

Accelerated Volumetric Reconstruction

From Uncalibrated Camera Views

Felicia Brisc, M.S.
Ph. D. Thesis

Dublin City University

Prof. Paul Whelan
School of Electronic Engineering

July 2006

 II

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Ph.D. is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been cited and

acknowledged within the text of my work.

Signed: _________________________

(Candidate) ID No.: 51173719

Date: ____________________________

 III

Abstract

While both work with images, computer graphics and computer vision are inverse

problems. Computer graphics starts traditionally with input geometric models and

produces image sequences. Computer vision starts with input image sequences and

produces geometric models. In the last few years, there has been a convergence of

research to bridge the gap between the two fields.

This convergence has produced a new field called Image-based Rendering and

Modeling (IBMR). IBMR represents the effort of using the geometric information

recovered from real images to generate new images with the hope that the synthesized

ones appear photorealistic, as well as reducing the time spent on model creation.

In this dissertation, the capturing, geometric and photometric aspects of an IBMR

system are studied. A versatile framework was developed that enables the reconstruction

of scenes from images acquired with a handheld digital camera. The proposed system

targets applications in areas such as Computer Gaming and Virtual Reality, from a low-

cost perspective. In the spirit of IBMR, the human operator is allowed to provide the

high-level information, while underlying algorithms are used to perform low-level

computational work. Conforming to the latest architecture trends, we propose a streaming

voxel carving method, allowing a fast GPU-based processing on commodity hardware.

 IV

Acknowledgements

This dissertation would never have been possible without the support of many

people.

Thanks to my advisor, Prof. Paul Whelan, who gave me the opportunity to work

in his research group. He provided an exciting working environment with many

opportunities to work on promising applications and develop new ideas.

Thanks to Mr. Jim Dowling who provided me endless amounts of help and

support. The financial support of Enterprise Ireland is also gratefully acknowledged.

This thesis is a testament to my wonderful family, loved ones and friends. They

have always provided perspective, advice and encouragement throughout my time at

DCU. To them I am most grateful. Special thanks to my mother - if it were not for her

inspiration, I would not have come half as far.

 V

Contents

 Page
List of Figures VII
List of Tables IX
Acronyms X

1 Overview ………………………………………………………………….. 1
 1.1 Introduction ………………………………………………………… 1
 1.2 3D Reconstruction Pipeline …………………………………………. 3
 1.3 Contributions ……………………………………………………….. 4
 1.4 A Note on the CPU-based, Hardware Accelerated and GPU-based
paradigms

8

 1.4 Outline ……………………………………………………………… 8

2 Related Work ……………………………………………………………. 10
 2.1 Structure from Motion ……………………………………………... 10
 2.1.1 Camera Self-calibration 11
 2.1.2 Bundle Adjustment 13
 2.2 Volumetric Reconstruction …………………………………………. 14
 2.2.1 Volumetric Intersection ……………………………………. 15
 2.2.2 Voxel Carving ……………………………………………… 16
 2.3 Graphics Hardware and Programmability …………………………... 22

3 Camera Calibration ……………………………………………………… 25
 3.1 Camera Geometry ………………………………………………….. 27
 3.2 Conics and Quadrics ……………………………………………….. 28
 3.3 Camera Self-calibration ……………………………………………. 31
 3.3.1 Projective Reconstruction …………………………………… 33
 3.3.2 Upgrade to Metric Structure ………………………………… 37
 3.4 Non-linear Optimization of the Metric Solution 41
 3.4.1 Bundle Adjustment …………………………………………... 41
 3.4.2 The Levenberg-Marquardt Algorithm ………………………. 42
 3.4.3 Refinement of the Metric Solution …………………………… 44
 3.5 Sequence Merging ………………………………………………… 49

 VI

4 Voxel Carving ……………………………………………………………… 52
 4.1 Background 53
 4.1.1 Theoretical Foundations of Space Carving ……………... 53
 4.2 Multi-resolution Voxel Carving (CPU-based Voxel Carving) ……. 58

5 Programmable Graphics Hardware …………………………………….. 67
 5.1 The Stream Programming Model …………………………………. 68
 5.2 The GPU as a Stream Processor ………………………………….. 70
 5.3 GPU Computations ……………………………………………….. 74
 5.4 Dependent Texturing ……………………………………………… 74
 5.5 Render-to-vertex-array ……………………………………………. 75
 5.6 Shading Languages ………………………………………………. 77

6 Voxel Carving on the GPU ………………………………………………… 80
 6.1 The Carving Engine ………………………………………………. 81
 6.2 Memory Layout …………………………………………………… 82
 6.3 Computational Stages and Kernels ……………………………….. 87
 6.3.1 Process Voxel Birth and Death ……………………………. 88
 6.3.2 Projective Texturing ………………………………………. 89
 6.3.3 Sort by Pixel Routing ……………………………………… 90
 6.3.4 Photo-consistency Check …………………………………... 93
 6.3.5 Display Consistent Voxels …………………………………. 94

7 Experimental Results …………………………………………………….. 96
 7.1 Self-calibration …………………………………………………… 97
 7.1.1 Conditioning and Balancing ………………………………. 97
 7.1.2 Iterative Factorization Algorithm ………………………… 98
 7.2 Bundle Adjustment ……………………………………………….. 101
 7.3 Voxel Carving ……………………………………………………. 103
 7.3.1 Multi-resolution 3D Reconstruction ………………………. 103
 7.3.2 Reconstruction From Extended Sequences ………………... 106
 7.3.3 Carving Engine Analysis ………………………………….. 108

8 Conclusions and Future Work ……………………………………………. 113
 8.1 Conclusions ……………………………………………………... 113
 8.2 Future Work …………………………………………………….. 116

References ……………………………………………………………………… 120

 VII

List of Figures

 Page
Figure 1.1 3D reconstruction pipeline 6
Figure 2.1 Only cameras behind the sweeping plane are used

for photo-consistency check
18

Figure 3.1 The pinhole camera model 27
Figure 3.2 The absolute conic ∞Ω and the absolute dual quadric ∗Ω

situated on the plane at infinity π∞ in 3D space

29

Figure 3.3 The image of the absolute conic (left) and the dual image of
the absolute conic(right)

30

Figure 3.4 The absolute conic and its projection in the images 32
Figure 3.5 Sparse structure of the Jacobian and normal equations 48
Figure 3.6 An example showing three merged sub-sequences 50
Figure 4.1 Illustration of the visibility and non-photo-consistency

Lemmas
58

Figure 4.2 The initial bounding box of voxels is containing the 3D scene. 60
Figure 4.3 Left - the voxel projects in two views to background.

Right - the voxel projects to the same color in all three views.
60

Figure 4.4 Correct visibility determination is required to compute photo-
consistency

61

Figure 4.5 The item buffer records for each pixel the ID of the closest
visible voxel that projects onto it

62

Figure 4.6 Voxels that change visibility 62
Figure 4.7 Pseudo-code for the voxel carving algorithm 64
Figure 5.1. The stream programming model 69
Figure 5.2 The stream formulation of the graphics pipeline 71
Figure 5.3 Dependent texturing 75
Figure 5.4 VBO targets 77
Figure 5.5 Render-to-Vertex-Array 77

 VIII

Figure 6.1 Carving Engine pseudo-code 84
Figure 6.2 1D array packed into a 2D texture 84
Figure 6.3 Carving engine computational stages 89
Figure 6.4 The tightly packed routing buffer for an example data set 91
Figure 6.5 Pixel routing 92
Figure 7.1 Reconstructed checker board 98
Figure 7.2 Images belonging to the CIL–0001 (left), corridor (middle)

and model house (right) datasets
99

Figure 7.3 Number of iterations and 2D error vs. noise level 99
Figure 7.4 Residual vs. number of iterations 100
Figure 7.5 Residual vs. number of iterations (six sequences) 100
Figure 7.6 The 5-image input sequence 104
Figure 7.7 Left: A sequence image with the tracked points.

Right: The recovered metric structure of the tracked points and
the camera positions

104

Figure 7.8 Two sequence frames with the user-labeled regions.

105

Figure 7.9 Left : the reconstructed human model at resolution r=25.
Right : same 3D model with the face region refined at
resolution r=6

105

Figure 7.10 Detail views of the above left and right images, respectively. 106
Figure 7.11 The division scheme of the extended sequence 107
Figure 7.12 Novel rendering positions and a detail view of the human

subject
108

Figure 7.13 Several images of the Millie dataset 109
Figure 7.14 Visualization of image buffers 109
Figure 7.15 Novel rendering positions of the Millie dataset 110
Figure 8.1 Detail of holes in the reconstructed surface, caused by grazing

view angles
118

 IX

List of Tables

 Page
Table 6.1 Data layout for the carving engine 85
Table 6.2 Instruction count for the main kernels of the voxel carving

engine
94

Table 7.1 Experimental data sets (IFA) 101
Table 7.2 Sparse Levenberg-Marquardt optimization statistics for the

benchmark sequences
102

Table 7.3 Sparse Levenberg-Marquardt optimization statistics 102
Table 7.4 Human subject data set description 104
Table 7.5 Calibration and bundle adjustment statistics for the

subsequences of the extended sequence

106

Table 7.6 Reconstruction CPU and GPU statistics for voxel carving 107
Table 7.7 Carving engine performance on a Quadro FX 5900 102
Table 7.8 Bytes transferred internally by the rendering passes 111
Table 7.9 Floating point operations required by each main rendering pass 111

 X

Acronyms

IB Image Buffer

IBMR Image Based Modeling and Rendering

GPU Graphics Processing Unit

GPGPU General Processing on the Graphics Processing Unit

GVC Generalized Voxel Coloring

LM Levenberg-Marquardt

SVD Singular Value Decomposition

SVL Surface Voxel List

Chapter 1 Overview

1. 1 Introduction

The quest for visual fidelity has been the ultimate drive of computer

graphics, ever since its beginnings. In the ever changing landscape of computer

graphics systems, the last decade has seen the most significant transformation.

Previously, dedicated hardware for computer graphics was only available in

expensive workstations. Today, the vast majority of personal computers include

high-performance graphics hardware as a standard component.

Consequently, the ubiquity of high performance hardware has spawn an

impressive growth of fields like computer games, special effects, virtual reality,

which in turn has triggered an insatiable demand for visual realism.

Image-based modeling and rendering (IBMR) has emerged as a field about

half a decade ago, as an alternative to traditional geometry-based techniques. Its

main purpose is to bridge the gap between computer graphics and computer

 2

vision in an effort to use real world images to create visually compelling photo-

realistic images, while diminishing the time and effort needed to achieve this

goal. The technology became mature enough to support successful commercial

ventures, such as REALVIZ or 2D3 [Web1, Web2]. However, IBMR is still

primarily a privilege of research laboratories and high-end studios.

There is an increasing demand for flexibility in IBMR tools, to allow their

use under less restrictive conditions and minimize expert guidance. Novel

methods for acquiring, reconstruction, and representing geometries and images

are necessary in addition to new algorithms to efficiently analyze and process

the input data.

In this context, the proposed research is focused on developing new

techniques that will get us closer to the ultimate goal of a low-cost, interactive

tool allowing non-expert users to build their own models and utilize the

authored data for applications that simulate physical interaction with the real

world. The system we designed to accomplish this goal presents the IBMR

characteristic computer vision and computer graphics elements.

The computer vision component consists of a camera self-calibration method

that relies only on information from an extended sequence of images acquired

with a single digital camera.

The computer graphics component relies on a voxel carving method for

achieving 3D reconstruction. Voxel carving techniques have become very

popular in the IBMR field, as they provide a powerful tool for computing the

volumetric model of the scene. However, due to their high computational costs

they are traditionally the main bottleneck in IBMR pipelines, leading to a trade-

off between performance and accuracy.

These computational costs are tackled in this work from two perspectives,

both of which embody the interactive character of IBMR. Our first approach

addresses the extended computational cost by locally adjusting the level of

detail. More specifically, our approach introduces the novel feature of user-

 3

driven interactive refinement, resulting in a model reconstructed at varying

resolution -and hence level of detail- across the voxel structure. Besides

processing speed, the development of this feature is motivated by a second

factor: scalability over various environments.

For the second technique, we focused exclusively on the processing speed.

Here we have developed a GPU-based voxel carving method, motivated by the

rapid increase in the performance of graphics hardware compared to the CPU,

coupled with their recently exposed programmability. Both have made graphics

hardware arguably today’s most powerful commodity computational platform.

As such, the computational power of GPUs has been harnessed for demanding

tasks like ray tracing and photon-mapping, performed traditionally off-line on

the CPU. Moreover, GPUs have transcended the boundaries of computer

graphics and have been employed for general-purpose computing in a wide

variety of domains ranging from physically-based simulations to sparse matrix

multiplications techniques.

With our GPU-based work, we describe a method that provides

interactive user involvement possibilities, and delivers high performance and

flexibility, one that can be adapted for future graphics hardware.

1.2 3D Reconstruction Pipeline

The input to our system is a set of uncalibrated images of a scene acquired

with a single moving digital camera, so that we need to perform self-calibration

prior to the 3D reconstruction in order to recover the camera intrinsic and

extrinsic parameters. The reconstruction pipeline is outlined in Figure 1.1. A

number of relevant points are selected manually in a reference view, and then

their corresponding points are tracked throughout the sequence. These identified

correspondences are the only information from images needed to recover the

 4

position and orientation of the camera views. Within the camera self-calibration

process, first the 3D structure of the tracked points and the camera parameters

are retrieved in a projective frame through a rank-4 iterative factorization,

followed by an upgrade to Euclidean structure by imposing metric constraints on

the intrinsic camera parameters. Self-calibration is concluded by a sparse

Levenberg-Marquardt optimization, providing a maximum likelihood estimation

that minimizes the reprojection error with respect to all 3D points and camera

parameters.

The voxel-based 3D model building is achieved through a Space

Carving method, also called voxel carving in the literature. Space Carving

approaches represent the space in which the scene occurs through a discretized

volume of voxels and make occupancy decisions about whether voxels belong to

the objects in the scene. The decision mechanism consists of a color similarity

check of the pixels a visible voxel projects onto. The resulting 3D shape is the

photo hull, the union of all possible photo-consistent scene reconstructions. We

have developed two voxel carving formulations: a multi-resolution software

(CPU-based) implementation and a GPU based carving engine.

1.3 Contributions

This dissertation makes several contributions to the areas of computer vision

and computer graphics.

The thesis makes the following theoretical contribution:

� Quaternion-parameterized optimization of the metric solution

Structure from motion (SFM) methods process images over time, observing

spatial and temporal changes that are caused by relative motion between camera

and scene. We have employed robust digital image processing and computer

 5

vision techniques that allow the use of low-end acquisition systems such as

standard photo or video cameras. Also, no information about the camera nor the

scene is known a priori and the only requirement regarding the scene is that it

will be assumed to be rigid.

Each step of the SFM analysis creates a more abstract and thus flexible

representation, but each of these steps often introduces large errors and biases.

The different solutions are computationally expensive and noise sensitive, and

one of the goals of this work was to obtain more reliable methods based on a

combination of linear techniques and non-linear bundle adjustment methods.

As such, we applied a linear stratified approach to compute the

parameters of the camera and achieve Euclidean camera self-calibration. We

followed up this work by implementing a sparse Levenberg-Marquardt

optimization method with a quaternion-based parameterization of the camera

rotations. This final non-linear optimization process is required in order to

reduce the reprojection error accounting for all the non-linearities not recovered

in the metric solution.

Moreover, if a more complete camera intrinsic parameters description is

required (e.g. adding the principal point) it can be incorporated into the

optimization process as well.
This method brings computational and memory usage benefits over the

general variant of the Levenberg-Marquardt algorithm, by exploiting the sparse

nature of the problem and reducing the number of overall parameters,

respectively.

This dissertation also makes the following practical contributions:

Voxel carving:

The common characteristic for these approaches is that they carve a

piece of voxelized virtual material that contains the object, similar to an artist

sculpting a raw block of marble. The voxel carving process is based on the

 6

classification of thousands of discrete elements in scene space according to

photo-consistency within scene images, leading to a typical trade-off between

performance and accuracy.

Figure 1.1 3D reconstruction pipeline.
* Labeling and multi-resolution reconstruction pertain to the CPU-based

implementation

It is important to note here that this work focuses on uniformly lit scenes,

therefore operates under the Lambertian assumption. The reconstruction of non-

Lambertian scenes is an exciting area of future research described in more detail

in Chapter 8, § 8.2.

 7

� Multi-resolution voxel carving

Our initial approach addressed the extended computational cost by

locally adjusting the level of detail [Bri04a, Bri04b]. Since perceptual

importance is ultimately determined by the human factor, we have developed a

multi-resolution approach that allows users to selectively control the complexity

of different surface regions, while requiring only common image editing

operations. An initial reconstruction at coarse resolution is followed by an

iterative refining of the surface areas corresponding to the selected regions.

� Voxel carving on the graphics processing unit

We have developed a streaming, GPU-based voxel carving method,

tackling the aforementioned computational costs in the context of the latest

graphics hardware trends. The bandwidth efficient carving engine highlighted

the importance of both the CPU and GPU to work in concert to carry out the

given task. The philosophy behind this research was to partition the problem

domain based on which computational components were better suited to each

processor type while being mindful of the cost of inter-processor

communication. Unlike previous approaches [LiMS04, WoeKoch04, ZacKar04]

our method creates an explicit volume that can be modified interactively and

eliminates the 3D texture inherent drawbacks by employing only surface voxels

in a two-dimensional data representation that matches the two-dimensional data

layout on the GPU.

� A complete system for acquisition of metric 3D surface models from

uncalibrated image sequences

The self-calibration and reconstruction techniques mentioned earlier were

incorporated into this system allowing for great flexibility in the acquisition of

3D models from images [Bri03, BriWhe04, BBS*04]. To our knowledge, this is

the first system to integrate unconstrained structure from motion, self-calibration

and GPU-based voxel reconstruction algorithms. This combination results in

 8

highly realistic 3D surface models obtained from images taken with an

uncalibrated hand-held camera, without restriction on zoom or focus, and

confers real-time characteristics to the 3D reconstruction process.

1.4 A Note on the CPU-based,

Hardware Accelerated and GPU-
based Paradigms

We provide in the following a brief consideration of the above concepts,

in the order corresponding to the evolvement of computer graphics.

“CPU-based” applications, also called “software-based” in the literature,

are processed entirely on the CPU, and therefore do not employ graphics

hardware acceleration or computation.

It is especially important to emphasize the distinction between the

“hardware accelerated” and “GPU-based” concepts. The former refers to

employing graphics hardware exclusively for graphics processing purposes,

while other generic operations are performed on the CPU, in a sequential

manner. “GPU-based” on the other hand, refers to employing graphics

hardware to process such general operations, in addition to processing graphics

primitives.

1.5 Outline

We begin in Chapter 2 with a background discussion on structure from

motion, volumetric reconstruction, and modern programmable graphics

hardware.

 9

Chapter 3 deals with the self-calibration of a single moving camera. After

introducing several theoretical derivations, a flexible calibration method is

presented that can deal with unknown motion and varying intrinsic camera

parameters. Then, we present the formulation of the Levenberg-Marquardt

optimization technique we have developed.

We examine the theoretical foundations of Space Carving and describe our

CPU-based implementation of a voxel carving algorithm in Chapter 4. Chapter 5

is concerned with programmable graphics hardware concepts and

characteristics. We describe the stream programming model and then present the

abstraction of the programmable graphics processor as a stream processor.

We continue with the description of our streaming voxel carving method on

the graphics processing unit in Chapter 6. In Chapter 7 results and applications

of the system are presented. The flexibility and the potential of our approach is

shown in several examples. Finally, we suggest areas of future research, and

present the conclusions of our work in Chapter 8.

Throughout this dissertation the words ‘metric’ and ‘Euclidean’ will be used

interchangeably.

 10

Chapter 2 Related Work

Introduction

Previous work related to the work in this dissertation falls into three categories. First,

structures from motion approaches have provided the basis for our camera calibration

method. Second, our 3D reconstruction approach belongs to the generic framework of

volumetric techniques, and more specifically to voxel carving techniques. Finally,

previous work involving programmability in graphics hardware has inspired the GPU-

based features of the implementation described in this dissertation.

2.1 Structure from Motion

Structure from motion methods seek to determine the relative motion of a moving

camera from the acquired image sequence, as well as the shape, or structure of the

observed objects. No information about the camera or the scene is known a priori and the

 11

only requirement regarding the scene is that it will be assumed to be rigid. Quite an

impressive amount of research has appeared in the literature on structure from motion.

We focus here on methods designed for full perspective (projective) cameras, arbitrary

motion (equivalent to arbitrarily placed cameras), static scene, small baseline of the views

and 3D model synthesis.

2.1.1 Camera Self-calibration

Self-calibration is the computation of metric properties of the cameras and/or scene

from a set of uncalibrated images. Unlike conventional calibration, where these

properties are determined from the image of a known calibration grid, self-calibration

computes them directly from constraints on the intrinsic/extrinsic parameters.

Earlier reconstruction methods either worked only for the minimal number of views

(typically two), or singled out a few ‘privileged’ views for initialization before being

extended to the multi-view case [Hartley93, McLauMur95]. Shashua was the first to

extend the two-image epipolar constraint to a trilinear constraint between matching points

in three images [Shashua95]. Hartley [Hartley94a] showed that this constraint also

applies to lines in three images, and Triggs [Triggs95a, 95b] studied the constraints for

lines and points in any number of images.

For robustness and accuracy, there was a need for methods that uniformly take into

account all the data in all the images, without relying on privileged features or images for

initialization. The early factorization methods, developed by Tomasi and Kanade

[TomKan92] for orthographic views and extended by Poelman and Kanade [PoeKan97]

to weak perspective views partially fulfill these requirements, but they only apply when

cameras are viewing small, distant scenes, which is seldom the case in practice. Triggs

presented a key aspect in [Triggs96], namely that projective reconstruction is essentially

a matter of recovering a coherent set of projective depths - projective scale factors

representing the depth information lost during image projection.

The projective factorization method proposed by Triggs presents two key attractions:

 12

• No initialization is required

• All of the data in all of the images is treated uniformly - there is no need to single

out ‘privileged’ features or images

When nothing is known about the camera intrinsic parameters, the extrinsic

parameters or the object, it is only possible to compute a reconstruction up to an unknown

projective transformation (projective ambiguity) [Hartley94b]. The upgrade to Euclidean

reconstruction requires some additional information about either camera or object, in

order to be mathematically tractable. Since such information is not available, some

assumptions need to be made, translating into constraints imposed on the camera views.

The earlier studies of self-calibration assumed unknown, but constant camera

parameters [HeyAst96]. This has the disadvantage that zooming/focusing is prohibited.

However, in the last decade there has been significant progress in the case of varying

intrinsic parameters. Pollefeys and Van Gool [PolGol97] proposed a stratified approach

for the case of varying focal length, which requires a pure translation motion for

initialization. Triggs [Triggs97] introduced the concept of absolute quadric, and

proposed a self-calibration method which relies on its invariant properties. Pollefeys et al.

[PKG98] have shown that the absence of skew alone is sufficient for self-calibration and

proposed a flexible method based on Trigg’s concept, which can deal with various

constraints, but needs an initialization and is biased towards the first view in the image

sequence. Heyden and Astrom [HeyAst99] proved that self-calibration can be achieved

when only the aspect ratio was known and no skew was present (i.e. the sensor pixels

have rectangular form).

The work presented in this dissertation is similar to the method presented in

[HanKan00], which is computationally equivalent to recovering the absolute quadric.

Their representation is explicit in the motion parameters (rotation axes and translation

vectors) and enables the geometric constraints to be naturally enforced.

 13

2.1.2 Bundle Adjustment

Bundle adjustment was employed initially in photogrammetry estimation

problems [Sla80] and became gradually the technique of choice for structure and motion

refinement in computer vision.

 The groundwork for this transition was laid by Hartley [Hartley93]. Earlier

structure from motion approaches required extreme computational accuracy and were

difficult to work with for more than three or four views, because the number of solutions

presented an exponential growth in the number of views [Luong92, MayFau92]. Hartley

proposed an efficient solution based on a variant of the Levenberg-Marquardt algorithm,

applicable to a large number of views. Building on the sparse block structure of the

normal equations, Hartley presented his method in two flavors: as a direct Euclidean

reconstruction iterative method, and as a bundle adjustment intermediary refinement step

for projective reconstruction followed by Euclidean upgrade. Since then, variations of

Hartley`s sparse bundle adjustment approach were frequently employed both as an

intermediary and as a final optimization step in the literature.

 Fitzgibbon and Zisserman [FitZis98] developed a system that employs a

hierarchical strategy starting with image triplets, registered to sub-sequences and

eventually to long open or closed sequences, with bundle adjustment applied after each of

these processing stages.

 Zhang and Shan [ZhaSha01] also employed triplet views, but in a sliding window

format and formulated the refinement problem as a series of local bundle adjustments in

such a way that the estimated parameters are consistent across the whole sequence.

Sainz [Sainz03] proposed a system that processed a large number of views

simultaneously through projective factorization [HanKan00] and refined the structure

prior to the Euclidean upgrade.

 Pollefeys et al. [PGV*04] presented a reconstruction system from a sequence of

uncalibrated images where the 3D structure retrieval is initiated with two views in a

projective framework. The remaining views are incorporated sequentially in the process

and the obtained structure and motion are then refined through bundle adjustment.

 14

 Lourakis provided in [LouArg04] an implementation with a detailed design

description of Hartley’s sparse bundle adjustment method [Hartley93].

 Our work is similar to the approach presented in [Sainz03], in that it follows the

projective factorization method in [HanKan00] and applies a sparse LM optimization;

however, our method differs by using a quaternion-based parameterization in order to

recover the camera rotation matrices.

 Among the various ways to represent rotation, we mention here Euler angles,

orthonormal matrices, and Hamilton's quaternions. Of these representations, orthonormal

matrices have been used most often in photogrammetry and vision. The quaternion

formulation, however, presents a number of advantages. Besides the reduced number of

necessary parameters, it is much simpler to enforce the unit magnitude constraint for

quaternions than it is to ensure that a matrix is orthonormal.

 The application of quaternions in stereo photogrammetry was pioneered by Schut

[Schut59] and Thompson [Thompson59], who recovered the relative orientation of two

coordinate systems with the help of three given common points. Horn developed a

closed-form solution for more than three points in [Horn87] and later introduced

quaternions to vision applications presenting an iterative scheme for recovering the

relative orientation of two calibrated cameras [Horn90, 91].

 Further research work explored most notably stereo systems with either pre-

calibrated cameras, or calibrated through traditional methods during processing [Chou94,

BacKam97, ZPA03]. Relative to these quaternion-based approaches, our method differs

by using uncalibrated cameras and solving simultaneously for a large number of views.

2.2 Volumetric Reconstruction

All volumetric reconstruction algorithms assume a discrete and bounded 3D space

containing the scene to be reconstructed. Typically, the initial reconstruction volume is

divided into voxels and the task is to correctly classify the set of voxels that represent the

different objects contained in the scene.

 15

All these algorithms require a set of calibrated input images, and some of the

approaches require additional classification of the pixels in background/foreground. A

common assumption is that the objects contained in the scene are Lambertian or nearly

Lambertian, so they reflect light equally in all directions. The following subsections

present a review of some of the most significant methods based on volumetric

reconstruction.

2.2.1 Volumetric Intersection

Volumetric intersection algorithms reconstruct the surface and interior space of an

object using its silhouettes from the different reference views. The process is performed

by tracing rays from the center of projection of each camera through the contour of the

object projection in the corresponding image plane. The resulting bounding volume is the

reconstructed scene.

The earliest attempts at volumetric model reconstruction from images were

approximating the visual hull of the objects [Laurentini 94]. Such techniques are also

referred to as shape-from-silhouette in the literature. The intersection of the generalized

cones associated with a set of cameras defines a volume of space in which the object is

guaranteed to lie. The visual hull is guaranteed to enclose the actual object. However, the

volume only approximates the true 3D shape, depending on the number of views and the

complexity of the object. Consequently, the accuracy of the reconstruction increases

monotonically with the number of views.

Matusik et al. [MBR*00] describe an efficient real-time image-based approach to

compute and shade visual hulls from silhouette image data. They use an ingenious

traversing of pixels between camera images to reconstruct models. Taking advantage of

epipolar geometry and incremental computation they achieve a constant rendering cost

per rendered pixel. In a later work [MBM01], the same authors present new algorithms

for creating and rendering visual hulls in real-time where an exact polyhedral

representation for the visual hull is computed directly from the silhouettes.

 16

Other recent real-time systems employing hardware-accelerated techniques: Lok

presents [Lok 01] a system that renders a set of planes to generate novel views of visual

hulls, and Li et al [LiMS03a] rasterize generalized cones with projective texturing to

achieve real-time rendering frame rates.

Volumetric intersection methods are fast and simple algorithms but effective at

reconstructing multi-view scenes. However, their inherent limitation is that they fail to

recover concave regions that are not visible in the silhouette of the reference images.

 2.2.2 Voxel Carving

Voxel carving methods have proven to be a strong alternative to traditional

correspondence-based methods due to their flexible visibility models and explicit

handling of occlusions.

Traditional reconstruction methods are using image matching techniques, such as

multi-view stereo methods that compute correspondence across images and then recover

3D structure by triangulation and surface fitting. These approaches are especially

effective with short video sequences, where tracking techniques simplify the

correspondence problem. Some of the shortcomings of these methods are:

• small baseline (i.e. views must be close together) so that correspondence

techniques are effective

• many partial models must often be computed with respect to a set of base

viewpoints, and these surface patches must then be fused into a single, consistent

model

• if sparse features are used, a parameterized surface model must be fitted to the 3D

points to obtain the final dense surface reconstruction

• there is no explicit handling of occlusion differences between views

 17

Volumetric methods avoid the listed disadvantages by replacing the image-based

search problem used in the above approaches with a three-dimensional space-based

search.

We can distinguish three main voxel carving implementation types, corresponding

historically to the processing trends in computer graphics: CPU-based, hardware

accelerated and GPU-based (please view note 1.4 at page 9).

Our voxel carving related work consists of two techniques that fall into the CPU-

based and GPU-based categories, respectively. More specifically, we have developed a

CPU-based multi-resolution voxel carving method and a GPU-based carving engine. In

this context, we first relate our multi-resolution approach to other CPU-based methods,

and then we position the carving engine relative to previous GPU-based research.

CPU-based Voxel Carving

Seitz and Dyer [SeiDye97] demonstrated that a colorful scene (assuming Lambertian

illumination) could be reconstructed using full color-based consistency alone, without

volume intersection. They introduced with the Voxel Coloring algorithm the color

consistency criterion to distinguish points belonging to the object surface from other

points in a scene. The Voxel Coloring algorithm begins with a reconstruction volume of

initially opaque voxels that contains the scene to be reconstructed. As the algorithm runs,

opaque voxels are tested for color consistency and those that are found to be inconsistent

are carved, i.e. made transparent. The algorithm stops when all the remaining opaque

voxels are color consistent.

The voxels need to be traversed in a monotonic order for a correct visibility

handling. To simplify the voxel visibility computation and to allow reconstruction in a

single scan of the voxels, Seitz and Dyer imposed an ordinal visibility constraint on the

camera locations. The constraint implies however a limitation : since the voxels have to

be visited in a single scan in near-to-far order relative to every camera, the cameras

cannot surround the scene, so that surfaces that are not visible in any image cannot be

reconstructed.

 18

The Space Carving algorithm developed by Kutulakos and Seitz [KutSei99]

achieves the goal of allowing arbitrary camera placement. Unlike Voxel Coloring, Space

Carving evaluates one plane of voxels at a time, using multiple scans, typically along the

positive and negative directions of each of the three axes. The scans are performed in

near-to-far order relative to the cameras, by using only views behind the scanning plane

(Figure 2.1).

Thus, when a voxel is evaluated, its visibility is already known relative to other

voxels that might occlude it from the current camera. Space Carving never carves voxels

it shouldn’t, but it is likely to produce a model that includes some color-inconsistent

voxels. This is because cameras that are ahead of the scanning plane are not used for

consistency checking, even when the voxels being checked are visible from those

cameras. Hence, the color consistency of a voxel is, in general, never checked over the

entire set of images from which it is visible. (A later paper, [Kutulakos 00b], describes

additional book keeping that eliminates this shortcoming).

Culbertson et al. [CMS99] developed the Generalized Voxel Coloring (GVC), that

obtains a color consistent model by computing visibility exactly. They provide

experimental results that show that exact visibility, when compared with the approximate

visibility computed by Space Carving, can result in better looking reconstructions that are

numerically more consistent with the input images. Two variants of the algorithm, called

Figure 2.1 Only cameras behind the sweeping plane are used
for photo-consistency check

 19

GVC-IB and GVC-LDI, have been developed. They use different data structures, called

item buffers (IBs) and layered depth images (LDIs), to compute the visibility of voxels.

An item buffer records for every pixel in an image, the surface voxel that is visible from

the pixel. An LDI records for every pixel in an image, a depth-sorted list of all surface

voxels that project to the pixel. The information in an LDI is a superset of the information

in an item buffer and generally consumes considerably more memory.

The GVC-IB variant of the voxel coloring algorithm lies at the core of our multi-

resolution carving method. However, our approach introduces the novel feature of user-

driven interactive refinement, resulting in a model reconstructed at varying resolution -

and hence level of detail- across the voxel structure. The development of this feature is

motivated by two factors: processing speed and scalability over various environments.

First, voxel carving is a computationally expensive procedure, which typically

requires at least tens of seconds up to tens of minutes to compute the reconstruction,

implying a trade-off between processing speed and accuracy. Prock and Dyer [ProDye98]

utilize a hierachical octree representation to speed up voxel coloring. Their method starts

with a low resolution voxel structure, refined further to higher resolutions. Their method

needs approximately 15 s to generate a reconstruction with 3256 voxels. Unlike Prock

and Dyer’s approach, our method does not process the entire model at uniform resolution,

but introduces a perceptual saliency component in order to represent the information in a

hierarchical order similar to that the human perceives.

Second, the delivery and rendering of 3D content over different types of

connections to clients with various graphics capabilities requires scalable 3D models that

can be approximated through representations of varying complexity. However, automatic

simplification algorithms generate approximations that do not preserve the visual

appearance of the original model in certain cases. For example, features such as eyes in a

face are semantically crucial, but geometrically small. Kho and Garland [KhoGar03]

developed a human-guided simplification method where the user can guide the vertex

placement of a 3D model by directly interacting with the underlying algorithm.

 The multi-resolution method developed for our framework relies similarly on the

human factor to assign perceptual significance to selected features. Only simple 2D

image editing operations are required to manipulate the complexity of different surface

 20

regions. Seitz and Kutulakos [SeiKut98] presented an image editing approach for

multiple images of a scene. However, their method focuses on modifying and

propagating changes to input images, rather than the voxel structure. The voxel model is

used only as a proxy for these modifications, without its structure being altered.

 In the following we mention several extensions and improvements that have been

investigated in recent years. For a detailed review we suggest [SCM*01].

Eisert et. al [ESG99] proposed the multi-hypothesis voxel coloring technique. A

hypothesis is a possible coloring of a voxel. Their approach begins with a hypothesis

assignment step that identifies a set of hypotheses for each voxel. The algorithm then

narrows down the hypotheses during a hypothesis removal step, which carves

inconsistent voxels. Slabaugh [Slabaugh00b] presents a volumetric optimization using

greedy and simulated annealing methods to refine the reconstruction. While the previous

algorithms assumed opaque object voxels, the Roxels algorithm [DebVio99] attempts to

reconstruct semi-transparent voxels.

All Space Carving approaches listed above need the input of accurately calibrated

cameras. The Approximate Space Carving was defined later by Kutulakos [Kutulakos00]

as an extension to the original algorithm which is capable of handling calibration errors.

Slabaugh [SMC00a] developed a method that warps the voxel space so that large

scale scenes can be modeled without an excessive number of voxels (e.g. outdoors

scenes). Vedula [VBS*00] presents a voxel coloring method that reconstructs a time-

varying scene by linking two time-consecutive 3D voxel spaces together, forming a 6D

space. The Cell Carving algorithm developed by Ziegler et al. [ZMP*03] uses

correspondence between arbitrary image regions to enable the reconstruction of

concavities that are difficult or impossible to reconstruct with other methods.

GPU-based Voxel Carving

While we focus in the following on GPU-based research, we also mention here

briefly the preceding and rapidly superseded hardware-accelerated work.

 21

Culbertson has pointed out in [Culbertson99] the possibility to perform hardware

acceleration on voxel carving approaches. Sainz et al. [SBS02] present a fast hardware

accelerated Space Carving method that uses texture mapping features of the graphic card.

Their design is optimized further by the use of an octree structure and adaptive

subdivision methods to keep track of the set of consistent voxels throughout the carving

process. The authors do not provide a CPU/hardware acceleration speedup comparison,

but they did not report interactive or real-time framerates.

With the advent of programmable graphics hardware [MGA*03], the research efforts

shifted towards GPU-based processing. Li et al. proposed initially a GPU-based method

to render visual hulls in [LMS03b, LMS03a], followed by a voxel-based approach that

retrieves the photo-hull of a shape [LiMS04]. By adopting a view-dependent plane-

sweeping strategy, they achieve rendering frame rates of 2-3 frames per second. A

drawback of this approach is that since no branching support was available at that time,

photo-consistency check is performed on each fragment, regardless whether it was

rejected or not by the silhouette/background test. Also, their method produces no explicit

volume, since rendering and reconstruction are combined into a single step.

Woetzel and Koch proposed a live system for image capturing and dense depth

estimation in [WoeKoch04]. Their plane-sweep algorithm runs almost entirely on the

GPU, leaving the main CPU free for other tasks such as image capture and higher level

recognition. Dense depth maps are computed with up to 20 frames per second; however,

their system is limited to only four camera views.

Zach and Karner [Zach04] describe hardware accelerated techniques for two

scenarios: Voxel Coloring and Space Carving. Their implementation runs entirely on the

GPU, with the exception of the latter, when they are performing independent sweeps and

no prior information is used in the current sweep. In this specific case, the intersection of

the obtained voxel models is performed on the CPU. The first one doesn`t produce an

explicit volume, the second one does but at the expense of using two 3D textures

simultaneously – one for the current, one for the precedent model – that are interesected

at each main iteration. Besides the doubled memory consumption, the performance of the

implementation is affected by the continuous access of a 3D texture. The authors report

interactive framerates for 256 x 256 x 128 scene voxel resolution.

 22

We have developed a streaming GPU-based voxel carving method, tackling the

aforementioned computational costs of voxel carving in the context of the latest graphics

hardware trends. Unlike previous approaches [LiMS04, WoeKoch04, ZacKar04] our

method doesn’t sacrifice interactivity for speed, creating an explicit volume that can be

modified interactively and avoids the 3D texture inherent drawbacks (continuous access,

using two 3D textures simultaneously) by employing only surface voxels in a GPU-

optimal two-dimensional data representation. Moreover, our bandwidth efficient method

is the first to minimize the GPU-CPU data transfer, employing a form of effective load

balancing and combining the optimal features of both CPU and GPU while being mindful

of the cost of inter-processor communication.

2.3 Graphics Hardware and
Programmability

The graphics pipeline was historically a fixed-function pipeline, where the limited

number of operations available at each stage of the graphics pipeline was hardwired for

specific tasks.

One of the earliest efforts toward formalizing a programmable framework for

graphics was Rob Cook’s seminal work on shade trees [Cook84], which generalized the

wide variety of shading and texturing models at the time into an abstract model. He

provided a set of basic operations which could be combined into shaders of arbitrary

complexity. His work was the basis of today’s shading languages, which in turn

contributed ideas to the widely-used RenderMan shading language [Upstill90].

 RenderMan’s success demonstrated the benefit of more flexible operations,

particularly in the areas of lighting and shading. Instead of limiting lighting and shading

operations to a few fixed functions, RenderMan evaluated a user-defined shader program

on each primitive, with impressive visual results.

Over the past few years, graphic cards vendors have transformed the fixed-function

pipeline into a more flexible programmable pipeline. This effort has been primarily

concentrated on two stages of the graphics pipeline: the vertex stage and the fragment

 23

stage. In the programmable pipeline, the fixed-function operations are replaced with a

user-defined vertex program and a user-defined fragment program, respectively. Each

new generation of GPUs has exposed additional levels of programmability, precision and

functionality of these two programmable stages.

The vital step for enabling not only graphics-specific, but also general-purpose

computation on the graphics processing unit (GPGPU) was the introduction of fully

programmable hardware and an assembly language for specifying programs to run on

each vertex [LKM01] or fragment. The raw speed resulting from an abundant parallelism

and rapidly expanding programmability of the graphics hardware make it an attractive

platform for general-purpose computation. However, harnessing the power of the GPU

goes well beyond simply “porting” applications from the CPU, due to its dissimilar

programming model (the GPU-characteristic streaming programming model is detailed in

Chapter 5).

A significant boost was gained from the appearance of high level languages to

support the new programmability of the vertex and pixel pipelines [MGA*03, BFH*04].

An active, vibrant community of GPGPU developers has emerged [Web3] and quite an

impressive amount of research has appeared already in the literature.

GPGPU applications range from computer graphics processes such as ray tracing

[Purcell04], photon-mapping [PDC*03, LarChr04], collision detection [GLM05] to

numeric computing operations such as dense and sparse matrix multiplications

[KruWes03], physically-based simulations [Harris04, LFW*05] and computer vision

[FunMan04], to name only a few. For an excellent review we suggest [OLG*05].

Kipfer, Segal and Westermann presented a versatile GPU-based particle system

engine [KSW04]. They have efficiently implemented on the GPU algorithms used for

particle manipulations, i.e. inter-particle collisions and visibility sorting algorithms. The

analogy between the constant update and handling of a large number of primitives in a

particle system and in a voxel carving application has inspired the GPU-based work

presented in this dissertation. Also, our implementation capitalizes on recent GPU

features that allow graphics memory objects to be treated as vertex data, texture or render

target. [ARB03, NV04].

 24

Conclusion

The surveyed structure from motion approaches depend on, one way or the other,

recovering some kind of geometric structure of the scene. Original attempts of self-

calibration have yielded successful examples only for special cases. For general cases,

new algorithms needed to be developed that output explicit Euclidean structures from

uncalibrated images.

Also, a review of the different volumetric methods for scene reconstruction from N

views has been presented, with a focus on the family of methods based on space carving

and color consistency. Finally, we presented a graphics hardware evolvement timeline,

from the fixed to the modern flexible programmable pipeline.

 25

Chapter 3 Camera Calibration

Introduction

Generally speaking, 3D reconstruction can be defined as the problem of using 2D

measurements arising from a set of images of a scene, aiming to derive information

related to the 3D scene geometry as well as the relative motion and the characteristics of

the cameras employed to acquire these images.
Original results on this area come from researchers in the computer vision field,

however, recent interest on the problem was raised because of the implicit applications in

building 3D models for virtual and augmented reality or other interactive applications.

Also, in the film and multimedia field, there has been an increased demand for computer-

graphics based special effects consisting of the combination of 2D digital image

sequences with 3D computer graphics that require a perfect synchronization only

obtained with a calibration procedure. The common denominator of all these applications

is that they require an accurate 3D scene reconstruction from the 2D source images.

The traditional way of performing such a calibration process is to use special setups

and hardware devices in a controlled environment to mount and move the cameras

around. Moreover, expert knowledge is required in order to operate such systems.

 26

Since we aim to achieve a flexible, low-cost solution, operated by non-expert users,

we will focus on the use of off-the-shelf devices, namely single digital still cameras.

Additionally, we will assume that no prior knowledge of the camera or its relative motion

in the scene is known. Therefore, the calibration process is based entirely on

measurements taken from the input images.

We conclude this chapter with the description of a sparse variant of the Levenberg-

Marquardt algorithm we have implemented to efficiently minimize the reprojection error

between the observed and predicted image points, with the purpose of producing optimal

estimates with respect to both 3D structure and viewing parameters.

Structure from motion

Structure From Motion (SFM) refers to the problem of recovering the 3D structure

and motion of a scene from its two-dimensional projection onto the image plane of a

moving camera. No information about the camera or the scene is known a-priori and the

only assumption made is that the scene is required to be rigid.

The SFM analysis is based on preprocessing the set of reference views to

consistently extract and label 2D salient points in the scene. These points can be detected

automatically or manually on each image and then associated with their correspondents in

the other images.

We can distinguish two main correspondence methods, depending on the number of

points tracked along the image sequence. Thus, sparse correspondence methods evaluate

a small set of points, while dense correspondence methods evaluate all the pixels in the

sequence. The latter methods are based on determining the optical flow between frames,

which limits the baseline or distance between each reference image. Moreover, it is

argued in [BFA98] that the determination of the optical flow is an ill-posed problem due

to inherent differences between 2-D motion field and intensity variations. It is reflected in

[Chen00] that none of the optical flow based techniques produce low error and high

density correspondences in all testing cases.

The presented work and the reviewed literature focuses on sparse correspondence

methods such as the ones presented in [HanKan00], [Chen00], [PKG99], [Triggs96].

 27

The fundamentals of epipolar and projective geometry, as well as related notions are

covered in [Pollefeys00a] and [HarZis00]. Furthermore, a good review of projective and

Euclidean reconstruction can be found in [Triggs96] and [Fusiello00], respectively.

3.1 Camera Geometry

This section briefly describes the pinhole camera model, perhaps the most widely

used in computer vision to model the imaging process (Figure 3.1). In general, a pinhole

camera projects a 3D world point with the homogeneous coordinates

[, , ,1]TX Y Z=M onto an image point [, ,1]Tx y=m , where a line joining the point M to

the centre of projection intersects the image plane. The world coordinates of the 3D point

and its image coordinates are related by:

1
1

X
x

Y
y P

Z
λ

 =

 (3.1), where λ is an arbitrary scale factor, and P is a 3x4 matrix,

called the projective camera matrix, or simply camera matrix.

Figure 3.1 The pinhole camera model [HarZis00]

 28

The projective matrix P is effectively modelling the camera, containing both its

intrinsic and extrinsic parameters. P can be decomposed as [HarZis00]:

[]|P K R t= (3.2) ,

where:

- ,R t - are the rotation and translation from the world coordinate system to the

camera coordinate system, representing the extrinsic camera parameters

- K is the calibration matrix, encoding the intrinsic camera parameters:

0

00

0 0 1

x

y

f s u

K f vα

 =

 (3.3)

where:

x xf fk= − , y yf fk= − are the focal lengths in horizontal and vertical pixels,

respectively (f is the focal length in mm, while xk and yk are the effective number of

pixels/mm along the x and y axes)

 s is the skew parameter , which is considered 0 for most cameras

 α is the aspect ratio, which is considered 1 for most cameras

0u , 0v are the coordinates of the principal point, given by the intersection of the

optical axes with the image plane (fig. 3.1) and the world reference frame.

3.2 Conics and Quadrics

The self-calibration method employed in our work is based on the recovery of the

absolute quadric. In the following, we present the geometric entities and derive the

equations underlying this processing step.

 29

The absolute conic, ∞Ω is a pure imaginary point conic situated on the plane at

infinity π ∞ (the plane at infinity has in a metric frame the canonical form

(0,0,0,1)Tπ ∞ = [Pollefeys00a]). A key property of the absolute conic is that it is fixed

under any Euclidean transformation [Triggs97, HarZis00].

The absolute conic projects in the camera views to the image of the absolute conic,

which is also an imaginary point conic (Figure 3.3), depending only on the intrinsic

parameters of the camera:

 1()TKKϖ −= (3.4)

We also define the dual image of the absolute conic (DIAC), which is a line conic

(i.e. consisting of the lines tangent to ϖ) as [HarZis00]:

1 TKKϖ ϖ∗ −= = (3.5)

The equation above is one of the most important in self-calibration and it shows that

once ϖ or ϖ ∗ is identified, then K can be also determined by decomposition (e.g.

Cholesky factorization).

Figure 3.2 The absolute conic ∞Ω and the absolute dual quadric ∗Ω situated on the

plane at infinity π∞ in 3D space [Pollefeys00a]

 30

The absolute dual quadric ∗Ω (or shortly the absolute quadric) is the dual of the

absolute conic and is a degenerate dual quadric in 3-space [HarZis00]. Geometrically, it

consists of the planes tangent to ∞Ω (Figure 3.2) and its projection in the image plane is

ω∗ . ∗Ω gives a concise way to compute the calibration parameters , since it’s encoding

both the plane at infinity π∞ and the absolute conic ∞Ω , and it projects to the dual image

of the absolute conic, so that :

TP Pω ∗ ∗= Ω (3.6)

The absolute quadric is invariant under all Euclidean transformations, so that its

relative position to a moving camera is constant (in a similar way we perceive the very

distant objects as being fixed, for example a person driving on a road and observing the

moon, will have the impression that the moon is following him).

If a projective reconstruction iP was retrieved for n camera views, the next step is

to determine the intrinsic camera parameters through self-calibration and to achieve a

metric reconstruction.

In a metric frame, the absolute quadric’s canonical form is a 4x4 symmetric matrix

of rank 3:

Figure 3.3. The image of the absolute conic (left) and the dual image of
the absolute conic (right) [Pollefeys00a]

 31

3 3 0

0 0
xI

I∗
Ω = =

ɶ (3.7)

where 3 3xI is the 3x3 identity matrix.

In a projective frame, the absolute quadric is altered by a projective transformationH :

TH H∗ ∗Ω → Ω (3.8)

Therefore, once ∗Ω has been determined, the rectifying transformation can be easily

computed by decomposing it as:

THIH∗Ω = ɶ (3.9)

H upgrades the projective matrices to metric ones :

M
i iP PH= , such that a 3D point MX from the Euclidean world frame is projected to the

image points M M
i ix P X= in each view.

3.3 Camera Self-calibration

We now tackle the 3D motion and structure determination using a two-step stratified

progression. As a pre-processing step we divide the complete sequence into sub-

sequences, enforcing a common frame for consecutive fragments in order to increase the

robustness of reconstruction [Sainz03]. In each of these subsequences we will use the

aforementioned stratified approach to recover both camera and scene structure similar to

methods presented in [Pollefeys99, HanKan00].

 32

First, an initial projective reconstruction is obtained, which is computed from the set

of correspondences. Then, depending on assumptions translating to constraints an

upgrade to metric structure is computed. One advantage of the presented approach is that

it allows recovery of a Euclidean reconstruction of the scene without relying on any

initial solution, which is one of the drawbacks of most existing methods. Another

important feature is that the entire calibration process relies on solving linear systems

using Singular Value Decomposition.

When the different subsequences have been successfully calibrated, a merging

process groups them into a single set of cameras and reconstructed features of the scene.

Figure 3.4: The absolute conic and its projection in the images
[Pollefeys00a]

 33

3.3.1 Projective Reconstruction

Given n distinct camera views of m object points represented by homogeneous

coordinates jx , 1...j m= , the task is to compute their 3D their projective structure.

Under the pinhole camera model assumption (§ 3.1), the projective mapping between

a 3D world point jx and its 2D projection in images (,)ij iju v is given by:

1

ij

ij i j

u

v P

x∼ , which holds only up to a constant factor.

Writing this factor explicitely, we have:

1

ij

ij ij i j

u

v Pλ

 =

x (3.10), where ijλ are non-zero scale factors called projective depths.

We may stack the above equation for n perspective cameras and m object points,

obtaining the equivalent matrix:

11 1

11 11 1 1

1

1

1

1 1

...

1 1

[...]

...

1 1

m

m m

s m

nn nm

n n nm nm

u u

v v

P

Pu u

v v

λ λ

λ λ

 = = =

W x x PX⋮ ⋮ ⋮ ⋮ (3.11)

 34

where:

sW is the 3n m× scaled measurement matrix

 P is the 3 4n× perspective matrix

X is the 4 m× shape matrix.

sW should have rank-4 matrix (since it’s the product of two matrices with 4 columns

and rows, respectively), so that a rank-4 factorization of it produces a projective

reconstruction of the points. However, in reality, due to noise and measurement errors its

rank will be different and the rank-4 constraint has to be enforced.

On the other hand, equation (3.11) holds only if the correct scale factors ijλ are

applied to each of the measured points ijx . In order to fulfil both requirements, a rank-4

factorization needs to be applied on sW until the recovered projective depths make

equation (3.11) consistent.

There exist different approaches [StuTri96, Triggs96, HanKan00] to construct an

iterative algorithm that converges to a rank-4 decomposition of the measurement

matrix sW . A popular example of the factorization strategy is outlined below:

1. Initialize 1ijλ = for 1i n= … and 1j m= …

2. Compute the current scaled measurement matrix sW by equation (3.11)

3. Perform rank-4 factorization on sW , generate the projective motion and shape

4. Reset (3)
ij i jPλ = x where (3)

iP denotes the third row of the projection matrix iP

5. If ijλ ’s are the same as the previous iteration, stop; else go to step 2.

In order to avoid the trivial solution, a ‘balancing’ step is required for each iteration

[HarZis00] that brings all matrix rows and columns to the same order of magnitude.

Unfortunately, because of this step there is no guarantee that the above algorithm will

converge, even to a local minimum [MahHeb00, MHO*01, Oliensis99].

 35

 We are performing factorization using an iterative approach similar to the one

proposed in [Chen00], where the projective depths are rescaled at each iteration to give a

closer rank-4 approximation of sW . While there is no theoretical proof of convergence,

[Oliensis99] has shown that the algorithm minimizes an error function that measures the

size of the non-rank-4 fraction of sW . Also, [Oliensis99] and [Sainz03] have reported

excellent results both with accurate and noisy data.

The overall sequence of processing steps of the employed Iterative Factorization

Algorithm (IFA) is the following:

1. Initialize 1ijλ = for 1i n= … and 1j m= …

2. The current scaled measurement matrix k
sW (with 0

s sW W=) is determined by

equation (3.11). An initial Singular Value Decomposition of k
sW is computed:

k T
sW UDV= ,

 where :

 U is a 3m n× matrix with orthogonal columns

 V is a n n× orthogonal matrix

 D is a n n× diagonal matrix, its elements iσ are the singular values of ksW

3. We update the measurement matrix k
sW with its rank-4 approximation k

sWɶ :

We denote 4
kP U= , where 4U is the submatrix obtained from U by truncating only

the 4 first columns (associated to the 4 largest singular values 1,...,4σ).

 Similarly, 4 4
kX D V= , and from that we estimate :

k k k
sW P X=ɶ .

 36

This solution guarantees [Golub96] that we get the best rank-4 approximation of the

measurement matrix k
sW , and the spectral distance (using

2
) from the subspace of

the rank-4 is exactly 5σ , the 5th largest singular value.

4. We scale the matrix k
sW by the k

ijλ coefficients of k
sWɶ in order to bring each

depth factor as close as possible to the ideal rank-4 decomposition. In order to

maintain the projection to the image points ijx , we only need to scale kijλ along the

ray from the centre of projection through ijx . Hence, the new depth 1k
ijλ + will

coincide with the projection of k
jX into the projection ray. The projective update

formula [Chen00] is:

1 ()

()

k T k
s ij s ijk k

ij ij k T k
s ij s ij

W W

W W
λ λ+ ⋅

=
⋅

ɶ

,

where k
s ijWɶ and k

s ijW are 3-vectors corresponding the the ij -th element of the

respective matrices.

5. The measurement matrix is updated with the new depth values: 1 1k k
s ij ij ijW x λ+ +=ɶ .

We repeat the process until the corresponding 1
5
kσ + value is either small enough or it

is stabilized. Of course, due to noise in the image measurements, 5σ can reach small

values, but will always be different from zero.

In our implementation, we are working with pre-conditioned image coordinates and

we are balancing the projective depth matrix before each iteration. The pre-conditioning

and balancing processes are described in more detail in chapter 7.

 37

3.3.2 Upgrade to Metric Structure

The factorization of Equation (3.11) is not unique, but presents a projective

ambiguity. That is, we can recover motion and shape only up to an unknown projective

transformation:

1ˆ ˆ ˆ ˆ M M
sW PX PHH X P X−= = = (3.12)

with ˆMP PH= and 1 ˆMX H X−= ,

where P̂ and X̂ are the projective motion and the projective shape, respectively.

This projective ambiguity refers to the fact that any non-singular 4x4 matrix could be

inserted between ̂P andX̂ leading to another motion and shape pair. The upgrade to

metric structure is reduced then to the recovery of the rectifying transformationH , called

the projective distortion matrix (PDM).

As mentioned previously in (3.2, § 3.1), in a metric frame the camera matrix iP can

be decomposed as:

~ [|], 1,...,M
i i i iP K R t i n= (3.13)

where :

0

0

0

0

0 0 1

i i

i i i i

f u

K f vα

 =

, the calibration matrix (see also Eq. 3.3, § 3.1) encoding the

intrinsic parameters of the i-th camera:

 38

if represents the focal length, 0 0(,)i iu v are the image coordinates of the principal

point, iα is the aspect ratio,

 while iR and it encode the extrinsic camera parameters :

T
i

T
i i

T
i

i

R j

k

 =

 is the i-th rotation matrix with , ,i i ii j k denoting the rotation axes,

xi

i yi

zi

t

t t

t

 =

 is the i-th translation vector.

We choose the world coordinate frame to coincide with the first camera, since we are

not concerned here with the absolute scaling, rotation and translation of the scene.

Therefore, the rotation and translation for the first camera become 1 3 3xR I= and

1 0t = , while Equation (3.13) will have the simplified form: 1 1[| 0]MP K I= . The same

similarity components can be factored out from the projective reconstruction, with

1 [| 0]P I= . The condition 1 1
MP PH= becomes 1[| 0] [| 0]K I= and we can write H as:

1 0

1T

K
H

ν

=

The submatrix formed by the first column, i.e. vectors ν together with 1K , specifies

the plane at infinity in the projective space. Since the coordinates of π∞ in the metric

space are (0,0,0,1)Tπ∞ = , in the projective space they will be transformed by H , so that

we can recover π∞ as :

 39

 1 1 1

0 0

0 0() () ()

0 00 1 1

1 1

T T T
T K K K

H
ν νπ

− −
−

∞

 − − = = =

 Writing the plane at infinity as (,1)T Tpπ ∞ = , where 1() Tp K ν−= − , the projective

distortion matrix H can be written as :

 1

1

0

1T

K
H

p K

= −

 (3.14).

 From Equation 3.14 results that the projective to metric upgrade involves the

recovery of eight parameters: three parameters for p and five for 1K , respectively. This

corresponds to a counting argument: the plane at infinity and the absolute conic have 3

and 5 degrees of freedom, respectively.

To recover these parameters, we start by identifying the self-calibration equations.

We partition the camera matrices of the projective reconstruction into [|]i i iP S s= ,

distinguishing between the first three and last columns. From M
i iP PH= and from

Equation (3.14) we obtain:

 1() , 2,...,T
i i i iK R S s p K i m= − = (3.15)

which can be rearranged as :

 1
1() () , 2,...,T

i i i iR K S s p K i m−= − =

and considering that TRR I= (since rotation matrices are orthogonal) , we obtain :

 1 1() (), 2,....,T T T T
i i i i i iK K S s p K K S s p i m= − − = (3.16)

 40

From the equation of the dual image of the absolute conic (Eq. 3.5, §3.2): * T
i i iK Kϖ = ,

and substituting in (3.16) we obtain the basic equation for self-calibration:

 * *
1() ()T T T

i i i i iS s p S s pϖ ϖ= − − , (3.17)

relating the unknown entries of *iϖ and unknown parameters p with the known entries of

the projective cameras iS , is .

The dual image of the absolute conic is related to the absolute (dual) quadric by:

 * * T
i i iP Pϖ = Ω (3.18)

The absolute quadric has in the Euclidean space the canonical form 3 3* 0

0 0
xI

I

Ω = =

ɶ ,

while in a projective space it will follow the projective transformation rule for dual

quadrics, giving :

3 3* 0

0 0
x T TI

H H HIH

Ω = =

ɶ (Eq. 3.9, §3.2).

Using Equation (3.14) the projective reconstruction gives the relation:

* *
* 1 1 1 1 1 1

* *
1 1 1 1 1 1

T T

T T T T T T

K K K K p p

p K K p K K p p p p

ϖ ϖ
ϖ ϖ

 − −
Ω = = − −

 (3.19).

If we substitute the above relation in Equation (3.18) we obtain once again the self-

calibration equation (3.17). This corresponds to the interpretation provided in § 3.2 of the

 41

absolute dual quadric*Ω as being fixed under the camera motion and each of the dual

images of the absolute conic *iω are the respective images of *Ω for each of the views.

The most important consequence is that imposing certain constraints on *
iω , we can

translate them to *Ω using Equation (3.18) via the known matrices iP and solve for *Ω in

projective space, using the resulting matrices from the projective factorization.

A linear system can be obtained making some assumptions on the camera intrinsic

parameters:

• if principal point is at the center of the image plane, then * *
13 23() () 0i iϖ ϖ= =

• zero skew of the pixels implies *
12() 0iϖ =

• aspect ratio equal to 1 implies * *
11 22() ()i iϖ ϖ=

These assumptions leave only the focal length as a variable parameter and generate

four linear constraints on *Ω available from each view. The self-calibration equations

become an overdetermined linear system of 4 m× equations that can be solved by

Singular Value Decomposition, with a unique solution for 3m≥ . After obtaining *Ω ,

H can be easily determined by decomposition and back-substituting it in (3.12) a final

metric reconstruction is computed under the above assumptions of known principal

points and skew values.

3.4 Non-linear Optimization of the
Metric Reconstruction

3.4.1 Bundle Adjustment

 42

Our aim here is to minimize the reprojection error between the observed and

predicted image points, with the goal to produce jointly optimal estimates with respect to

both 3D structure and viewing parameters (camera pose and/or calibration). This kind of

problems can be treated by non-linear least-squares methods, often referred to as bundle

adjustment in the literature since all of the values of an initial guess of the solution are

modified together. Such methods can be summarized as having two distinct phases:

initial parameter estimation and then iterative refinement, protecting the refinement

process against divergence.

More specifically, we are employing the Levenberg-Marquardt (LM) optimization,

a non-linear least-squares technique which has proven to be most successful due to its use

of effective damping strategy that confers it the ability to converge quickly from a wide

range of initial guesses.

In the general case, least-squares methods are used to solve a set of non-linear

equations that have been linearized using a first order Taylor expansion, resulting in a

system known as the normal equations. The computational stages may become quite

expensive, due to the fact that the iterative solving of the normal equations amounts to

computing the solution to a dense linear system, with a complexity 3()O n in the number

of unknown parameters. Fortunately, due to the lack of interaction between parameters

for different points and cameras, the Jacobian matrix of the objective function has a

sparse structure we can exploit in implementing the LM method.

3.4.2 The Levenberg-Marquardt

Algorithm

We will provide here a brief description of the LM algorithm, for an extensive

analysis we suggest [NocWri99, LawHan95].

As mentioned in the introduction, the non-linear computational model is an iterative

process. Let f be an assumed functional relation ()f=X P , where N∈ℜX is a

 43

measurement vector and M∈ℜP is a parameter vector. We start by assigning initial

values to the parameter vector, 0P and to the measurement vectorX̂ . Our aim is to

determine the parameter vector P̂ that best satisfies this functional relation locally. That

is, we seek the vector P̂ satisfying ˆ ˆ()f ε= −X P for which the squared distance ε is

minimized.

We assume that for a parameter shift vector∆P , f is approximated by:

() ()f f+ ∆ ≈ + ∆P P P J P, where J is the Jacobian matrix of f , /f= ∂ ∂J P .

We set up the normal equations and solve for the shift vector ∆P :

ε∆ =T TJ J P J

In order to improve the direction of the shift vector, it needs to be rotated so that it

point towards the minimum. A way of rotating the shift vector towards the direction of

steepest descent was proposed independently by Levenberg [Levenberg44] and later by

Marquardt [Marquardt63]. Marquardt introduced a new parameter λ , so that the normal

equations become:

 ()λ ε+ ∆ =T TJ J I P J , (3.20)

where λ is a strictly positive scalar called damping parameter.

The damping parameter is added to the diagonal elements of the TJ J matrix, and is then

adjusted at each iteration so as to ensure that the error decreases. LM is an adaptive

algorithm that controls its own damping: it increases the damping if the step vector ∆P

fails to reduce the sum of squaresTε ε ; otherwise it reduces the damping. In this way LM

can navigate difficult model nonlinearities, although at low speed, behaving in a steepest

descent manner. Yet, it can also rapidly approach a local minimum with nearly quadratic

convergence speed, becoming a Gauss-Newton method. The process of repeatedly

solving the normal equations for different values of the damping term until an acceptable

update +P ∆P to the parameter vector is found corresponds to an iteration of the LM

algorithm.

 44

3.4.3 Refinement of the Metric
Reconstruction

The camera self-calibration process presented in §3.3 is a closed form least squares

constrained approximation of the structure from motion problem. We have extended the

self-calibration process by implementing a final non-linear optimization process in order

to reduce the reprojection error accounting for all the non-linearities not recovered in the

metric solution.

Additionally, if during the preprocessing of the measurement matrix some of the

measurements have been left out because they were not present in all the views, we have

the possibility to include them in this nonlinear analysis to improve the overall error.

We employ bundle adjustment in order to obtain a maximum likelihood estimation

that minimizes the reprojection error with respect to all 3D points and camera parameters,

i.e. the mean squared distances between the measurements ijx and the reprojected image

points from a new estimation of MiP and jX . The minimization criterion can be

expressed as:

2
,

1 1

min (,)
m n

M
i j i j

i j

d x P X
= =
∑ ∑ (3.21)

The non-linear functions to minimize in our case are the pinhole camera projection

equations (Equation 3.13, §3.3.2) for the different measurements and frames, which can

be written in the following form:

0() () ()x y z x x y z y x y z z

x y z z

f i X i Y i Z t j X j Y j Z t u k X k Y k Z t
x

k X k Y k Z t

β+ + + + + + + + + + +
=

+ + +

0() ()x y z y x y z z

x y z z

f j X j Y j Z t v k X k Y k Z t
y

k X k Y k Z t

α + + + + + + +
=

+ + +

 45

Under the following common assumptions: no skew (0β =), the central point perfectly

centered on the image plane (0 0 0u v= =), and normalized coordinates (1α =), the above

equations have a simplified representation:

()x y z x

x y z z

f i X i Y i Z t
x

k X k Y k Z t

+ + +
=

+ + +

()x y z y

x y z z

f j X j Y j Z t
y

k X k Y k Z t

+ + +
=

+ + +

The general strategy for adjustment of the damping parameter is as follows: We start

by initializing λ to 310− , following Hartley’s approach in [Hartley93] and [HarZis00]. A

large initial value – for example 1 or 10 – would initially step LM in a more nearly

steepest-descent direction, whereas a smaller value, e.g. 310− or 210− , will begin in a more

nearly quadratic Gauss-Newton solution direction.

If the solution obtained for i∆P decreases the error, the solution is accepted and the

value of λ is divided by 10 before the next iteration. If the case is that the error

increases, λ is multiplied by 10 and the normal equations are solved again until an

effective value for λ is obtained that decreases the iteration error.

We define our parameter vector M∈ℜP by concatenating all parameters describing

the mcamera projection matrices (see § 3.1 for camera matrix) and the n 3D points in

Eq. 3.21.

In order to reduce the overall number of parameters, we have replaced the camera

rotation matrices with quaternions of unit length and have imposed the orthonormality of

the camera axes. Quaternions are extensions of complex numbers that can be represented

as a 4-component vector:

 0 1 2 3(, , ,)q q q q q= ,

where the first three components are real numbers, and the last one is an imaginary

number. Regarding memory usage, quaternions require only four floating point values,

compared to the nine floating point values of a 3x3 rotation matrix. Thus, they take up

less space but can still be quickly converted to rotation matrices. Additionally, in our

 46

parameterization scheme, the fourth component 3q is fixed under the unit length

condition, therefore we can write the camera matrices in the following parameterized

form:

0 1 2(, , , , , ,)Ti x y za t t t q q q f=

Also, each 3D point i is parametrized by a vector:

 (, ,)T

j x y zb X X X=

We shape the parameter vector P as:

 1 1(,..., , ,...,)T T T T T

m nP a a b b=

We accumulate the measured image point coordinates across all cameras in order to

construct a vector of measurements X ∈ℜN :

1,1 1, ,1 ,(, , , , , ,)Tn m m nX x x x x= … … …

For each parameter vector, an estimated measurement vector X̂ is generated by our

functional relation ˆ ()X f P= :

1,1 1, ,1 ,
ˆ ˆ ˆ ˆ ˆ(, , , , , ,)Tn m m nX x x x x= … … …

Since an image point ijx depends only on the parameters of the j-th camera, ˆ / 0ij kx a∂ ∂ = ,

j k∀ ≠ and ˆ / 0ij kx b∂ ∂ = , i k∀ ≠

The step vector P∆ and the residual vector ε can be further partitioned into

camera and 3D structure blocks as (,)
a

T T T
bP δ δ∆ = and (,)T

a bε ε ε= respectively.

Given the above partitioning, the form of the resulting Jacobian matrix
X

J
P

∂=
∂

 and the

normal equation T TJ J J ε∆ = are shown in Figure 3.5 a) and b), respectively.

Figure 3.5 a) illustrates the sparse structure of the Jacobian matrix and of the normal

equations TN = J J (Figure 3.5 b).

The blocks that form these matrices can be written down as follows:

 47

ˆ ˆ
T

ki ki
k

i k k

x x
U

a a

δ δ
δ δ

=

∑

ˆ ˆ
T

ki ki
i

k i i

x x
V

b b

δ δ
δ δ

=

∑

ˆ ˆki ki
ki

k i

x x
W

a b

δ δ
δ δ

=

ˆ
k

T

ki
ki

i k

x

a

δε ε
δ

=

∑a

i

T

ki
ki

i i

x

b

δε ε
δ

=

∑b

We can write the normal equations in the partitioned form:

a a

T
b b

U W

W V

δ ε
δ ε

∗

∗

=

 (3.22)

Both aε and bε are sparse matrices, since measured image points ijx are affected only

by the i-th camera and 3D point jX . Consequently, both U and V are block-diagonal

matrices, while W is in general not sparse (Figure 3.5 b).

We perform a Gaussian elimination step, by left multiplying both sides of the

equation with the block matrix
1

0

I WV

I

−∗ −

, assuming that V ∗ is invertible. This yields

a lower triangular block matrix:

11

0T
a a b

T
b b

WVU WV W

W V

δ ε ε
δ ε

−− ∗∗ ∗

∗

 −− =

 (3.23)

We can determine the motion update vector aδ by solving the upper block of (3.23):

1 1

()T
a a bU WV W WVδ ε ε

− −∗ ∗ ∗− = − , (eq. 3.24)

 48

Equation 3.24 can be efficiently solved using the Cholesky factorization of

1 TS U WV W
−∗ ∗≡ − .

 a).

b).

Figure 3.5 Sparse structures of the Jacobian (a) and normal equations (b).

This particular example illustrates the matrices for 3 images and 6 points [NocWri99].

 49

Having solved for aδ , the structure update vectorbδ can then be computed by

substitution into the bottom half of Eq. 3.23, obtaining:

T

b b aV Wδ ε δ∗ = −

In our calibration problem, V ∗ is a 3m x 3m matrix, composed of diagonal blocks of 3

x 3, making the calculation of
1

V
−∗ very efficient. The matrix W is a set of blocks of 7 x 3

giving a final matrix of 7m x 3n. The most expensive operation to solve Equation 3.20 is

the inversion of the term
1

()TU WV W
−∗ ∗− which turns to be a matrix of 7m x 7m

elements, where m is the number of reference images and n is the number of measured

features.

Keeping in mind that usually n >> m in order to obtain statistically stable solutions,

the sparse approach we have developed provides a better solution than solving directly

the normal equations which require inverting the 3n x 3n sized TJ J matrix.

3.5 Sequence Merging

As mentioned in §3.3, we fragment long sequences into subsequences sharing at least

one common frame, and each of them is calibrated into a metric reconstruction. The next

step is to merge the information of the individual fragments to recover a complete scene

structure (Figure 3.6).

Therefore the merging of two sub-sequences is performed in metric space by

determining the set of common points, between the last frame of one sub-sequence and

the first of the next one, which by construction corresponds to the same camera and

measurements. Any pair of corresponding image points X and X ' representing the

same 3D point M in two consecutive frames is related by a homography H , according

to the equations:

'X HX≅ and ' -1P P H≅

 50

Figure 3.6 An example showing three merged sub-sequences.

where P and 'P are the metric camera projection matrices representing the same

reference view expressed in different basis. H is a homography that maps the points

from one basis to the other one. We want to determine H minimizing the following

distance:

2()'

i

d PHX ,PX∑

for all common overlapping points M between the two subsequences. The distance

function is assumed to be the standard Euclidean distance. Considering that we have two

reconstructed metric frames P , 'P , we can bring them to a common reference basis. We

can multiply each of the camera matrices by its inverse as follows:

 51

-1PX = PP PX = [I |0]PX = [I |0]Xɶ

' ' ' ' -1 ' ' ' ' 'P X = P P P X = [I |0]P X = [I |0]Xɶ

Since the two sets of points are representations of the same set of real points and they

share identical 2D projections, we can restrict the homography H to be a uniform scale

and a translation, yielding the following expression:

x

y

z

s 0 0 t

0 s 0 t
H =

0 0 s t

0 0 0 1

The homography can be recovered by establishing the correspondence between four

known points. An overdetermined equation system can be built and a least squares

solution can be obtained.

Conclusion

In order to extract the 3D information of a scene from a sequence of images, we

have to completely recover the camera external and intrinsic parameters, i.e. position and

orientation as well as at least the focal length that were used during the acquisition

process. In this context, camera calibration is a critical problem in the absence of prior

geometric information. We described a robust stratified linear based algorithm that

calibrates each of the subsequences to a metric structure. Further, in order to deal with the

errors accounting for all the non-linearities not recovered in the self-calibration solution,

we described a maximum likelihood optimization implementation that minimizes the

reprojection error between the observed and predicted image points.

 52

Chapter 4 Voxel Carving

Introduction

Volumetric models are a natural choice for scene reconstruction, the task of

generating a 3D model of a scene from multiple 2D images. Three broad classes of

volumetric reconstruction techniques have been developed based on geometric

intersections, color-consistency, and stereo matching. Some of these techniques have

spawn a number of variations and undergone considerable refinement.

 The focus of this work lies in the second class of techniques, that obtain shape from

color-consistency, which have the generic name of Space Carving or simply voxel

carving. As noted in the introductory chapter, we operate under the Lambertian

assumption. In this chapter, we present the theoretical foundations of Space Carving as

introduced by Kutulakos and Seitz [KutSei99] followed by a description of our multi-

resolution solution that tackles the extended computational costs from a human

perception point of view.

 53

4.1 Background

4.1.1 Theoretical Foundations of
Space Carving

Kutulakos and Seitz have proposed in [KutSei99] a novel approach for

reconstructing 3D scenes from a set of N camera views that gracefully handles shape

recovery when no constraints are placed upon the shape of the scene or the placement of

the cameras.

The Space Carving theory addresses the problem of reconstructing scenes from a

set of N views for the case when:

� there are no constraints on the scene geometry,

� also, there are no constraints on the position of the input views,

� no information is available of any type of salient features in the input

photographs (i.e. edges, lines, points, etc)

� there is no prior correspondence information.

The authors note in [KutSei99] that a first requirement is that the viewpoint of each

image is known (i.e. calibrated reference views are needed). A second requirement is that

the radiance of the scene is locally computable, that is, the scene has a parameterized

radiance model (e.g. Lambertian, Phong).

There are many advantages of this family of scene reconstruction:

• The Space Carving algorithm is the only provably correct method that handles

shape reconstruction from arbitrarily placed cameras.

• The solution volume provides the tightest possible bound of the scene that can be

extracted from the set of N given views, regardless of the specific algorithm employed to

obtain it.

• Since no constraints on the camera positions are imposed, the solution is a global

reconstruction, eliminating the need of partial reconstructions and merges.

 54

• Since the recovered shape is guaranteed to be photo-consistent with the reference

views, visually accurate reprojections can be obtained.

In the following, we present a summary of the Space Carving theory introduced in

[KutSei99].

We assume a volume in space with an unknown shape υ defined by a closed and

opaque set of points. We also assume that there exists a set of N perspective projection

views 1, , NI I… taken respectively from a set of known locations1, , NC C… .

The points on the surface of the shape are contained in ()Surf υ and the radiance

of a point ()p Surf υ∈ in this surface is described by a function ()PRad r that maps

every oriented ray r passing through the point to the color of light reflected from p along

that direction. The set of radiance functions (,)Rad r p for every point ()p Surf υ∈ and υ

form the shape-radiance scene description, which can reproduce uniquely any image

from any viewpoint.

The set of all possible shape-radiance descriptions can be partitioned in two sets,

based on whether they reproduce or not the input images. This constraint is defined for a

given shape and a given scene radiance as photo-consistency and was formalized by

Kutulakos and Seitz in the following set of definitions:

Point Photo-Consistency:

Let S be an arbitrary subset of3R . A point p S∈ visible from iC is photo-consistent

with the image iI if it does not project to a background pixel and the color of the

projection of p is equal to ()PRad r . If p is not visible from iC it will be conservatively

considered as photo-consistent.

Shape-Radiance Photo-Consistency:

A shape-radiance scene description is photo-consistent with a reference image iI

obtained from iC , if all points visible from iC are photo-consistent and every non-

background pixel is the projection of a point inυ .

 55

Shape Photo-Consistency:

A shape υ is photo-consistent with a set of N reference views if there is an

assignment of radiance functions (,)Rad r p to the visible points in υ that produce a

photo-consistent shape-radiance description with all the reference images.

The constraints that photo-consistency imposes on the shape of a scene in order to

obtain a valid reconstruction are the following:

Background constraint:

Since photo-consistency requires that no point of υ projects to a background pixel,

in the case an image I obtained from C has identifiable background pixels, υ is

restricted to the cone defined by C and the non-background pixels ofI .

This constraint exploits the information about the background pixels and is very

powerful when such information is available. Given a set of N such images, the scene is

then restricted to a useful volume obtained by intersecting their respective cones, known

as the the visual hull [Laur94]. However, this constraint becomes useless when we have

no information on background pixels, and the visual hull degenerates to3R .

The main drawback of the visual hull is that it does not model the shape concavities.

The following constraints are needed in order to enable the reconstruction of shape

concavities:

Radiance constraints

To model these restrictions let’s define the following consistency criteria

[KutSei99]:

� A method Kconsistency is available that takes as input k N≤ colors

1, , kcol col… , k vectors 1, , kr r… and the known light source positions (if non-

Lambertian models are used) and determines if it is possible for a surface point

()p Surf υ∈ to reflect light of icol in direction ir for all 1, ,i k= … at the same time.

 56

� Kconsistency is monotonic, i.e. if 1 1(, , ,)K j jconsistency col col r r… … is true, then

1 1 1 1(, , ,)K j jconsistency col col r r− −… … for every permutation set of 1, , j… is also

true.

These criteria define a locally computable class of radiance models, that is, they

present a locality property: the radiance at any point is independent of the radiance of all

other points in the scene. Given a locally computable radiance model and a Kconsistency

function, the photo-consistency status of every point ()p Surf υ∈ of the scene from a set

of N images can be fully determined, and more importantly, the non-photo consistency,

which conveys significant information about the underlying shape of the scene, is known

too.

With the following lemmas Kutulakos and Seitz, describe how the non-photo-

consistency of a shape υ affects the photo-consistency of its sub-sets.

Visibility lemma
Let ()p Surf υ∈ , and let ()Vis pυ be the set of reference views in which p is not

occluded by υ . If 'υ υ⊂ is a shape that contains p, then '() ()Vis p Vis pυ υ⊂

Non-photo consistency lemma
If ()p Surf υ∈ is not photo-consistent with a subset of ()Vis pυ , it is not photo-

consistent with ()Vis pυ .

These lemmas (illustrated in Figure 4.1) show the underlying monotonic tendency

exhibited by the family of Space Carving algorithms: the set of reference views from

which a given point ()p Surf υ∈ is visible, strictly expands as υ gets smaller.

Also, if more reference images are available, new constraints are added, which

means that once a point fails to be photo-consistent, there is no additional reference view

that can re-establish photo-consistency.

This is stated in the following theorem [KutSei99]:

 57

Subset theorem

If ()p Surf υ∈ is not photo-consistent, no photo-consistent subset of υ contains p.

These concepts can be further developed to lead to the following theorem

[KutSei99], which states that for any shape υ there is a unique photo-consistent shape

that contains any other photo-consistent within its volume, giving a least commitment

reconstruction.

Photo hull theorem

Let υ be an arbitrary subset of 3R . If *υ is the union of all photo-consistent shapes

in υ , every point on the surface of *υ is photo-consistent. The set *υ is called the photo

hull.

When we have a finite scene that can be contained in a discretized volume, these set

of properties can be used to define a generic algorithm that will compute the photo-hull

by iteratively removing elements of the initial volume υ until it converges to the photo-

hull. The decision mechanism is the photo-consistency criterion, where voxel evaluation

is done with the help of a sweeping plane moving along preset directions (usually the

XYZ axes). For each position of the plane voxels are evaluated by projecting them onto

camera views that are behind the sweeping plane (Figure 2.1, §2.2.2, Chapter 2). This is a

convenient method of keeping track of voxel visibility, i.e. occluders are visited before

the voxels that they occlude.

The space carving algorithm requires a number of photo-consistency tests that is

upper bounded by n x m, where n is the number of reference views and m is the initial

number of voxels in the uncarved volume.

 58

Figure 4.1 Illustration of the visibility and non-photo-consistency lemmas. If P is non-photo-
consistent with the views at 1 2 3C ,C ,C , it is also non-photo-consistent with the entire set

,
υ ' 1 2 3 4Vis (P) = {C ,C ,C C }

The different implementations that follow this procedure belong to the family of

space carving algorithms. In order to specify a useful algorithm we need to specify the

following issues:

� How can we select the initial volume υ that contains the scene

� What representation of that volume facilitates carving.

� How the carving process is carried in each iteration to guarantee the convergence

to the photo-hull.

� What conditions are needed to terminate the carving process.

4.2 Multi-resolution Voxel Carving

Space Carving [KutSei99] is conservative, it never carves voxels it shouldn’t, but it

may produce a model that includes some color-inconsistent voxels. This is because

cameras that are ahead of the scanning plane are not used for consistency checking, even

when the voxels being checked are visible from those cameras. Hence, the color

consistency of a voxel is, in general, never checked over the entire set of images from

which it is visible.

Our work builds on an alternative approach proposed in [CMS99]. The Generalized

Voxel Coloring (GVC) provides an efficient implementation of the space carving

 59

algorithm that computes visibility exactly in order to obtain a color-consistent model. The

authors provide experimental results that show that exact visibility, when compared with

the approximate visibility computed by Space Carving, can result in visually more

accurate reconstructions that are numerically more consistent with the input images.

The algorithm operates only on surface voxels, providing a two-way mapping between

border voxels and image pixels. We exploit this bidirectional relationship to propose a

user-guided method for creating multi-resolution 3D models, with varying level of detail

across the surface.

Voxel carving approaches imply the classification of a large number of discrete

elements, implying a trade-off between performance and accuracy. Moreover, the

delivery and rendering of 3D digital content over different types of connections to clients

with various graphics capabilities requires scalable 3D models that can be approximated

through representations of varying complexity.

The automatic simplification algorithms developed in the last decade generate an

approximation of fewer polygons from complex models. However, their approximations

do not preserve the visual appearance of the original model in certain cases. For example,

features such as eyes in a face are semantically crucial, but geometrically small. Kho and

Garland [KhoGar03] developed a human-guided simplification method where the user

can guide the vertex placement of a 3D model by directly interacting with the underlying

algorithm.

The multi-resolution method developed for our framework relies similarly on the

human factor to assign perceptual importance to selected features. However, by

exploiting the two-way voxel-pixel mapping provided by the surface voxel list and the

image buffer, only simple 2D image editing operations are required to control the

complexity of different surface regions.

The size of the initial volume of voxels containing the 3D scene is determined by

upscaling the spatial bounds of the recovered 3D points during self-calibration (Figure

4.2). First, we assign every voxel a unique ID. We also assume that initially all voxels are

opaque, i.e. uncarved. We are considering a point voxel projection, so that only the voxel

center is projected to the input images, leading to a single pixel in each view.

 60

Figure 4.2 The initial bounding box of voxels is containing the 3D scene.

0 ... j
M MP P denote the camera projection matrices

Figure 4.3 a. An example showing two images (out of a sequence of seven) with
the regions corresponding to a box, a checkerboard area and a plastic object
selected and labeled with the final resolution (r=6). The resolution of the initial
reconstruction is the upper left corner (r=16).

Figure 4.3 b. Left: The coarse 3D reconstruction of the scene at r=16. Right:
The multi-resolution reconstruction with the selected regions refined to r=6,
respectively.

 61

• User Input

The user selects polygonal regions (e.g. corresponding to salient features) in one or

more images using common selection tools, such as polylines and scissors, and assigns

them a label ID corresponding to the chosen resolution (Figure 4.3a). Adjacent polygons

must intersect along a set of common edges.

• Visibility

A correct visibility handling is required to compute photo-consistency. As shown in

Figure 4.4, a voxel that does model a scene surface could erroneously be declared

inconsistent if visibility is not taken into consideration. The voxel is not visible to the

rightmost camera, which observes a blue color resulting from occluding geometry in the

scene. Only the viewpoints where a voxel is visible should be taken into account during

the photo-consistency check.

Figure 4.4 Correct visibility determination is required
to compute photo-consistency

As mentioned previously, we operate only on surface voxels that are embedded in a

surface voxel list (SVL). The SVL is initialized with the outside layer of voxels of the

bounding box and is then updated at each iteration: carved voxels are removed from the

SVL, while adjacent uncarved voxels which become visible are added to the SVL (Figure

4.5).

 62

Figure 4.5 Voxels that change visibility [CMS99]

Figure 4.6 The item buffer records for each pixel the ID of the closest
visible voxel that projects onto it [CMS99]

In order to determine the visibility set ()vis V of pixels from which a voxel is visible,

an image buffer is computed for each reference view as follows: the SVL is examined

sequentially in order to find all the pixels that a voxel V projects onto and a comparison

is done with the depth value already stored at the respective pixels. If V is closer to the

camera than the distance previously recorded for the pixel, then its distance and ID are

stored and included in the visibility set, while the previous pixel statistics are discarded.

 63

If the new pixel’s depth is greater than the current pixel, the voxel is not visible from that

view and the voxel information will not be included in the visibility set (Figure 4.6).

The pseudo-code is outlined in Figure 4.7. The bidirectional voxel-pixel mapping

enabled by the SVL and the IB allows the identification of voxels projecting to pixels

belonging to labeled regions. First we perform a coarse reconstruction, in order to isolate

and differentiate the voxel groups that project to labeled regions. The 3D bounds of each

voxel group are computed and a spatial constraint grid is applied, which restricts further

refining to labeled voxels. The resolution is increased by tesselating each voxel into eight

subvoxels [ProDye98]. Next, voxel carving is performed on the higher resolution voxels.

The above steps are repeated iteratively until the required resolution is obtained (Figure

4.7). The algorithm stops when every voxel is found to be color-consistent and no carving

occurs.

• The Photo-consistency Criterion

The 3D shape of the scene is constructed by carving voxels that are not photo-

consistent with the reference views. According to the photo-consistency definitions, in

order to be photo-consistent (Figure 4.8), a voxel must not project to background in any

reference view, and has to be color-consistent. Although the use of other reflectance

models [Chhabra01] is possible, we will assume here that the scene is or nearly is

Lambertian.

More specifically, the color-consistency check is done by computing a dissimilarity

metric σ of the color components 1 ,...,c ck of the pixels from the set ()vis V . The voxel is

consistent if σ τ< , where τ is a predefined threshold. Voxels found to be consistent

are assigned the mean value of the color components, while inconsistent voxels are

carved. The photo-consistency metric we have chosen is the true color variance value of

corresponding visible voxels in reference views.

 64

int LRN ; //number of labeled regions

int[] resolutions //array of the user-required resolutions

//compute initial low resolution reconstruction
initialize loresSVL

loop{

 until no further voxels are carved
 for all images i n…

compute image buffer

for every voxel V SVL∈ {

 compute VVis

 determine label status VLR

 record color statistics for V
 }
 perform photo-consistency check

 delete inconsistent voxels from loresSVL

 add uncarved adjacent voxels to loresSVL

 }
}

//identify voxels belonging to labeled regions and bu ild
separate SVLs for each region

for (int 0i = ; i<resolutions.length; i + +) {

 while _ _i icurrent resolution final resolution< {

 increase resolution by voxel subdivision

initialize i
hiresSVL

//perform voxel carving at the higher
resolution

 loop{
 until no further voxels are carved

 for all images
 compute image buffer

 -continued on the next page

 65

 for every voxel i
hiresV SVL∈ {

 compute VVis

 record color statistics for V
 }

 perform photo-consistency check

 delete inconsistent voxels from i
hiresSVL

 add uncarved adjacent voxels to i
hiresSVL

 }
 }

}

Figure 4.7 The multi-resolution voxel carving pseudo-code

The photo-consistency metric we have chosen is the true color variance value of

corresponding visible voxels in reference views. We compute the variance 2σ according

to the following equation:

Where N is the number of those active views in which the voxel is visible, (, ,)i i iR B G

is the sampled pixel color from the i-th view, and (, ,)m m mR G B is the mean color of the

corresponding pixels in all N views. The photo-consistency can then be expressed as a

threshold function:

21,

0,otherwise
photo consistency

σ τ <
− =

where τ is a user-defined threshold. In our current implementation, the variance

computation is based on a single sample from each reference view. Therefore, calibration

errors and image noise can introduce instabilities to the photo-consistency check process.

Incorporating local neighborhood information will provide more robust results.

2 2 2 2

1 1 1

() () () / (1)
N n n

i m i m i m
i i i

R R G G B B Nσ
= = =

 = − + − + − −

∑ ∑ ∑

 66

Conclusion

In this chapter, we have focused on the family of methods based on space carving

and color consistency. We have presented the underlying theory that supports and

guarantees a valid space carving algorithm. A multi-resolution voxel carving

implementation has been described, that aims to reduce the computational cost of the

voxel carving algorithm by enabling the human factor to assign various perceptual

importance levels to surface regions of the reconstructed model.

Figure 4.8 Top - the voxel projects in two views to background.
Bottom - the voxel projects to the same color in all three views.

 67

Chapter 5 Programmable Graphics
Hardware

Introduction

The classical programming model used in languages like C/C++ has been very

successful for the development of non-parallel applications as it provides an efficient

mapping to the classical von Neumann architecture. However, this model does not map

very well to next generation parallel architectures. For developing efficient applications

on such architectures with maximum efficiency, alternative programming paradigms are

required. The stream programming model has shown to be a promising approach going in

this direction. Furthermore, the stream programming model provided the foundations for

the architecture of modern programmable high-performance graphics hardware.

The GPU, just like a CPU, has its own caches and registers to accelerate data

access during computation and also its own main memory before beginning program

execution. This memory hierarchy, however, is designed for accelerating graphics

operations that fit into the stream programming model rather than the general, serial

 68

computational model. Moreover, graphics APIs such as OpenGL and Direct3D further

limit the use of this graphics memory to graphics-specific primitives such as vertices,

textures and frame buffers. This chapter gives an overview of the current memory model

on GPUs and how stream-based computation fits into it.

5.1 The Stream Programming Model

The key to using the GPU for purposes other than real-time rendering is to view it

as a streaming, data parallel processor. The Stream Programming Model (SPM) is of

great importance to the way in which we structure computation and access memory on

the GPU. As such, we will give an overview of this model in the following.

Streaming processors are programmed in a fundamentally different way than

serial processors like today’s CPUs [HHN*02, KDR*03, PAB*05]. In the stream

programming model, applications are organized into streams and kernels (Figure 5.1).

Streams are defined as ordered arrays of data, while kernels are small programs (or

specialized functions calls) that perform operations on such streams, loading one or more

streams as inputs and writing one or more streams as outputs. Applications are

constructed by chaining multiple kernels together. The distinctive characteristic of the

SPM – as opposed to the CPU general programming model – is that a kernel operates on

entire streams and the same kernel is executed on each element of a stream in parallel.

The SPM constrains the way software is written such that parallelism and locality

are explicit within a program, enabling compilers to optimize automatically the code to

take advantage of the underlying hardware.

• Parallelism

Parallelism is ensured by two effective kernel independence constraints, allowing

the underlying hardware to exploit parallelism both at task and data level. First, within a

kernel, computations on one stream element are independent of computations on another

element. Second, kernel outputs are functions of only their kernel inputs.

 69

 Figure 5.1.The stream programming model

Task-level parallelism is the ability to have multiple stream processors divide the

work of a kernel, or to have different kernels run on different stream processors. Thus,

the first processor in the pipeline executes one or more kernels to generate output stream

that is passed to the next processor. As the next processor operates on those streams, the

original processor repeats its kernels on the next set of input data. GPUs exploit task

parallelism through processor specialization, i.e. by mapping kernels to separate

processors placed on a single chip allowing efficient communication between kernels, by

avoiding off-chip memory access.

Data-level parallelism: Since kernels perform the same instructions on each

element of a stream, data-level parallelism can be exploited by performing these

instructions on many stream elements at the same time. Moreover, due to kernel

independence, every stream may be processed by a separate processing unit. Data

parallelism is employed effectively by GPUs through the addition of more execution

units.

Therefore, task- and data-level parallelism potentially allow the processing

pipeline to be arbitrarily wide – in terms of the number of processors executing the same

kernels across the data, or arbitrarily deep – in terms of the number of processors in the

pipeline.

 70

• Locality

There are two main types of locality exposed by the SPM: kernel locality and

producer-consumer locality.

Kernel locality refers to the SPM constraint that intermediate values exist only

temporarily and strictly within a kernel. Producer-consumer locality refers to streams

produced by one kernel and consumed by subsequent kernels without going back to the

main memory. This type of locality enables GPUs to fill regions of memory with

contiguous data blocks, which is extremely useful when applied to one of the key tasks of

the GPU: loading texture data in the memory.

5.2 The GPU as a Stream Processor

The stream processing model maps to a large number of different high performance

processing models: multithreaded, pipelined SIMD, distributed and shared memory

parallel architectures.

Furthermore, since graphics applications can be expressed as a series of computations

performed on streams of data, the SPM stream and kernel paradigms naturally fit the

graphics pipeline (Figure 5.2).

The computation involved in each stage of the graphics pipeline is uniform across

data primitives, allowing these stages to be mapped to kernels. Similarly to the SPM, data

flow between stages in the graphics pipeline is highly localized, with data generated by a

stage immediately consumed by the next stage.

In the following we detail the major blocks of the modern programmable graphics

pipeline, starting with input arriving from the CPU and finishing with pixels being drawn

to the frame buffer (or render target).

 71

Figure 5.2 The stream formulation of the graphics pipeline:
data are expressed as streams (indicated by arrows) and

computations are expressed as kernels (indicated by blue boxes).

The Vertex Processor

GPUs support multiple vertex processors that are fully programmable and operate

in either SIMD or MIMD fashion on the input vertex stream referenced by the CPU

rendering commands. The vertex processors apply a vertex program to each vertex in the

object, transforming the vertices into a common model space and performing any other

user-specified per-vertex operation.

Vertex processors are capable of scatter, i.e. they can control where in memory

data will be written [LBC*05]. Thus, vertex processors are capable of changing the

 72

position of input vertices, deciding ultimately where the image pixels will be drawn.

Traditionally, vertex processors were able to fetch information strictly from the current

input stream and no other memory location, therefore they were not able to gather.

However, the latest GPUs (i.e. with Shader Model 3.0 support), have a limited gather

feature, called vertex texture fetch [GFG04], enabling vertex processors to perform

texture memory reads for up to four textures.

GPU-writable streams are another recent hardware feature addition. Previously,

vertex streams could be updated only on the CPU, requiring a bandwidth consuming

GPU-CPU data transfer. This functionality, called “render-to-vertex-array” is of vital

importance for GPGPU computations and will be detailed in a separate section (§ 5.6).

The Rasterizer

The transformed vertex stream produced by the vertex processor is converted by

the rasterizer into fragments. Typically, three vertices groups are used to compute

triangles (the triangle is the basic primitive for 3D representations), transformed then into

fragments. From a GPGPU point of view, the rasterizer may act as a data amplifier, since

it generates an increased output of elements from only a few input elements.

At this stage, each fragment can be considered a “proto-pixel” [Harris05] that

encapsulates all information needed to generate a shaded pixel in the final image,

including color, coordinates and possibly depth.

The Fragment Processor

 Modern GPUs support a scalable number of fragment processors. Fragment

processors are also fully programmable and work in SIMD fashion on input elements

[LBC*05]. The fragment processors apply a fragment program (i.e. pixel shader) to each

fragment in the stream to compute the final characteristics of each pixel.

 73

Fragment processors have the ability to fetch data from textures, therefore they

are capable of gather. They are however not capable of scatter (i.e. change the output

location of a pixel) - since the output address of a fragment is determined prior to

reaching the fragment processor.

GPUs have typically more fragment processors than vertex processors, in order to

handle the amplified data load generated by the rasterizer. Consequently, GPGPU

applications put a heavier emphasis on the usage of fragment processors compared to

vertex processors.

Render Targets

Pixels are typically rendered on-screen to the frame-buffer or alternatively to an

off-screen render target called a pixel buffer or a framebuffer object. Due to recent API

features, the pixel buffer can consist of frame buffers, vertex buffers or textures. All of

these three types of data can be associated with a texture (render-to-texture) enabling

them to be bound either as render targets or input textures for further processing.

Therefore, while the traditional use of pixel streams is to hold pixels for display to

the screen, GPGPU computations rather use these pixel buffers to hold the results of

intermediate computational stages.

Texture Units

GPUs support a number of texture units, which determines how many textures

may be simultaneously applied in the same render pass. Textures are bridging the random

access into vertex, fragment, or pixel streams, since all these stream types need to be

converted to textures to allow random indexing. Textures can be read from and written to

by either the CPU or the GPU. On the GPU side, textures are the only memory that is

randomly accessible by fragment programs and also vertex programs, though the latter

refers to the limited access provided by the vertex texture fetch functionality.

 74

5.3 GPU Computations
In order to activate kernels, we simply draw geometry so that the vertex and

fragment processors will operate on the input primitives and output the result as pixels.

Besides specialized computations on primitives as dictated by program requirements, the

most generic invocation in GPGPU programming is a rectangle, typically processing

every element of a stream of fragments representing a grid [Harris04].

The GPU equivalent of CPU array data structures consists of streams, therefore,

anywhere we would use an array of data on the CPU, we can use one of these streams on

the GPU.

On the CPU, in order to perform serial processing, we would use a loop to iterate

over the elements of an array. In the GPU case, the instructions inside the loop are the

kernel, while the streams replace the array structures. That is, on the GPU, we write

similar instructions inside a fragment or vertex program, which are applied to all

elements of the stream.

Conforming to the SPMs task-level parallelism, a kernel must process an entire

stream to generate output for the next kernel in the pipeline, therefore, each step depends

on the output of the previous step. The feedback needed to proceed with each step is

trivial to implement on the CPU, where memory can be accessed anywhere in a program.

As we discussed previously, on the GPU we need a texture to bridge our access, i.e. we

must use the render-to-texture technique to write the results of a fragment program to

memory so they can then be used as input to future programs. Texture coordinates are

stored for each vertex and are used in GPGPU as indices for texture fetches (see next

paragraph for more details).

5.4 Dependent Texturing

Modern graphics processors have the ability to perform dependent texture

lookups. Purcell [PDC*03] has introduced the abstraction of texture memory that

 75

enables us to load a complex data structure into memory and use fragment programs to

navigate through it via dependent texture lookups.

Algorithms may involve complex data structures and lookup of elements within

these structures. Dependent texture fetching allows the address being fetched from

texture memory to be computed by the fragment program. It also allows the results of a

memory lookup to be used to compute another memory address (Figure 5.3).

More importantly, it allows us to think about texture memory on the GPU as

general read-only memory. Rather than worry about texture management and texture

coordinates, etc. we can think about memory and addresses.

Figure 5.3 Dependent texturing [PDC*03]

5.5 Render-to-vertex-array

General processing on the GPU relies on computing intermediate stream results

on the GPU, saving them in graphics memory (off-screen targets), and then feeding them

again as vertex data textures to the geometry engine to render images in the frame buffer.

This process requires application control over the allocation and use of the graphics

memory.

Recent features of graphics hardware blur the boundaries between textures, vertex

data and render targets, allowing graphics memory to be treated as any of such objects.

These features are exposed to the application through a set of supporting OpenGL

extensions: Vertex Buffer Objects and Pixel Buffer Objects [ARB03, NV04].

 76

The Vertex Buffer Objects (VBO) interface enables the application to allocate

high-performance graphics memory on the GPU, and to specify how that memory is to be

used. Buffer objects can be used as either data sources or sinks for any graphics API

command that takes a pointer as an argument. The VBO extension binds buffer objects to

given targets and then instead of treating the argument as a pointer to memory, it is used

as an offset into the buffer object’s data store.

Previously to the PBO addition, the VBO targets consisted of buffers containing

either vertex attributes, such as vertex coordinates, texture coordinates data, per vertex-

color data, and normals, or only indices of elements, respectively. The recent Pixel

Buffer Objects extension (PBO) expands the VBO functionality with two new read/write

targets, permitting buffer objects to be used not only with vertex array data, but also with

pixel data.

Figure 5.4 VBO targets [Nvidia03]

“Render-to-vertex-array” is one of the most interesting optimizations provided by

the VBO/ PBO combination. Buffer objects are viewed at application level simply as

arrays of bytes, differentiated only by the targets they are bound to. Therefore, a vertex

buffer can be bound to a pixel buffer target and then use this buffer as a source of pixel

data and vice versa (Figure 5.4). From a GPGPU point of view, the VBO/PBO

 77

combination enable GPUs, for the first time to loop streams results from the end to the

top of the pipeline (Figure 5.5).

Moreover, VBO/PBO avoids the GPU-CPU bandwidth taxing transfer, which has

traditionally been a bottleneck for many applications: the VBO/PBO mechanism keeps

all the data flow inside the server, avoiding copying the pixel buffer on the client’s side

and putting it back on the server’s side as an input for a vertex program.

Figure 5.5 Render-to-Vertex-Array: writing renderin g results to vertex array
allows the GPU to loop back to the top of the pipeline [LBC*05]

 5.6 Shading Languages

Originally, GPUs could only be programmed using assembly languages. Early

work at Stanford University [PMT*01] provided valuable research, producing the Real

Time Shading Language (RTSL). RTSL provided an abstraction layer over the (at the

time) fixed-function hardware that would compile to GPU assembly, reducing the

difficulty of GPU programming.

GPU and 3D API vendors soon followed suit, releasing their own languages and

compilers. Nvidia was the first to expose a more general programming model for GPUs,

starting with the vertex unit [LKM01]. The fragment unit was also made gradually

programmable, having eventually a full programming model very similar to that initially

supported on the vertex unit.

 78

Varying degrees of programmability had been appearing in OpenGL as vendor-

specific extensions. These finally converged in the ARB_vertex_program and

ARB_fragment_program extensions [ARBa]. The assembly-level shaders were

naturally followed by higher level shading languages, having a C-like syntax with minor

differences. Nvidia and Microsoft worked closely to develop Cg and HLSL [MGA*03,

BFH*04]. After an almost two year refinement by the the OpenGL Architecture review

board, the OpenGL Shading Language, was released as part of OpenGL 2.0 core at

SIGGRAPH 2004.

All the above languages require thorough understanding of the features and

limitations of latest graphics hardware and graphics APIs, making the general-purpose

GPU computing accessible to only the most advanced graphics developers. Two general

purpose shading languages have been developed, trying to overcome these drawbacks by

hiding the details of the runtime: Brook at Stanford University [BFR*04] and Sh at

Waterloo University [McD04].

Following the development of the Imagine stream processor [KDR*02] Brook

exploits the stream aspect of GPUs explicitly. Brook targets scientific applications,

comes with an associated compiler (brcc) and is implemented as a preprocessor that maps

programs to a C++ and Cg implementation.

Sh is also supporting the stream programming model, however it targets not only

scientific but also graphics computation. Sh is embedded inside C++, so that no compile

tools are necessary and parameter passing into streams is seamless eliminating the need

for parameter binding code.

At the time of writing both Sh and Brook are under heavy development. Brook

has performances close to hand-written code [BFR*04], however many special GPU

features cannot be expressed cleanly and it lags in the timely updates.

Sh lacks certain features that affect its efficiency and are intended to be added in

the future. For example, downloading the data between the host program and the

processor running the Sh kernel can be a very expensive operation. [MD04]

Therefore, low-level shaders are still needed to extract the best performance from

the GPU. RTSL is no longer active and under development, having evolved into Cg

practically, HLSL is DirectX specific and GLSL is OpenGL specific.

 79

The Cg language is multiplatform, API neutral and independent of the generation

of GPU that it is running on. Moreover, it has the important benefit of constant updates

according to the rapidly evolving GPU technologies. These features have made Cg the

language of choice for the GPU shaders developed for our work.

Conclusion

In this chapter, we have touched concepts of modern programmable graphics

hardware and the main differences between the CPU and GPU memory and programming

model. The GPU memory model is based on a streaming computational model that

supports a high degree of parallelism and memory locality. This implies a number of

restrictions on when, how and where memory can be used. Many of these restrictions

exist to guarantee parallelism, but some exist because GPUs are designed and optimized

for real-time rendering rather than general high-performance computing. Nonetheless,

many of these constraints are likely to be relaxed in the future. We have also reviewed

several recent hardware features that broaden the use of GPUs within the general

processing realm.

 80

Chapter 6 Voxel Carving on the GPU

Introduction

The primary goal in developing the carving engine is to design a method that

allows voxel carving to occur at real-time rates. GPUs power real-time systems with a

peak performance about two orders of magnitude greater than that of the CPU, however

this performance implies the constraints of the streaming programming model.

One major challenge in developing GPGPU algorithms is to design appropriate

data representations and develop techniques that fully utilize the graphics pipeline,

multiple vertex and fragment processors and high inner memory bandwidth.

Another issue to overcome is the GPU-CPU transfer rate, the traditional

bottleneck for many applications – due to the asymmetric interconnecting AGP bus that

delivers performant bandwidth only from the CPU to the GPU. The advent of the new

bidirectional-transfer capable PCI Express bus standard may make sharing memory

between the CPU and GPU a more feasible possibility in the future. Nevertheless,

attaining low bandwidth consumption is of great importance.

 81

Our approach is designed for a high utilization of the graphics pipeline

parallelization and employs an efficient external and inner bandwidth strategy. More

specifically, the output format is designed to return as little data as necessary, limiting

itself to surface voxels rather than the entire volume, while the input format corresponds

to the optimal two-dimensional data layout on the GPU.

If carving progresses at more than 20 frames per second, we claim that real-time

performance is achieved. Interactive frame rates are considered to be between 2 and 20

frames per second. Depending on the voxel resolution and the number of reference views,

the algorithm that we will present runs at least interactively, and in several cases achieves

real-time frame rates. Compared to a purely CPU-based implementation, the performance

is approximately 3-8 times faster.

6.1 The Carving Engine

This section outlines the encapsulation of the voxel carving process into a carving

engine. We structured the carving engine to perform image sampling,

background/silhouette test, visibility test and photo-consistency check on the GPU and let

the CPU host manage the resulting output and organize the dynamic update of the voxel

structure. Since the bulk of the computational resources are spent on the former

operations, the management of results and of voxel state is a relatively small overhead for

the CPU, certainly smaller than performing the entire voxel carving on the CPU.

We determine the original size of the volume of voxels containing the 3D scene by

upscaling the spatial bounds of the recovered 3D points during self-calibration. Voxels

are assigned a unique ID and only voxels that belong to the surface are processed. We are

considering a point voxel projection, i.e. only the voxel centre is projected to the input

images, leading to a single pixel in each view.

The pseudocode for the algorithm presented in Figure 6.1. reveals that the algorithm is

compliant with the generic space carving method. Given a set of voxels in the surface,

each voxel is examined and tested for consistency. During each iteration of the algorithm,

 82

we perform an outer loop where the surface voxel structure is rasterized against each

camera view, followed by voxel sorting, as a precalculating step towards determining

()vis V of each voxel. This results in a set of image buffers for each of the views for every

loop iteration. The calculation of ()vis V is embedded within the photo-consistency check.

Once ()vis V has been determined, the color consistency function computes the color

statistics and decides the consistency status of the voxel. If it is consistent it will be kept

and re-examined in further iterations until it is rejected or it remains as part of the

reconstructed object. Following the conservative approach of this family of methods, in

case of uncertainty, the voxel is left unprocessed, expecting that later on its situation will

become better defined.

The employed data representations, kernels and computational stages will be

detailed in the following paragraphs.

6.2 Memory Layout

The voxel structure and its attributes correspond to 1D and 3D data arrays.

However, we will pack this data in two-dimensional textures, which is the optimal layout

to utilize the high memory bandwidth available in GPUs. That is, GPUs provide only 2D

rasterization and 2D frame buffers, meaning the bidimensionality of such textures ensures

a maximum efficiency update during processing.

Graphics processors currently offer only scarce support for simple 1D texturing.

Many data structures will overflow the maximum size of a 1D texture, since current

GPUs do not support textures with more than 4096 elements. However, the use of 2D

textures requires address translation to convert an n-D array address into a 2D texture

address, similar to a virtual to physical memory translation.

That is, each time this packed array is accessed from a fragment or vertex

program, the 1D address must be converted to a 2D texture coordinate. It is important to

note that these conversions are performed very efficiently, because the GPU’s texture-

 83

addressing hardware actually minimizes the cost of address translations to look up values

in the underlying 1D array

loop {
 until no further voxels are carved {

update voxel state map and generate SVL
 for each voxel {

 delete rejected voxels from SVL
 add adjacent uncarved voxels
 mark modified voxel state

 }
 enable depth test
 transfer voxel state map to GPU
 transfer SVL map to GPU

 for all images i … n {

//projective texture mapping

bind image buffer IB i as the target

 bind camera imageCi as input texture
 render SVL to image buffer
 load camera parameters
 run projective texturing kernels

 transform object-space coordinates

 to texture coordinatesTEXxy (VP);

 query Ci at TEXxy and draw vertex

 with the found color (FP);

//sort by pixel routing
set viewport to routing buffer dimensions
transfer image buffer to vertex array
bind routing buffer as the target
render image buffer to routing buffer
 run pixel routing kernels
 compute new vertex address(VP)
 draw vertex at the new position(FP)

 }
 //perform photo-consistency check
 bind routing buffer as input texture
 bind photo-consistency buffer as the target
 run photo-consistency kernel

determine Vis(V)
 compute color statics for V

output photo-consistency status

-continued on the next page

 84

 read-back to CPU photo-consistency buffer
 //display consistent voxels
 render SVL to frame-buffer

set photo-consistency buffer as the color
attribute

 discard inconsistent/background voxels
 }
}

Figure 6.1 Carving engine pseudo-code

Figure 6.2 1D array packed into a 2D texture

3D texture maps are the easiest way to store 3D arrays, however, they present

several drawbacks. 3D textures tend to take up a large amount of texture memory, and

they grow rapidly in size with increases in resolution. For example, the memory cost of a

32-bit 3256 texture is 64 MB representing a considerable burden on most current

graphics systems. As a consequence, 3D textures are expensive to change dynamically

which can affect multipass algorithms requiring multiple passes with different textures, as

in our specific case.

Alternatively, each volume slice can be stored separately in a 2D texture

[HCT*02], or the entire volume can be packed in a single 2D texture [HBS*03]. We have

employed the latter method, which unlike the 2D slice layout, allows the entire array to

be updated in a single render pass and eliminates the need of a “render to slice”

functionality. This may allow a significant performance improvement, since it implies

 85

processing large streams that use more efficiently the GPU parallelism. Also, such “flat

3D textures” provide a performance and scalability advantage over true 3D textures on

current hardware [HBS*03].

 Moreover, the entire 3D array can be randomly accessed from within a kernel.

The procedure is identical to the one used with 1D arrays, with the 3D address being

converted to a large 1D address space, previous to packing the 1D space into a 2D texture

[BuckPur04].

During address conversions and look-ups, precision issues need to be treated

carefully: current GPUs do not have integer data types, therefore we have to avoid poor

address calculations caused by the limitations of floating-point addressing. Additionally,

the number of bits dedicated to floating point mantissa that limits the size of our 1D

virtual address space varies from architecture to architecture.

VBO/PBO state

Render
target

Input
texture

Vertex
array

CPU data

GPU data

1 - Yes - 3D array Voxel state map
2 - - Yes 1D array SVL map
3 Yes - Yes - Image buffer

4 Yes Yes - - Routing map

5 Yes - Yes

(color
attribute)

1D array Photo-consistency map

Table 6.1 Data layout for the carving engine

Table 6.1 shows the data storage layout we have employed for the carving engine. As

mentioned above, the voxel attributes and processing data are stored in 32-bit floating

point textures. Conforming to the stream programming model (chapter 5, § 5.2), textures

represent either the input or the output data stream. Several of these textures will be

treated alternatively as render targets, input textures or vertex arrays via the VBO/PBO

interface.

In the following, we detail the memory objects employed by the carving engine.

 86

� Voxel state map

The discretized voxel cube corresponds to a 3D array of voxel coordinates which is

stored in a three-component floating point texture reflecting the state of each voxel and

containing its unique voxel ID.

Due to the serial nature of this process, the voxel state map is updated on the

CPU. The voxel state map will be bound as an input texture and will be fetched by most

of the kernels during processing, for voxel ID and position/voxel ID conversions.

However, for readability reasons it is not represented in Figure 6.1.

During the carving process, each voxel can be found in one of the following three

states:

� active: voxel has been added to the surface set of voxels and was found consistent

at each evaluation

� undefined: it is surrounded by uncarved voxels, so it is visible from no images

and its consistency is undefined (wasn’t added to the surface voxel set)

� carved: it has been found to be inconsistent and has been carved.

� Surface Voxel List map (SVL map)

The SVL map stores the XYZposition coordinates of all currently active voxels and

will be found in a single VBO/PBO state on the GPU, namely as a vertex array that will

be used to replicate each camera view. This occurs by rasterizing the SVL to a pixel

buffer and applying projective texturing with corresponding camera-based rendering

parameters. Similarly to the voxel state texture, the SVL map will be updated on the

CPU, due to the serial nature of this process.

� Image buffer

The image buffer is a pixel buffer with the same dimensions as the reference images

bound as a render target for the SVL texture. As mentioned above, the SVL texture is

rendered as a vertex array for each reference view by a kernel that loads the current

camera parameters and performs projective texturing to sample the respective view. The

image buffer will eventually store voxels that survive a visibility, i.e. a depth test. During

 87

the next processing step – pixel routing – the image buffer will undergo a VBO/PBO

transfer to a vertex array and will be rendered to the routing map.

� Routing map

The routing map represents a render target for the voxel sorting rendering pass.

Sorting is performed by a pixel routing kernel that outputs fragments to the 4-component

routing map in a tightly packed format, according to their ID and camera view. The

routing map will be bound as an input texture during the photo-consistency check

process.

� Photo-consistency map

The photo-consistency map forms a render target for a kernel that computes the

consistency status of each voxel on the current SVL, the mean average color for

consistent voxels and a marking value for voxels that have been found inconsistent or

belonging to the background. While the currently consistent voxels are displayed on-

screen, the photo-consistency map will be employed as a color attribute for the

corresponding vertex array.

6.3 Computational Stages and Kernels

The vertex and fragment processors run computational kernels producing output for

all rendered pixels to the currently active memory surface of the render target. Among the

techniques used by the carving engine are the following:

� Bind two-dimensional textures, forming the input for the kernel.

� Set the target surface for rendering. This surface forms the output of the kernel.

� Activate a vertex or fragment program, i.e. set up the vertex or fragment pipeline

to perform the kernel computation on every vertex or fragment, respectively.

We have implemented our carving engine on a GPU supporting the Shader Model 3.0

standard that supports conditional branching and looping, allowing for more flexible

kernels.

 88

As mentioned previously, the lack of integer operations needs to be treated carefully.

The carving engine has to access specific texture addresses, and we need to compensate

the floating point arithmetic units whenever integer data types are needed (all of our data

structures use integer addresses) That is, we need to simulate integer operations with

floating point operations.

We can compute most integer operations by taking the floor of the result of a

floating point operation. Integer modulus operations, however, require a few more

operations including frac which returns the fractional part of a floating point number:

mod floor(frac())X Y X/Y Y= ∗

In the following, we will describe the three main computational blocks (Figure

6.3) and their corresponding kernels, where this applies.

6.3.1 Process Voxel Birth and Death

We have employed a particle system paradigm to describe the computational

stage of updating voxel state, i.e. activating and carving voxels in order to generate the

surface structure.

As mentioned previously, each voxel can be found in one of three states during

the carving process: active, undefined and carved. In order to activate a voxel we need to

associate new data with an available index in the voxel state texture.

Due to the serial nature of our problem, this cannot be done efficiently with a

data-parallel algorithm on the GPU. Therefore, the voxel emitter module, responsible for

determining an available index, is placed on the CPU.

 89

Figure 6.3 Carving engine computational stages

We initiate the SVL with the outer layer of the discretized voxel volume, and the

activated voxels are marked on the voxel state map. In order to perform a voxel state

update, we read-back the photo-consistency buffer, containing the information of the

current SVL and perform the necessary modifications on the voxel state map, as well as

add/delete operations on the SVL array. More specifically, carved voxels are deleted

from the SVL, while their adjacent voxels are activated and added to the SVL.

Voxels are registered for deactivation independently on the CPU and GPU:

The CPU registers the deactivation of a voxel and adds the freed index to the allocator,

while the GPU discards deactivated voxels with an early z-kill during rendering the

current SVL to the on-screen framebuffer.

 90

6.3.2 Projective Texturing

During projective texture mapping we render the SVL vertex array to the image

pixel buffer, for each input view. A vertex and a fragment program are needed to perform

projective texturing. Camera reference images are loaded as textures, and their

corresponding camera matrix is set as the projective texture matrix.

The vertex program works by applying a sequence of transformations, that map

object-space coordinates into the 2D space of a texture, i.e. the loaded camera image.

This computed position is assigned as the texture coordinate for the vertex, and then the

appropriate sampled color from the texture is applied by the fragment program. In order

to account for voxel visibility, we enable depth testing in the supporting OpenGL API.

The built-in z-test is used so that the voxels will overwrite the value stored in the z-buffer

if the new value is smaller, i.e. they are closer to the camera.

Projective texturing also serves as a background or silhouette test step, performed in

the fragment program. For background testing, the alpha value assigned to the output

fragments is set to 1 for foreground objects and 0 for the background.

In case we are employing silhouettes, the procedure is identical to the one

described above: the silhouette images are loaded as textures and their corresponding

texture matrix is set from the calibration data associated with that view. Similar to

background testing, the alpha value of the texture is set to 1 for foreground objects and 0

for the background.

These values will be considered during the photo-consistency check, as pixels that

don’t survive the background/alpha test will be eliminated.

6.3.3 Sort by Pixel Routing

In order to perform a coherent photo-consistency check, we need to sort the

voxels contained in the camera pixel buffer and arrange them in a tightly packed texture

(Figure 6.4), according to their identifier and camera view.

 91

Several authors have proposed implementations of sorting algorithms on graphic

processors [PDC*03, KipWes05]. However, sorting algorithms require a high number of

iterations, resulting in a high number of rendering passes on the GPU. For example,

bitonic merge sort needs O(log2 n) rendering passes and O(n log2 n) bandwidth

[PDC*03].

Since we strive to achieve real-time framerates, we need to avoid the latency of

several hundred rendering passes when generating the photo-consistency map. We would

also prefer an algorithm with less bandwidth consumption. To address these problems,

we have employed an alternate algorithm for constructing a photo-consistency map that

runs in a single pass and only requires O(n) bandwidth.

Although fragment programs cannot change the address to which they are writing,

vertex programs have the ability to write to a computed destination address, i.e. to

perform scatter (Chapter 5, §5.2).

That is, if we know the exact destination address for each voxel, we could route

them all into the buffer in a single rendering pass by drawing each of them as a point.

Essentially, drawing points allows us to solve a one-to-one routing problem in a single

rendering pass.

While we render the image buffer as a vertex array, the application issues points

(glPoint for the OpenGL API) to render and the vertex program computes the scatter

address based on the voxelID and assigns it to the point’s destination address with the

appropriate scatter data.

Figure 6.4 The tightly packed routing buffer for an example data set

(empty pointers are shown in red)

 92

In the OpenGL API we have adopted, we set the viewport to the buffer’s

rectangular dimensions and disable depth testing. We generally use a routing buffer with

the same dimensions as the image buffers, in order to ensure the necessary number of

available positions. The idea is to draw each voxel (i.e. vertex) as a glPoint over the

entire footprint of its destination cell, so we draw with glPointSize set to 1 which when

transformed by the vertex program will cause the voxel to cover the grid cell. The vertex

program computes the new vertex address based on the routing texture width and height,

pixel-texel ratio, SVL index and size, and also camera view index. The depth component

of the output fragments is set uniformly to 0, in order to avoid collisions.

Figure 6.5 Pixel routing

 93

6.3.4 Photo-consistency Check

We perform the photo-consistency check in a single rendering pass. The routing

pixel buffer containing the sorted voxels is fetched by a fragment program that computes

the variance of corresponding visible pixel samples in reference views, which we chose

as the photo-consistency metric.

We mentioned the photo-consistency computation previously in chapter 4,

however for readability reasons we will present it here in the context of GPU-based

processing.

The fragment program computes the variance 2σ according to the following

equation:

2 2 2 2

1 1 1

() () () / (1)
N n n

i m i m i m
i i i

R R G G B B Nσ
= = =

 = − + − + − −

∑ ∑ ∑

where N is the number of those active views in which the 3D point associated with the

fragment is visible , (, ,)i i iR B G is the sampled pixel color from the i-th view, and

(, ,)m m mR G B is the mean color of the corresponding pixels in all N views.

The photo-consistency can then be expressed as a threshold function:

21,

0,otherwise
photo consistency

σ τ <
− =

where τ is a user-defined threshold. In our current implementation, the variance

computation is based on a single sample from each reference view. Therefore, calibration

errors and image noise can introduce instabilities to the photo-consistency check process.

Just like in the CPU-based case, incorporating local neighborhood information will

provide more robust reconstruction results. The mipmapping technique utilized in

[YanPol03] could be adopted in this context.

 94

Finally, if a fragment passes both the background/silhouette (performed during

projective texturing) and the photo- consistency check, color values are assigned to the

fragment by computing the mean average of the sampled colors.

Table 6.2 illustrates the instructions count of the principal computational kernels.

Process

Kernel

Number of
instructions

Vertex program 72 Projective texturing
Fragment program 36

Photo-consistency check Fragment program 148
Vertex program 25 Pixel routing

Fragment program 10

 Table 6.2 Instruction count for the main kernels of the voxel carving engine

6.3.5 Display Consistent Voxels

Optionally, the SVL can be rendered to the display during processing. In order to

reduce the workload of the fragment unit, voxels are rendered as point sprites. The photo-

consistency buffer will be set as a color attribute for the vertex array, and a fragment

program will discard fragments corresponding to voxels that were marked for rejection.

Conclusion

We presented in this chapter the carving engine, a GPU-based algorithm that

extracts a voxelized representation of a scene from a set of images depicting that scene.

The bandwidth efficient carving engine produces an explicit volume at frame-rates

ranging from interactive to real-time.

Our approach employs a form of effective load balancing that allows the GPU to

do what it does best (perform the same computation on arrays of data), and lets the CPU

do what the GPU does worst (reorganize the data into efficient structures). By

 95

partitioning computation between the CPU and GPU, we combined the optimal features

of both.

 96

Chapter 7 Experimental Results

Introduction

In the following we will present results obtained by the system described in the

previous chapters. Several results on self-calibration from photographs are given,

including the Levenberg-Marquardt refinement of the initial estimates of the 3D

Euclidean structure and camera motions. We present voxel carving results, both in CPU

and GPU context, with a focus on performance. The flexibility of our approach is shown

by reconstructing a 3D model from an extended sequence of camera views.

7.1 Self-calibration

 97

7.1.1 Conditioning and Balancing

The scaled measurement matrix sW (chapter3, §3.3.1, Equation 3.11) is poorly

conditioned, mainly because of the lack of homogeneity in the image coordinates. To

ensure good numerical conditioning, we work with normalized image coordinates, as

described in [Hartley95]. This normalization consists of applying a similarity

transformation (translation and uniform scaling) iT to each image, so that the transformed

points are centred at the origin and the mean distance from the origin is 2 . The

projective motion and shape are computed for the transformed image points i ijT x ,

~i ij ij i ij i ijPX T x T xλ= , therefore the resulting projective estimates iP must be corrected :

' 1
i i iP T P−= . The matrices '

iP and ijX then represent projective motion and shape

corresponding to the measured image points ijx . Figure 7.1 illustrates the reconstructed

correspondences of a checker board without/with pre-conditioning (bottom row, left and

right image, respectively).

Another technique applied to ensure good numerical conditioning was balancing, i.e.

rescaling the projective depth matrix [StuTri96] so that all matrix rows and columns have

on average the same order of magnitude. We achieved this by the following scheme:

1. Rescale each column l so that
3 2

1
() 1

m

rlr
λ

=
=∑

2. Rescale each triplet of rows (3k-2, 3k-1, 3k) so that
3 2

1 3 2
1

n k

ill i k
λ

= = −
=∑ ∑

 98

Figure 7.1 Upper row: the 6-image sequence of a checker board . Lower row: the
reconstructed structure of the corresponding features (the colored corners of the pattern)

without/with pre-conditioning (left and right image, respectively)

7.1.2 Iterative Factorization
Algorithm

Several experiments have been carried out to observe the convergence of the

Iterative Factorization Algorithm (IFA).

A set of experiments were conducted on the CIL–0001 dataset [Web7] provided by

the Calibrated Imaging Laboratory of Carnegie Mellon University (Figure 7.2 left). The

CIL-0001 sequence consists of 11 views, 28 corresponding points, the mean calibration

error is within 0.1 pixels.

The 2D coordinates of the image points were perturbed with Gaussian noise of zero

mean and standard deviation ranging from 0.5 3σ = … . The number of iterations and 2D

reprojection error vs. noise level are shown in Figure 7.3. The 2D reprojection errors

 99

result from projecting the recovered points using the recovered camera geometry and

parameters and are measured in pixels.

The convergence of IFA is illustrated in Figure 7.4 where the residual of Equation

(3.11) is plotted against number of iterations.

Figure 7.2 Images belonging to the CIL–0001 (left), corridor (middle)

and model house (right) datasets

0

50

100

150

200

250

300

350

400

450

0 0.5 1 1.5 2 2.5 3

Noise level

N
u

m
b

er
 o

f
it

er
at

io
n

s

0

0.005

0.01

0.015

0.02

0.025

0.03

2D
 e

rr
o

r
(p

ix
el

s)

Iterations

Average 2D error

Figure 7.3 Number of iterations and 2D error vs. noise level

We have also performed a number of tests on image sequences acquired with a

Canon G2 camera with varying focal length. The main features of the data sets are

described in table 7.1. The convergence of IFA is illustrated in Figure 7.5 where the

residual of Equation (3.11) is plotted against the number of iterations.

 100

Figure 7.4 Residual vs. number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

1 51 101 151 201 251 301

Number of iterations

R
es

id
u

al

Sequence 6

Sequence 5

Sequence 4

Sequence 3

Sequence 2

Sequence 1

Figure 7.5 Residual vs. number of iterations

 101

Data set

Description Images Tracked
points Iterations

2D
error

(pixels)
Sequence

1
objects,

checker board
7 41 73 0.55

Sequence
2

human subject
with markers,
checker board

6 56 173 1.28

Sequence
3

human subject
with markers,
checker board

7 51 88 0.91

Sequence
4

checker board 5 108 290 0.49

Sequence
5

checker board

6 108 158 0.46

Sequence
6

checker board

6 108 321 0.48

Table 7.1 Experimental data sets

We have observed that with high accuracy data the IFA method requires a large

number of iterations, and when noise is added, it stabilizes with much less iterations. This

is because when data is accurate a very accurate solution can be achieved, taking more

processing time. We consider this to be a good behavior of our system.

7.2 Bundle Adjustment

In order to investigate the performance of the quaternion-parameterized sparse LM

algorithm we have conducted comparison experiments with a dense, general version as

well as a sparse version of the LM algorithm, available at [Web4]. We have employed the

corridor and model house datasets (Figure 7.2 middle and right, respectively) of the

Oxford’s Visual Geometry Group [Web6], frequently used for benchmarking in the

vision literature. Since we operate under the assumption that the tracked features are

 102

visible in all views, we have restricted the sequences to the number of points and frames

shown in table 7.2.

Table 7.2 illustrates several statistics: the average reprojection error of the initial

reconstruction and the average reprojection error after sparse LM refinement, the number

of iterations as well as the processing time.

The corresponding processing times using dense bundle adjustment were 89.58 and

112.1 seconds, respectively. The processing times for the general sparse bundle

adjustment were 0.42 and 0.65 seconds, respectively. Compared to the processing times

needed by our method, these results show performances close to the general sparse LM

implementation and also the computational benefits achieved by the exploiting the

sparsity of the problem.

Data set

Images
Tracked
points

Initial 2D
error

(pixels)

Final 2D
error

(pixels)

Time (s)

Corridor 6 100 0.87 0.41 0.63
Model house 7 76 1.76 0.23 0.94

Table 7.2 Sparse Levenberg-Marquardt optimization statistics for

the benchmark sequences

Data set

Images

Tracked
points

Initial 2D
error (pixels)

Final 2D
error (pixels)

Time
(s)

Sequence 1 7 41 0.55 0.24 0.20
Sequence 2 6 56 1.28 0.59 0.31
Sequence 3 7 51 0.91 0.33 0.23
Sequence 4 5 108 0.49 0.19 0.44
Sequence 5 6 108 0.52 0.17 0.58
Sequence 6 6 108 0.48 0.17 0.52

Table 7.3 Sparse Levenberg-Marquardt optimization statistics

Table 7.3 presents experimental results gathered from the application of the sparse

Levenberg-Marquardt optimization to the initial 3D structure estimates of our test

sequences (i.e. sequences 1-6). The benchmark sequences experiments were conducted

on a Microsoft Windows XP, 1.66 GHz Intel Dual Core T5500 platform. The sequences

1-6 experiments were conducted on a Microsoft Windows XP, 3.2 GHz Intel P4 platform.

 103

In all cases, the sparse LM algorithm terminated due to the magnitude of the computed

step ∆ being very small.

7.3 Voxel Carving

The following voxel carving-related experiments are partitioned in two main subsets,

corresponding to the CPU-based and GPU-based aspects, respectively.

At the time of writing, GPGPU researchers - including voxel-carving related work

[LiMS04, WoeKoch04, ZacKar04] - provide strictly GPU vs. CPU performance

comparisons of own implementations. Besides the extremely fast-paced hardware

features changes, the major reason behind this is the lack of disclosed manufacturer

details and of a unified framework for the existing graphic cards and shading languages

that would make GPU vs. GPU comparisons of related approaches meaningful. We will

provide accordingly a GPU vs. CPU performance comparison.

7.3.1 Multi-resolution 3D

Reconstruction

We will present in the following a multi-resolution 3D reconstruction using a data set

of five images acquired at resolution 1704 x 2272, with a human subject with placed

markers for easier point selection. The set of frames used to reconstruct the object are

shown in Figure 7.6.

The set of tracked features and their correspondences were set manually. Also, the

background of the images is segmented manually to facilitate the reconstruction process.

Details of the sequence and preceding self-calibration are provided in Table 7.4. The

initial and final 2D errors are the values obtained after the IFA algorithm and after bundle

adjustment, respectively. The left image in Figure 7.7 shows the selected corresponding

 104

points, while the right image shows the recovered metric structure of the

correspondences, as well as the camera positions.

Data set Description Images Tracked
points

Initial
2D error
(pixels)

Final
2D error
(pixels)

Sequence 7

human subject
with markers,
checker board

5 63 1.02 0.47

Table 7.4 Human subject data set description

Figure 7.7 Left: A sequence image with the tracked points.
Right: The recovered metric structure of the tracked points and the camera positions

Figure 7.6 The 5-image input sequence

 105

Figure 7.8 Two sequence frames with the user-labeled regions.

Figure 7.9 Left: the reconstructed human model at resolution r=25.
Right: same 3D model with the face region refined at resolution r=6

Voxel carving was initialized with a bounding box with the volume 168 x 160 x 72

voxels. The left image in figure 7.9 shows the 3D shape reconstructed at resolution r=25.

With the face area of the subject selected for refinement in only two frames (Figure 7.8),

we performed the algorithm for two resolution increases, resulting in a final resolution

 106

r=6. The multi-resolution reconstruction is shown in the right image of Figure 7.9.

Figure 7.10 presents detail views of the above reconstructions.

Figure 7.10 Detail views of the above left and right images, respectively.

7.3.2 Reconstruction from Extended
Sequences

In order to investigate an extended sequence we have employed a set of frames

consisting of 16 images captured at resolution 1704 x 2272, which were divided into four

subsequences, illustrated together with the number of tracked points for each of them in

Figure 7.11. Point tracking and background segmentation in a few frames is performed

manually. In order to increase the stability of sequence merging we have chosen two

overlapping frames between sequences 3 and 4, and three overlapping frames between

sequences 2 and 3.

Dataset Initial 2D error

(pixels)
Final 2D error

(pixels)
Sequence 1 0.60 0.25
Sequence 2 1.15 0.47
Sequence 3 0.83 0.32
Sequence 4 1.29 0.36

Table 7.5 Calibration and bundle adjustment statistics
for the subsequences of the extended sequence

 107

Table 7.5 shows the calibration and LM optimization results for all

subsequences.We have performed reconstructions with 4 different voxel resolutions in

order to observe the relation between the model size and processing times for the CPU-

and GPU-based algorithms. The statistics illustrated in Table 7.6 show that the

computation times achieved by the carving engine are approximately three to eight times

faster than the software-based algorithm, depending on the model complexity.

The experiments were conducted on a Microsoft Windows XP, 3.2 GHz Intel P4

platform and a Nvidia Quadro FX 3400 graphics unit. Figure 7.12 shows the final

reconstructed object in novel rendering positions.

Voxel resolution CPU time (s) GPU time (s)

330 125.49 16.24
340 187.26 29.82
350 240.06 73.42
380 523.22 168.10

Table 7.6 Reconstruction CPU and GPU statistics for voxel carving

Figure 7.11 The division scheme of the extended sequence

 108

Figure 7.12 Novel rendering positions and a detail view of the human subject

7.3.3 Carving Engine Analysis

In order to observe exhaustively the performance parameters of the carving

engine, we have used a calibrated dataset available at [Web5]. The Millie dataset consists

of a set of 10 images, obtained by placing the object on a turn table and rotating the

platform with angle increments from the starting position. The sequence presents a 720 x

480 resolution. Background segmentation occurs with the help of alpha-map silhouettes.

For performance tuning, we have disabled during the experiments the render to display

function, that is, voxels will be rendered on screen only after processing terminates.

Table 7.7 shows the global reconstruction statistics, namely the iterations number,

processing time and the highest framerate value, since the framerates are varying during

reconstruction with the number of surface voxels. The obtained results show that the

carving engine is capable of achieving real-time or at least interactive framerates.

 109

Voxel

resolution
Time

(s)
Max

framerate
(frames/s)

315 8.34 23
325 13.09 21
335 34.63 16
345 65.23 7

 Table 7.7 Carving engine performance on a Quadro FX 3400

Furthemore, our method is adaptable to the rapidly evolving hardware features.

Pending or very recently added graphics hardware functions may enhance further the

performance of the carving engine.

Figure 7.13 Several images of the Millie dataset

Figure 7.14 Visualization of image buffers with their corresponding

camera views and silhouette alpha maps during the projective texturing stage.

 110

Figure 7.15 Novel rendering positions of the Millie dataset

Figure 7.14 represents a visualization of the projective texture mapping stage

(Chapter 4, § 6.3.2). The upper row shows three image buffers (bound as render targets

during this step), while the middle the bottom row show their corresponding camera

views and silhouette alpha maps (bound as input textures). Magenta pixels represent

voxels that didn’t survive the alpha test.

Figure 7.15 shows the final reconstructed object in novel rendering positions.

The carving engine was written using Cg [MGA*03], OpenGL, OpenGL

extensions and graphic card vendor specific extensions. The carving results were

measured on a Microsoft Windows XP, 3.2 GHz Intel P4 machine with 1 GB RAM, with

an Nvidia Quadro FX 3400 graphic card.

In the following, we analyze the carving engine in terms of memory bandwidth

and computational complexity.

Bandwidth considerations

In order to investigate the potential bandwidth limitations for our method, we first

distinguish between the two bandwidth types of modern GPUs. The external bandwidth

is the rate at which data may be transferred between the GPU and the main system

memory. Conversely, the internal bandwidth is the rate at which the GPU may read and

write from its own internal memory. The external bandwidth of the GPU presents

importance for our application mainly during the read-back of the photo-consistency

computation results from the card to the CPU, into main memory. As discussed

 111

previously, the carving engine output format is designed to return minimal data to the

main memory. For the Millie example, we have measured transfer times between 38-61

milliseconds, amounting to about 8-11% of the total processing time. Thus, external

bandwidth transfer is a significant, but fairly small fraction of the total time.

Concerning the internal bandwidth transfers, we have considered the main

processing stages of the carving engine. In our algorithm, every memory operation

transfers 4 bytes of data. The projective texturing step requires three texture fetches and

writes one value per fragment. The pixel routing step requires only one write per

fragment. The photo-consistency step performs an inner loop over the number of camera

views, and requires two texture fetches per each iteration and then one write per

fragment.

Table 7.8 summarizes these results and shows the total internal bandwidth in

bytes transferred by each method, which is the product of the number of passes, the

fragments per pass and the bytes per fragment.

The parameters are as follows: s is the current SVL size, n is the number of

reference images, v represents the size of the image buffer (i.e. texture width x height).

Process Fragments Passes Bytes/

fragment
Total bytes

Projective texturing s n 16 16sn
Photo-consistency s 1 8n+4 8sn+4
Pixel routing v n 4 4vn
 Total : 4n(6s+v)+4

Table 7.8 Bytes transferred internally by the rendering passes

Process
Arithmetic
operations/
fragment

Fragments

Passes

Total operations

Projective
texturing

96 s n 96sn

Photo-
consistency

52n+58 s 1 52 58sn s+

Pixel routing 27 v n 27vn
 Total: 148 27 58sn vn s+ +

 Table 7.9 Floating point operations required by each main rendering pass

 112

Arithmetic complexity

The GPU uses the fact that the same instructions are being executed on a large

number of fragments simultaneously. As no communication between executions of the

kernels is needed, an abundant amount of parallelism is available. This parallelism is

used to hide the latency of memory operations and other bottleneck causes.

As a result, when enough fragments are available - as in our case - the running

time of a kernel is approximately linear in the number of instructions executed.

Therefore, we have summarized the number of instructions required by each

computational stage of our algorithm in Table 7.8

Similarly to Table 7.7, the parameters are as follows: s is the current SVL size, n

is the number of reference images, v represents the size of the image buffer (i.e. texture

width x height). The projective texturing and pixel routing perform 96 and 27 arithmetic

instructions per rendering pass. The photo-consistency check performs 52 arithmetic

instructions within the loop over camera views mentioned above, and 58 instruction

outside the loop, amounting to 52n+58 operations per fragment .

 113

Chapter 8 Conclusions and Future
Work

Introduction

The previous chapters have introduced the theoretical considerations of a complete

pipeline for reconstruction of objects from images. We described the implementation

details and presented the achieved results. In this chapter we point out the advantages as

well as the limitations of the system. Additionally, as a conclusion, some reflections on

the work, its limitations, its applicability and future work are discussed.

 8.1 Conclusions

The principal objective of this work is to develop a software pipeline, based on

IBMR techniques, that allows the reconstruction of real objects with their shape and color

properties recovered.

 114

The first stage of the proposed system requires a set of features tracked across a

sequence of images. Keeping in mind that we target non-expert users, we have used

different techniques to achieve a reliable calibration from a set of manually selected

features in sequences which usually contain less frames. However, the proposed solution

equally allows the use of automatically tracked video sequences, entailing an extended

number of frames.

The complete sequence is divided into subsequences and, in each of them, a set of

keyframes is selected and calibrated, recovering both camera parameters and structure of

the scene. A Levenberg-Marquardt non-linear optimization is performed in order to

reduce the overall reprojection error. When the different subsequences have been

successfully calibrated a merging process groups them into a single set of cameras and

reconstructed 3D features of the scene.

The camera calibration process is a critical problem in our application. One

advantage of the presented calibration approach is that it allows to recover an Euclidean

reconstruction of the scene without any initial solution or prior information and it

amounts to solving only linear systems. The knowledge of the geometric meaning and

rank properties of the different transformations represented by the matrices allows to

enforce a valid Euclidean reconstruction. The presented solution is designed to be

flexible with respect to the input data allowing the use of varying focal length throughout

the sequence.

There are however several directions of vast investigation in this stage of the

pipeline, a couple of them concerning the analysis of critical camera configurations

[Pollefeys00b, CPV02, CVG04] and the sensitivity of bundle adjustment to false

matches. Related to this, the spatial distribution of the image feature points represents a

further examination direction. For example, situations where points are chosen too close

to each other, or are biased towards an image region should be avoided because the

estimation of the epipolar and projective geometry becomes highly unstable [Zhang98].

Another important aspect is that the “perspective effect” present in many of our

experiments reveals the necessity of modeling lens distortion. Unmodeled camera lens

distortions cause a warp- or bend-like error in the recovered structure and motion since

the self-calibration pipeline expects the camera to comply to a purely perspective

 115

projection model. While the bundle adjustment stage performs a minimization of the

reprojection error, it cannot remove the effect of lens distortion [CPV02]. Therefore, the

camera model needs to be extended with at least one parameter for radial distortion in

order to improve the recovered metric structure [PVV*04].

Also, further analysis should be conducted on the sequence merging. When two

consecutive subsequences present very different focal length settings, this process

becomes extremely difficult, even impossible.

The second stage of the pipeline, the scene reconstruction, has the objective of

extracting a voxelized reconstruction based on the reference views and the calibration

information. As one can imagine this is tedious task, because reconstruction from images

is an ill-posed problem unless a large number of images is provided, covering all possible

features of the model, or additional information is introduced in the pipeline. Carving

algorithms proved to be a decent approach, however they are highly dependent on the

implementation and on the quality of the input images. A further direction to explore

could be a hybrid approach that integrates space carving and long baseline multi-view

reconstruction, in such a way that the methods complement each other introducing

constraints on the final shape.

The voxel carving process requires the analysis of a large number of discrete

elements. The main reason we introduced the multi-resolution calculation was to address

this extended computational cost by restricting locally the level of detail, with the help of

common image editing operations. Moreover, as we have seen in the previous examples,

the complete sequence does not need to be edited, but only a few frames. Therefore, the

user can manually process 2 or 3 frames and use those as a starting point for a refinement

process.

Conversely, the voxel carving engine, tackles the aforementioned computational

costs from a different angle, capitalizing on the abundant parallelism offered by modern

graphics hardware. Our approach eliminates the 3D texture restrictions and efficiently

uses the GPU-CPU bandwidth as well as the GPU inner bandwidth by returning only

compact data and employing a two-dimensional data representation that fits the two-

dimensional data layout on the GPU.

 116

 The performance of the carving engine would benefit from the recently introduced

framebuffer object (FBO) extension [EXT05], an enhanced and simplified method of

doing render-to-texture. The frequent pixel buffer swaps during the carving process

imply an equal number of expensive context switches, since pixel buffers require their

own rendering context within the graphics API. One of the main advantages of FBOs is

that they only require a single graphics API context, so that switching between

framebuffers is at least twice as fast as switching between pixel buffers, depending on the

employed technique.

The principal theoretical contribution of this body of work is a quaternion

parameterized Levenberg-Marquardt optimization technique. Furthermore, we made the

following practical contributions:

� A multi-resolution, user-guided voxel carving method

� A GPU-based voxel carving engine

� A complete system for flexible retrieval of metric 3D surface models from

uncalibrated image sequences

This work is relevant for the fields of structure from motion, voxel-based 3D

reconstruction, and also for general processing on the graphics processing unit. The

presented tailored sparse optimization and GPU-based voxel carving methods bring

significant computational gains compared to dense and software-based techniques,

respectively. Additionally, our system would scale well and benefit from the graphics

hardware trend of expanding the number of fragment and vertex processors, and texture

units, as well as other future enhancements. Moreover, both developed voxel carving

approaches present potential for the field of human-computer interaction due to the

interactive user involvement possibilities they provide.

 8.2 Future Work

 Until now we have focused on the geometric and processing performance aspects

of IBMR, leaving the rendering part almost untackled. Rendering together with geometric

 117

accuracy and non-Lambertian lighting conditions remain areas to be further explored and

developed. In the following, we will outline several future work directions investigating

possible improvements which are still needed for an accurate and efficient recovery of

the 3D scene.

Robust Self-calibration of Long
Baseline Sequences

The self-calibration method presented in Chapter 3 starts from the assumptions that

the tracked correspondences are static points present in all views (i.e. all features are

valid for calibration). However, due to camera paths around objects, we have to deal with

large amounts of frames and the features will not be visible in all of them. Therefore, we

need to develop a strategy for dividing long sequences into manageable sub-sequences

suitable for self-calibration. Sequence division and self-calibration will be followed by

sequence merging in order to recover the complete scene structure. Moreover, often

consecutive frames reflect very little changes, so that for computational cost reasons it

would be useful to detect the keyframes that introduce significant 3D information.

Also, a crucial aspect of the self-calibration process is the convergence of the

projective factorization. Further analysis should be conducted on the projective

reconstruction stage that could be enhanced with an algorithm that presents a faster

convergence.

Volumetric Reconstruction Using an
Evolution Surface

Incomplete surface data can produce reconstructions with missing areas (Figure 8.1),

requiring a post-processing step with hole-filling algorithms.

 118

Furthermore, reconstructions produced by space carving can present ragged surfaces

with floating voxels, especially for high curvature surfaces. Rather than post-process the

reconstructed surface, the level set approach for surface evolution proposed in [SSH02]

mitigates the above problems during reconstruction and obtains a smooth, watertight

geometry. An initial surface is embedded as the zero level set of a volumetric function

that moves along its inwardly pointing normal, with a speed based on a photo-consistency

measure of surface points. Level set theory [Sethian99] provides a numerical scheme that

solves the partial differential equations that characterize the motion of the surface.

Space carving with an evolution surface employing a function that includes a flow

term modeling a non-Lambertian color-consistency measure (discussed below) could

represent a direction of future investigations.

Figure 8.1 Detail of holes in the reconstructed surface,

caused by grazing view angles

Reconstruction of Non-Lambertian
Scenes

Currently we rely on the Lambertian assumption, commonly made in reconstruction

algorithms, that simplifies the problem, but limits the class of scenes that can be

reconstructed. However, real surfaces interact with light in complex ways, producing

view-dependent effects such as specularities and reflections. Thus, more sophisticated

modeling of the bidirectional reflectance distribution function (BRDFs) will be required

 119

to improve the flexibility of the reconstruction algorithm. Work on this problem has

started to emerge in the literature [CarKut01, Chhabra01, Magda01, JSY03, YPW03,

THS04].

Issues that need to be further explored are handling general BRDFs, and possibly

employing new cues, like orientation-consistency within the voxel coloring framework

(the orientation-consistency cue introduced in [HerSei03] states that under orthographic

projection and distant lighting, two surface points with the same surface normal and

material exhibit the same radiance).

GPU-based IBMR Pipeline

Our IBMR system features mainly a CPU-based component encapsulating computer

vision algorithms and a GPU-based component, enclosing computer graphics algorithms.

An exciting area of investigation is the prospect of a full GPU-based reconstruction

pipeline. Early work on efficiently mapping computer vision algorithms for a stereo pair

of images to the GPU has been presented in [FMA04, FM05]. The sparse Levenberg-

Marquardt optimization requires solving repeatedly a sparse equation system. Recently,

GPUs have been used for linear algebra, including programs for matrix multiplication

[JH03], an iterative sparse system solver [BFGS03], and a direct dense system solver

[GGHM05].

Our system performs a serial update on the CPU due to the insert/delete operations

required by the update of the dynamic surface voxel structure. However, dynamic

complex data structures on the GPU are an area of active research, as they have

applications in many computer graphics areas. In [LKH*04], [CHL04] the authors

describe efficient GPU-based dynamic algorithms that use the CPU only as a memory

manager. A system that builds on the work enumerated above would undoubtedly bring

benefits to the field of IBMR.

 120

References

[ARB03] OpenGL ARB Shading Language Extension: ARB_vertex_buffer_object,
February 2003,
http://oss.sgi.com/projects/oglsample/registry/ARB/vertex_buffer_object.txt

[BacKam97] Bacakoglu, H. Kamel, M. “An optimized two-step camera calibration
method” Proceedings., 1997 IEEE International Conference on Robotics and Automation,
pp. 1347-1352 vol.2, 1997.

[Broadhurst01] Broadhurst, A., “A Probabilistic Framework for Space Carving”. Ph.D.
thesis, University of Cambridge, 2001

[BTZ96] P. Beardsley, P.H.S. Torr and A. Zisserman. “3D Model Acquisition From
Extended Image Sequences”. In Proc. of ECCV ’96, pp. 683-695, 1996.

[BuckPur04] Buck, I., Purcell T.J. “A Toolkit for Computation on GPUs”, Chapter 37, in
“GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics”,
Addison Wesley. pp 621-636, 2004.

[CarKut01] R. Carceroni, and K. Kutulakos, “Multi-View Scene Capture by Surfel
Sampling: From Video Streams to Non-Rigid Motion, Shape, and Reflectance,” in
International Conference on Computer Vision, vol. 2, pp. 60–67, 2001

[Chen00] Q. Chen, “Multi-view Image-Based Rendering and Modeling”, Ph.D. thesis,
University of Southern California, 2000

[Chhabra01] V. Chhabra, “Reconstructing Specular Objects with Image-based Rendering
Using Color Caching,” Master’s thesis, Worcester Polytechnic Institute, 2001

[CHL04] G. Coombe, M. Harris, A. Lastra, “Radiosity on graphics hardware”, in
Proceedings of the 2004 Conference on Graphics Interface (May 2004), pp. 161–168.

[CMS99] W. Culbertson, T. Malzbender and G.Slabaugh, “Generalized voxel coloring”,
International Workshop on Vision Algorithms, Corfu, Greece, Springer Verlag Lecture
Notes on Computer Science, pp. 100-115, 1999

[CPV02] K. Cornelis, M. Pollefeys, L. Van Gool, ``Lens Distortion Recovery for
Accurate Sequential Structure and Motion Recovery'', Lecture Notes on Computer

 121

Science - 2351, Proceedings of the European Conference on Computer Vision, A.
Heyden, ed., vol. 2, p. 186-200, May 2002, Springer Verlag

[CVG04] K. Cornelis, F. Verbiest, L. Van Gool, “ Drift detection and removal for
sequential structure from motion algorithms” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Volume: 26, pp. 1249- 1259, Oct. 2004

[DebVio99] J. Debonet and P. Viola, “Roxels: Responsibility Weighted 3D Volume
Reconstruction,” Proceedings of the IEEE International Conference on Computer Vision,
1999, Vol. 1, pp. 415- 425

[ESG99] P. Eisert, E. Steinbach and B. Girod, “Multi-Hypothesis, Volumetric
Reconstruction of 3-D Objects From Multiple Calibrated Camera Views,” Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing, 1999, pp.
3509-3512.

[Faugeras95] O. Faugeras, “Stratification of three-dimensional vision: projective, affine,
and metric representations”, Journal of the Optical Society of America A, pp. 465–483,
Vol. 12, No.3, March 1995.

[FitZis98] A.W. Fitzgibbon and A. Zisserman.”Automatic Camera Recovery for Closed
or Open Image Sequences”. In Proc. of ECCV’98, pp. 311-326, 1998.

[FunMan04] J. Fung, S. Mann. “Computer vision signal processing on graphics
processing units.” In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (May 2004), vol. 5, pp. 93–96.

[Fusiello00] A. Fusiello, “Uncalibrated Euclidean reconstruction: a review”, in Image
and Vision Computing, 18, pp. 555-563, 2000.

[GFG04] P. Gherasimov, R. Fernando, S. Green, “Shader Model 3.0: Using Vertex
Textures”, Nvidia whitepaper, June 2004

[GLM05] N. K. Govindaraju., M. C. Lin., D. Manocha. “Quick-CULLIDE: Efficient
inter- and intra-object collision culling using graphics hardware.” In Proceedings of IEEE
Virtual Reality, March 2005, pp. 59–66.

[Golub96] G.H. Golub and C.F. Van Loan, “Matrix Computations”, John Hopkins
University Press, 1996

[HanKan00] M. Han and T. Kanade, “Creating 3D models with uncalibrated cameras”,
IEEE Computer Society Workshop on the Application of Computer Vision,
(WACV2000), 9(2), pp. 137-154, 2000.

 122

[HCT*02] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra “Physically-Based
Visual Simulation on Graphics Hardware” in Proc. SIGGRAPH / Eurographics
Workshop on Graphics Hardware 2002.

[HBS*03] M. Harris, W. Baxter III, T. Scheuermann, A. Lastra, “Simulation of Cloud
Dynamics on Graphics Hardware”, in Proc. SIGGRAPH / Eurographics Workshop on
Graphics Hardware 2003.

[Harris04] M. Harris, “Fast fluid dynamics simulation on the GPU”. In GPU Gems,
Fernando R., Addison Wesley, Mar. 2004, pp. 637– 665.

[Hartley93] R. Hartley, “Euclidean reconstruction from multiple views”, Europe-U.S.
Workshop on Invariance, pages 237–56, Ponta Delgada, Azores, October 1993.

[Hartley94a] R. Hartley, “Lines and points in three views – an integrated approach”,
Image Understanding Workshop, Monterey, California, November 1994.

[Hartley94b] R. Hartley. Euclidean reconstruction from uncalibrated views. Proceedings
of CVPR94, 1994, pp. 908-912.

[Hartley95] R. Hartley, “In defence of the 8-point algorithm”, Proceedings of
International Conference on Computer Vision, pages 1064–1070, 1995.

[Hartley99] R. Hartley, E. Hayman, L.s de Agapito and I. Reid. Camera calibration and
the search for infinity. Proceedings of International Conference on Computer Vision,
Kerkyra, Greece. IEEE Computer Society Press, 1999.

[HarZis00] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer
Vision”, Cambridge University Press 2000

[HerSei03] A. Hertzmann, S.M. Seitz, “Shape and materials by example: A photometric
stereo approach”, Proceedings of International Conference on Computer Vision 2003,
pp. 533-540

[HeyAst96] A. Heyden, A. and K. Astrom, “Euclidean Reconstruction from Constant
Intrinsic Parameters”, Proceeding International Conference on Pattern Recognition, 1996.

[HeyAst99] A. Heyden and K.Astrom, “Flexible calibration: Minimal cases for auto-
calibration” Proceedings of International Conference on Computer Vision, Kerkyra,
Greece, IEEE Computer Society Press, 1999.

[HeyKah01] A. Heyden and F. Kahl, “Euclidean reconstruction and auto-calibration from
continuous motion” Proceedings of International Conference on Computer Vision, 2001.

 123

[HHN*02] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. Kirchner, J.
Klosowski. “Chromium: A stream processing framework for interactive rendering on
clusters” ACM Transactions on Graphics 21, 3 (July 2002), 693–702.

[Horn87] Berthold K. P. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, A, Vol. 4:629 – 642, 1987.

[Horn90] B. K. P. Horn. Relative orientation. International Journal of Computer Vision,
4:59 78, 1990.

[Horn91] B. K. P. Horn. Relative orientation revisited. Journal of the Optical Society of
America, A, Vol. 8, No. 10:1630 – 1638, 1991.

[JSY03] H. Jin, S. Soatto, A. Yezzi, “ Multi-view stereo beyond Lambert”, Proceedings
of International Conference on Computer Vision, 2003

[KDR*03] - “Exploring the VLSI Scalability of Stream Processors”, Brucek Khailany,
W. J. Dally, S. Rixner, U. J. Kapasi, J. D. Owens, B Towles - Proc. 9th Int’l Symp.
High-Performance Computer Architecture, IEEE CS Press, 2003, pp. 153-164.

[KhoGar03] Y. Kho and M. Garland. User-Guided Simplification. In Proceedings of
ACM Symposium on Interactive 3D Graphics, April 2003.

[KSW04] P. Kipfer, M. Segal, R. Westermann.: UberFlow: A GPU-based particle engine.
In Graphics Hardware 2004 (Aug. 2004), pp. 115–122

[KipWes05] P. Kipfer, R. Westermann, “Improved GPU Sorting”, in GPU Gems 2,
Addison-Wesley, pp. 733-746, 2005.

[KutSei99] K. Kutulakos and S. Seitz, “A theory of shape by space carving,” Proceedings
of International Conference on Computer Vision, pp. 307–314, 1999

[Kutulakos00] K. N. Kutulakos, “Approximate N-View Stereo,” Proceedings of the
European Conference on Computer Vision, Springer Lecture Notes in Computer Science
1842, Vol. 1, pp. 67-83, June/July 2000

[KSW04] P. Kipfer, M. Segal, R. Westermann. “UberFlow: A GPU-based Particle
Engine”. In Graphics Hardware 2004 (Aug. 2004), pp. 115–122

[KruWes03] J. Kruger, R. Westermann: “Linear algebra operators for GPU
implementation of numerical algorithms”. ACM Transactions on Graphics 22, 3 (July
2003), 908–916.

[LarChr04] B.D. Larsen, N. J.Christensen: “Simulating photon mapping for real-time
applications”. In Rendering Techniques 2004: 15th Eurographics Workshop on
Rendering (June 2004), pp. 123–132

 124

[LawHan95] Lawson, Charles L., and Richard J. Hanson. Solving Least Squares
Problems. Society for Industrial and Applied Mathematics, 1995.

[LBC*05] A. E. Lefohn, I. Buck, P. McCormick, J. D. Owens, T. Purcell, R. Strzodka
“GPGPU: General-Purpose Computation on Graphics Processors” , Tutorial at
IEEE Visualization 2005, Minneapolis, Oct. 2005

[Levenberg44] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares”, Quart. Applied Mathematics, 2, 1944, pp. 164-168

[LFW*05] W. Li, Z. Fan, X. Wei, A. Kaufman: “GPU-based flow simulation with
complex boundaries”. In GPU Gems 2, Pharr M., (Ed.). AddisonWesley, Mar. 2005, ch.
47, pp. 747– 764.

[LiMS03] M. Li, Magnor M., H.-P. Seidel. Hardware-accelerated visual hull
reconstruction and rendering. Graphics Interface 2003, pp. 65-71

[LiMS04] Hardware Accelerated Rendering of Photo Hulls, Eurographics 2004

[LKH*04] A. Lefohn, J. Kniss, C.D. Hansen, R. Whitaker, “A streaming narrow-band
algorithm: Interactive computation and visualization of level-set surfaces” IEEE
Transactions on Visualization and Computer Graphics 10, 4 (July/Aug. 2004), 422–433.

[LKM01] E. Lindholm, M. Kilgard, H. Moreton. “A user-programmable vertex engine”,
In Proceedings of ACM SIGGRAPH 2001 (Aug. 2001), Computer Graphics Proceedings,
Annual Conference Series, pp. 149–158.

[Lok01] B. Lok: Online model reconstruction for interactive virtual environments.
Symposium on Interactive 3D Graphics , 2001, pp. 69-72

[LouArg04] M.I.A. Lourakis and A.A. Argyros. “The Design and Implementation of a
Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-
Marquardt Algorithm”, ICS/FORTH Technical Report No. 340, Aug. 2004

[LouArg05] M.I.A. Lourakis and A.A. Argyros. Efficient, Causal Camera Tracking in
Unprepared Environments. Computer Vision and Image Understanding Journal, 99(2),
pp. 259-290, 2005.

[Luong92] Q.-T Luong. Matrice Fondamentale et Calibration Visuel le sur
l’Environnement. PhD thesis, Universite de Paris-Sud, Centre D’Orsay, 1992.

[Magda01] S. Magda, D. Kreigman, T. Zickler and P. Belhumeur “Beyond Lambert:
Reconstructing Surfaces with Arbitrary BRDFs,” Porceedings of International
Conference on Computer Vision, vol. 2, pp. 391–398, 2001

 125

[Marquardt63] D.W. Marquardt, “An Algorithm for Least-Squares Estimation of Non-
linear Parameters”, J. Soc. Indust. Appl. Math., No.2, 1963, pp. 431-441

[MBM01] W. Matusik, C. Buehler, L. McMillan : Polyhedral visual hulls for real-time
rendering. 12th Eurographics Workshop on Rendering, 2001, pp. 115-125

[MahHeb00] S. Mahamud, M. Hebert, “Iterative Projective Reconstruction from Multiple
Views”, CVPR II 430-437, 2000

[MayFau92] S. J. Maybank and O. D. Faugeras. A theory of self-calibration of a moving
camera. International Journal of Computer Vision, 8:2:123 – 151, 1992.

[MBR*00] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, L. McMillan. “Image-based
visual hulls” SIGGRAPH 2000, pp. 369-374.

[McLauMur95] P. F. McLauchlan and D. W. Murray, “A unifying framework for
structure and motion recovery from image sequences”. Proceedings of IEEE Int. Conf.
Computer Vision, pages 314–20, Cambridge, MA, June 1995

[MGA*03] W.R. Mark, R.S. Glanville, K. Akeley, and M. J. Kilgard. “Cg: A system for
programming graphics hardware in a c-like language.” ACM Transactions on Graphics,
22(3):896--907, July 2003.

[MHO*01] S. Mahamud, M. Hebert, Y. Omori and J. Ponce, “Provably-convergent
iterative methods for projective structure from motion”. CVPR I, pp. 1018-1025, 2001

[Microsoft06] D. Blythe, “The Direct3D 10 System”, International Conference on
Computer Graphics and Interactive Techniques ACM SIGGRAPH 2006.

[NocWri99] J. Nocedal, S.J. Wright. Numerical Optimization. Springer, New York,
1999.

[Nvidia03] Using Vertex Buffer Objects (VBOs), Nvidia white paper, October 2003

[NV04] NVIDIA Extension: EXT_pixel_buffer_object, March 2004
http://oss.sgi.com/projects/ogl-sample/registry/EXT/pixel_buffer_object.txt

[OLG*05] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.Lefohn
and T. J. Purcell. “A Survey of General-Purpose Computation on Graphics Hardware.” In
Eurographics 2005, State of the Art Reports, August 2005, pp. 21-51.

[Oliensis99] J. Oliensis, “Fast and Accurate Self-Calibration”, ICCV pp. 745-752, 1999

[PAB*05] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee, C. Johnson, J.
Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M.
Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, K. Yazawa. “The design and

 126

implementation of a first generation CELL processor” In Proceedings of the International
Solid-State Circuits Conference (Feb. 2005), pp. 184–186.

[PDC*03] T. J. Purcell, C. Donner, M. Cammarano, H. Jensen, P. Hanrahan. “Photon
mapping on programmable graphics hardware” In Proceedings ACM SIGGRAPH/
Eurographics Workshop on Graphics Hardware (2003), pp. 41-50.

[PoeKan97] C.Poelman,T. Kanade. “A paraperspective factorization method for shape
and motion recovery”. PAMI, 19(3):206-218, 1997.

[PolGol97] M. Pollefeys and L. Van Gool . “A stratified approach to self-calibration.” In
Proc. International Conference on ComputerVision and Pattern Recognition, San Juan,
Puerto Rico, pp.407-412, 1997

[PKG99] M. Pollefeys, R. Koch and L. van Gool, “Self-Calibration and Metric
Reconstruction Inspite of Varying and Unkonwn Intrinsic Camera Parameters,”
International Journal of Computer Vision, vol. 32, pp. 7–25, Jan. 1999.

[Pollefeys00a] M. Pollefeys, “Obtaining 3D Models With a Hand-Held Camera”, course
Siggraph 2000

[Pollefeys00b] M. Pollefeys and L. van Gool, “Some Issues on Self-Calibration and
Critical Motion Sequences”, Proc. Asian Conference on Computer Vision, pp.893-898,
2000

[PGV*04] M. Pollefeys, L. van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,
and R. Koch.” Visual Modeling With a Handheld Camera.” IJCV, 59(3), pp. 207-232,
2004.

[PVV*04] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,
R. Koch, Visual modeling with a hand-held camera, International Journal of Computer
Vision 59(3), 207-232, 2004.

[ProDye98] A.Prock and C. Dyer, “Towards real-time voxel coloring”, Image
Understanding Workshop, 1998, pp. 315-321

[Purcell04] T. J. Purcell “Ray Tracing on a Stream Processor” PhD thesis, Stanford
University, Mar. 2004.

[Sainz03] M. Sainz, “3D modeling from images and video streams”, Ph.D. thesis,
University of California, 2003.

[SSB03] Sainz, M. Susin, A. Bagherzadeh, N. “Camera calibration of long image
sequences with the presence of occlusions”. Proceedings 2003 International Conference
on Image Processing, ICIP 2003 pp. I- 317-20 vol.1

 127

[SBS02] M. Sainz , N. Bagherzadeh and A. Susin, “Hardware Accelerated Voxel
Carving”, Proceedings of the 1st Ibero-American Symposium on Computer Graphics,
2002, pp. 289-297, Guimaraes, Portugal

[Salamin79] E. Salamin, "Application of quaternions to computation with rotations"
Internal Report, Stanford University, Stanford, California, 1979.

[SeiKut98] S. M. Seitz , K. N. Kutulakos, “Plenoptic image editing“, Proc. Fifth
International Conference on Computer Vision, pp. 17-24, 1998

[SeiDye97] S.M. Seitz and C.R. Dyer, “Photorealistic Scene Reconstruction by Voxel
Coloring,” Proc. CVPR ’97, pp. 1067-1073, Puerto Rico, 1997.

[Schut59] G. H. Schut, "Construction of orthogonal matrices and their application in
analytical photogrammetry" Photogrammetria 15, 149-162, 1959.

[SCM*01] G. Slabaugh, B. Culbertson, T. Malzbender, R. Schafer. “A Survey of
Methods for Volumetric Scene Reconstruction from Photographs”, Volume Graphics
2001, Proc. of the Joint IEEE TCVG and Eurographics Workshop (Mueller, K. and
Kaufman, A., eds.), Springer Computer Science, 2001, pp. 81 - 100.

[Shashua95] A. Shashua, “Algebraic functions for recognition”, IEEE Trans. Pattern
Analysis & Machine Intelligence, 1995.

[Slama80] C. Slama, Manual of Photogrammetry, American Society of Photogrammetry,
Falls Church, VA, USA, 4th edition, 1980.

[SMC00a] G. Slabaugh, T. Malzbender, and W. B. Culbertson, “Volumetric Warping for
Voxel Coloring on an Infinite Domain,'' Proceedings of the Workshop on 3D Structure
from Multiple Images for Large-scale Environments (SMILE), July 2000, pp. 41-50.

[SSH02] G.Slabaugh, R. W. Schafer, M. Hans, “Multi-resolution Space Carving Using
Level Set Methods”, Proceedings of the International Conference on Image Processing,
2002, pp.545-548.

[Slabaugh02] G. Slabaugh, “Novel Volumetric Scene Reconstruction Methods for New
View Synthesis”, Ph. D. thesis, Georgia Institute of Techology, 2002

[StuTri96] P. Sturm and B. Triggs, "A Factorization Based Algorithm for Multi-Image
Projective Structure and Motion," in Proc. European Conference on Computer Vision, pp.
709-720, 1996

[TomKan92] C.Tomasi and T. Kanade, “Shape and motion from image streams under
orthography: A factorization method” IJCV, 9(2):137-154, 1992

 128

[THS04] A. Treuille, A. Hertzmann and S. M. Seitz, “Example-Based Stereo with
General BRDFs”, ECCV 2004

[Triggs95a] B. Triggs, “The geometry of projective reconstruction I: Matching
constraints and the joint image”. IJCV 1995

[Triggs95b] B. Triggs, “Matching constraints and the joint image”. In E. Grimson, editor,
IEEE Int. Conf. Computer Vision, pages 338–43,Cambridge, MA, June 1995.

[Triggs96] B.Triggs, “Factorization methods for projective structure and motion”,
Proceedings of Computer Vision and Pattern Recognition, pp. 845-851, 1996.

[Triggs97] B. Triggs, “Autocalibration and the absolute quadric”, Proceedings of
Computer Vision and Pattern Recognition, 1997.

[Triggs00] B. Triggs, P.F. McLauchlan, R.I. Hartley, and A.W. Fitzgibbon, “Bundle
adjustment – a modern synthesis”, In Vision Algorithms: Theory and Practice, Lecture
Notes in Computer Science 1883. Springer-Verlag, 2000.

[Thompson59] E. H. Thompson, "On exact linear solution of the problem of absolute
orientation," Photogrammetria 15, 163-179 (1959).

[VBS*00] S. Vedula, S. Baker, S. Seitz and T. Kanade , “Shape and Motion Carving in
6D,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 2, pp. 592–598, 2000.

[Web1] http://www.realviz.com

[Web2] http://www.2D3.com

[Web3] http://www.gpgpu.org

[Web4] http://www.ics.forth.gr/~lourakis/levmar

[Web5] http://loper.org/~matt/Archimedes/millie.zip

[Web6] http://www.robots.ox.ac.uk/~vgg/data1.html

[Web7] http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cil/ftp/cil-0001

[WoeKoch04] J. Woetzel, R. Koch : “Multi-camera real-time depth estimation with
discontinuity handling on PC graphics hardware” International Conference on Pattern
Recognition, Cambridge, United Kingdom, 2004.

 129

[YPW03] R.Yang, M. Pollefeys, G. Welch, “Dealing with Textureless Regions and
Specular Highlights. A Progressive Space Carving Scheme Using a Novel Photo-
consistency Measure”, ICCV 2003

[YanPol03] R. Yang, M. Pollefeys “Multi-resolution real-time stereo on commodity
graphics hardware. In 2003 Conference on Computer Vision and Pattern Recognition, pp.
211-220. June 2003.

[ZacKar04] C. Zach, K. Karner. “Space Carving on 3D Graphics Hardware” VRVis
Technical Report 2004-014, 2004

[Zhang98] Z. Zhang “Determining the Epipolar Geometry and its Uncertainty: A
Review” International Journal of Computer Vision, 27(2), 161–198 (1998) 1998 Kluwer
Academic Publishers, Boston.

[ZMP*03] R. Ziegler, W. Matusik, H. Pfister and L. McMillan, “3D Reconstruction
Using Labeled Image Regions”, Eurographics Symposium on Geometry Processing , pp.
1–12, 2003.

[ZFC99] A. Zisserman, A. Fitzgibbon, and G. Cross, “VHS to VRML: 3D Graphical
Models from Video Sequences,” Proc. International Conference on Multimedia Systems,
pp. 51–57, 1999.

[ZPA03] Q. Zhou, J. Park, and J. K. Aggarwal, Quaternion-based tracking multiple
objects in synchronized videos, Lecture Notes in Computer Science (LNCS 2869), pp.
430-438, 2003.

List of Publications

[Bri03] Felicia Brisc , “Towards Voxel-based Reconstruction from Uncalibrated
Views”, Eurographics Ireland Workshop, Ulster, Northern Ireland, April 2003

[Bri04a] Felicia Brisc , “A Framework for User-guided Multi-Resolution 3D
Reconstruction” IEEE Virtual Reality 04, VR for Public Consumption Workshop,
Chicago, USA, March 2004

[Bri04b] Felicia Brisc “Multi-Resolution Volumetric Reconstruction Using Labeled
Regions”, poster, IEEE Southwest Symposium on Image Analysis and Interpretation,
Lake Tahoe, USA, March 2004

[BriWhe04] Felicia Brisc, Paul Whelan "Creating Virtual Models from Uncalibrated
Camera Views" Eurographics Ireland Workshop, Cork, Ireland, September 2004

[BBS*04] “Framework and Applications for Mobile Networks using Synthetic
Multimedia” Eamonn Boyle, Felicia Brisc, Saman Cooray, Bartek Uscilowski, Andrew

 130

Brosnan, Robert Sadlier, Carol O’Sullivan. 3G2004, 5th International Conference on 3G
Mobile Communication Technologies, London, October 2004

