics menmiyettreated as any of such objects.
These features are exposed to the application ghrau set of supporting OpenGL
extensions: Vertex Buffer Objects and Pixel Bufidgjects [ARB03, NV04].
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The Vertex Buffer Objects (VBO) interface enablbs application to allocate
high-performance graphics memory on the GPU, argphéaify how that memory is to be
used. Buffer objects can be used as either datece®wr sinks for any graphics API
command that takes a pointer as an argument. Ti@ &#ension binds buffer objects to
given targets and then instead of treating theragmt as a pointer to memory, it is used
as an offset into the buffer object’s data store.

Previously to the PBO addition, the VBO targetssisted of buffers containing
either vertex attributes, such as vertex coordsmaexture coordinates data, per vertex-
color data, and normals, or only indices of elementspectively. The recent Pixel
Buffer Objects extension (PBO) expands the VBO fionality with two new read/write
targets, permitting buffer objects to be used mby avith vertex array data, but also with

pixel data.

Bind IDs
ID | buffer [
Targets:
| Client(s) ——» —:— — Array buffer
Element

array buffer

Pixel buffer
unpack/pack

» I:l (read/write)

Server side

Figure 5.4 VBO targets [Nvidia03]

“Render-to-vertex-array” is one of the most intéirgs optimizations provided by
the VBO/ PBO combination. Buffer objects are viewadapplication level simply as
arrays of bytes, differentiated only by the targéesy are bound to. Therefore, a vertex
buffer can be bound to a pixel buffer target arehthse this buffer as a source of pixel

data and vice versa (Figure 5.4). From a GPGPU pointviefv, the VBO/PBO
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combination enable GPUs, for the first time to l@ieams results from the end to the
top of the pipeline (Figure 5.5).

Moreover, VBO/PBO avoids the GPU-CPU bandwidthnigxransfer, which has
traditionally been a bottleneck for many applicas: the VBO/PBO mechanism keeps
all the data flow inside the server, avoiding cogythe pixel buffer on the client’s side

and putting it back on the server’s side as antifgoa vertex program.

__________________

|| Texture
data

| Frame buffer
or render

Yartex target(s)

processor

Fragment
processor

Rasterizer

Figure 5.5 Render-to-Vertex-Array: writing renderin g results to vertex array
allows the GPU to loop back to the top of the pip&le [LBC*05]

5.6 Shading Languages

Originally, GPUs could only be programmed usingeadsly languages. Early
work at Stanford University [PMT*01] provided vahia research, producing the Real
Time Shading Language (RTSL). RTSL provided anrabson layer over the (at the
time) fixed-function hardware that would compile @PU assembly, reducing the
difficulty of GPU programming.

GPU and 3D API vendors soon followed suit, relegshreir own languages and
compilers. Nvidia was the first to expose a moneegal programming model for GPUs,
starting with the vertex unit [LKMO1]. The fragmennit was also made gradually
programmable, having eventually a full programmimgdel very similar to that initially

supported on the vertex unit.
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Varying degrees of programmability had been appgan OpenGL as vendor-
specific extensions. These finally converged in theB vertex_program and
ARB fragnent _program extensions [ARBa]. The assembly-level shaders were
naturally followed by higher level shading langusigeaving a C-like syntax with minor
differences. Nvidia and Microsoft worked closelydevelop Cg and HLSL [MGA*03,
BFH*04]. After an almost two year refinement by the OpenGL Architecture review
board, the OpenGL Shading Language, was releasquarasof OpenGL 2.0 core at
SIGGRAPH 2004.

All the above languages require thorough understgndf the features and
limitations of latest graphics hardware and graptA®ls, making the general-purpose
GPU computing accessible to only the most advagcaphics developers. Two general
purpose shading languages have been developetdj tojiovercome these drawbacks by
hiding the details of the runtime: Brook at Stadfddniversity [BFR*04] and Sh at
Waterloo University [McDO04].

Following the development of the Imagine streamcessor [KDR*02] Brook
exploits the stream aspect of GPUs explicitly. Brdargets scientific applications,
comes with an associated compiler (brcc) and is@mpnted as a preprocessor that maps
programs to a C++ and Cg implementation.

Sh is also supporting the stream programming mduelever it targets not only
scientific but also graphics computation. Sh is edded inside C++, so that no compile
tools are necessary and parameter passing intnstres seamless eliminating the need
for parameter binding code.

At the time of writing both Sh and Brook are untieavy development. Brook
has performances close to hand-written code [BFR*Bdwever many special GPU
features cannot be expressed cleanly and it latjeitimely updates.

Sh lacks certain features that affect its efficieand are intended to be added in
the future. For example, downloading the data betwéhe host program and the
processor running the Sh kernel can be a very expepperation. [MD04]

Therefore, low-level shaders are still needed toaek the best performance from
the GPU. RTSL is no longer active and under devekyg, having evolved into Cg
practically, HLSL is DirectX specific and GLSL igpg@nGL specific.
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The Cg language is multiplatform, API neutral andependent of the generation
of GPU that it is running on. Moreover, it has theortant benefit of constant updates
according to the rapidly evolving GPU technologi€sese features have made Cg the
language of choice for the GPU shaders developeauiowork.

Conclusion

In this chapter, we have touched concepts of mogeagrammable graphics
hardware and the main differences between the CiEILG®U memory and programming
model. The GPU memory model is based on a streamamgputational model that
supports a high degree of parallelism and memocglity. This implies a number of
restrictions on when, how and where memory can dszl.uMany of these restrictions
exist to guarantee parallelism, but some exist imx&PUs are designed and optimized
for real-time rendering rather than general higifggenance computing. Nonetheless,
many of these constraints are likely to be relaxethe future. We have also reviewed
several recent hardware features that broaden $lkeeoli GPUs within the general

processing realm.
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Chapter 6 Voxel Carving on the GPU

Introduction

The primary goal in developing the carving engisetld design a method that
allows voxel carving to occur at real-time rate®UW5 power real-time systems with a
peak performance about two orders of magnitudetgréban that of the CPU, however
this performance implies the constraints of theastring programming model.

One major challenge in developing GPGPU algorithent design appropriate
data representations and develop techniques thigt dtilize the graphics pipeline,
multiple vertex and fragment processors and higerimemory bandwidth.

Another issue to overcome is the GPU-CPU transtde,rthe traditional
bottleneck for many applications — due to the asgtniminterconnecting AGP bus that
delivers performant bandwidth only from the CPUhe GPU. The advent of the new
bidirectional-transfer capable PCl Express bus dstah may make sharing memory
between the CPU and GPU a more feasible possibilityhe future. Nevertheless,

attaining low bandwidth consumption is of great artpnce.
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Our approach is designed for a high utilization tbe graphics pipeline
parallelization and employs an efficient externat anner bandwidth strategy. More
specifically, the output format is designed to metas little data as necessary, limiting
itself to surface voxels rather than the entirauwaéd, while the input format corresponds
to the optimal two-dimensional data layout on tHelUG

If carving progresses at more than 20 frames pmonek we claim that real-time
performance is achieved. Interactive frame ratescansidered to be between 2 and 20
frames per second. Depending on the voxel resolatia the number of reference views,
the algorithm that we will present runs at leagtnactively, and in several cases achieves
real-time frame rates. Compared to a purely CPdasplementation, the performance

is approximately 3-8 times faster.

6.1 The Carving Engine

This section outlines the encapsulation of the V@eeving process into a carving
engine. We structured the carving engine to perfoimage sampling,
background/silhouette test, visibility test and fghoonsistency check on the GPU and let
the CPU host manage the resulting output and argahe dynamic update of the voxel
structure. Since the bulk of the computational veses are spent on the former
operations, the management of results and of \siaé is a relatively small overhead for
the CPU, certainly smaller than performing therentoxel carving on the CPU.

We determine the original size of the volume of elexcontaining the 3D scene by
upscaling the spatial bounds of the recovered 3idtpaluring self-calibration. Voxels
are assigned a unique ID and only voxels that lgetorthe surface are processed. We are
considering a point voxel projection, i.e. only thexel centre is projected to the input
images, leading to a single pixel in each view.

The pseudocode for the algorithm presented in Eigut. reveals that the algorithm is
compliant with the generic space carving methodea set of voxels in the surface,

each voxel is examined and tested for consistdbasing each iteration of the algorithm,

81



we perform an outer loop where the surface voxeictire is rasterized against each
camera view, followed by voxel sorting, as a prealdting step towards determining

vis(V) of each voxel. This results in a set of image baffer each of the views for every
loop iteration. The calculation ofis(V) is embedded within the photo-consistency check.
Oncevis(V) has been determined, the color consistency funatmmputes the color

statistics and decides the consistency statuseo¥alkel. If it is consistent it will be kept
and re-examined in further iterations until it sjected or it remains as part of the
reconstructed object. Following the conservativpragch of this family of methods, in
case of uncertainty, the voxel is left unprocessegecting that later on its situation will
become better defined.

The employed data representations, kernels and watigmal stages will be
detailed in the following paragraphs.

6.2 Memory Layout

The voxel structure and its attributes correspomdl and 3D data arrays.
However, we will pack this data in two-dimensiotettures, which is the optimal layout
to utilize the high memory bandwidth available iR@s. That is, GPUs provide only 2D
rasterization and 2D frame buffers, meaning th@redsionality of such textures ensures
a maximum efficiency update during processing.

Graphics processors currently offer only scarcepettpfor simple 1D texturing.
Many data structures will overflow the maximum siea 1D texture, since current
GPUs do not support textures with more than 408éhehts. However, the use of 2D
textures requires address translation to convent-Bnarray address into a 2D texture
address, similar to a virtual to physical memoangiation.

That is, each time this packed array is accessemh fa fragment or vertex
program, the 1D address must be converted to a&&Dre coordinate. It is important to

note that these conversions are performed vergiafily, because the GPU’s texture-
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addressing hardware actually minimizes the cosdafess translations to look up values
in the underlying 1D array

| oop {
until no further voxels are carved {

updat e voxel state nmap and generate SVL
for each voxel {
delete rejected voxels from SVL
add adj acent uncarved voxels
mark nodi fi ed voxel state
}
enabl e depth test
transfer voxel state map to GPU
transfer SVL map to GPU

for all images i..n {
/ | projective texture mapping

bind i mage buffer IB, as the target

bind camera imageC, as input texture

render SVL to inmage buffer
| oad canera paraneters
run projective texturing kernels
transf orm obj ect - space coordi nat es

to texture coordinates TEX, (VP);

query C, at TEX,, and draw vertex
with the found color (FP);

/| sort by pixel routing
set viewport to routing buffer dinensions
transfer inmage buffer to vertex array
bind routing buffer as the target
render inmage buffer to routing buffer
run pixel routing kernels
comput e new vertex address(VP)
draw vertex at the new position(FP)
}
/ | perform photo-consistency check
bind routing buffer as input texture
bi nd photo-consistency buffer as the target
run phot o- consi st ency ker nel
determ ne Vis(V)
conmpute color statics for V
out put phot o- consi stency status

-continued on the next page
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read- back to CPU phot o-consi stency buffer

/ I display consistent voxels

render SVL to frame-buffer
set photo-consistency buffer as the col or
attribute
di scard i nconsi stent/background voxel s

Figure 6.1 Carving engine pseudo-code

Figure 6.2 1D array packed into a 2D texture

3D texture maps are the easiest way to store 3&yarhowever, they present
several drawbacks. 3D textures tend to take upge lamount of texture memory, and
they grow rapidly in size with increases in resiolut For example, the memory cost of a
32-bit 256° texture is 64 MB representing a considerable burda most current
graphics systems. As a consequence, 3D texturesxaensive to change dynamically
which can affect multipass algorithms requiring tipl passes with different textures, as
in our specific case.

Alternatively, each volume slice can be stored s®ply in a 2D texture
[HCT*02], or the entire volume can be packed inmgle 2D texture [HBS*03]. We have
employed the latter method, which unlike the 2@esliayout, allows the entire array to
be updated in a single render pass and elimindtesneed of a “render to slice”

functionality. This may allow a significant perfoamce improvement, since it implies
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processing large streams that use more efficiehyGPU parallelism. Also, such “flat
3D textures” provide a performance and scalabdilyantage over true 3D textures on
current hardware [HBS*03].

Moreover, the entire 3D array can be randomly ssee from within a kernel.
The procedure is identical to the one used withatiays, with the 3D address being
converted to a large 1D address space, previopadking the 1D space into a 2D texture
[BuckPur04].

During address conversions and look-upgscision issues need to be treated
carefully: current GPUs do not have integer dagsesy therefore we have to avoid poor
address calculations caused by the limitationsoattihg-point addressing. Additionally,
the number of bits dedicated to floating point mesa that limits the size of our 1D

virtual address space varies from architecturedbigecture.

VBO/PBO state CPU data GPU data

Render | Input Vertex

target | texture array
1 - Yes - 3D array Voxel state map
2 - - Yes 1D array SVL map
3 Yes - Yes - Image buffer
4 Yes Yes - - Routing map
5/  Yes - Yes 1D array Photo-consistency map

(color
attribute)

Table 6.1 Data layout for the carving engine

Table 6.1 shows the data storage layout we havéogetbfor the carving engine. As
mentioned above, the voxel attributes and procgsdata are stored in 32-bit floating
point textures. Conforming to the stream prograngmirodel (chapter 5, § 5.2), textures
represent either the input or the output data stregeveral of these textures will be
treated alternatively as render targets, inpututest or vertex arrays via the VBO/PBO
interface.

In the following, we detail the memory objects eaygld by the carving engine.
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* Voxel state map
The discretized voxel cube corresponds to a 3Dyasfavoxel coordinates which is
stored in a three-component floating point text@#ecting the state of each voxel and
containing its unique voxel ID.
Due to the serial nature of this process, the vexaie map is updated on the
CPU. The voxel state map will be bound as an itgxture and will be fetched by most
of the kernels during processing, for voxel ID apdsition/voxel ID conversions.
However, for readability reasons it is not représeémn Figure 6.1.
During the carving process, each voxel can be fonmhe of the following three
states:
= active: voxel has been added to the surface seb@fls and was found consistent
at each evaluation
= undefined: it is surrounded by uncarved voxelsjtss visible from no images
and its consistency is undefined (wasn’'t addetiecstuirface voxel set)

= carved: it has been found to be inconsistent asdban carved.

= Surface Voxel List map (SVL map)

The SVL map stores th&YZposition coordinates of all currently active voxalsd
will be found in a single VBO/PBO state on the Gildmely as a vertex array that will
be used to replicate each camera view. This odoyreasterizing the SVL to a pixel
buffer and applying projective texturing with capending camera-based rendering
parameters. Similarly to the voxel state textune $VL map will be updated on the
CPU, due to the serial nature of this process.

»= Image buffer

The image buffer is a pixel buffer with the sammelnsions as the reference images
bound as a render target for the SVL texture. Astioeed above, the SVL texture is
rendered as a vertex array for each reference biewa kernel that loads the current
camera parameters and performs projective textudargample the respective view. The

image buffer will eventually store voxels that Sueva visibility, i.e. a depth test. During
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the next processing step — pixel routing — the enhgffer will undergo a VBO/PBO
transfer to a vertex array and will be rendereth&routing map.

* Routing map

The routing map represents a render target forvthesl sorting rendering pass
Sorting is performed by a pixel routing kernel tbatputs fragments to the 4-component
routing map in a tightly packed format, accordimgtheir ID and camera view. The
routing map will be bound as an input texture dgrihe photo-consistency check

process.

» Photo-consistency map

The photo-consistency map forms a render targetaféernel that computes the
consistency status of each voxel on the current ,SMe mean average color for
consistent voxels and a marking value for voxet thave been found inconsistent or
belonging to the background. While the currentiysistent voxels are displayed on-
screen, the photo-consistency map will be emplogseda color attribute for the

corresponding vertex array.

6.3 Computational Stages and Kernels

The vertex and fragment processors run computdti®raels producing output for
all rendered pixels to the currently active menmgugface of the render target. Among the
techniques used by the carving engine are thewWollp

» Bind two-dimensional textures, forming the input floe kernel.

= Set the target surface for rendering. This surfag@s the output of the kernel.

= Activate a vertex or fragment program, i.e. sethgvertex or fragment pipeline

to perform the kernel computation on every vertekagment, respectively.

We have implemented our carving engine on a GPgatipg the Shader Model 3.0
standard that supports conditional branching armgihg, allowing for more flexible
kernels.

87



As mentioned previously, the lack of integer operet needs to be treated carefully.
The carving engine has to access specific textideeases, and we need to compensate
the floating point arithmetic units whenever intedata types are needed (all of our data
structures use integexddresses) That is, we need to simulate integerabpes with
floating point operations.

We can compute most integer operations by takiegfittor of the result of a
floating point operation. Integer modulus operatiomowever, require a few more
operations includindrac which returns the fractional part of a floatingrgowumber:

X'modY = floor(frac(X/Y I Y)

In the following, we will describe the three mawntputational blocks (Figure

6.3) and their corresponding kernels, where thigiag.

6.3.1 Process Voxel Birth and Death

We have employed a particle system paradigm toridbes¢che computational
stage of updating voxel state, i.e. activating aad/ing voxels in order to generate the
surface structure.

As mentioned previously, each voxel can be founohi@ of three states during
the carving process: active, undefined and carvedrder to activate a voxel we need to
associate new data with an available index in theslstate texture.

Due to the serial nature of our problem, this carv® done efficiently with a
data-parallel algorithm on the GPU. Therefore,wbeel emitter module, responsible for

determining an available index, is placed on th&CP
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Wowel Emitter
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Frojective Texturing
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Sort by Pixel Routing
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Figure 6.3 Carving engine computational stages

We initiate the SVL with the outer layer of the amstized voxel volume, and the
activated voxels are marked on the voxel state maporder to perform a voxel state
update, we read-back the photo-consistency bufi@ntaining the information of the
current SVL and perform the necessary modificatiomghe voxel state map, as well as
add/delete operations on the SVL array. More sppathy, carved voxels are deleted
from the SVL, while their adjacent voxels are aated and added to the SVL.

Voxels are registered for deactivation indepengelthe CPU and GPU:

The CPU registers the deactivation of a voxel ahdsahe freed index to the allocator,
while the GPU discards deactivated voxels with arlyez-kill during rendering the

current SVL to the on-screen framebuffer.
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6.3.2 Projective Texturing

During projective texture mapping we render the SMtex array to the image
pixel buffer, for each input view. A vertex andragment program are needed to perform
projective texturing. Camera reference images aa&ddd as textures, and their
corresponding camera matrix is set as the progedttixture matrix.

The vertex program works by applying a sequenceanisformations, that map
object-space coordinates into the 2D space of mrexi.e. the loaded camera image.
This computed position is assigned as the textooedinate for the vertex, and then the
appropriate sampled color from the texture is &gpby the fragment program. In order
to account for voxel visibility, we enable deptlstieg in the supporting OpenGL API.
The built-inz-test is used so that the voxels will overwrite ¥ladue stored in the-buffer
if the new value is smaller, i.e. they are closethe camera.

Projective texturing also serves as a backgroursilloouette test step, performed in
the fragment program. For background testing, tpbaavalue assigned to the output
fragments is set to 1 for foreground objects afar Ghe background.

In case we are employing silhouettes, the procedsirgentical to the one
described above: the silhouette images are loade@xures and their corresponding
texture matrix is set from the calibration dataoasgted with that view. Similar to
background testing, the alpha value of the texgiset to 1 for foreground objects and 0
for the background.

These values will be considered during the photwsistency check, as pixels that

don’t survive the background/alpha test will bengtiated.

6.3.3 Sort by Pixel Routing

In order to perform a coherent photo-consistencgckhwe need to sort the
voxels contained in the camera pixel buffer andrage them in a tightly packed texture

(Figure 6.4), according to their identifier and eamview.
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Several authors have proposed implementationsrahgalgorithms on graphic
processors [PDC*03, KipWes05]. However, sortingoatyms require a high number of
iterations, resulting in a high number of renderpasses on the GPU. For example,
bitonic merge sort needs (I0g2 n) rendering passes andO(n log2 n)bandwidth
[PDC*03].

Since we strive to achieve real-time frameratesheed to avoid the latency of
several hundred rendering passes when generagrnuhtito-consistency map. We would
also prefer an algorithm with less bandwidth constiom. To address these problems,
we have employed an alternate algorithm for constrg a photo-consistency map that
runs in a single pass and only requitds) bandwidth.

Although fragment programs cannot change the addoeshich they are writing,
vertex programs have the ability to write to a cated destination address, i.e. to
perform scatter (Chapter 5, 85.2).

That is, if we know the exact destination addressefich voxel, we could route
them all into the buffer in a single rendering pagsdrawing each of them as a point.
Essentially, drawing points allows us to solve &-tmone routing problem in a single
rendering pass.

While we render the image buffer as a vertex artlag, application issues points
(glPoint for the OpenGL API) to render and the @erprogram computes the scatter
address based on the voxellD and assigns it tpoid’s destination address with the

appropriate scatter data.

Figure 6.4 The tightly packed routing buffer for anexample data set
(empty pointers are shown in red)
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In the OpenGL API we have adopted, we set the wvietvpo the buffer’s
rectangular dimensions and disable depth testirygénherally use a routing buffer with
the same dimensions as the image buffers, in dodensure the necessary number of
available positions. The idea is to draw each V@xe. vertex) as a glPoint over the
entire footprint of its destination cell, so we wraith glPointSize set to 1 which when
transformed by the vertex program will cause theeVdo cover the grid cell. The vertex
program computes the new vertex address baseceaouting texture width and height,
pixel-texel ratio, SVL index and size, and also eeaview index. The depth component

of the output fragments is set uniformly to O, rder to avoid collisions.

Image buffer = Vertex array
[ioe| TJms] [ ]

Change vertex

‘Jgrteu program position
i .
Fragment program Ouipitt o
* computed
address
Routing buffer
texHeight
—
texWidth

Figure 6.5 Pixel routing
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6.3.4 Photo-consistency Check

We perform the photo-consistency check in a singielering pass. The routing
pixel buffer containing the sorted voxels is fetthy a fragment program that computes
the variance of corresponding visible pixel sampheseference views, which we chose
as the photo-consistency metric.

We mentioned the photo-consistency computation ipusly in chapter 4,
however for readability reasons we will presenhéate in the context of GPU-based
processing.

The fragment program computes the variasCeaccording to the following

equation:

o :[i(a R +Y(G- G+ (8- %)ﬂ/( N

where N is the number of those active views in which 3epoint associated with the

fragment is visible (R, B, G) is the sampled pixel color from the i-th view, and
(R,, G,, B,) is the mean color of the corresponding pixeldlin\a views.

The photo-consistency can then be expressed asshtid function:

1, o°’<r

hoto— consisten
P = {0, otherwise

where 7 is a user-defined threshold. In our current im@atation, the variance
computation is based on a single sample from eafelnence view. Therefore, calibration
errors and image noise can introduce instabiltbethe photo-consistency check process.
Just like in the CPU-based case, incorporatinglloeaghborhood information will
provide more robust reconstruction results. The nmajpping technique utilized in
[YanPol03] could be adopted in this context
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Finally, if a fragment passes both the backgrouldisette (performed during
projective texturing) and the photo- consistencgath) color values are assigned to the
fragment by computing the mean average of the ssdrgalors.

Table 6.2 illustrates the instructions count of phi@cipal computational kernels.

Process Kernel Number of
instructions
Projective texturing Vertex program 72
Fragment program 36
Photo-consistency check Fragment program 148
Pixel routing Vertex program 25
Fragment program 10

Table 6.2 Instruction count for the mairkernels of the voxel carving engine

6.3.5 Display Consistent Voxels

Optionally, the SVL can be rendered to the displaying processing. In order to
reduce the workload of the fragment unit, voxetsrandered as point sprites. The photo-
consistency buffer will be set as a color attribfge the vertex array, and a fragment

program will discard fragments corresponding toetssthat were marked for rejection.

Conclusion

We presented in this chapter the carving engin&P&J-based algorithm that
extracts a voxelized representation of a scene amat of images depicting that scene.
The bandwidth efficient carving engine produces explicit volume at frame-rates
ranging from interactive to real-time.

Our approach employs a form of effective load beitag that allows the GPU to
do what it does best (perform the same computatioarrays of data), and lets the CPU

do what the GPU does worst (reorganize the data @afficient structures). By
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partitioning computation between the CPU and GP¥&,cambined the optimal features
of both.
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Chapter 7 Experimental Results

Introduction

In the following we will present results obtaineg the system described in the
previous chapters. Several results on self-caltmwafrom photographs are given,
including the Levenberg-Marquardt refinement of timitial estimates of the 3D
Euclidean structure and camera motions. We presel carving results, both in CPU
and GPU context, with a focus on performance. Tésalility of our approach is shown

by reconstructing a 3D model from an extended sezpief camera views.

7.1 Self-calibration
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7.1.1 Conditioning and Balancing

The scaled measurement matX (chapter3, 8§3.3.1, Equation 3.11) is poorly
conditioned, mainly because of the lack of homodgna the image coordinates. To
ensure good numerical conditioning, we work withrmalized image coordinates, as
described in [Hartley95]. This normalization cotsisof applying a similarity

transformation (translation and uniform scaliigXo each image, so that the transformed

points are centred at the origin and the mean ristdrom the origin is/2. The

projective motion and shape are computed for tl@stormed image point§x ,
PX; =4 Tx ~ Tx, therefore the resulting projective estimaisnust be corrected :

P, =T7'P. The matrice®;, and X; then represent projective motion and shape

corresponding to the measured image poitsFigure 7.1 illustrates the reconstructed

correspondences of a checker board without/withcprelitioning (bottom row, left and
right image, respectively).

Another technique applied to ensure good numedgeatiitioning was balancing, i.e.
rescaling the projective depth matrix [StuTri96]teat all matrix rows and columns have

on average the same order of magnitude. We achibisedy the following scheme:

1. Rescale each columrso thathTl(Arl )2 =1
2. Rescale each triplet of rowské2, k-1, k) so thatzlnzlz3k A2 =1

i=a-2""l
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Figure 7.1 Upper row: the 6-image sequence of a atleer board . Lower row: the
reconstructed structure of the corresponding featues (the colored corners of the pattern)
without/with pre-conditioning (left and right image, respectively)

7.1.2 Iterative Factorization
Algorithm

Several experiments have been carried out to obstdrg convergence of the
Iterative Factorization Algorithm (IFA).

A set of experiments were conducted on @ke—-0001dataset [Web7] provided by
the Calibrated Imaging Laboratory of Carnegie Melldniversity (Figure 7.2 left). The
CIL-0001 sequence consists of 11 views, 28 correspondiimggydhe mean calibration
error is within 0.1 pixels.

The 2D coordinates of the image points were peetibith Gaussian noise of zero
mean and standard deviation ranging fronx 0.5... 3. The number of iterations and 2D

reprojection error vs. noise level are shown inuFeg7.3. The 2D reprojection errors
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result from projecting the recovered points usihg tecovered camera geometry and
parameters and are measured in pixels.
The convergence of IFA is illustrated in Figure WHere the residual of Equation

(3.11) is plotted against number of iterations.

R

'xs'wm, s A
Figure 7.2 Images belonging to theCIL-0001 (left), corridor (middle)
and model housdright) datasets
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Figure 7.3 Number of iterations and 2D error vs. nise level

We have also performed a number of tests on imageesices acquired with a
Canon G2 camera with varying focal length. The nfieatures of the data sets are
described in table 7.1. The convergence of IFAlustrated in Figure 7.5 where the

residual of Equation (3.11) is plotted againstrihenber of iterations.
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Figure 7.5 Residual vs. number of iterations
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. Tracked . 2D
Data set| Description Images oints lterations | error
P (pixels)
Sequence objects,
1 checker board ! 41 73 0.55
Sequence human subject
q2 with markers, 6 56 173 1.28
checker board
Sequence human subject
q3 with markers, | 7 51 88 0.91
checker board
SqulrJence checker board 5 108 290 0.49
Seqéj €NCE checker board 6 108 158 0.46
Squ €NCE checker board 6 108 321 0.48

Table 7.1 Experimental data sets

We have observed that with high accuracy data f#e rhethod requires a large
number of iterations, and when noise is addedaltikzes with much less iterations. This
is because when data is accurate a very accurktiiosocan be achieved, taking more

processing time. We consider this to be a goodbehaf our system.

7.2 Bundle Adjustment

In order to investigate the performance of the eumbn-parameterized sparse LM
algorithm we have conducted comparison experimefits a dense, general version as
well as a sparse version of the LM algorithm, ald@ at [Web4]. We have employed the
corridor and model housedatasets (Figure 7.2 middle and right, respegtjvef the
Oxford's Visual Geometry Group [Web6], frequentlged for benchmarking in the

vision literature. Since we operate under the apsiom that the tracked features are
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visible in all views, we have restricted the seqesnto the number of points and frames
shown in table 7.2.

Table 7.2 illustrates several statistics: the ayerseprojection error of the initial
reconstruction and the average reprojection efter aparse LM refinement, the number
of iterations as well as the processing time.

The corresponding processing times using denseléwaadjustment were 89.58 and
112.1 seconds, respectively. The processing tinoestlie general sparse bundle
adjustment were 0.42 and 0.65 seconds, respecti@elyipared to the processing times
needed by our method, these results show perfosariose to the general sparse LM
implementation and also the computational benedftthieved by the exploiting the
sparsity of the problem.

Tracked | Initial 2D Final 2D Time (s)
Data set Images points error error
(pixels) (pixels)
Corridor 6 100 0.87 0.41 0.63
Model house 7 76 1.76 0.23 0.94

Table 7.2 Sparse Levenberg-Marquardt optimization watistics for
the benchmark sequences

Tracked Initial 2D Final 2D Time
Data set | Images | points | error (pixels) | error (pixels) (s)
Sequence 1 7 41 0.55 0.24 0.20
Sequence 2 6 56 1.28 0.59 0.31
Sequence 3 7 51 0.91 0.33 0.23
Sequence4 5 108 0.49 0.19 0.44
Sequenceb 6 108 0.52 0.17 0.58
Sequence 6 6 108 0.48 0.17 0.52

Table 7.3 Sparse Levenberg-Marquardt optimization tatistics

Table 7.3 presents experimental results gathemd the application of the sparse
Levenberg-Marquardt optimization to the initial 3®ructure estimates of our test
sequences (i.e. sequences 1-6). The benchmarkmneeguexperiments were conducted
on a Microsoft Windows XP, 1.66 GHz Intel Dual CArg500 platform. The sequences
1-6 experiments were conducted on a Microsoft WivelXP, 3.2 GHz Intel P4 platform.

102



In all cases, the sparse LM algorithm terminated tuthe magnitude of the computed

stepA being very small.

7.3 Voxel Carving

The following voxel carving-related experiments pegtitioned in two main subsets,
corresponding to the CPU-based and GPU-based aspespectively.

At the time of writing, GPGPU researchers - inchgdivoxel-carving related work
[LIMS04, WoeKoch04, ZacKar04] - provide strictly GPvs. CPU performance
comparisons of own implementations. Besides thaemdly fast-paced hardware
features changes, the major reason behind thikeislaick of disclosed manufacturer
details and of a unified framework for the existopgphic cards and shading languages
that would make GPU vs. GPU comparisons of relafgatoaches meaningful. We will

provide accordingly a GPU vs. CPU performance comspa.

7.3.1 Multi-resolution 3D
Reconstruction

We will present in the following a multi-resoluti®D reconstruction using a data set
of five images acquired at resolution 1704 x 22@&h a human subject with placed
markers for easier point selection. The set of &amsed to reconstruct the object are
shown in Figure 7.6.

The set of tracked features and their corresporegenere set manually. Also, the
background of the images is segmented manuallgditithte the reconstruction process.
Details of the sequence and preceding self-caldoratire provided in Table 7.4. The
initial and final 2D errors are the values obtaiaéer the IFA algorithm and after bundle

adjustment, respectively. The left image in Figdré shows the selected corresponding
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points, while the right image shows the

correspondences, as well as the camera positions.

recoverecktria

structure of

the

checker board

Tracked Initial Final
Data set Description Images ; 2D error 2D error
points : .
(pixels) (pixels)
human subject
Sequence 7| with markers, 5 63 1.02 0.47

Table 7.4 Human subject data set description

Figure 7.6 The 5-image input sequence

Figure 7.7 Left: A sequence image with the trackegoints.
Right: The recovered metric structure of the trackeal points and the camera positions
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Figure 7.8 Two sequence frames with the user-labeleegions.

Figure 7.9 Left: the reconstructed human model atesolutionr=25.
Right: same 3D model with the face region refinedtaesolution r=6

Voxel carving was initialized with a bounding boxtlwthe volume 168 x 160 x 72
voxels. The left image in figure 7.9 shows thes3fape reconstructed at resolution r=25.
With the face area of the subject selected fonesgfient in only two frames (Figure 7.8),

we performed the algorithm for two resolution irases, resulting in a final resolution
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r=6. The multi-resolution reconstruction is shown the right image of Figure 7.9.

Figure 7.10 presents detail views of the abovensiroctions.

Figure 7.10 Detail views of the above left and righmages, respectively.

7.3.2 Reconstruction from Extended
Sequences

In order to investigate an extended sequence we émployed a set of frames
consisting of 16 images captured at resolution /@272, which were divided into four
subsequences, illustrated together with the nurob&acked points for each of them in
Figure 7.11. Point tracking and background segntiientan a few frames is performed
manually. In order to increase the stability of ilsmgce merging we have chosen two
overlapping frames between sequences 3 and 4,haee tverlapping frames between

sequences 2 and 3.

Dataset Initial 2D error Final 2D error
(pixels) (pixels)
Sequence 1 0.60 0.25
Sequence 2 1.15 0.47
Sequence 3 0.83 0.32
Sequence 4 1.29 0.36

Table 7.5 Calibration and bundle adjustment statists
for the subsequences of the extended sequence
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Table 7.5 shows the -calibration and LM optimizatioesults for all
subsequences.We have performed reconstructionsdwiifferent voxel resolutions in
order to observe the relation between the model @& processing times for the CPU-
and GPU-based algorithms. The statistics illusttain Table 7.6 show that the
computation times achieved by the carving engieeagproximately three to eight times
faster than the software-based algorithm, deperatinifpe model complexity.

The experiments were conducted on a Microsoft WiwvedXP, 3.2 GHz Intel P4
plattorm and a Nvidia Quadro FX 3400 graphics umigure 7.12 shows the final

reconstructed object in novel rendering positions.

Voxel resolution CPU time (s) GPU time (s)
30° 125.49 16.24
40° 187.26 29.82
50° 240.06 73.42
80° 523.22 168.10

Table 7.6 Reconstruction CPU and GPU statistics foroxel carving

Sequence 1
{22 points)

.

Sequence 2
{35 points)

Sequence 3
{17 points)

Sequence 4
(14 points)

Figure 7.11 The division scheme of the extended semce
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Figure 7.12 Novel rendering positions and a detailiew of the human subject

7.3.3 Carving Engine Analysis

In order to observe exhaustively the performancearpaters of the carving
engine, we have used a calibrated dataset avadaiplgeb5]. The Millie dataset consists
of a set of 10 images, obtained by placing the abpm a turn table and rotating the
platform with angle increments from the startingigion. The sequence presents a 720 x
480 resolution. Background segmentation occurs thighhelp of alpha-map silhouettes.
For performance tuning, we have disabled duringetigeriments the render to display
function, that is, voxels will be rendered on sarealy after processing terminates.

Table 7.7 shows the global reconstruction staistamely the iterations number,
processing time and the highest framerate valuneedhe framerates are varying during
reconstruction with the number of surface voxelse Dbtained results show that the
carving engine is capable of achieving real-timatdeast interactive framerates.
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Voxel Time Max
resolution (s) framerate
(frames/s)
15 8.34 23
253 13.09 21
353 34.63 16
45° 65.23 7

Table 7.7 Carving engine performance on@Quadro FX 3400

Furthemore, our method is adaptable to the rapdblving hardware features.

Pending or very recently added graphics hardwanetions may enhance further the
performance of the carving engine.
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Figure 7.14 Visualization of image buffers with th& corresponding
camera views and silhouette alpha maps during therpjective texturing stage.

109



Figure 7.15 Novel rendering positions of thlillie dataset

Figure 7.14 represents a visualization of the ptoje texture mapping stage
(Chapter 4, § 6.3.2). The upper row shows threg@nauffers (bound as render targets
during this step), while the middle the bottom retwow their corresponding camera
views and silhouette alpha maps (bound as inpuurtes). Magenta pixels represent
voxels that didn’t survive the alpha test.

Figure 7.15 shows the final reconstructed objectavel rendering positions.

The carving engine was written using Cg [MGA*03],pédGL, OpenGL
extensions and graphic card vendor specific extessi The carving results were
measured on a Microsoft Windows XP, 3.2 GHz Int#InRachine with 1 GB RAM, with
an Nvidia Quadro FX 3400 graphic card.

In the following, we analyze the carving enginetenms of memory bandwidth

and computational complexity.

Bandwidth considerations

In order to investigate the potential bandwidthitations for our method, we first
distinguish between the two bandwidth types of moedePUs. Theexternalbandwidth
is the rate at which data may be transferred betwhe GPU and the main system
memory. Conversely, thaternal bandwidth is the rate at which the GPU may reatl an
write from its own internal memory. The externalnbaidth of the GPU presents
importance for our application mainly during thexdeback of the photo-consistency

computation results from the card to the CPU, intain memory. As discussed
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previously, the carving engine output format isigiesd to return minimal data to the
main memory. For th#illie example, we have measured transfer times betw@&1i 3
milliseconds, amounting to about 8-11% of the tqiebcessing time. Thus, external
bandwidth transfer is a significant, but fairly dhieaction of the total time.

Concerning the internal bandwidth transfers, weehaonsidered the main
processing stages of the carving engine. In ouoriégn, every memory operation
transfers 4 bytes of data. The projective textustep requires three texture fetches and
writes one value per fragment. The pixel routingpstequires only one write per
fragment. The photo-consistency step performs aerifoop over the number of camera
views, and requires two texture fetches per eaehatibn and then one write per
fragment.

Table 7.8 summarizes these results and shows thkitdernal bandwidth in
bytes transferred by each method, which is the ysodf the number of passes, the
fragments per pass and the bytes per fragment.

The parameters are as followsis the current SVL sizey is the number of

reference images,represents the size of the image buffer (i.eurexividth x height).

Process Fragments Passes Bytes/| Total bytes
fragment
Projective texturing S n 16 16n
Photo-consistency S 1 at4 &n+4
Pixel routing \ n 4 4vn
Tota| : 4n(6st+v)+4

Table 7.8 Bytes transferred internally by the rendeng passes

Arithmetic
Process operations/ | Fragments | Passes| Total operations
fragment
Projective 96 S n 96sn
texturing
Photo- 52n+58 S 1 52sn+ 58s
consistency
Pixel routing 27 % n 27vn
Total:| 148sn+ 27vn+ 58¢

Table 7.9 Floating point operations required byeach main rendering pass
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Arithmetic complexity

The GPU uses the fact that the same instructiomdaing executed on a large
number of fragments simultaneously. As no commatioa between executions of the
kernels is needed, an abundant amount of paratigésavailable. This parallelism is
used to hide the latency of memory operations @hnerdbottleneck causes.

As a result, when enough fragments are availalale in our case - the running
time of a kernel is approximately linear in the rnen of instructions executed.
Therefore, we have summarized the number of instme required by each
computational stage of our algorithm in Table 7.8

Similarly to Table 7.7, the parameters are as Wil is the current SVL sizey
is the number of reference imagegepresents the size of the image buffer (i.e.urext
width x height). The projective texturing and pixelting perform 96 and 27 arithmetic
instructions per rendering pass. The photo-consigteheck performs 52 arithmetic
instructions within the loop over camera views nwmd above, and 58 instruction

outside the loop, amounting torb258 operations per fragment .
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Chapter 8 Conclusions and Future
Work

Introduction

The previous chapters have introduced the theateatimnsiderations of a complete
pipeline for reconstruction of objects from imag¥¢e described the implementation
details and presented the achieved results. Irctiapter we point out the advantages as
well as the limitations of the system. Additionalfs a conclusion, some reflections on
the work, its limitations, its applicability andttwe work are discussed.

8.1 Conclusions

The principal objective of this work is to develagoftware pipeline, based on
IBMR techniques, that allows the reconstructiomeafl objects with their shape and color

properties recovered.
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The first stage of the proposed system requirest afsfeatures tracked across a
sequence of images. Keeping in mind that we tangetexpert users, we have used
different techniques to achieve a reliable calibratfrom a set of manually selected
features in sequences which usually contain leseds. However, the proposed solution
equally allows the use of automatically trackedewidsequences, entailing an extended
number of frames.

The complete sequence is divided into subsequena#sin each of them, a set of
keyframes is selected and calibrated, recoverinly bamera parameters and structure of
the scene. A Levenberg-Marquardt non-linear opt@tnin is performed in order to
reduce the overall reprojection error. When thefed#int subsequences have been
successfully calibrated a merging process grouestimto a single set of cameras and
reconstructed 3D features of the scene.

The camera calibration process is a critical pmoblan our application. One
advantage of the presented calibration approattnmisit allows to recover an Euclidean
reconstruction of the scene without any initialusioin or prior information and it
amounts to solving only linear systems. The knogéedf the geometric meaning and
rank properties of the different transformationpresented by the matrices allows to
enforce a valid Euclidean reconstruction. The presk solution is designed to be
flexible with respect to the input data allowing thse of varying focal length throughout
the sequence.

There are however several directions of vast ingason in this stage of the
pipeline, a couple of them concerning the analydiscritical camera configurations
[PollefeysO0b, CPV02, CVGO04] and the sensitivity lofindle adjustment to false
matches. Related to this, the spatial distributbthe image feature points represents a
further examination direction. For example, sitoiasi where points are chosen too close
to each other, or are biased towards an image rregfiould be avoided because the
estimation of the epipolar and projective geombagomes highly unstable [Zhang98].

Another important aspect is that the “perspectiffecé present in many of our
experiments reveals the necessity of modeling thsi®rtion. Unmodeled camera lens
distortions cause a warp- or bend-like error inribeovered structure and motion since

the self-calibration pipeline expects the cameracomply to a purely perspective
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projection model. While the bundle adjustment stpgeforms a minimization of the
reprojection error, it cannot remove the effectenfs distortion [CPV02]. Therefore, the
camera model needs to be extended with at leasparasmeter for radial distortion in
order to improve the recovered metric structure\[FOA4].

Also, further analysis should be conducted on thguence merging. When two
consecutive subsequences present very differerdl flemgth settings, this process
becomes extremely difficult, even impossible.

The second stage of the pipeline, the scene recetish, has the objective of
extracting a voxelized reconstruction based onréference views and the calibration
information. As one can imagine this is tediousk téecause reconstruction from images
is an ill-posed problem unless a large number aiges is provided, covering all possible
features of the model, or additional informationingroduced in the pipeline. Carving
algorithms proved to be a decent approach, howeheyr are highly dependent on the
implementation and on the quality of the input imagA further direction to explore
could be a hybrid approach that integrates spangngaand long baseline multi-view
reconstruction, in such a way that the methods éemmgnt each other introducing
constraints on the final shape.

The voxel carving process requires the analysisa darge number of discrete
elements. The main reason we introduced the nmedtlution calculation was to address
this extended computational cost by restrictingllycthe level of detail, with the help of
common image editing operations. Moreover, as we Isgaen in the previous examples,
the complete sequence does not need to be editednly a few frames. Therefore, the
user can manually process 2 or 3 frames and use t®a starting point for a refinement
process.

Conversely, the voxel carving engine, tackles tfmeanentioned computational
costs from a different angle, capitalizing on #ieindant parallelism offered by modern
graphics hardware. Our approach eliminates the 8@ute restrictions and efficiently
uses the GPU-CPU bandwidth as well as the GPU ibardwidth by returning only
compact data and employing a two-dimensional depgesentation that fits the two-

dimensional data layout on the GPU.
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The performance of the carving engine wdwgdefit from the recently introduced
framebuffer objec{FBO) extension [EXTO05], an enhanced and simmliflraethod of
doing render-to-texture. The frequent pixel bufésvaps during the carving process
imply an equal number of expensive context switclsege pixel buffers require their
own rendering context within the graphics API. Grighe main advantages of FBOs is
that they only require @aingle graphics APl context, so that switching between
framebuffers is at least twice as fast as switclhetgveen pixel buffers, depending on the
employed technique.

The principal theoretical contribution of this bodyf work is a quaternion
parameterized Levenberg-Marquardt optimization negplre. Furthermore, we made the
following practical contributions:

= A multi-resolution, user-guided voxel carving matho

= A GPU-based voxel carving engine

= A complete system for flexible retrieval of met8D surface models from

uncalibrated image sequences

This work is relevant for the fields of structureorh motion, voxel-based 3D
reconstruction, and also for general processinghengraphics processing unit. The
presented tailored sparse optimization and GPUebasxel carving methods bring
significant computational gains compared to densd aoftware-based techniques,
respectively. Additionally, our system would scalell and benefit from the graphics
hardware trend of expanding the number of fragnael vertex processors, and texture
units, as well as other future enhancements. Mamrdwth developed voxel carving
approaches present potential for the field of hue@mputer interaction due to the
interactive user involvement possibilities they\pde.

8.2 Future Work

Until now we have focused on the geometric andgssing performance aspects
of IBMR, leaving the rendering part almost untadklRendering together with geometric
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accuracy and non-Lambertian lighting conditionsaemnareas to be further explored and
developed. In the following, we will outline seakfuture work directions investigating
possible improvements which are still needed fomecurate and efficient recovery of
the 3D scene.

Robust Self-calibration of Long
Baseline Sequences

The self-calibration method presented in Chaptsta®s from the assumptions that
the tracked correspondences are static points rmir@seall views (i.e. all features are
valid for calibration). However, due to camera gaghound objects, we have to deal with
large amounts of frames and the features will motibible in all of them. Therefore, we
need to develop a strategy for dividing long segasnnto manageable sub-sequences
suitable for self-calibration. Sequence divisiord @elf-calibration will be followed by
sequence merging in order to recover the completaes structure. Moreover, often
consecutive frames reflect very little changesthad for computational cost reasons it
would be useful to detect the keyframes that intoedsignificant 3D information.

Also, a crucial aspect of the self-calibration @m®x is the convergence of the
projective factorization. Further analysis shoulé bonducted on the projective
reconstruction stage that could be enhanced wittalgarithm that presents a faster

convergence.

Volumetric Reconstruction Using an
Evolution Surface

Incomplete surface data can produce reconstructiithsmissing areas (Figure 8.1),

requiring a post-processing step with hole-filledlgorithms.
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Furthermore, reconstructions produced by spacentapan present ragged surfaces
with floating voxels, especially for high curvatwserfaces. Rather than post-process the
reconstructed surface, the level set approachuidace evolution proposed in [SSHO02]
mitigates the above problems during reconstrucéiod obtains a smooth, watertight
geometry. An initial surface is embedded as thre ivel set of a volumetric function
that moves along its inwardly pointing normal, watlspeed based on a photo-consistency
measure of surface points. Level set theory [Se#8ihprovides a numerical scheme that
solves the partial differential equations that elotgrize the motion of the surface.

Space carving with an evolution surface employinfgrection that includes a flow
term modeling a non-Lambertian color-consistencyasnee (discussed below) could

represent a direction of future investigations.

Figure 8.1 Detail of holes in the reconstructed stface,
caused by grazing view angles

Reconstruction of Non-Lambertian
Scenes

Currently we rely on the Lambertian assumption, mmly made in reconstruction
algorithms, that simplifies the problem, but limilse class of scenes that can be
reconstructed. However, real surfaces interact Wiht in complex ways, producing
view-dependent effects such as specularities afielctiens. Thus, more sophisticated
modeling of the bidirectional reflectance distribat function (BRDFs) will be required
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to improve the flexibility of the reconstructiongakithm. Work on this problem has
started to emerge in the literature [CarKutOl, Gnkd@l, MagdaOl, JSY03, YPWO3,
THS04].

Issues that need to be further explored are handjeneral BRDFs, and possibly
employing new cues, likerientation-consistencwithin the voxel coloring framework
(the orientation-consistency cue introduced in 03] states that under orthographic
projection and distant lighting, two surface poimtgh the same surface normal and
material exhibit the same radiance).

GPU-based IBMR Pipeline

Our IBMR system features mainly a CPU-based compioeecapsulating computer
vision algorithms and a GPU-based component, eingjamputer graphics algorithms.
An exciting area of investigation is the prospettaofull GPU-based reconstruction
pipeline. Early work on efficiently mapping computésion algorithms for a stereo pair
of images to the GPU has been presented in [FMA&ABA)S]. The sparse Levenberg-
Marquardt optimization requires solving repeategllgparse equation system. Recently,
GPUs have been used for linear algebra, includimegrams for matrix multiplication
[JHO3], an iterative sparse system solver [BFGS0&hd a direct dense system solver
[GGHMO5].

Our system performs a serial update on the CPUtaltiee insert/delete operations
required by the update of the dynamic surface veostalcture. However, dynamic
complex data structures on the GPU are an areactnfearesearch, as they have
applications in many computer graphics areas. IKHt04], [CHLO4] the authors
describe efficient GPU-based dynamic algorithmg tiee the CPU only as a memory
manager. A system that builds on the work enumérab®ve would undoubtedly bring
benefits to the field of IBMR.
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