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A bstract

Colon cancer is the second leading cause of cancer related deaths in the developed
nations. Early detection and removal of colorectal polyps via screening is the most
effective way to reduce colorectal cancer (CRC) mortality. Computed Tomography
Colonography (CTC) or Virtual Colonoscopy (VC) is a rapidly evolving non-invasive
technique and the medical community view this medical procedure as an alterna-
tive to the standard colonoscopy for the detection of colonic polyps. In CTC the
first step for automatic polyp detection for 3D visualization of the colon structure
and automatic polyp detection addresses the segmentation of the colon lumen. The
segmentation of colon lumen is far from a trivial task as in practice many datasets
are collapsed due to incorrect patient preparation or blockages caused by residual
water/materials left in the colon. In this thesis a robust multi-stage technique for
automatic segmentation of the colon is proposed that maximally uses the anatomi-
cal model of a generic colon. In this regard, the colon is reconstructed using volume
by length analysis, orientation, length, end points, geometrical position in the vol-
umetric data, and gradient of the centreline of each candidate air region detected
in the CT data. The proposed method was validated using a total of 151 standard
dose (IOOmMAs) and 13 low-dose (13mAs-40mAs) datasets and the collapsed colon
surface detection was always higher than 95% with an average of 1.58% extra colonic
surface inclusion.

The second major step of automated CTC attempts the identification of col-
orectal polyps. In this thesis a robust method for polyp detection based on sur-
face curvature analysis has been developed and evaluated. The convexity of the
segmented colon surface is sampled using the surface normal intersection, Hough
transform, 3D histogram, Gaussian distribution, convexity constraint and 3D region
growing. For each polyp candidate surface the morphological and statistical features
are extracted and the candidate surface is classified as a polyp/fold structure using
a Feature Normalized Nearest Neighbourhood classifier. The devised polyp detec-
tion scheme entails a low computational overhead (typically takes 3.60 minute per
dataset) and shows 100% sensitivity for polyps larger than 10mm, 92% sensitivity
for polyps in the range 5 to 10mm and 64.28% sensitivity for polyp smaller than
5mm. The developed technique returns in average 4.01 false positives per dataset.

The patient exposure to ionising radiation is the major concern in using CTC as
a mass screening technique for colonic polyp detection. A reduction of the radiation
dose will increase the level of noise during the acquisition process and as a result the
quality of the CT data is degraded. To fully investigate the effect of the low-dose
radiation on the performance of automated polyp detection, a phantom has been
developed and scanned using different radiation doses. The phantom polyps have
realistic shapes (sessile, pedunculated, and flat) and sizes (3 to 20mm) and were
designed to closely approximate the real polyps encountered in clinical CT data.
Automatic polyp detection shows 100% sensitivity for polyps larger than 10mm and
shows 95% sensitivity for polyps in the range 5 to 10mm. The developed method



was applied to CT data acquired at radiation doses between 13 to 40mAs and the
experimental results indicate that robust polyp detection can be obtained even at
radiation doses as low as 13mAs.
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C hapter 1

In troduction

Colon cancer is the second leading cause of cancer-related deaths in the developed
nations [1, 2, 3, 4, 5]. Bowel cancer statics in the UK show that 35,600 new cases
were diagnosed in 1999 and it is the contributing factor for 16,170 deaths in 2001
[2], In the United Stated, 130,200 new cases were diagnosed and 56,300 deaths
were reported from colon cancer [4 in 2000. In Ireland, 2720 (1232 women and
1488 men) [3] deaths were reported during the period of 1998 to 2000. Statistics in
Ireland show [3] that colon cancer was the second leading cause of cancer related
deaths for women and the third leading cause of cancer related deaths for men.
Greenlee et. al. [4] demonstrate that the probability of developing invasive colon
cancer in a life time is 1in 18(5.55%). In general, colon cancer develops as an in-
testinal polyp (adenoma) which is an abnormal growth of the colonic tissue. Over
time, some of these polyps may become cancerous. Early detection and removal of
polyps via screening is the most effective way to reduce the colorectal cancer (CRC)
mortality [6, 7, 8, 9]. Screening techniques that are available for detection of colonic
polyps are Fecal Occult Blood Test (FOBT), Flexible Sigmoidoscopy, Barium En-
ema, Colonoscopy and DNA Stool Test. Colonoscopy is widely considered as the
most sensitive method for detection of colonic neoplasia among all above mentioned
screening technique [10, 11]. Colonoscopy is performed by experienced gastroen-
terologists using a colonoscope. The colonoscope is a flexible tube consisting of a
camera and a light unit. The gastroenterologist inserts the colonoscope through the
anus of the patient and advances it to the end of the colon (cecum). The light and
camera in the endoscope allows the gastroenterologist to look into the scope or at a
TV monitor. Magnified images allows the gastroenterologist to see any changes in
the tissue of the colon. If abnormalities or polyps are found in the colon, the gas-

troenterologist uses the channels of the endoscope to obtain biopsies (small pieces



Chapter 1 Introduction

of tissue) or remove polyps. The gastroenterologist also uses the enclosure channels
to introduce or withdraw fluid or air from the colon. The whole procedure takes
about 20 minute to one hour.

Before performing colonoscopy each patient under goes a bowel preparation
which includes dietary control and bowel cleansing. In general, the patient should
not eat any solid food at least 24 hours before examination. Two methods are
commonly used for bowel cleansing. The first involves drinking about one gallon of
an undigestible solution that allows bowel cleansing. The second involves taking a
solution called "Fleet Phosphosoda” along with several cups of liquid. Prior to the
examination, a combination of sedative and narcotic is used to make the patient re-
lax and insensitive to unpleasant sensations. Thus, colonoscopy is an invasive, time
consuming, expensive and complex procedure. In conventional colonoscopy, the as-
sociated risk of perforation is 0.005% to 0.09% and the mortality risk is 0.001%
[12, 13]. In addition to that, conventional colonoscopy fails to reach the cecum
which results in an incomplete examination for 5% of the patients [12, 14].

Computed Tomography Colonography (CTC) also known as Virtual Colonoscopy
[15, 16, 17, 18, 19] is a rapidly evolving medical imaging technique for the detection
of colorectal polyps. In this method, the CT scan of the abdomen of a patient is
performed by an experienced radiologist. CT scan images permit interactive viewing
of the colon with two-dimensional (2D) and three-dimensional (3D) image display
techniques. This imaging method is being widely investigated as a non-invasive
examination procedure for the detection of colorectal polyps and many researchers
have advocated CTC as the optimal mass screening technique to investigate the
colorectal cancer [20]. Since the introduction of CTC, a significant number of stud-
ies have been conducted to evaluate the performance of this non-invasive medical
investigation [17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28]. The radiologists perform a
visual examination of either two-dimensional CT images or three-dimensional CTC,
or both. The CTC research shows that 3D CTC is as good as optical colonoscopy
as a screening tool for the early detection of colorectal cancer [29, 30, 31]. The CTC
exam is less invasive and takes only a few minutes (typically 12-60 minutes). Recent
studies [21, 26, 28, 32, 33] demonstrate that VC shows a sensitivity in polyp de-
tection comparable to conventional colonoscopy. In 2004, the complete V3D-Colon
Workstation obtained the FDA 510(k) market clearance and started to be used in

current clinical investigations.
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High resolution CT data offers a shear volume of information to a radiologist
to visualize and interpret. Typically, a dataset (supine or prone view) has 200-
500 slices of images depending on the patient size and reconstruction interval. A
reconstruction interval of 1.5mm generates 200-350 images per dataset. Thus, visual
evaluation of high resolution CT data is a time consuming procedure and limited by
human factors, such as perceptual errors and eye fatigue [34, 35]. The development
of Computer-Aided Detection (CAD) methods can improve both the sensitivity and
efficiency of CTC. In recent years, research has focused on developing automated
CAD systems to detect colonic polyps. Recent studies [35, 36, 37, 38, 39, 40, 41, 42]
indicate that CAD-CTC offers similar performance as manually analysed CTC. The
CAD-CTC systems need to offer all facilities provided by the VC systems in terms
of data visualization and interpretation but primarily they should be designed to
detect and report automatically the colorectal polyps larger than 5mm which are
clinically significant. It should be noted that the CAD-CTC systems can be used
off-line by processing the datasets in batch mode. Thus the realtime operation is not
a critical requirement for the developed CAD-CTC systems. However recent CAD-
CTC systems are able to process the CT data significantly faster than the radiologist
(typical time required by the radiologist to process one dataset is in the range of
12-20 minutes). Currently the CAD-CTC systems are used as a second reader that
assists the radiologists to improve the quality of the clinical investigation (it is useful
to note that there is no agreement between radiologists in regard to the use of the
CAD-CTC systems in clinical investigations). The high sensitivity of these CAD
based polyp detection methods demonstrates that the CAD-CTC can be successfully
used in clinical studies. Usually the CAD-CTC scheme are multistage and the key
components are illustrated in Figure 1.1.

Most documented CAD based polyp detection techniques consist of mainly four
main phases: Colon segmentation, polyp candidate generation, feature extraction,
and classification (see Figure 1.1). Colon segmentation and the surface generation
from the volumetric CT data are the primary steps for automatic polyp detection. In
CT data, the air insufflated colon provides a high voxel intensity difference between
gas (-1000 Hounsfield Unit(HU)) and tissue (40HU) surface. Hence, theoretically,
the segmentation of the colon can be done using a manually inserted seed point in
conjunction with a simple 3D region growing algorithm. But colon segmentation

faces two major problems. Firstly, the colon is not the only air filled area inside the
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Figure 1.1: Key component of CAD-CTC.

CT data. Secondly, the remaining residual material and water can create multiple
collapses in the colon. Thus, the colon segmentation is far from a trivial task and
a number of additional processing steps have to be applied in order to perform
automatic colon segmentation.

In this research, an automatic segmentation technique of collapsed colons is
developed based on the geometrical properties of the colon. Initially, the lung and
surrounding air voxels is removed from the volumetric CT data. Then the remaining
air voxel regions in the CT data are labelled using a 3D region growing algorithm.
The geometrical features like volume by length (V/L), orientation, length, end points,
position in the volumetric data, and gradient of the centreline of each labelled object
are used for colon detection. Figure 1.2 shows the 3D surface of two automatically
segmented collapsed colons.

The second step of CAD-CTC is the polyp candidate surface generation (CSG).
The neighbouring voxels of the segmented data having HU values higher than a
threshold are assigned as the surface of the colon. Figure 1.3a shows a segmented
colon and Figure 1.3b illustrate the surface of the segmented colon. In general,
polyps are spherical or elliptical in shape and are defined by the abnormal growth
of tissue in the inner wall of the colon. Hence, the candidate voxels for polyps have
a convex shape compared to the surrounding surface of the colon. But polyps are

not the only convex structure, folds have also convex shapes when compared to the
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Figure 1.2: 3D surface of two automatically segmented colon.

smooth colon surface. Figure 1.4ashows a CT slice containing a pedunculated polyp.
Figures 1.4b, 1.4c show the rendered 3D surface of a polyp and a fold extracted by
the candidate surface generation. Therefore, the polyp candidate generation from
the colonic wall provides the primary difference between convex and non-convex
candidate structures. It is useful to note that a better segmentation of convex
surfaces will result in an increased sensitivity and at the same time decreasing the

false positive rate incidence in CAD-CTC.
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Figure 1.3: (a) Segmented colon, (b) The surface of the segmented colon.

The third step of CAD-CTC is represented by the feature extraction. As indi-
cated above polyps can be typically approximated by spherical or elliptical surfaces
whereas the folds can be approximated by cylindrical surfaces. But this geometrical

approximation for polyps faces two major problems. Firstly, the size of the polyps
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Figure 1.4: Example of polyp and fold in CT data, (a) A pedunculated polyp shown
with arrow sign (b) 3D surface of the pedunculated polyp (c) 3D surface of a fold.

varies from 2mm to 20mm or above. Secondly, polyps found in clinical studies have
shapes that are significantly different than a spherical/elliptical shape. In general,
polyps are classified as sessile, pedunculated (Figure 1.4a), flat and depressed flat.
Taken into consideration that the polyps have a large range of shapes and sizes, the
calculation and selection of features from candidate surface plays a crucial role in
CAD-CTC.

The fourth and the last step of CAD-CTC is represented by the classification
of polyp candidate surfaces into polyps or folds. The selection of an appropriate
classifier in conjunction with the appropriate feature normalization scheme are the
two main components of the classification process. Several classifiers that are com-
monly used by different authors CAD-CTC are the Support Vector Machine (SVM),
Neural Network Classifiers and Bayes classifiers.

In the last decade, the introduction of the multi-slice CT scanners boosted the
use of CT in the field of medical imaging for the detection of different diseases in
human population. The main concern associated with CT investigations is the level
of radiation dose associated with modern CT scanners [43, 44], CT accounts for 4%
of the medical radiographic examinations and contributes with 35-40% of the total
collective radiation dose received by the patients [45]. Brenner et al. [46] stated
that the patient exposure to ionising radiation is the major concern in using CTC
as a mass screening technique for colonic polyp detection. The medical literature
indicates that the effective dose used for CTC varies from 5to 20 mSv [32, 47, 48, 49.
50] and this radiation level may result in a 0.02% to 0.05% risk for inducing cancer

in patients older than 50 years. It can be concluded that the ionising radiation needs
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to be reduced as much as possible in CT colonography. In this regard, by keeping
the parameters KVp, and collimation constant, the radiation exposure received by
the patient can be reduced by decreasing the tube current (mA). But a low tube
current increases the noise in image acquisition and this will require more complex
CAD-CTC methods to robustly detect the polyps in CT data. To analyze the effect
of low dose on colonic polyp detection in CT colonography, a synthetic phantom has
been designed and constructed. The phantom (synthetic) polyps were made by latex
having a HU value of -90. Polyps have various shapes (Pedunculated, sessile, flat,
and flat depressed) and sizes (3mm to 18mm). The phantom was scanned using a
16-slice Somatom Sensation Siemens CT scanner at different radiation doses (mAs)
from I00OmAs to 13mAs. A statistical polyp detection method was employed to
analyze the effect of low-dose on CAD-CTC (see Chapter 3). The developed polyp
detection algorithm uses the surface normals intersection to calculate the initial
center points for candidate polyps. Then the candidate surfaces were created by
evaluating the normal distance to the center of the colonic surface. In addition,
to remove the non-convex and disjoint surface points, the candidate surface was
further processed by 3D region growing, surface normal direction and convexity
test. Figure 1.5 presents the 3D surface of two polyps and two folds after candidate

surface generation.
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Figure 1.5: 3D surface of polyps and fold after the application of the candidate
surface generation (a) and (b) illustrate the 3D surface of two polyps, (c) and (d)
depict the 3D surface of two folds.

Since the polyp surfaces are defined by the abnormal growth of tissue in the
colon wall and can be approximated by spherical or elliptical shape, the surface
normals associated with polyp surfaces show highest concentration in the center of

the polyp. On the other hand, folds resemble cylindrical surfaces. Thus, the surface
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normals for fold surfaces are evenly distributed along the long axis of the cylinder.
In this research work, the geometrical and statistical features evaluate the normal
concentration for polyps and folds. Colonic surfaces associated with folds show a
higher surface variation when compared with colonic surfaces generated by polyps.
To classify the candidate surface (CS) as polyp or fold, the surface variation of CS
is measured using the statistical features (e.g. Standard Deviation (SD) of surface
number, SD of the principle axis of ellipsoid fitting, SD of the radius of sphere
fitting) that are inputs for a multi-class classifier.

Most authors suggested to divide the polyps into three different classes according
to their sizes. First class represents polyps higher or equal than 10mm (> 10mm).
Second class includes polyps between 5to 10mm (> 5mm to < 10mm)). Third
class represents polyps smaller than 5mm. This approach was followed in this thesis
and the classifiers were trained with polyp and fold surfaces that were segregated
by size. The convex structures are classed into polyps and folds using a multi-class
feature normalized nearest neighbourhood(FNNN) classifier. The developed CAD-
CTC system has been evaluated on phantom data and patient data that was scanned

at normal and low-dose radiation levels.

1.1 Contributions

The main aim of this research is the development of a robust CAD-CTC system
and to evaluate its performance when applied to standard and low dose CT data.

The main contributions resulting from this investigation include:

e The development of an automated technique able to perform robust colon
segmentation in CAD-CTC. The developed method successfully segmented
146 (96.95%) out of 151 colons with an average of 1.58% extra colonic surface

inclusion [51, 52],

» A detailed analysis of the geometrical and statistical features employed for
robust classification of polyps and folds. The devised polyp detection scheme
shows 100% sensitivity for polyps larger than 10mm, 92% sensitivity for polyps
in the range 5 to 10mm and 64.28% sensitivity for polyps smaller than 5mm

with an average of 4.01 false positives per dataset [53, 54, 55, 56, 57].

» Design and construction of a phantom to generate synthetic data and evaluate
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the effect of low dose on the overall performance of the developed CAD-CTG
system. It was concluded that a radiation dose as low as 13mAs is feasible to

be used in standard CTC clinical examinations [58, 59, 60].

» Development of efficient segmentation and classification algorithms suitable
for fast polyp detection. The average computation time for polyp detection is

3.60 minute per dataset when the algorithm is run on a standard PC [55].

1.2 Document Organization

Chapter 1 introduces Virtual Colonoscopy and outlines the key components of an
automated CAD-CTC system. Chapter 2 details the development of an automated
colon segmentation method. Chapter 3 describes the algorithm developed for auto-
matic CAD based polyp detection. Chapter 4 discusses the effect of low-dose and CT
scanning parameters on the performance of the developed automatic polyp detection
scheme. Chapter 5 analyses the performance of the developed CAD-CTC system.
Finally, Chapter 6concludes this thesis and discussed the further developments that

can be made on the discussed CAD-CTC system.
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Segm entation

In CTC, the detection of polyps and cancerous lesions depends on the accurate
identification of the colon wall and consequently relies heavily on colonic distension
and bowel preparation. Currently, two types of bowel preparation are widely used in
CTC. The first involves a colonic lavage and insufflation with air prior to CT imaging
(non-oral contrast enhanced). The second involves colonic lavage and the introduc-
tion of an iodinated contrast agent to homogeneously liquefy and opacify the faecal
matter prior to air insufflations (oral-contrast enhanced). Most existing automatic
colonic surface detection techniques are proposed for the oral-contrast enhanced pa-
tient preparation [16, 61, 62] while limited research has addressed the automatic
colonic surface detection for the non-oral contrast enhanced patient preparation
[63, 64, 65, 606, 67, 63. The method proposed by Wyatt et al. [63] for automatic
segmentation of the colon includes, the removal of surrounding air voxels, distance
transformation, seed point selection, labelling of the air voxel area inside of the
body, and applying the elongation and location criteria. After the removal of the
surrounding air voxels from the CT data, Wyatt et al. employed a distance trans-
form in the binary data to extract the seed points. They used -800HU as threshold
for binary image creation. In general the colon is the largest air filled area inside
of the abdomen. Therefore, a maximum distance is a good approximation for seed
point selection. The detected seed points were used to segment the colon using a 3D
region growing algorithm. They also used the elongation criteria for differentiating
the large bowel from the stomach. Since the seed point selection was done based on
the distance transform, the inclusion of the extra colonic surfaces (small intestine
and stomach) were large (28 extra colonic surfaces in 20 datasets) and showed only
40-80% recovery of the colon surface. The method was tested for both oral contrast

and without oral contrast patient data and required approximately 60-65 minute to
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examine a dataset. Masutani et al.[64] proposed a method to remove the lung tis-
sues, surrounding air voxels, bones from the dataset and then identify the largest air
volume as the colon. If collapses appear in the colon, the largest air volume in the
CT data was assigned as the colon and the other regions having volume 25% (vol-
ume threshold (RfQ) of the largest volume were considered as parts of the colon too.
As this technique evaluates the air regions only with respect to the Rfc threshold,
parts of the small bowel can be misinterpreted as part of the colon by the auto-
matic segmentation process. On the other hand, small parts of the collapsed colon
may be incorrectly removed. Nappi et al. [65] proposed a different segmentation
method that detects the colon as the intersection of the Anatomy Based Extracted
(ABE) surface with the Colon Based Extracted (CBE) surface. ABE uses the same
volumetric features proposed by Masutani et al.[64]. In CBE method, a 3D region
growing was initiated from the rectum and this process continues until a stopping
rule that checks for certain experimentally validated conditions is upheld. If the
conditions were not met, the region growing process was re-started from an auto-
matically selected new seed point and the stopping rule is re-evaluated. Finally,
the intersection surface between ABE and CBE was declared as the colon surface.
This method reduced the extra-colonic surface inclusion from 25.6% to 12.6%. lor-
danescu et al. [09] proposed an automatic seed placement method using one seed
point near the rectum for well-distended colon and two seed points at rectum and
cecum for collapsed colon segmentation. Their method has shown that for 83.2%
of the datasets the colon segmentation was complete and 9.6% of datsets shows
partial colon segmentation. The remaining 7.2% datasets require a manual seeded
segmentation. Since, their method used two seed points, the segmentation of the
colons with multiple segments (higher than two) requires manual intervention. Li
et al. [67] showed a method for automatic seed selection for colon segmentation.
The selected seeds are used in conjunction with 3D region growing algorithm for
colon segmentation. Their method, initially segment the CT data by applying a 2D
region growing algorithm slice by slice. The center point of each 2D segmented area
were selected as seed points. Then all the 2D seed points were analysed and refined
using shape and size based filters. The filtered 2D points are used to segment the
colon using a 3D region algorithm. Their method results in 87.5% colon surface cov-
erage with 6% extra colonic surface inclusion. The proposed shape and size filters

can create similar results for collapsed colons and small intestine, hence automatic
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segmentation can excludes part of the colon or can include extra colonic surface
or both. Frimmel et al. [68 method uses the centerline and the colon geometry
for automatic segmentation. After the removal of the surrounding air voxels from
the CT data, their method calculate the centerline of air filled regions inside the
abdomen. They calculated the bounding box parameters for each centerline and
used some predefined thresholds to accept or reject the centerline section derived
from the small intestine. Their method shows 96% sensitivity for automatic colon
segmentation.

All of the above segmentation techniques discussed above show different levels
of accuracy and indicate that further investigations are needed in order to obtain
a robust technique for automatic segmentation of collapsed colons especially for
non-oral contrast-enhanced patient preparation. In this chapter a novel method for
automatic segmentation of collapsed colon lumen based on a prior knowledge of the

colon geometrical features and anatomical structure is proposed.

2.1 M aterials and method

Prior to their scheduled examination all patients were instructed to take a low-
residue diet for 48 hours followed by clear fluids for 24 hours. Prior to the day
of examination, patients were prescribed one sachet of Pixcolax at 8.00, a second
sachet of Pixcolax at 12.00, a sachet of clean prep in a litre of cold water at 18.00
and a Senokot tablet at 23.00. Before the CT scan, a rectal tube is inserted and
the colon is gently insufflated with room air at the maximum level tolerated by the
patient. All scans were obtained on a commercially available Siemens Somatom 4
slice multidetector Spiral CT scanner. The scanning parameters were 120kVp, stan-
dard dose (IOOmAs) and low dose (13mAs-40mAs) effective tube current, 2.5mm
collimation, 3mm slice thickness, 1.5mm reconstruction interval, and 0.5s gantry ro-
tation. The data acquisition procedure takes from 10 to 30s, hence, CT acquisitions
were performed in a single breath-hold. The procedure was first performed with
the patient head first supine position and then repeated with the patient head first
prone position. The number of slices varies from 200-350 depending on the height

of the patient. Typical total size of the volumetric data is approximately 150MB.
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2.2 A utom ated Segmentation of Collapsed Colon

In CTC, the presence of high contrast gas/tissue interface in the air insufflated
colon makes the segmentation of the colon lumen a relatively simple task. However,
the automatic segmentation of the entire colon has to address two major problems.
Firstly, in CT data the colon is not the only gas filled organ, it also includes the
gas filled lung, stomach and small bowel. In particular the small bowel may confuse
the automatic colon segmentation process. Secondly, obstructions can occur in the
colon itself due to peristalsis, residual faeces, water and insufficient air insufflation.
Such obstructions can create multiple collapses in the colon and the complexity of
the automatic colon segmentation is significantly increased. Figure 2.1 shows the
overview of the proposed algorithm. The proposed method initially removes the
surrounding air voxels and lung tissues from the volumetric CT data while the next
step identifies and labels all remaining air regions in the volumetric data. Volume
by length (V/L) analysis, orientation, length, end points, geometrical position in
the volumetric data, and gradient of centreline of each labelled object were used
as geometrical features for automatic colon segmentation. Consequently, the pro-
posed automatic segmentation technique includes the outer air segmentation, lung

segmentation, labelling, V/L analysis, and gradient of centreline calculations.

Onginal data (DICOM) > local and global histogram
Outer air segmentation
Lung Segmentation

Labeling ofinside objects
r

Colon surface detection Colon detection

r V/L > 300 detection
Polyp Detection
V/L<300 detection

Centerline Detection

Gradient Analysis

Figure 2.1: Overview of the proposed colon segmentation algorithm.
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2.2.1 Surrounding Air Voxel Removal

Colon detection begins with the removal of surrounding air voxels that was per-
formed using a standard seeded 3D region growing algorithm [69]. The seed points
for 3D region growing were selected as the left and right-most column voxels from
the first slice of the volumetric data. The threshold (Ta) employed to evaluate the
similarity measure for region growing was automatically selected from the global
histogram. The second peak (Ta) of the global histogram as illustrated in Figure 2.2

was algorithmically detected and used as the threshold for region growing.

Xi(b

HU Value

Figure 2.2: Global histogram of the CT volumetric data. Ta is the threshold used
for 3D region growing. Tf and Tm represents the histogram peaks for fat and lean
tissue respectively.

2.2.2 Lung Detection

In all head first supine or prone volumetric CT datasets the lungs are always visible
in the first slice. Consequently, after the removal of the surrounding air voxel, the 3D
region growing process starting in the first slice of the volumetric data will segment
the lung tissues. To detect the lungs, the algorithm described in this chapter checks
for the presence of isolated blood vessels inside the segmented area (see Figure 2.3).
If multiple isolated blood vessels are detected, the segmented area is considered to
be lung tissue; otherwise it is defined as a candidate region of the colon structure.
Based on the analysis of the local histogram of 25 datasets (calculated from the
first five slices of the volumetric data), it was found that a threshold greater than
-800HU returns the best segmentation for blood vessels from the surrounding lung

air. Hence the segmentation threshold was set to -800HU.
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Figure 2.3: Detected lung from the first slice of the volumetric data, (a) Parts of
colon (in yellow) and lung, (b) Detected lung (in red). Vessels are marked in green
in both (a) and (b) (Results best viewed in colour).

2.2.3 Labelling the Inside Area

Once the lungs have been segmented, the remaining air regions are the colon,
small intestine and stomach. In this step, labelling was performed using a 42/46-
neighbourhood structured element 3D region growing algorithm (see Figure 2.4).
The 42 neighbourhood region growing was used if the voxel width or height was
higher than 0.611mm, otherwise a 46 neighbourhood was used (in general, voxel di-
mensions are: depth 1.5mm, width and height 0.50-0.90mm). The 42/46 neighbour-
hoods are used to make the region growing approximately isometric. The threshold
for region growing was automatically selected from the global histogram and is usu-
ally in the range -800HU to -900HU. The labelling of the air regions was performed
in two phases. In the first phase, any air voxels (less than the threshold) in the vol-
umetric data initiates the region growing and continue to label all the connected air
voxels. The region growing process will stop when no neighbouring voxel with HU
values less than the threshold are found. The last voxel where the region growing
stopped was considered as the first end point (FEP) (see Figure 2.5a) of the labelled
region. In the second phase, the region growing process starts from the first end
point and labels all the voxels in the region that are already checked in the first
phase of labelling. At the end of the second phase, the last voxel where the region
growing stopped was considered as the second end point (SEP) (see Figure 2.5b).
Similarly, all the air regions in the volumetric data will be labelled two times to

calculate the two end points. During the labelling process the following information
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is also stored for each labelled region: total voxel count, flag value, average HU

value, region bounding box coordinates and orientation.

Figure 2.4: Seeds used for region growing, (a) 42 voxels seed, (b) 46 voxels seed.

@ o

Figure 2.5: Labelling using 3D region growing, (a) Detection of first end point, (b)
Detection of second end point.

The high end point (HEP) illustrated in Figure 2.6a is detected as the FEP at
the end of first phase of labelling. In the second phase, region growing starts from
the HEP and the algorithm is iterated until the second end point (SEP) is detected.
In this situation, the labelled region will be assigned as ORIENTJI. Similarly, the
orientation index for each labelled region is recorded as ORIENTA, ORIENT-3
or ORIENTA as illustrated in Figures 2.6a, 2.6¢, 2.6d. It is worth noting that for

a well-distended colon supine view the orientation ORIENTA will never occur.

2.2.4 Colon Detection

The colon and the small intestine are approximately 1.5m and 7-10m long, respec-

tively [70]. Anatomy of the colon shows that it is shorter and thicker than the
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Figure 2.6: The four possible orientations used to differentiate a well-distended colon
and a collapsed colon.

High End

small intestine. The volume of each labelled region is calculated using the following
equation:

Volume = vx *vy *vz *n (2.2.1)

where vx, vy and vz are the voxel width, height and depth respectively and n is
total number of voxels in the region.

The length of each labelled region was calculated between the two end points using
the Dijkstra shortest path algorithm [71], In Figure 2.7 the V/L analysis for 35
datasets is illustrated. The upper and lower curves represent the colon and small in-
testine V/L values respectively. As the small bowel is long and thin when compared
to the large bowel, the V/L analysis provides a distinctive feature for automatic
colon detection.

In general, the V/L value for a well-distended colon is higher than 600mm?2. To
provide a high degree of tolerance in V/L threshold, it was determined experimen-
tally that a well-distended colon must have a V/L value higher than 300mm2. The
results of developed method indicate that this V/L threshold was robust when the

segmentation algorithm was applied to a large number of datasets.

2.2.5 Well Distended (Intact) Colon Detection

The devised algorithm firstly checks whether the colon has a collapsed segment or

not. The algorithm is initiated with the detection of the rectum. In general, the

17



Chapter 2 Segmentation

Volume /Length Analysis

“ Colon

Non Colon

PIREIEEERRE RaEm e

Number of labelled object

Figure 2.7: Volume/Length analysis provides a distinctive feature to differentiate
the colon from small bowel.

rectum is the only air filled area that is located at the end of the dataset. To make
sure that the selected object is inside the body, the voxels located around its neigh-
bourhood are tested within a circular region of interest. The colon will be declared

as well distended if the selected rectum object fulfills certain conditions.

a) The detected rectum must have a V/L value higher than 300mm 2, a length higher
than 700mm. The detected rectum segments with a length higher than 700mm in-
dicate that are connected with parts of the sigmoid colon and descending colon.
In this condition, if collapses appear between transverse and descending colon or
transverse and ascending colon, the V/L value of the rectum will be less than the
V/L value of the ascending colon and consequently the colon will be assumed to be

collapsed.

b) Detected rectum object orientation number (Figure 2.6) must not be ORIENTA
for supine data and ORIENTA for prone data.

c) Validation of the colon geometry. Projection of the well-distended model for

colon in the XZ plane is depicted in Figure 2.8. The geometrical approximation of
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the colon was calculated dynamically from the labelled regions (V/L > 100mm?2)
coordinates (left most, right most, top, bottom, front and back) as indicated in
Figure 2.8. Sometimes collapses in the sigmoid colon can create colon objects with
a V/L value less than 300mm?2 and to include all these objects the threshold was
fixed to 100mm2. For a well-distended colon, the air region detected as rectum
will have one end point near the rectum and other end point (cecum point) closer
to the cecum. To declare the detected labelled air region as well-distended colon,
parts of it must fulfill the ascending and descending colon geometry (see Figure 2.8).

Otherwise it will be declared as collapsed colon.

Top

uroZ

Figure 2.8: An ideal model for a well-distended colon.

2.2.6 Collapsed Colon Detection

Collapsed colon detection is performed in two phases. In the first phase, the large
segments (with V/L > 300) are detected and in the second phase the small objects
(with V/L < 300) are detected. The detection of the large segments starts from the
rectum. It detects the closest placed large segments using the Euclidean distance be-
tween the end points (Figure 2.9) and checks for the condition (a) and (c) which are
detailed in Section 2.2.5. This process continues until the conditions (a) and (c) are

met. It is worth noting that in some cases detection of the ascending colon appears
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after the rectum (clockwise detection) as depicted in Figure 2.9b. This condition
occurs if large parts of the descending and sigmoid colon are filled with residual
material. In this situation the V/L threshold is automatically changed to 200mm?
to meet the geometrical condition (c) detailed in Section 2.2.5. Small-labelled ar-
eas (with V/L < 300) are either part of the small intestine or the colon. As their
anatomical and geometrical properties are quite similar, perfect colon identification
is far from a trivial task. The segmentation scheme detailed in this chapter analyses
the small segments (with V/L < 300) using their position, gradient of the centreline,

length, and distance.

>?7

Figure 2.9: Examples for object detection (V/L > 300) in collapsed colon for supine
data, a) Four objects with V/L > 300 in expected direction, b) Two objects
with V/L > 300 in anti clockwise direction, c¢) Two objects with V/L > 300 in
expected direction, d) Anti clockwise direction occurred in the third object, e)
Object detected in expected direction.

Centreline and gradient detection: Initially the centrelines of each labelled air region
were detected using the method described by Sadleir and Whelan [72]. To reduce the
noise in the centreline detection, a three-step procedure was employed [73]. Firstly,
a second order low pass filter was applied to remove the high frequency components
of the centreline. Secondly, the filtered centreline was down-sampled (typically by
a factor of seven). Thirdly, three cubic B-spline interpolations were constructed for
the resulting down-sampled set of points (one for each of the three orthogonal direc-
tions). The gradient of the centreline was calculated using the first derivative of the
interpolated centreline. The Grad/Num feature was calculated using the following
equation:

Grad/Num = 1/n'y~grad (2.2.2)
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where grad is the gradient in each voxel and n is the number of voxel in the centreline.

Figure 2.10: Example of a colon with three large labelled objects (V/L > 300) and
few small segments either part of colon or small bowel

Figure 2.10 shows three large segments (with V/L > 300) and few small segments
(with V/L < 300) which are either part of the colon or small bowel. The first step
detects the small objects placed between the large segments 1 and 2 depicted in
Figure 2.10, and in the second step the small objects between the large segments 2
and 3 will be detected. Detection of these small segments has been done using four
different parameters (distance threshold, orientation, length threshold, gradient of

r<a rj rj

(a) (b) (© (d)

Figure 2.11: Example of removing small intestine, (a) Rejected two small intestine
(F and G) due to distance threshold (b) One small intestine (E) rejected due to
improper orientation (c) Small intestine (D) removed using the length threshold and
(d) Small object with high curvature A is rejected by the gradient threshold.
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a) Distance Threshold: The small object (V/L < 300) with one or both end
points within the circular region of interest illustrated in Figure 2.11a will be de-
tected as candidate colon object. Also, all the small objects (V/L < 300) with the
exception of F and G in Figure 2.10 will be accepted as colon object (Figure 2.11a).

b) Orientation: The small object E shown in Figure 2.11a have one end point
near to the large segment 1 and other end point near to the large segment 3. So,
its location violate the geometrical constraint and will be rejected (Figure 2.11b).

c) Length Threshold: The small object D in Figure 2.11b will be rejected because
do not pass the length threshold test (see Figure 2.11c). The length threshold was
set as twice the distance of the large segments. For instance if the large segments 1
and 2 shown in Figure 2.11a have a distance between the endpoints equal to 50mm,
the length threshold will be set to 100mm.

d) Gradient Threshold: As the geometry of the small bowel shows high degree of
curvature when compared to the curvature of the colon, the Grad/Num of the small
bowel have a higher value than the Grad/Num value of the small colon parts. If the
detected small segment has a Grad/Num value higher than a threshold is rejected

and declared as part of the small bowel (see Figure 2.1id).

2.3 R esults

The segmentation was performed on 151 standard dose (IOOmAs) and 13 low dose
(13mAs to 40mAs) supine and prone patient datasets (87 patient datasets, see Ta-
ble 2.1). The proposed automatic segmentation method reliably detected 63 stan-
dard dose (IOOmAs) and 5 low-dose well-distended colons without inclusion of any
Extra Colonic Surface (ECS) areas. Consequently the colon surface detection was
100% and the ECS error was 0%. The detection of the collapsed colons was per-
formed in several phases. The detection of large segments (with V/L > 300) was
performed in the first phase and 219 air regions for standard dose were detected in
83 datasets and for low-dose data 20 large segments were detected in 8 datasets.
Out of these 239 regions, 238 were colon parts and one was a section of the small
bowel. The detection of small regions (V/L < 300) was done in the second phase. In
total 349 (V/L < 300) small air regions were detected in 83 standard dose datasets
of which 161 were colon surfaces and 188 were ECSs and 12 colon objects were

missed. In 8low-dose datasets 31 (V/L < 300) small objects were detected of which
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10 were colon surface and 21 were ECSs and 4 colon surfaces were missed. In 83
standard dose collapsed colons, the surface detection was always higher than 95%
(see Figure 2.13). Only in five cases it was less than 98% and in three cases it was
(98% to 99%). For the remaining datasets the recovery of colon surface was higher
than 99% out of 83 collapsed colons. The largest ECS inclusion was 14.26% with a
mean of 1.58%. In 8 low-dose collapsed colons, five shows 0% ECSs surface inclu-
sion with 100% colonic surface detection, one shows 6.5% ECSs inclusion, one shows
4.7% ECSs inclusion with 96.3% of the colon surface detected and the other one was

detected as intact colon and missed 13% of the colonic surface (see Figure 2.14).

Table 2.1: Patient data information

Dose in (mAs) Number of Number of
supine data prone data

100 8l 70

50 0 1

40 1 0

30 1 3

20 0 2

13 0 5
Data Error 4 6
Total 87 87

Error Percentage of Extra Colonic Surface Inclusion in Collapsed

Colon

14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 50 61 64 67 70 73 76 79 82

Number of Collapsed Colon

Figure 2.12: Percentage error for ECS in 83 collapsed colons. 40 collapsed colons
without inclusion of ECS.

To examine the performance of automatic colon segmented algorithm, an ex-
perienced radiologist from Mater Hospital, Dublin performed a manually seeded

segmentation and it was used as the ground truth data. Since the manual mark-
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Error Percentage of Colonic Surface Missing in Collapsed Colon

D etection

Humber of Collapsed Colon

Figure 2.13: Percentage error for undetected colonic surface in 83 collapsed colons.
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Figure 2.14: (a) 3D surface of the colon segmented by the Radiologist, (b) 3D
surface of the colon after automatic segmentation.

ing of the colon area was not feasible due to the enormous amount of data to be
analyzed, it has been decided to segment each colon segment individually using a
standard seeded region growing algorithm. In this way the radiologist segmented
the colon manually using multiple seed points and 3D region growing. To further
improve the quality of the ground truth we plan to eliminate the inter and intra ob-
server variability by involving more radiologists in the manual segmentation process.
In this research the results returned by the automatic segmentation were compared
with the ground truth data side by side using 2D axial views. Any area which was
seen in the automatic segmented colon but not found in manually segmented colon
was declared as ECS and any area excluded by the automated segmentation method
was considered as missing. Thus 188 objects (V/L < 300) were declared as ECS?%

out of 349 objects (V/L < 300) for standard dose datasets and 21 objects were
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declared as as ECS% out of 31 objects (V/L < 300) for low-dose datasets.

;- axpl
vy & AD 5
(@) (b) © (d
am \38
>7m
>peN - Jy-r.
Vv
0 WP

O] ) (9) (b)

Figure 2.15: Example of manual and automatic segmentation. Figures (a-d) show
the 3D surface of the colon segmented by the radiologist. Figures (e-h) show the
automatically segmented colon surfaces.

The method proposed by Nappi et al. [65] shows an average of 12.5% ECS
inclusion with a mean of 0.9% undetected colonic surface which are higher than the
proposed algorithm average ECS (1.58%) inclusion and mean undetected colonic
surface (0.32%). lordanescu et al. [66] method shows 83.2% success rate for complete
automatic segmentation of colons. The developed method provides 94.79% success
rate for automatic segmentation of collapsed colon when applied to 96 datasets.
Overall sensitivity of automatic colon segmentation is 96.95% in 164 datasets.

The proposed algorithm fails to produce meaningful results when applied to 5
out of 164 datasets due to inappropriate bowel distension (more than 50% of the
colon area was filled with fluid and/or residual materials see Figure 2.17). Another
advantage of the proposed technique is its low computational cost where the typical
processing time for overall segmentation was approximately 3.4min (see Table 2.2)
on a Pentium 1V 1.6GHz PC with 1024MB RAM.
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Table 2.2: Average computation time (in seconds) for well colon segmentation (col-
lapsed and well distended).
Surrounding air voxel removal time 28.65

Lung detection time 13.03
Labelling time 128.32
Length detection (shortest path) time  19.63
Centerline calculation time 15.74
overall time (seconds) 205.37
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Figure 2.16: Example of manual and automatic segmentation. Figures (a-e) show
the 3D surfaces of the colons segmented by the radiologist. Figures (f-j) show the
3D surfaces of colons segmented by the automatic segmentation.

2.4 D iscussion

The experimental data indicates that the segmentation algorithm detailed in this
chapter returns reliable colon segmentation under all routinely encountered imaging
conditions. Well-distended colons have been detected without any inclusion of the
small bowel (see Figures 2.18, 2.19 and Table 2.3). When dealing with collapsed
colons, the detection of surfaces with a V/L > 300 have generated only one false
positive in all datasets used in this study (Figures 2.20, 2.21, and 2.22). Small section
areas (with V/L < 300) include the colon and the small intestines and the final
results indicate an average of 1.58% and 1.41% ECS surface inclusion for standard

and low dose data respectively and average of 99.68% and 96.52% colon surface
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Figure 2.17: Example of a poorly distended collapsed colon.

detection for standard and low dose patient data respectively. Results show that

the developed method reliably detects well-distended colons and the large segments

in collapsed datasets with a low ECS inclusion in small segments detection. Tables

2.3 and 2.4 illustrate the performance of the automatic segmentation technique when

applied to standard and low dose datasets.

Rating
Excellent
Good
Fair
Poor
Very Poor

Total

Table 2.3: Results for standard dose patient data

Criteria Results
Collapsed colon Intact Colon

Includes no small intestine 41(49.39%) 63

and entire colon segmented
Includes a small part of the small 25(30.12%) 0

intestine and segmented entire colon
Includes large part of 6(7.22%) 0
small intestine > 10%
Includes small intestine < 5% 10(12.04%) 0
and missing colon

Missing >=5% and 1(1.20%) 0

includes small intestine
83 63

In this chapter, a novel scheme for automatic segmentation of collapsed colon is
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Table 2.4: Results for low dose patient data

Rating Criteria
Excellent Includes no small intestine
and entire colon segmented
Good Includes a small part of the small
intestine and segmented entire colon
Fair Includes large part of
small intestine > 10%
Poor Includes small intestine <5%
and missing colon
Very Poor Missing >= 5% and

includes small intestine
Total

@)

Segmentation

Results
Collapsed colon Intact Colon

5(62.5%) 5
0(0%) 0
1(12.5%) 0
1(12.5%) 0
1(12.5%) 0

8 5

Figure 2.18: Iso-surface of well-distended colons with the centreline superimposed.

@)

Figure 2,19: Iso-surface of well-distended colons.
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(@) (b) ©

Figure 2.20: Collapsed colon (standard dose), (a) Three colon surfaces with V/L >
300 and seven colon surfaces with (V/L < 300) and six ESCs with (V/L < 300).
(b) Three colon surfaces with V/L > 300, twelve colon surfaces with (V/L < 300)
and eleven ECSs with (V/L < 300). (c) Five colon surfaces of V/L > 300, nine
colon parts with (V/L < 300), and seven ESCs with (V/L < 300).

@ (b) (© (d)

Figure 2.21: Collapsed colon (standard dose), (a) Two colon surfaces with V/L >
300, one colon surface with (V/L < 300) and four ESCs with (V/L < 300). (b)
Two colon surfaces with V/L > 300, one colon part with (V/L < 300), and one
extra-colonic surface with (V/L < 300). (c) Two colon surfaces with V/L > 300,
two colon parts of (V/L < 300), and two ESCs with (V/L < 300). (d) Six colon
surfaces with V/L > 300.

detailed based on the inclusion of geometrical feature such as V/L analysis, orienta-
tion, end points, gradient of centreline, and directions (clockwise or anticlockwise).
The experimental data indicates that the V/L analysis provides a better approach
to discriminate the colon parts from the small bowel. In the calculation of V/L,
morphological labelling was used for finding the end points and the volume and the
shortest path algorithm was used for finding the length. For well-distended colon

detection, the features included in the segmentation process are V/L, length, ori-
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Figure 2.22: Collapsed colon (low dose), (a) Three colon surfaces with V/L > 300
(b) Two colon surfaces with V/L > 300, one colon part with (V/L < 300), (c) Three
colon surfaces with V/L > 300, four colon parts of (V/L < 300).

entation, and geometrical position in the volumetric data. In the detection of the
large segments of collapsed colon (with V/L > 300), the developed method em-
ployed the geometrical position, V/L, length and direction as features. The features
that are used for collapsed small colon segments (V/L < 300) detection are end
points, length, distance and gradient of centreline. All threshold parameters used
in the automatic segmentation scheme were selected with a high degree of tolerance
and they proved to be robust in the segmentation process. Any dataset without a
labelled region of length less than 400mm was declared to be a poorly distended
dataset and the algorithm rejects the dataset as unsuitable for automated analysis.
This condition arises when the datasets have nearly 50% of the regions filled with
residual material and fluid.

The developed method for automatic segmentation successfully identified the
colonic lumen from volumetric CT data. In 96 supine and prone (88 standard
and 8 low-dose) datasets containing collapsed colon data, the segmentation method
detects 99.68% of the colonic wall and shows 94.79% sensitivity for collapsed colon
detection. The overall sensitivity in colon detection was 96.95%. In 63 datasets the
well-distended colons were detected without any inclusion of extra-colonic surface.
The performance of the developed algorithm makes it suitable for 3D visualization
of the colon surface and advanced polyp detection.

After segmentation the next step in CAD-CTC is automatic polyp detection.
The following chapter deals with the development of CAD algorithms for automatic

polyp detection in CAD-CTC. The chapter details the development of three different
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feature detection schemes for colonic polyp detection in CAD-CTC and the methods

are as follows:
» Geometrical features based method.
» Statistical features based method

» 3Db features based method.
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C AD-CTZC Polyp Detection

CT Colonography is a rapidly evolving technology for the detection of colorectal
polyps and many studies have demonstrated that its sensitivity in polyp detection
is comparable to the sensitivity offered by conventional colonoscopy [21, 23, 26,
29, 32, 33, 34], In this regard, Fenlon et al. [21] indicate that CTC returns
100% sensitivity for the detection of CTC polyps greater than 10mm and 83%
sensitivity for detection of polyps in the range 6-9mm polyps. This conclusion is
supported by other studies [32, 74, 75, 76] where it is demonstrated that CTC is
as good as standard colonoscopy for the detection of colonic polyps. More recently,
Pickhardt et al. [29] performed a detailed comparison between CTC and standard
Colonoscopy and they concluded that CTC can increase the sensitivity of polyp
detection when applied as a second reader with Colonoscopy. In their study, the
reported sensitivities for CTC and optical colonoscopy for polyps > 10mm were
92.2% and 88.2%, for polyps > 9mm were 91.8% and 90.2%, for polyps > 8mm were
92.6% and 89.5%, for polyps > 7mm were 89.5% and 90.2%, for polyps > Gmm were
85.7% and 90.0% respectively. From these results they concluded that the sensitivity
in polyp detection offered by CTC matches closely the sensitivity achieved by optical
colonoscopy and CTC is feasible to be used in clinical examinations.

Since the introduction of CTC in 1994 [15], a large number of techniques in
the fields of 3D visualization, such as the rendering of the colon surface, centerline
calculation, and colon wall unfolding were developed to provide the radiologists
with all types of 2D and 3D information required to identify the colorectal polyps.
[77, 78, 79, 80, 81, 82, 83, 84, 85, 806, 87]. However the development of new CT
imaging modalities, the high resolution CT data offers a large volume of information
that is required to be visualized and interpreted by the radiologists (the typical time

required to process a dataset based on a visual examination is in the range 12-60
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minutes). As pointed out in the study by Pickhardt et al. [29] the performance of
the radiologists can be effected by factors such as perceptual errors [88 89] and
eye fatigue [34, 35]. Johnson et al. [88 study shows that 34% (20 of 59) of the
large polyps were missed in CTC due to perceptual errors. Hence, Ven Gelder et
al. [89] suggested that the introduction of CAD based automatic polyp detection in
CTC is a viable solution to reduce the perceptual errors associated with the visual
interpretation of the CTC datasets. Thus, the development of CAD methods can
improve both the sensitivity and efficiency of CTC. In the last decade a significant
amount of research has been focused on developing automated CAD of colonic polyps
and a large number of CAD-based polyp detection techniques have been proposed.

One of the first CAD-CTC systems was proposed by Vining et al. [90] where the
detection of colonic polyps was based on surface curvature analysis. In the exper-
imental section of their paper they indicated that the CAD-CTC system achieved
73% sensitivity with 9 to 90 false positives (FP)/dataset.

The polyp detection system developed by Summers et al. [91] attempts to iden-
tify the polyps in the CT data using a multi-stage geometrically-driven approach.
Initially, they detect the convex surfaces that protrude inward from the colon by ap-
plying a kernel filer that is constructed using partial derivatives. After the detection
of the candidate surface, they used shape-based criteria derived from the principle
curvature (kmin and kmax), mean curvature (H), sphericity ratio s = {kmax—kmin)/H
and minimum polyp size. They used very restrictive sphericity criteria in order to
reduce the false positives but their technique shows zero sensitivity for polyps in the
range 5-10mm (0 out of 4) and 100% sensitivity for polyps > IOmm (6 out of 0.
Later, Summers et al. [36] proposed a new method method where they applied a
different shape based filter (calculated from kmin, kmax, and H) to reduce the level
of FP but keeping the sensitivity at 100%. One problem with this approach is the
fact that the sensitivity and specificity of the system depend on the filter chosen to
evaluate the local colon curvature and the reported sensitivities in polyp detection
are in the range 29% to 100% with 6to 20 FPs/dataset.

Yoshida et al. [37, 92] proposed the use of shape index (cup, rut, saddle, ridge,
cap), curvedness values (calculated on small volumes of interest) and fuzzy clustering
in order to perform candidate polyp surface generation. The principal curvature
{kmin and kmax) derived from the Gaussian and the mean curvature was used to

calculate the shape index and curvedness for each colonic wall voxel. They showed
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that all types of colon shapes can be mapped in the interval S7¢[0,1] as follows: cup
(0.0), saddle (0.5), ridge (0.75), and cap (1.0). On the other hand, they showed that
the curvedness is also an indicator of the variation of the local curvature and they
used a predefined threshold with a value between 0.9 to 1.0 for SI and 0.08m-1 to
0.20mm-1 for curvedness to generate the initial seed points. The C-Means clustering
was used to generate the candidate surfaces and to reduce the incidence of non polyp
surface generated by noise. The CAD-CTC system [92, 37] employed features
such as the shape index, curvedness, magnitude of CT values, CT values, gradient
concentration (GC) and direction of the gradient concentration (DGC) calculated
from candidate surfaces to classify them into polyps or folds. They reported 95%
sensitivity in polyp detection with 1.2 FP per dataset, but the FPs increased with
a factor of 1.5 when the sensitivity was increased to 100%.

Paik et al [35, 93] developed a new algorithm called surface normal overlap
that was applied to colorectal polyp detection. Their algorithm is based on the
assumption that the colorectal polyps are convex structures and the local normal
intersection density samples the local convexity for each voxel of the colon wall. The
normal overlap technique was used to identify suspicious convex structures while the
polyp detection is performed by assessing the deviation of these convex structures
from a stochastic model employed to define the shape of a nominal polyp. This
algorithm shows 100% sensitivity in detecting polyps larger than 10mm with 7 FP
datasets. No experimental data is provided in regard to the sensitivity of their CAD-
CTC system when applied to the identification of small (< 5mm) and mid-sized
polyps (between 5-10mm).

Kiss et al. [94, 95, 96] method also employed the surface normal intersection
for the detection of convex surface from the colonic wall. To generate the polyp
candidate surface, they applied the Hough Transform to calculate the center points
and used 3D region growing to find the candidate surface from the convex voxels
of the colon wall. Gaussian distribution of the Hough points was used to calculate
the normal concentration of the candidate surface. Two different region growing
techniques (weighted region growing and greedy region growing) were employed to
generate candidate surfaces from the center points and least square ellipsoid fitting
was used to calculate the three axes of the candidate surface resulting from these
two region growing algorithms. The number of normal intersections for each Hough

point, Gaussian distribution, three axes of the surface resulting from the greedy
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region growing and three axes of the surface generated by the weighted region grow-
ing were used as input features for a probabilistic neural network (PNN) classifier.
Their CAD-CTC system achieved 90% sensitivity for polyps larger than Gmm with
2.82 FPs/dataset. Recently, a different CAD-CTC system has been proposed by
Kiss et al. [38] that analyses the slope density function as a discriminative feature
to classify the convex candidate surfaces into polyps and folds. The initial stage
of their system identifies the candidate surfaces by intersecting the colon wall with
a reformatted plane perpendicular on the local normal surface. If the intersection
patch between the planar and the colon surface is filled with voxel data the colon
surface is concave and is declared part of the healthy colon tissue. Otherwise is
a convex surface that is generated either by polyps or folds. The resulting can-
didate surfaces are evaluated statistically using the slope density function, which
shows peaks for elongated surfaces and smooth values for ellipsoidal surfaces. This
property of the SDF is very useful as it provides robust discrimination between the
polyps and folds as the folds resemble elongated cylindrical surfaces whereas polyps
ellipsoidal surfaces. Their method obtained the following performance in polyp de-
tection: 33.33% sensitivity for polyps smaller than 5mm, 85.70% for polyps in the
range 6-9mm, 90% for polyps larger than 9mm and 100% sensitivity for cancerous
lesions. Kiraly et al. [97] proposed a fast detection method using a gradient-based
filter and shows 96% sensitivity for polyp greater than 5mm with 5.76 false positive
per dataset.

Acar et al [39, 98] employed a different approach based on the edge flow displace-
ment that is applied to obtain robust polyp detection. They developed a method
to extract the candidate surfaces based on the Hough Transform that evaluates the
normal intersections using the assumption that the normal intersection will be high
for convex (cap-like) structures. After the extraction of the candidate surfaces, they
scrolled these surfaces with a planar perpendicular on the main axis of the surface
and they computed the edge ffow from the extremity of the surface towards its
center. The divergence of the edge flow is used to determine whether the candidate
surface is generated by a polyp or a fold. They applied this technique on 48 datasets
and their experiments indicate that their method achieved 35% specificity at a sen-
sitivity rate of 100%. This method was further advanced by Gokturk et al. [99]
when they applied the randomly oriented triple orthogonal planes at the location

of each candidate surface. They applied this approach to sample the sphericity of
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the candidate surface based on the fact that any random planar slicing through a
spherical surface will generate a circle. The reported experimental results indicated
that they achieved 69% specificity at a sensitivity rate of 100%. No detailed analy-
sis with respect to the size of the polyps is provided. Wang et al. [40] stated that
the inclusion of morphological and texture features can reduce 10 times the false
positives when compared to the standard shape-based approach. Wang et al. [100]
combined the texture features and global curvature for automatic polyp detection
and shows 100% sensitivity for > 10mm with 2.0 false positive per dataset. Jerebko
et al. [41] employed a multiple neural network classification scheme to achieve a
36% reduction in FPs and a 20% reduction in false negative (FN)detection. Later,
Jerebko et al. [101] employed a support vector machines committee classification
scheme to achieve 81% sensitivity with 2.6 false positive per dataset. lordanescu et
al. [102] developed a rectal tube detection method that was applied to reduce the
FPs generated by the rectal tube. Li et al. [67] proposed method employed different
geometric features such as maximum polyp radius calculated from the minimum
curvature, minimum polyp radius derived from the maximum curvature, candidate
surface area, roundness of the candidate surface and elongation factor for classifi-
cation of the candidate surfaces into polyps or folds. Their method achieved 90%
sensitivity with 2 FPs per dataset.

All the above mentioned CAD-CTC techniques show 100% or close to 100%
sensitivities in the detection of polyps > 10mm, while the sensitivities in the detec-
tion of polyps in the range [5—210)mm vary from 70% to 95%. The reported false
positive rates vary from 2.0 to 90 per dataset. Among all the developed CAD-CTC
techniques, Yoshida et al. [37, 92] and Kiss et al. [38] methods show best results
for sensitivity and false positives incidence per dataset. Yoshida et al. technique
achieved a sensitivity of 100% per patient with 2.0 false positive. But it is worth
noting that the sensitivity dropped to 90% when it was presented as per polyp. Also
the polyps smaller than 5mm were completely ignored in their evaluation. Kiss et
al. [38] method shows 90.90% sensitivity for polyps > 9mm and 100% sensitivity for
colorectal tumors with a false positive rate of 2.48. Their method shows 33.33% sen-
sitivity for polyps < 6mm and 85.70% sensitivity for polyp between 6 —9mm where
the data used in their experiments has been acquired with 0.8mm reconstruction
interval. It is also useful to note that both Kiss et al. and Yoshida et al. CAD-CTC

techniques evaluated the difference in the geometrical shapes between polyps and
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folds.

In this thesis these geometrically-driven approaches will be further advanced by
developing a number of CAD polyp detection techniques where the discrimination
between polyps and folds is performed using the features that sample the morphology
of the local 3D data. All the proposed polyp detection methods employed different
features derived from the colon wall in order to classify optimally the candidate
surfaces into polyps and folds. The first polyp detection scheme called geometrical
fitting approach evaluates the discriminative power of the features calculated from
the colon surface using least square approximation (ellipsoid, sphere, plane) in order
to perform polyp identification. The second method uses the statistical features
derived from the colonic surface. The third method analyses the 3Decibel (3dB)
attenuation on the surface variation curve and surface normal concentration for

polyp detection.

3.1 Geometrical Fitting Approach

Figure 3.1, gives an overview of the proposed algorithm. In this section, the seg-
mentation, polyp surface generation and feature extraction phases of the algorithm

are discussed in detail.

Segmentation and Automatic Colon Segmentation
3D Volume Data .
Polyp Surface Detection or

Manually seeded segmentation

Geometrical Feature
Extraction

Train Data Test Data

Normalized Nearest
Neighbourhood Classifier

1

Decision: Polyp, non-polyp

Figure 3.1: Overview of the Geometrical Fitting CAD-CTC system.

3.1.1 Segmentation

CTC images provide high contrast between the gas and colon surface. Using a
region growing [69] algorithm the gaseous region can be segmented successfully.
Sometimes remaining residual material and water can create collapses in the colon

and the region growing algorithm may require multiple seed points to segment the
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entire colon. The developed CAD-CTC system provides both the manual assisted
segmentation and the complete automatic segmentation detailed in Chapter 2. The
manually placed seed segmentation used -800HU as threshold, as suggested in [72,
90] whereas the automatic colon segmentation detects the threshold (from -900HU
to -800HU) automatically from the global histogram (see Figure 2.2). The colonic
wall (CW) is defined as the adjacent voxels having HU values higher than -800HU

or the automatically detected threshold.

3.1.2 Polyp Surface Detection

3.1.2.1 3D Hough Transform

The normal vector for each voxel in the CW-set was calculated using the Zuker and
Hummel operator [103]. Each voxel in the CW creates 7 Hough points (HP) (see
Figure 3.2) in the normal direction from 2.5mm to 10mm (2.5, 3.75...8.75, 10.0) by
varying the parameter t in Eq. 3.1.1,

p=pi+txn (3.1.1)

where pi is the colon wall voxel and n is the normal vector to that voxel. In Eqg. 3.1.1
the value of t starts from 0.1 and increases with the step size of 0.1mm until all the
HP points situated at distances 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, and 10.00mm are
generated. The term Hough Point has been introduced in order to highlight the
similarity with the Hough Transform that is applied to identify the 3D spherical
objects in CT data.

Figure 3.2: Surface normal and the distribution of the 7 Hough Points (HP) in the
normal direction.
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3.1.2.2 3D Histogram

The HPs are uniformly distributed from 2.5mm to 10mm along the normal vector
direction for each voxel of the colon wall (CW) and the intersections between the HPs
are recorded (see Figure 3.2) in a 3D histogram. Thus, the 3D histogram records the
intersections between the HPs that are in fact intersection of the normal vectors.
As the normal vectors are determined using 3D local operators their orientation
is sensitive to abrupt changes in the 3D structure of the CW, and to reduce the
level of noise in the histogram a weighted smoothing procedure is applied using the

expression illustrated in Eq. 3.1.2,

7 Cc ir 7 X ' 5) X V X elnei ouT [JREE A
Vemooth = © Voxel + > ——--CLZ LN 13-12)
0

where 6 is equal to 1/y/2.

3.1.2.3 Non Maximum Suppression

After smoothing, all HP’s having histogram values higher than 4.0 intersections are
considered as initial candidate center points (ICCP) of the candidate polyp surfaces.
Non maximum suppression was applied in the ICCP set to create potential center
points. The cluster of surface points was created by including the HPs and their
corresponding surface voxels within a certain distance from ICCP (10mm to 25mm).
It is useful to remember that folds are generally shaped like cylinders and show a
uniform distribution of the number of intersections generated by the HPs along
the axis of the cylinder. Conversely, polyps resemble either spherical or ellipsoidal
shapes and show a narrow peak in the 3D histogram. A minimum distance of
10mm was experimentally selected in initial clustering to include the highest possible
number of surface points in the clustered surface. The distance threshold varies from
10mm to 25mm depending on the histogram value for each center point in ICCP.
The candidate surface cluster may include surrounding non-convex surface points
or disconnected surfaces (Figure 3.3) that may create problems when the candidate
surface is analysed to decide if it is a polyp or a fold. To eliminate these undesired
surface points from the initial cluster, a Candidate Surface Processing procedure is

applied. This procedure is described in detail in the next section.

39



Chapter 3 CAD-CTC Polyp Detection

(@) (b) ©

Figure 3.3: 3D Surface after initial clustering (a) 3D surface of an inserted tube, (b)
3D surface of a fold and (c) 3D surface of a polyp

3.1.2.4 Candidate Surface Processing

To remove the non-convex surface points and the disjoint points from the initial clus-
ter, a Candidate Surface Processing procedure that calculates the Gaussian mapping
for each cluster and performs a non-convex surface voxel removal test was developed.

1. Gaussian Center and Radius Detection-. To calculate the center and radius of
each cluster, a Gaussian distribution depicted in Eq. 3.1.3 was calculated for each

HP of the cluster,
N

GMi = Y Me { x212-°*q) (3.1.3)
6=
where the variable X is the distance between the HPs, a is the standard deviation
and is set to 1. The quantity N is the number of HPs in the cluster and j takes
values between 1...N.

The HP with the highest Gaussian distribution was set as the center of the clus-
tered surface and the Euclidian distance between the center and its corresponding
surface point is the radius of the cluster. The Gaussian distribution is an efficient
feature that can be used to discriminate between polyps and folds. In this regard,
the Gaussian distribution has high values for polyps and low values for folds.

2. Surface Convexity Test Let 5 be a surface voxel, n be the normal vector
at the surface voxel S and Q be the intersection point of the surface normal and
the perpendicular line from the center of the cluster to the surface normal (see
Figure 3.4). To remove the non-convex points from the initial cluster a simple
surface convexity test was employed. In this regard, the non-convex surface point

S will be removed from the cluster if the dot product < SQ,n > is less than zero.

In Figure 3.4, the points si and s4 and their associated HPs will be removed from
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the cluster as they do not pass the convexity test. The normal distance from the
center of the cluster (CP) to the surface normal at position SP and the distance
between the surface point (SP) and the intersection point (IP)(see Figure 3.5) were
also checked. If the distance between the surface point SP and the intersection
point IP is larger than 10mm (the maximum HP distance), the surface point SP is

eliminated from the candidate surface.

Figure 3.4: Convexity test. The point C is the center of the cluster. The surface
points s2 and s3 pass the convexity test whereas the surface points si and sk and
their associated Hough points will be removed from the candidate surface as they
do not obey the condition < SQ,n > less than zero.

SP - Surface Point
CP - Center Point
Sp IP- Intersection Point

IP

Figure 3.5: SP, CP and IP are the surface point, center point and intersection point
respectively. The circles between the SP and IP represent the 7 Hough points for
each surface point.

After the removal of the non-convex surface voxels, each cluster was further
processed to evaluate discontinuities in the surface under examination. If discon-
tinuities exist in the surface area, the cluster is divided into multiple clusters and

their Gaussian map, center and radius are recalculated (see Figure 3.6).

3.1.3 Feature Extraction of Geometrical Fitting

The aim of the method detailed in this section is to calculate the features associated
with each cluster surface, which will be considered as input for the classifier. The

features must be selected in order to maximize the discriminative power between
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(a) (b) ©

Figure 3.6: 3D surface resulting after the re-clustering phase, (a) 3D surface of
the inserted tube illustrated in Figure 3.3a, (b) 3D surface of the fold illustrated in
Figure 3.3b, (c) 3D surface of the polyp illustrated in Figure 3.3c.

polyps and folds. Recall that the nominal model for polyp is either spherical or
ellipsoidal, while the nominal model for fold is cylindrical [35 95]. The features
computed are: the Gaussian distribution, least square approximation of the sphere
fitting radius and error, least square approximation of the three axis of the ellipsoid
and ellipsoid fit error. In our experiments we have evaluated a large number of
features and in the final implementations we have retained only those that exhibit
maximal discrimination between polyps and folds. An automatic feature selection
technique would be difficult to be devised since the geometrical features do not re-
spond linearly to polyps having different sizes. Thus, the automatic feature selection
method was not examined as part of this study.

The Gaussian distribution which estimates the center and radius of each cluster
was calculated in the candidate surface processing (see Section 3.1.2.4). For folds the
the value of the Gaussian distribution is considerably smaller than the value of the
Gaussian distribution calculated for surfaces generated by polyps (see Figure 3.7).
Sphere fitting for each cluster was performed in two phases. Firstly, the error in
the least square sphere fitting [104, 105] was calculated using the existing Gaussian
center and the Gaussian radius of the cluster. Secondly, the cluster radius and
the center point were re-calculated using a least square sphere fitting algorithm
[104, 105]. Experimental results indicate that for spherical polyps, the Gaussian
radius and the cluster center were very close to those obtained using the least square
estimated sphere and the error in fitting is small. For folds the least square estimated
radius is higher than the Gaussian radius and the sphere fitting error is significantly

higher than the fitting error for polyps. This is illustrated in Figure 3.8 (note that
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Figure 3.7 Gaussian distribution, (a) and (b) show the Gaussian distribution for
different classes of polyps (a) and folds (b) respectively(polyps and folds classes are
sorted by size in ascending order).

polyp and fold classes are ordered by size in the diagram) where the sphere fitting
error for a large variety of polyps and folds is plotted. Experimental results also
show that the change in the fitted sphere radius for the candidate surface and the
half radius surface was significantly higher for folds when compared to polyps (see
Figure 3.9).
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Sphere Fitting Error ofpolyps and folds
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Figure 3.8: Sphere fitting error analysis, (a) and (b) represent sphere fitting error
analysis for different classes of polyps and folds respectively(polyps and folds classes
are sorted by size).

The principal axes of the fitted ellipsoid and its associated estimation error [104]
were calculated for each polyp candidate surface and its derived half radius surface.
The half radius surface voxels are determined from the existing cluster and includes
those surface voxels, which have a distance from the center of cluster to the surface
normal less than a half radius threshold (HRT). The HRT is selected in conjunction

with the Gaussian distribution value and varies from 2mm for small candidate sur-
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Figure 3.9: Change in sphere radius, (a) and (b) depict the change in sphere radius
for different classes of polyps and folds.

faces to 5mm for large candidate surfaces. The minimum value of HRT (2mm) was
experimentally selected. The Surface Change Rate (SCR) value computed using the
equation 3.1.4 is minimal for polyps (see Figure 3.10) but it is large for folds (see
Figure 3.11, 3.12),

SCR = (Nt - Nh)/Nh (3.1.4)

where NT is the number of surface voxels in the cluster and Nn is the number of
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surface voxels in the half radius surface.

It was also found that the change in the major axis direction of the fitted ellipsoid
for the candidate surface and the half radius surface was significantly higher for folds
when compared to polyps (see Figure 3.13). Similarly, change in the ellipsoid fitting
error for the candidate surface and the half radius surface was higher for folds when

compared to polyps (see Figure 3.14)

Surface Change Rate of polyps
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*==X- « Class_5 Fold

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Number of fold surface
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Figure 3.10: Surface change rate, (a) and (b) show surface change rate for different
classes of polyps and folds.
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Figure 3.11: 3D surface generation of a polyp (a) and its half radius surface (b). No
significant differences between them are noticed.

Figure 3.12: 3D surface generation of a fold (a) and its half radius surface (b). It
can be noticed a significant difference between them.

The other features that are used for classifying the candidate surface as polyps
and folds are sphere radius, change in sphere radius, principle axes of ellipsoid
fitting, change in Gaussian distribution. AIll the above mentioned features exhibit
high discrimination between polyps and folds as illustrated in Figures 3.8, 3.10, 3.13
and these features are the inputs for two different classifiers that are used to classify

the candidate surfaces into polyps and folds.

3.1.4 Classification

For polyp/fold classification a multiple-class-segregated feature normalized near-
est neighborhood (FNNN) classifier detailed in [106], Probabilistic Neural Network
(PNN) [107] were employed. To evaluate the performance ofthe FNNN classifier its
performance was compared against the performance of one of the commonly used

classification schemes, namely the PNN classifier. The FNNN classification scheme
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Figure 3.13: The change in major axis orientation, (a) and (b) display the change
in major axis orientation for different classes of polyps and folds.

consists of two stages. Firstly, the training database is created by using the features
detailed in the previous section for each class of polyps and folds. Features of each
class were normalized in order to avoid the situations where the features with the
largest values subdue the remaining ones. The feature normalization scheme was

performed in order to normalize each feature to zero mean and unit variance (see

Eq. (3.1.5) and (3.1.6))
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Figure 3.14: Change in ellipsoid fitting error, (a) and (b) display the change in the
ellipsoid fitting error for different classes of polyps and folds.

mi = ) Si = (3.1.5)

Xj[i\ —m,i )
XN\ = for j=1,....,k, *=1,...,n (3.1.6)

where n defines the number of features per pattern, m,- and »are the mean and the

variance of the ith features, Xj is the unprocessed jth pattern, k defines the num-
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ber of patterns contained in the model database and Xj represents the normalized
jth pattern. The classification stage computes the Euclidian distance between the
input patterns calculated from candidate surfaces and the patterns contained in the

database,

where X j isthe jth pattern from the model database and Y defines the pattern from
the input surface to be classified. The input is declared as polyp if the min(distj)
belongs to polyp class, otherwise declared as fold.

Probabilistic neural networks are radial basis networks suitable for a large range
of classification problems. PNN is constructed on a feed-forward architecture and
supervised training algorithm that is based on back propagation. PNN allows incre-
mental learning where new training data can be added at any time without requiring
retraining of the entire network.

The FNNN training databases consist of five polyps and five folds databases.
The polyps were classified into small spherical, medium spherical, big spherical,
elliptical, and non-spherical polyp. The fold database was also classified as small
folds, small convex surface, medium folds, large folds, tube. In Figures 3.8, 3.10
and 3.13 class-1 polyp, class-2 polyp, class-3 polyp and class-4 polyp represent small,
medium, large and elliptical polyps respectively and class.l fold, class-2 fold, classS
fold and class-4 fold represent large folds, medium size folds, small folds and small
convex surfaces respectively. ClassS polyp and class-5 fold in Figure 3.10 and 3.13
represent non spherical polyps and inserted tubes respectively. In total 64 polyps
and 155 folds were used to train the FNNN and PNN (this technique has been
developed first and it has been trained on a smaller number of false positives than
the methods discussed in sections 3.2.2 and 3.3.1). By experimentation it has been
demonstrated that the approach of segregation in polyp training by size offered
the optimal solution to increase the identification rate especially for small polyps
(< 5mm) but not at the expense of increasing the level of false positives.

The geometrical feature-based approach is only suitable for the CT data acquired
at 3.0mm slice thickness and 1.5mm reconstruction interval which is the standard
protocol used in the Mater Hospital Dublin (clinical partner). Modifications in
the reconstruction interval generate changes in the surface area for polyp candidate

surface and may alter the feature values calculated from the candidate surface.
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Hence, the geometrical feature-based technique is suitable only to be applied to CT
datasets acquired with the protocol used in the training stage. To overcome these
problems statistical feature-based methods were developed where 3D interpolations

are applied in order to generate isometric datasets.

3.2 Statistical Feature based method

The statistical feature-based method consists of five steps as illustrated in Fig-
ure 3.15. Initially the non-isometric patient data was converted to isometric data
by using cubic interpolation. Segmentation of the colon is performed using man-
ually placed seed points in conjunction with 3D region growing (6-neighbouhood)
algorithm [69]. Threshold for the region growing was set to -800HU as suggested
in 3.1.1. The voxels adjacent to the colon voxel having HU values higher than -800
define the colon wall. Polyp candidate generation includes the application of Hough
Transform, 3D Histogram, smoothing of the HP space, initial center point calcula-
tion, clustering of the colonic voxels and candidate surface processing. The Hough
Transform used to generate the candidate surfaces is similar to the method discussed
in the section 3.1.2.1. In this step each surface voxel creates 8 HP in normal direc-
tion from 2mm to 10mm. The 3D histogram creation and smoothing is similar with
the procedure described in section 3.1.2.2. Initial center points were derived using
the non-maximum suppression discussed in 3.1.2.3. Last step of polyp candidate
generation is the candidate surface processing which includes the Gaussian center

and radius detection and a surface convexity test.

Figure 3.15: Statistical feature-based algorithm for polyp detection.
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3.2.1 Candidate Surface Processing

To remove the non-convex surface points from the initial cluster, the Candidate
Surface Processing calculates the Gaussian mapping on each cluster to calculate the
Gaussian center and radius as discussed in Section 3.1.2.4.

To remove the non convex surface points from the initial cluster two different
convexity tests were performed on the initial cluster.

1. The first step involves the convexity test described in Section 3.1.2.4. In this
method, a non-convex surface point S will be removed from the cluster if the dot
product (< SQ,n >) is less than zero, where n is the normal vector.

2. The second step aims to further refine the candidate surface and is based on
the surface convexity test proposed by Kiss et al. [94]. For each voxel pi belonging
to a cluster(VF), a bounding box B is defined. As suggested by Kiss et al. [94]
the dimension of the bounding box was set to 4. For each voxel p2tB P| W, the
normal incidence analysis is evaluated (see Figure 3.16) and the values Vc and Vt are
computed. Vc defines the number of voxels situated in B{"\W that satisfy Tconvex,
while Vt represents the total number of voxels in B{~}W. Finally, those points (pi)
where Vc/Vt is higher than remain in the cluster while the others are removed.
Threshold values for Tconvex, Thus were experimentally set to 0.4 and 0.2 respectively

(Kiss et al. [94]).

@ ©)

Figure 3.16: Convexity test, (a) voxel p\ is convex because the intersection between
the tangent to pi and the normal vector of the neighboring voxel p2 is inside the
colon area, (b) voxelp\ isnon-convex checause the intersection between the tangent
to pi and the normal vector of the neighboring voxel p2is ot side the colon area.

After the removal of the non-convex surface voxels from the candidate surface,
each cluster was further processed to evaluate discontinuities in the candidate sur-

face. |If discontinuities exist in the candidate surface, the cluster was divided into
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multiple clusters. Figure 3.17 shows three polyp surfaces and in Figure 3.18 three

fold surfaces obtained after candidate surface processing are illustrated.

@ (b) (©

Figure 3.17: 3D surface of three polyps obtained after candidate surface processing.

@ (b) (©

Figure 3.18: 3D surface of three folds obtained after candidate surface processing.

3.2.2 Statistical features extraction

The main objective of this technique is to extract features from the candidate sur-
faces that offer the best discrimination between polyps and folds. Recall that the
polyps can be modelled as spherical or elliptical in shape whereas folds can be mod-
elled as cylindrical. Thus, most of the surface normals of the voxels associated with
a polyp surface intersect close to the center of the surface (see Figure 3.19). For
fold surfaces, the normals for surface voxels intersect along the principal axis of the
cylinder as illustrated in Figure 3.20. To differentiate polyp and fold surfaces, a
number of features are calculated from the candidate surface based on the variation
of the concentration of the surface normals with respect to the center of the surface.

In this regard, a set of statistical features were extracted from the candidate surface.
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The statistical features include standard deviation (SD) of surface variation, SD of
the three axes of the ellipsoid, SD of the sphere radius, SD of the ellipsoid fitting
error, SD of the sphere fitting error, Gaussian distribution, principal axes of the
ellipsoid and sphere radius.

@ (@) ©

Figure 3.19: Normal concentration for three polyp candidate surfaces.

@ © ©

Figure 3.20: Normal concentration for three fold candidate surfaces.

Standard deviation (SD) of the surface variation: The aim of this feature is to
evaluate the rate of surface change. In order to evaluate the standard deviation
(SD) of the rate of change for a candidate surface the number of surface voxels were
calculated at each radius starting from dmex towards the minimum radius that was
set to 1mm. The goal of this procedure is to determine how many voxels from the
candidate surfaces are situated at a particular distance with respect to the center,
this will generate the surface number sN. The eguations required to calculate the
surface number sNj for each radius are illustrated in equations 3.2.1 to 3.2.3, where
N s the number of steps required to sample the surface curvature.
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Step = (dmax —1.0)/N E.2.D)
Rj = dmax- Step Xj for j = 1,..,N, G222
SNj= J2 Voxel .29

Rj

Figures 3.21 and 3.22 illustrate the voxel distribution with respect to each radius
Rj for different classes of polyps and folds.
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Figure 3.21: Number of surface voxels for each radius (Rj) for polyp classss.

Surface analysis for fold
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Figure 3.2: Number of surface voxels for each radius (Rj) for fold classes.

From these images (see Figures 3.21 and 3.22) it can be observed that the
number of voxels for folds decrease rapidly while for polyps it s almost constant.
Thus the surface number can be used to determine the change iIn curvature and this
is best sampled by the standard deviation (SD) that is calculated as illustrated in
equations 3.2.4 to 3.2.6.
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1 N
SNjmean= - J 2 SNj (3-24)
N gmi
SN; .
SNjnarm= J for j — 1. N (3.2.5)
1 *
SNsd = - J2(SNinorm~ SN jmean)2 (3.2.6)
\' =

The discrimination offered by the standard deviation (SD) of the surface variation
for different classes of polyps and folds is depicted in Fig. 3.23. It can be observed

that this feature is quite effective in discriminating polyps from all types of folds.
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Figure 3.23: Standard deviation of the surface variation, (a) and (b) show the SD
of the surface change for different classes of polyps and folds respectively (classes
are sorted in ascending order with respect to the size of the polyps/folds).

SD of the three axes of the ellipsoid: changes in the radius Rj for each candidate

surface from 1 to N in equations 3.2.1 to 3.2.3 create N surfaces for each radius Rj.
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Let PCSj be the N number of surfaces for a polyp candidate surface PCS1 (where
i varies from 1 to the number of candidate surface in the dataset). Least square
ellipsoid fitting [104, 105] was employed on each PCSj (where j varies from 1 to N)
surface to calculate the three axes of the ellipsoid. Then the SD of the three axes of
the ellipsoid for each P C S1surface are calculated using the equations 3.2.4 to 3.2.6.
The discrimination offered by the standard deviation (SD) of the three axes of the
ellipsoid for different classes of polyps and folds is depicted in Figures 3.24, 3.25
and 3.26. It can be observed that this feature is effective in discriminating polyps

from all types of folds.
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Figure 3.24: Standard deviation of the major axis of ellipsoid fitting, (a) and (b)

show the SD of the major axis of different classes of polyps and folds (classes are
sorted in ascending order with respect to the size of the polyps/folds).

Similarly, the SD of ellipsoid fitting error, SD of sphere radius and SD of sphere

fitting error were calculated for each candidate surface. Figure 3.27 illustrates the
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Figure 3.25: Standard deviation of the second axis of ellipsoid fitting, (a) and (b)
show the SD of the second axis of different classes of polyps and folds respectively.

SD of ellipsoid fitting error for different classes of polyps and folds. This feature
offers good discrimination between fold and polyp candidate surfaces. Figures 3.28
and 3.29 depict the plot of the SD of the sphere radius and sphere fitting error for
polyp and fold surfaces. It can be observed that both SD of the sphere radius and
sphere fitting error show effective discrimination between polyp and fold surfaces.
The other features that are used in this method are the Gaussian distribution,
length of the ellipsoid major axis and sphere radius. All the above mentioned fea-
tures were input for the FNNN and PNN classifiers discussed in Section 3.1.4. The
FNNN training databases consist of four polyps and four folds databases. The
polyps used for training were segregated into small spherical, medium spherical,
big spherical, non-spherical polyp. The fold database was also divided into small

folds, medium folds, large folds and convex surfaces. In Figures 3.24, 3.25, 3.26,
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Figure 3.26: Standard deviation (SD) of the third axis of ellipsoid fitting, (a) and
(b) show the SD of the third axis of different classes of polyps and folds respectively.

3.27, 3.28, 3.29 class-1 polyp, class™2 polyp, class-3 polyp and class-4 P°lyP represent
small, medium, large and non-spherical polyps respectively and class-1 fold, class-2
fold, class-3 fold and class-4 fold represent large folds, medium size folds, small folds
and small convex surface respectively. In total 67 polyps and 348 folds were used to

train the FNNN and PNN classifiers.

3.3 3dB Feature-based approach

The geometrical feature-based approach discussed in the previous section employed
least square approximation (ellipsoid, spherical) for analysis of the geometrical shape
ofthe candidate surface in order to extract the features used for polyp and fold classi-

fication. The statistical feature-based approach also used least square approximation
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Figure 3.27: Standard deviation (SD) of the ellipsoid fitting error, (a) and (b)
show the SD of the ellipsoid fitting error for different classes of polyps and folds
respectively (classes are sorted in ascending order with respect to the size of the
polyps/folds).

(ellipsoid, sphere) for calculating the statistical feature for candidate polyp surface.
The least square approximation is a maximum likelihood estimator and tries to find
the fitted parameter from a particular data set. The least square approximation
performs poorly when the data is sparse or noisy. To avoid the problems associated
with the least square approximation, the 3dB feature-based method evaluates the
geometry of the local colon surfaces by analysing the variation in the candidate sur-
face. The proposed method consists of five steps similar to the statistical feature
based method outlined in Figure 3.15. The steps of the algorithm including data
interpolation, colon segmentation, polyp candidate surface generation used in the

development of the 3dB feature-based are discussed in detail in Section 3.2.1. After
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Figure 3.28: Standard deviation (SD) of the sphere radius of polyp and fold surfaces,
(a) and (b) show the SD of the sphere radius for different classes of polyps and folds
respectively.

candidate surface generation the features that are calculated for classification are
the maximum distance from the cluster center to the surface normal, the standard
deviation (SD) of the surface variation, the 3-decibel (dB) attenuation point on the
surface change curve and the surface number concentration. In the remainder of
this section these features will be presented in detail.

Standard deviation (SD) of the surface variation: The aim of this feature is to
evaluate the rate of surface change and its calculation is discussed in Section 3.2.2.

Maximum distance calculation: The maximum distance between the center of
the candidate surface and the normal vectors of the candidate surface shows a good
discriminative power in separating spherical surfaces from cylindrical surfaces. In

this regard, the maximal distance should be significantly higher if the candidate sur-
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Figure 3.29: Standard deviation (SD) of the sphere fitting error for polyp and fold
surfaces, (a) and (b) show the SD of the sphere fitting error for different classes of
polyps and folds respectively.

face belongs to a fold class than in cases when they belong to a polyp class. This can
be observed in Figure 3.30. where the maximum distance dmex is plotted for differ-
ent classes of polyps and folds. From Figure 3.30 it can be noticed that this feature
is effective in discriminating small/medium polyps (< 10rmn) when compared to
folds. The maximum distance dmax does not provide optimal discrimination when
the size of the polyp is higher than 10mm (see the plot for class polyp 3 in Figure
3.30).

The 3dB attenuation point on surface change curve: The 3dB point refers to the
number of steps required by the SNj to reach the 3 dB (3dB = SNj/y/2) fall
in the total voxel count of the candidate surface. The number of steps required to

reach the 3dB point is generally higher for polyps than for folds and this is illustrated
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Figure 3.30: Maximum distance dmax for different classes of polyps and folds (classes
are sorted in ascending order with respect to the size of the polyps/ folds)
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Figure 3.31: The number of steps required in reaching the 3dB point on surface
change for different classes of polyps and folds.

in Figure 3.31. This feature is useful in discriminating small and medium polyps
from all types of folds.

Surface normal concentration: Recall that for each colon wall voxel 8 HP’s were
created along the direction of the normal vector from 2.0mm to 10.0mm and the
Gaussian distribution has been used to determine the surface center. The normal
concentration is given by the number of surface points that generate intersections
within 1.25mm from the calculated surface center. As the shape of polyps resem-
bles a spherical surface it is expected that the surface normal concentration to be
higher than that calculated for folds (see Figure 3.32). In Figure 3.32 it can be
observed that the surface normal concentration offers a good discrimination between

large polyps (> 10mm) and all types of folds. This is very useful as the features
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Figure 3.32: Surface normal concentration for different classes of polyps and folds.

discussed before were able to discriminate robustly only small/medium polyps while

the discrimination for large polyps was less pronounced.

3.3.1 Polyp/fold classification

To classify the candidate surface into polyps or folds, the calculated features are
the inputs for three different classifiers named FNNN, PNN and Support Vector
Machines (SVM). The FNNN and PNN classifiers are discussed in Section 3.1.4.
The Support Vector Machines (SVMs)[108, 109, 110] are powerful tools for data
classification. For classification purposes, SVMs find a hypersurface in the space
of possible inputs. The hypersurface is generated by the border between positive
and negative samples contained in the training set and the classification results are
less accurate if the patterns associated with the test data are positioned close to
the boundary of the hypersurface. There are several kernels developed for creating
different types of hypersurfaces while the linear, radial basis, polynomial and sigmoid
are most common SVM Kkernels used for classification. For instance, if a training set
of instance-label pairs are (Xi,yi), i = 1,...,1 where XieRn and ye(1, —I)1 the SVM
kernel is: K (xi,xj) = (J)(xi)T<p(xj). The four basic kernels mentioned above can be

constructed as follows:
e linear: K(xi,xj) =xfxj
e polynomial: K(xi,xj)= (xfxj + r)d, 7 > 0.

e radial basis function (RBF):if(a;i,Xj) = exp(—7 || Xi —Xj [|]2),7 > 0.
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e sigmoid: K(xi,xj)= tanh”xfxj + r).

The implementation software of the SVM was developed by Gunn [109] and the
code was written in MATLAB. The SVM classifier was used to show the robustness
of the features calculated from the polyp candidate surface in a non-linear feature
space and to provide indicative results for CAD-CTC. For the developed CAD-CTC
system the 5-th order polynomial kernel was employed for SVM classification. The
training set consists of 81 polyps and 348 folds. The same training data was used
to train the PNN and FNNN classifiers.

In the next chapter, the construction of a synthetic phantom and the generation
of CT test data (standard and low dose) is provided. The development of a syn-
thetic phantom was an important objective of this research because allowed us to

investigate the following problems:

e Exposure to the ionizing radiation does not allow the patients to be scanned
successively. Thus, the construction of a synthetic phantom was necessary
in order to generate test data where the phantom was scanned in different
positions. This CT data can be used to evaluate whether the results returned
by the CAD-CTC systems are repeatable with respect to the polyp detection,

in CAD-CTC

e Evaluate the influence of noise in low-dose on the overall performance of the

CAD-CTC

e« Detection of optimum scanning parameters that can be used to generate the

low-dose CT data feasible to be used by the CAD-CTC systems

e Development of standard testing datsets that can be used in the development

phase of the CAD-CTC.
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The major concern associated with CTC is the fact that the patients are subjected
to high level of ionising radiation. The medical literature indicates that the effective
dose used for CTC varies from 5 to 20 mSv [32, 47, 48, 49, 50, 111] and this
radiation level may result in a 0.05% risk forinducing cancer in patients older than 50
years [112]. Brenner et al. [112] study indicates that the incidence of induced cancer
isin direct relation to the effective radiation dose (see Figure-4.1) and the cancer risk
increases with decreasing age [113]. In this regard, Cohen [114] shows that the risk
of inducing cancer in patients is significantly lowered when they are subjected to low-
level radiation exposure and an important number of studies are dedicated to identify
the minimal level of radiation dose that can be feasibly used in CTC [111, 115,
116, 117, 118]. The identification of the optimal scanning parameters (collimation,
slice thickness, table speed, reconstruction interval) is a difficult problem and this
procedure is applied on synthetic phantoms that are designed to accurately model
the human body [119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], In
this sense, Beaulieu et al. [119] used spherical plastic beads to model polyps while
Dachman et al. [120] created false polyps in a pig colon by puckering the mucosa
of the colon. Their studies focused on finding the imaging effect of collimation,
tube current (pitch) and orientation when they analysed different sizes and types of
polyps. Similar studies were performed by Taylor et al. [121] and Springer et al. [122],
W hithing et al. [123] used a different approach and in order to evaluate the artefacts
generated by the collimation and the tube current they constructed an air filled
acrylic cylinder were synthetic polyps of different sizes were attached on the inner
side of the acrylic tube. Laghi et al. [126] and Embleton et al. [127] used synthetic
and pig colons and their tests indicate that a collimation of 4 x 2.5 to 1.25mm

reconstruction interval, tube current of 40 mAs are satisfactory parameters to be
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used for clinical CTC examinations. Ozgun et al. [128] used latex material to build
phantom polyps having dimensions ranging from 1mm to 10mm. Their tests were
focused on finding the minimal tube current that allows the detection of polyps
larger than 5mm. They reported that the detection of all types of polyps larger

than 5mm is feasible only at current tubes in the range 60mAs to I0OmAs.
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Figure 4.1: Breakdown by cancer type, (a) and (b) show the lifetime attributable
cancer mortality risks as a function of age at a single acute radiation exposure for
females (a) and males (b) as estimated by the National Academy of Sciences BEIR
V (Biological Effects of lonizing Radiations) committee [113].

The aim of this chapter is to study the effect of all scanning parameters (mAs,

slice thickness, reconstruction interval, field of view, table speed) using a novel
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synthetic phantom. The phantom has been specifically designed for CAD-CTG
to simulate colon polyps with different shapes (pedunculated, sessile and flat) and
sizes (3 to 18mm). In this studies the data is evaluated using a developed automated
CAD-GTC system in order to determine the influence of the scanning parameters
on polyp detection. A special emphasis of this study is placed on determining the
minimal radiation dose that allows robust identification of colonic polyps but not at

the expense of reduced sensitivity in polyp detection.

4.1 Materials and Methods
4.1.1 Phantom design

A synthetic phantom was constructed using a PVC tube, two acrylic tubes, two
plastic plates and latex material to emulate the colon wall, polyps and folds. The
external PVC tube is 230mm long with a diameter of 300mm. Acrylic tubes are
235mm long and the dimensions of the inner and outer diameters are 40mm and
50mm respectively. Hounsfield Unit (HU) values of the PVC tube, acrylic tubes
and plastic plates are 1500, 100, 90 respectively. The construction of the synthetic

phantom is illustrated in Figure 4.2.

@ ©

Figure 4.2: Synthetic colon phantom, (a) Longitudinal view, (b) Transversal view.

The polyp inserts for phantom were made by latex material having a HU value of
-95. We have chosen to use latex as this material allows us to generate very realistic

shapes (pedunculated, sessile, flat, flat-depressed) for polyps and folds as illustrated
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in Figure 4.3. In addition the HU values associated with the latex material approx-
imate well the HU values of the colon wall (~10HU). In CTC the large difference
between the HU values associated with the air voxels (-1000HU) and the HU values
of the colon tissue is evaluated to identify the surface of the colon wall. The model
for polyps was made from clay and liquid latex was poured onto the model to create
the latex polyp inserts (see Figure 4.3). To make the surface of the latex sheet
more realistic the thickness of the sheet was made uneven. We have created two
sheets of latex containing 48 polyps having different sizes (7 flat polyps, 2 depressed
flat polyps, 15 non-spherical polyps, 2 pedunculated polyps, 22 spherical/elliptical
polyps) and 6 haustral folds. In Figure 4.4 several 3D views of some representative

synthetic polyps are depicted.

4.1.2 Image acquisition

The developed phantom described in Section 2.1 was scanned using a 16-slice Siemens
Somatom Sensation CT scanner in the M ater Hospital, Dublin, Ireland. The phan-
tom has been scanned in longitudinal (phantom was placed parallel to the CT scan-
ner bed) and transversal directions, where the scanning parameters (slice thickness,
field of view, table speed, reconstruction interval and mAs) were varied. All scans
were performed at 120kVp and 1.5mm x 16 collimation. It is useful to note that
the effective radiation dose is influenced by the value of the tube voltage but its
relationship with image quality, tissue contrast and image noise is complex and the
effect of this parameter would be difficult to be evaluated. Therefore, in this exper-
iments the value of this parameter is maintained constant (120 kVp) and another
reason is the fact that this is the standard value of the tube voltage used in clinical
examinations. The scanner used in to generate the CT data allows the possibility to
adjust the value of collimation to 0.75mm but the value of collimation was fixed at
1,5mm in order to reduce the radiation dose. In this regard, a CT scan performed
with 1.5mm collimation and 3mm slice thickness will result in an energy imparted of
7.0mSv while the energy imparted for a CT scan with 0.75mm collimation and 3mm
slice thickness is 7.8mSv which is to high to be used safely in clinical studies. The
smoothing reconstruction filter used was the B30 filter [131] and this filter has been
employed based on its optimal performance in data smoothing and noise removal
(this is the filter used in most clinical studies for abdominal CT scans).

In conjunction with our clinical partners from M ater Hospital we have chosen

69



Chapter 4 Phantom

@
9
# » . Sphsrical
A \ Flat
/
P»dunculjtad
C»
Spherical
4-—-Fat
am
Hal
/ \
_ Non n
Spherical
(b)

Figure 4.3: Latex sheet with various types of polyps and folds.

the following spread of parameters: field of view: 325 and 360mm, table speed: 20
to 30 mm/rotation, slice thickness of 2 and 3mm and mAs: 100, 80, 70, 60, 50, 40,
30, 20 and 13 (13 mAs is the minimum value that can be set for Siemens Somatom
Sensation CT scanner used in these experiments). These scanning parameters have

been divided into six protocols as follows:

e Protocol 1: Collimation 1.5 x 16mm, slice thickness 3mm, reconstruction in-
terval 1.5mm, field of view 325mm, table speed 30mm/rotation, mAs: 100,
80, 70, 60, 50, 40, 30, 20 and 13. This protocol was used to identify the effect

of radiation dose and scan orientation (longitudinal and transversal scans) on
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Figure 4.4: 3D longitudinal views of the synthetic polyps made from latex.

the performance of the developed automatic CAD-CTC system.

e Protocol 2: Collimation 1.5 x 16mm, slice thickness 3mm, reconstruction in-
terval 1.5mm, field of view 360mm, table speed 30mm/rotation, mAs: 50, 30,
20 and 13. This protocol was employed to evaluate the influence of the field

of view and the variation of the radiation dose.

e Protocol 3: Collimation 1.5 x 16mm, slice thickness 3mm, reconstruction in-
terval Imm, field of view 325mm, table speed 30mm/rotation, mAs: 100, 80,
70, 60, 50, 40, 30, 20 and 13. This protocol was used to analyse the effect of

the reconstruction interval and the radiation dose.

e Protocol 4: Collimation 1.5 x 16mm, slice thickness 2mm, reconstruction in-
terval Imm, field of view 325mm, table speed 30mm/rotation, mAs: 100, 50,
40, 30, 20 and 13. This protocol was used to generate CT data where the

effect of the slice thickness and the radiation dose is analysed.
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e Protocol 5: Collimation 1.5 x 16mm, slice thickness 2mm, reconstruction in-
terval 0.8mm, field of view 325mm, table speed 30mm/rotation, mAs: 100, 50,
40, 30, 20 and 13. This protocol was employed to analyse the joint effect of

the slice thickness, reconstruction interval and radiation dose.

e Protocol 6: Collimation 1.5 x 16mm, slice thickness 3mm, reconstruction in-
terval 1.5mm, field of view 325mm, table speed 20mm/rotation, mAs: 100,
50, 40, 30 and 20. This protocol was used to find the effect of table speed at

different radiation doses.

With a multi-slice CT scanner, the selection of the (reconstructed) slice width is
independent of patient dose, being solely reliant on collimation selected. Therefore
if the collimation remains the same, the selection of a 5mm slice width will generate
the same radiation dose as a 3mm slice thickness. It has been found that the Siemens
Somatom Sensation 16 slice CT scanner shows similar imparted radiation dose for
both 3mm and 5mm (7mSv for both 3mm and 5mm at IOOmAs). Thus, it has been
decided to ignore the 4mm, 5mm slice thickness in this study since these settings

will have virtually no effect on the imparted radiation dose received by the patients.

As already explained, for Siemens Somatom multi-slice CT scanner the variation
in the table speed is possible, but by increasing the table speed (reduce the duration
of the CT scan) does not vary the patient dose, as this scanner utilises the "effec-
tive tube current” model where the mAs is kept constant throughout (a variation
in scanning time results in a concomitant variation in mAs). In this study, the ta-
ble speed has been varied to evaluate the influence of the motion artefacts on the
performance of the CAD-CTC. Thus, only the 30mm/rotation and 20mm/rotation

table speeds were chosen to use in this study.

As mentioned earlier, a collimation of 1.5mm was used for two reasons. Firstly
because this setting is recognised as adequate to detect clinically significant colonic
polyps (5mm and greater). Secondly while a 0.75 collimation was possible with the
Siemens scanner, this setting generates a markedly increased patient dose. A 1.5mm
collimation, with 3mm slice width results in a scan time of 10.2sec and an imparted
energy of 7.0mSv. The 0.75mm collimation setting with a 3mm slice results in a scan

time of 20.14sec and an associated imparted energy of 7.8mSv. This was deemed
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to be unacceptable as this radiation dose is too high to be used safely in clinical

examinations.

4.1.3 Characterisation of phantom CT data

The method applied for feature detection for phantom polyp is the method based
on the statistical features that is discussed in Chapter 3.2. The statistical features
include the standard deviation (SD) of surface variation, SD of the three axes of the
ellipsoid, SD of the sphere radius, SD of the ellipsoid fitting error, SD of the sphere
fitting error, Gaussian distribution, principal axes of the ellipsoid and sphere radius.
In this section we evaluate the statistical features for phantom polyps, real polys
and folds in order to illustrate the fact that the phantom polyps emulate closely the
polyps encountered in clinical studies. Figure 4.5 shows the standard deviation of
the surface variation for 45 phantom polyps (14 polyps > 10mm, 20 polyps between
[5— 10)mm, 5 polyps < 5mm and 6 flat polyps) and 41 real patient polyps and
274 folds with different sizes. The SDs of surface variation for phantom polyps are
placed close to those of the real polyps. Similarly, the features: SD of major axis,
SD of ellipsoid error, SD of sphere radius and SD of sphere error for phantom exhibit

similar characteristics with the real polyps as illustrated in Figures 4.6 to Figure 4.9.

Standard deviation of surface change curve for polyp and folds

— ¢— Phantom Polyps

— m— Real Polyps

mmw*"m Fold Class_|
Fold Class_2
Fold Class_3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Number of candidate surface

Figure 4.5: Standard deviation of the surface variation for phantom polyps, real
polyps and folds.
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Standard deviation of major axis for polyps and folds
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Figure 4.6: Standard deviation of the major axis of ellipsoid fitting for phantom
polyps, real polyps and folds.

Standard deviation of ellipsoid error for polyps and folds

Number of candidate surface

Figure 4.7: Standard deviation (SD) of the ellipsoid fitting error for phantom polyps,
real polyps and folds.

4.2 CAD-CTC polyp detection algorithm

The method applied for automatic polyp detection in phantom data was the statis-

tical feature based method discussed in Chapter 3.2.
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Figure 4.8: Standard deviation (SD) of the sphere radius for phantom polyps, real
polyps and folds.
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Figure 4.9: Standard deviation (SD) of the sphere fitting error for phantom polyps,
real polyps and folds.

4.3 Experiments and results

The aim of this section is to evaluate the influence of the scanning parameters on
the overall polyp detection results in CAD-CTC systems. In order to evaluate this,
the synthetic phantom detailed in Section 2 has been scanned and a total of 46 CT
datasets have been acquired using the six protocols mentioned in Section 4.1.2.
When the CAD-CTC system has been applied to CT data acquired using the
Protocol 1, the results indicate that 100% sensitivity has been achieved for polyps
larger than 10mm in both longitudinal and transversal positions for all radiation

levels (100 to 13 mAs). For medium size polyps (5mm to 10mm) the sensitivity was
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100% in all cases but 20 and 30 mAs, where the sensitivity rate was 95%. The re-
duction in sensitivity was caused by the undetected polyp illustrated in Figure 4.10a
which was situated close to the end plates. The sensitivity in polyp detection when
the CAD-CTC algorithm was applied to CT data acquired using the Protocol 1 is

illustrated in Figure 4.11.

@ (@)

Figure 4.10: (a) Polyp undetected by the CAD-CTC algorithm when the CT data
was acquired using the Protocols 1, 3 and 6. (b) Polyp undetected by the CAD-CTC
algorithm when the data was acquired using the Protocols 2, 4 and 5.

The sensitivity of the CAD-CTC technique when applied to CT phantom data
acquired using the Protocol 2 is 100% for polyps larger than 10mm. The sensitivity
for medium size polyps (5 to 10 mm) dropped to 95% when the phantom was scanned
with 30, 20 and 13 mAs. There was only one polyp undetected for data acquired
with this protocol and it is illustrated in Figure 4.10b.

For CT data acquired using the Protocol 3, the polyp detection for all scans show
100% sensitivity except the case when the phantom has been scanned with 30mAs.
The polyp undetected is illustrated in Figure 4b. The polyp detection sensitivity
when the scans were performed using the Protocol 4 is 100% for polyps larger than
10mm for all radiation doses except IOOmAs. The sensitivity in polyp detection for
medium size polyps is also 100% except in the case where the phantom has been
scanned with 30mAs when the sensitivity dropped to 95%. The polyp missed by
the CAD-CTC system is illustrated in Figure 4a. The sensitivity in polyp detection
obtained when the CAD-CTC system was applied to CT data scanned using the
Protocol 5 is lower than the sensitivity obtained when the Protocols 1 to 4 were

employed. The reason for this is that no interpolation was applied to obtain an
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Table 4.1: Results of the automated polyp detection for Protocol-1 ( Collimation:
1.5x 16(mm), Slice Thickness: 3mm, Reconstruction Interval: 1.5mm, Field of view:
325mm, Table Speed: 30mm/rotation.

Protocol Direction mAs Sensitivity (%) FP

Large: Medium :Small: Flat: Total:

U 20 5 9 48
1 Long 100 14(100) 20(100) 5(100) 4(44.4) 43(89.9; 1
1 Long 80 14(100) 20(100) 5(100) 5(55) 44(91.7) 2
1 Long 70 14(100) 20(100) 5(100) 5(55) 44(91.7; 2
1 Long 60 14(100) 20(100) 5(100) 5(55) 44(91.7; 2
1 Long 50 14(100) 20(100) 5(100) 5(55) 44(91.7; 1
1 Long 40 14(100) 20(100) 5(100) 4(44.4) 43(89.9; 1
1 Long 30 14(100) 19(95) 5(100) 5(55) 43(89.9; 2
1 Long 20 14(100) 19(95) 5(100) 4(44.4) 42(87.5; 2
1 Long 13 14(100) 20(100) 5(100) 4(44.4) 43(89.9; 3
1 Tran 100 14(100) 20(100) 5(100) 2(22.2) 41(85.4; 3
1 Tran 60 14(100) 20(100) 5(100) 3(33.3) 42(87.5; 5
1 Tran 50 14(100) 19(95) 5(100) 2(22.2) 40(83.3; 4
1 Tran 40 14(100) 20(100) 5(100) 2(22.2) 41(85.4; 4
1 Tran 30 14(100) 19(95) 5(100) 2(22.2) 40(83.3; 4
1 Tran 20 14(100) 19(95) 5(100) 3(33.3) 41(85.5; 4
1 Tran 13 14(100) 20(100) 5(100) 3(33.3) 42(87.5] 4

isometric dataset as the reconstruction interval is 0.8mm and the voxel resolution is
almost the same in all directions (the lower performance of the CAD-CTC system
when applied to datasets acquired using the Protocol 5 is justified since the classifier
is trained only with interpolated data). Sensitivity achieved for polyp detection
when the CAD-CTC algorithm has been applied to CT data obtained using the
Protocol 6 is 100% for all radiation doses except the case when the data is scanned
with 20 mAs. The polyp missed by the polyp detection algorithm is illustrated in
Figure 4.10a. Results of the automated polyp detection for all 46 scans used in
these experiments are depicted in Figures 4.11 to 4.16. It is useful to note that the
overall sensitivity achieved by the developed CAD-CTC system is lowered by the
inclusion of flat polyps. The sensitivity rate for flat polyps is between 22% to 55%
and the developed method has not been designed to detect this class of colorectal
polyps. The flat polyps have distinct shapes and their identification should be
approached by a CAD-CTC system that is specifically designed to deal with this

type of polyps [132],
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Sensitivity of Polyp Detection for Protocol-1 Longitudinal CT data
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Figure 4.11: Sensitivity of the polyp detection algorithm when applied to CT data
(Protocol-1: Collimation 1.5 x 16mm, slice thickness 3mm, reconstruction interval
1.5mm, field of view 325mm, table speed 30mm/rotation) acquired at different ra-
diation doses, (a) and (b) show the sensitivities for Protocol-1 longitudinal and
transversal CT data respectively.

4.3.1 Effect of slice thickness, reconstruction interval and
table speed

To analyse the effect of slice thickness and reconstruction interval, the synthetic
phantom has been scanned using protocols where these parameters are varied (Pro-
tocols 1,3,4 and 5). An important step preceding the application of the CAD-CTC
algorithm is data interpolation. AIll CT datasets were interpolated in order to make
them isometric except cases when the phantom was scanned using the Protocol 5.

The CT data obtained using the Protocol 5 was not interpolated as the voxel resolu-
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Figure 4.12: Sensitivity of the polyp detection algorithm when applied to Protocol-2
CT data.

Sensitivity of Polyp Detection for Protocol-3 CT data
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Figure 4.13: Sensitivity of the polyp detection algorithm when applied to Protocol-3
CT data.

tion is almost similar in all directions (voxel width and height: 0.7mm, voxel depth:
0.8mm). The experimental results indicate that the performance of the CAD-CTC
algorithm is virtually unchanged when it is applied to CT data acquired using the
Protocols 1,3 and 4. The results obtained when the algorithm has been applied
to data acquired using the Protocol 5 were worse than those obtained when the
algorithm was applied to CT data obtained using other protocols. This has been
generated by the fact that data interpolation has a smoothing effect on the 3D mor-
phology of the colon wall and another important factor is that the classifier was
trained only with interpolated data.

The field of view was set to 360mm for Protocol 2 and to 325mm for other
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Sensitivity of Polyp Detection for Protocol-4 CT data
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Figure 4.14: Sensitivity of the polyp detection algorithm when applied to Protocol-4
CT data.

Sensitivity of Polyp Detection for Protocol-5 CT data
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Figure 4.15: Sensitivity of the polyp detection algorithm when applied to Protocol-5
CT data.

protocols. The experimental data indicates that the field of view does not have a
significant impact on the performance of the automated polyp detection algorithm.

Another parameter of interest is the table speed. To evaluate the influence
of this parameter on the overall polyp detection results, we set this parameter
to 20mm/rotation for Protocol 6 and 30 mm/rotation for Protocols 1 to 5 At
30mm/rotation and 20mm/rotation table speeds the energy imparted is 7.0mSv
at IOOmAs. This parameter has a negligible effect on the radiation dose since the
Siemens scanner used in these experiments utilises the "effective tube current” model
where a variation in the scan time (the lower the scan time the higher the table speed)

implies a concomitant variation in the tube current. For Siemens Somatom 16 slice
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Figure 4.16: Sensitivity of the polyp detection algorithm when applied to Protocol-6
CT data.

CT scanner the lowest mAs that can be set at 20mm/rotation table speed is 20mAs
whereas for 30mm/rotation table speed the lowest mAs is 13. This parameter was
varied to evaluate only the effect of the motion artefacts and the experimental re-
sults indicate that the table speed has a marginal effect on the overall performance
of the developed CAD-CTC system. Small benefits have been observed when the
algorithm has been applied to the detection of small (not clinically significant) and

flat polyps.

4.3.1.1 Level of noise and the radiation dose

In this element of the study another aim was to evaluate the correlation between the
image noise and the radiation dose. In this regard five circular regions of interest
(ROIs) were selected with a radius of 20 voxels that are evaluated for 3 consecutive
slices (see Figure 4.17). Since the data is homogenous (the phantom is filled with
water) the level of noise can be accurately sampled by calculating the standard
deviation (SD) of the voxel distribution within the circular region of interest.

For CT data scanned using the Protocols 1 and 3 the SD increased with a factor
of 2.67 (SD = 26.59 for IOOmAs and SD = 70.95 for 13mAs) when the scan was
performed at 13mAs when compared to the case when the phantom was scanned
with IOOmAs radiation dose. The relation between the noise level and the radiation

dose is illustrated in Figure 4.18.
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Figure 4.17: Five regions of interests located on the phantom to evaluate the noise
level.

Noise in CT data at different radiation dose

Protocol-1
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mAs

Figure 4.18: The relationship between noise level and the radiation dose.

4.4 Discussion and Conclusion

The experimental data presented in this chapter is obtained by scanning the syn-
thetic phantom described in Section 4.1. Although the phantom was designed to
emulate as closely as possible the real clinical conditions it is worth noting that the
synthetic data is not affected by factors such as motion artefacts (caused by breath-
ing) or the presence of residual material such as fluid and stool that are currently
experienced when analysing real patient data. One of the main aims of this investi-
gation was the development of a study environment that allows us to determine the
influence of the scanning parameters on the performance of the polyp detection al-
gorithm. Currently, the performance of the existing CAD-CTC systems is evaluated

on real patient data that is supplied by different research organizations that are not
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available for computer vision community. Therefore the absence of standard test
data makes the performance evaluation of these systems restricted to the scenario
they were tested. Thus, another important merit of this investigation is the genera-
tion of ground truth synthetic data that can be used to test all developed systems in
the same conditions. For comparison purposes the phantom data are made available
on request from the following web page: http://www.eeng.dcu.ie/~whelanp/cadctc.
Typical size of a CT dataset is in the range (70-125MB). It is useful to note that
recently the Walter Reed Army Medical Center (WRAMC) database has been made
available to the research community which will help the evaluation of the developed
CAD-CTC systems but the main advantage of using synthetic data is the generation
of unambiguous ground truth data (requires no validation by radiologists) that can
be used especially in the development phase of the CAD-CTC systems.

The developed CAD-CTC system indicates that automated polyp detection is
feasible even at radiation doses as low as 13mAs. The sensitivity rate in polyp de-
tection achieved by the developed CAD-CTC system is always higher than 90% for
polyps larger than 5mm and the overall sensitivity for all types of polyps is higher
than 80%. The sensitivity rate would be even higher as the developed method has
not been trained for the detection of flat polyps. For the flat polyps the achieved
sensitivity is in the range 22% to 55%. In these experiments one polyp (see Fig-
ure 4.10a) has been placed closed to the outer plastic plates of the phantom and at
low radiation doses the image noise joined the surface of the polyp with the surface
of the plastic plate and the classifier assigned this surface to be part of a fold. It is
worth mentioning that this situation will not appear in clinical studies.

The main merit of this research work is the development of a realistic phantom
that closely simulates the situations encountered in real clinical studies. Thus, the
main emphasis was placed on evaluating the influence of the scanning parameters on
the performance of the automated polyp detection. From these parameters attention
was focused on the radiation dose, as the main concern regarding CT examinations
is the exposure of the patients to ionizing radiation. Recent studies demonstrated
that CT which accounts for 4% of the medical radiographic examinations contributes
35-40% of the cumulated radiation dose received by the patients [45]. The current
study reveals that the reduction of mAs from 100 to 13 reduced the energy imparted
from 7.0mSv to 0.92 mSv as it is illustrated in Figure 4.19.

Also another important issue addressed in this chapter is the relationship between
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Imparted energy at different radiation dose
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Figure 4.19: Radiation dose received by the patient at different mAs.

the radiation dose and the impact on the performance of the CAD-CTC polyp
detection algorithm. In this regard, experimental data indicated that the level of
image noise when the phantom was scanned with 13mAs was higher with a factor of
2.67 than in the case when the phantom was scanned with IOOmAs radiation dose.
Although the level of noise significantly increased at low radiation dose the effect on
the performance in polyp detection is minimal. The experimental data presented
in Figures 4.11 to 4.16 indicates that the sensitivity in polyp detection for polyps
larger than 5mm is always above 95%. Results also show a small increase in false
positives at 13m As but the effect on true positive detection rate is not noticeable.
The impact of the field of view and the reconstruction interval was negligible and
it was virtually eliminated by the smoothing effect of the data interpolation that is
applied to make the dataset isometric.

The main conclusion of this chapter in relation to the radiation dose is in line with
the reported results provided in a number of publications [129, 88, 121, 125, 133]
where is investigated the optimal scanning parameters. Based on our experiments
the following low-dose protocol: collimation 1.5 x 16mm, slice thickness 3mm, re-
construction interval 1.5mm, table speed 30mm/rotation, radiation dose 13mAs can
be potentially used for detection of colorectal polyps larger than 5mm in clinical
studies.

In the next chapter, experimental results of automatic polyp detection for the
developed CAD-CTC system is discussed for standard and low dose real patients

datasets, patient datasets with synthetic polyps and phantom datasets.
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The developed CAD-CTC system comprises of an algorithm for automatic colon
segmentation (see Chapter 2), three different feature extraction schemes for auto-
matic polyp detection (see Chapter 3) and an analysis of the effects of different CT
scanning parameters on the CAD-CTC using a synthetic phantom (see Chapter 4).
Experimental results of the automatic colon segmentation (Chapter 2) shows that
the method is suitable for colon surface generation for automatic polyp detection
in CAD-CTC. Based on the geometrical shape of the polyp and fold surfaces, three
different feature extraction schemes were discussed in Chapter 3. The first method,
named geometrical fitting, used the least squares approximation in conjunction with
surface normal concentration for automatic polyp detection in CAD-CTC. The sec-
ond method calculates the statistical features using the least squares approximation.
The third method employed the 3dB point on surface variation curve in conjunction
with the calculation of the standard deviation of surface variation and surface nor-
mal concentration. In this chapter, the performance of the above mentioned polyp
detection techniques will be analysed in detail. For clarity purposes the results were

presented in tabular and graphical forms instead of using the ROC curves.

5.1 Results of Geometrical fitting

48 patients’ (80 supine and prone) data with 120 polyps and five patients’ data with
33 synthetic generated polyps [134] of various sizes were tested using the geometrical-
driven method detailed in Section 3.1. For manual assisted colon segmentation, the
overall sensitivity of the developed technigue when applied to real patient CTC
data was 74.53% and the rate of false positives per dataset was 3.90 (see Table 5.1).

The sensitivity of the CAD-CTC system for polyps > 10mm was 100%, for polyps
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[5— 10mm) was 91.67% and for polyps < 5mm was 67.95%. For mass and flat
polyps the sensitivities were 90.91% and 33.33% respectively. In total 317 folds
were detected in 80 patients data (Table 5.2). When the CAD-CTC system applied
the automatic colon segmentation algorithm, the overall sensitivity was 70.75% with
3.50 false positives per dataset. The sensitivity for polyps > 10mm was 100%, for
polyps [5 — 10mm) was 91.67% and for polyps < 5mm was 62.82%. For manual
assisted segmentation, the overall sensitivity for synthetic polyps was 90.91% and
the rate of false positives was 3.6 per dataset (Table 5.3). The overall sensitivity for
polyps greater than 5mm was 100.00% and the sensitivity for polyps less than 5mm
was 66.66%. when the automated segmentation was applied the overall sensitivity
was 87.88% with 2.2 false positive per dataset. The sensitivity for polyps > 10mm,

[5—10mm) and < 5mm were 100%, 94.12% and 66.67% respectively.

Table 5.1: Performance analysis for real patient CT data

Type Number FNNN PNN

TP Manual Sens. Auto. Sens. TP Sens.
< 5mm 78 53 67.95% 62.82% 49 62.82%
[5—10)mm 24 22 91.67% 91.67% 16 66.67%
> 10mm 4 4 100% 100% 4 100%
Flat 3 1 33.33% 33.33% 1 33.33%
Mass 11 10 90.91% 72.73% 8 72.73%
Total 120 90 74.53% 70.75% 78 65%
FP 3.90 3.50 5.83

Table 5.2: Statistics for false positives

Type Number
Fold 145 45.74%
Convex Surface 112 35.33%
Residual Material 37 11.67%
Tube 23 7.25%
Total 317 -

The proposed method was also applied to the detection of polyps in phantom
data acquired using the Protocol-1 (collimation: 1.5x16mm, slice thickness: 3mm,
reconstruction interval: 1.5mm, table speed: 30mm/rotation and mAs: 100, 40, 30,
20, 13) data. It has been already mentioned in Chapter 4 that one polyp in the
phantom data was placed close to the plastic plate and at low doses the image noise

joined the surface of the polyp with the surface of the plastic plate. Since these
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Table 5.3: Performance analysis for synthetic polyp data

Type Number FNNN PNN

TP Manual Sens. Auto. Sens. TP Sens.
< 5mm 6 4 66.67% 66.67% 2 33.33%
[5— 10)mm 17 17 100% 94.12% 15 88.23%
> 10mm 9 9 100% 100% 7 77.78%
Flat 1 0 0% 0% 0 33.33%
Total 33 30 90.91% 87.88% 24 72.73%

FP 3.6 2.2 6.4

situation will not be encountered in real clinical studies, this polyp was ignored in
the evaluation of the polyp detection techniques and the total number of polyps is
47 instead of 48. The overall sensitivities for IOOmAs, 40mAs, 30mAs, 20mAs, and
13mAs phantom data were 87.23%, 87.23%, 82.98%, 87.23% and 82.98% respec-
tively. The sensitivities for polyps > 10mm were 100%, 100%, 92.86%, 100% and
92.86% for the phantom data acquired using the following radiation doses: I00mAs,
40mAs, 30mAs, 20mAs and 13mAs respectively. The sensitivity for polyps in the
range [65 — 10mm) was 100% for IOOmAs, 40mAs, 20mAs and 13mAs except the
30mAs phantom data, where it was 94.74%. The sensitivity for polyps < 5mm was

80% for IOOmMAS, 40mAs, 30mAs, 20mAs and 13mAs.

Table 5.4: Performance analysis for (IOOmAs) longitudinal phantom polyp data

Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
< 5mm 5 4 80% 3 60%
[5—10)mm 19 19 100% 18 94.74%
> 10mm 14 14 100% 13 92.86%
Flat 9 4 44.44% 2 22.22%
Total a7 41 87.23% 36 76.60%
FP 2 2

The PNN classifier was also employed to classify the candidate surfaces into
polyps or folds. The overall sensitivity for PNN classifier was 65% with 5.83 false
positive per dataset. The sensitivity for polyps > 10mm was 100%, for polyps
[5— 10mm) was 66.67% and for polyps < bmm was 62.82%. The sensitivities for
masses and flat polyps were 72.72% and 33.33% respectively. The overall sensitivity
for synthetic polyps was 72.73% and the false positive level was 6.4 per dataset

(Table 5.3). The sensitivity for polyps > 10mm and [5 — 10mm) were 77.78%
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Table 5.5: Performance analysis for low-dose (40 mAs) longitudinal phantom polyp
data

mAs Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
40 < 5mm 5 4 80% 3 60%
40 b—10)mm 19 19 100% 18 94.74%
40 > 10mm 14 14 100% 14 100%
40 Flat 9 4 44.44% 1 11.11%
Total 47 41 87.23% 36 76.60%
FP 3 4

and 88.23% respectively. The sensitivity for polyps smaller than 5mm was 33.33%.
Results of the PN N classifier are shown in Tables 5.1 5.2, 5.3, 5.4, 5.5, 5.6,5.7,5.8 and

these results demonstrate that the FNNN classifier outperforms the PN N classifier.

Table 5.6: Performance analysis for low-dose (30mAs) longitudinal phantom polyp
data

mAs Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
30 < 5mm 5 4 80% 3 60%
30 [5—10)mm 19 18 94.74% 15 78.94%
30 > 10mm 14 13 92.86% 12 85.71%
30 Flat 9 4 44.44% 1 11.11%
Total 47 39 82.98% 31 65.96%
FP 4 4

To determine whether a polyp was correctly detected by the proposed algorithm,
we compared the polyp location with the CTC reports performed by the radiologists.
Also we compared the result with the colonoscopy reports. In our tests we used both

supine and prone views for polyp detection.

5.1.1 Discussion on the performance of the Geometrical Fit-
ting Approach

The proposed CAD system for colorectal polyp detection provides high sensitivity
for medium and large polyps, while maintaining a low false positive incidence per
dataset. Also in these experiments two different classifiers were evaluated in order
to determine the optimal classification scheme that minimizes the false positive

incidence while keeping the sensitivity higher than 90% for polyps larger than 5mm.
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Table 5.7: Performance analysis for low-dose (20mAs) longitudinal phantom polyp
data

mAs Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
20 < 5mm 5 4 80% 3 60%
20 [5—10)mm 19 19 100% 16 84.21%
20 > 10mm 14 14 100% 12 85.71%
20 Flat 9 4 44.44% 2 22.22%
Total 47 41 87.23 33 70.21%
FP 4 2

Table 5.8: Performance analysis for low-dose (13mAs) longitudinal phantom polyp
data

mAs Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
13 < 5mm 5 4 80% 3 60%
13 [5—10)mm 19 19 100% 17 89.47%
13 > 10mm 14 13 92.85% 12 85.71%
13 Flat 9 3 33.33% 2 22.22%
Total 47 39 82.98% 34 72.34%
FP 3 4

The developed CAD-CTC system shows a relative low sensitivity for small polyps
(67.95%). Since the proposed CAD-CTC system used data with 3mm collimation
and 1.5mm reconstruction interval, the number of surface voxels that belong to
polyps smaller than 5mm is small, and this was the reason why the sensitivity for
small polyps was drastically reduced. Another reason for missing small polyps was
the condition where the polyp was adjacent to folds. Therefore, the features derived
from small polyps when positioned adjacent to folds show similar characteristics
as generic folds, and the classifier detected them as folds. When the CAD system
was applied to real datasets, 16% (4 out of 25) of the undetected small polyps were
placed adjacently to folds and the classifier failed to identify them correctly.

The developed CAD-CTC method presents better results for the detection of
small and medium size polyps when applied to lower resolution data (reconstruction
interval (RI) 1.5mm) compared to the high resolution CT data used to evaluate the
methods developed by Kiss et al. [96, 38] (0.8mm RI), Summers et al. [91] (1.0mm

RI), Acar et al. [39] (1.0-1.50mm RI), and Kiraly et al. [97] (1.0mm RI). Also it is
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worth mentioning that the developed CAD-CTC algorithm exhibits a remarkable
robustness to noise. To demonstrate this, the developed algorithm was applied to
low-dose phantom datasets (clinical investigations in Ireland typically use 100mAs
as a standard dose) and numerical results are depicted in Tables 5.4 to 5.8.

One particular advantage of the developed CAD-CTC system method is its low
computational overhead and more importantly it shows high sensitivity for medium
[5—10mm) and large (> 10mm) polyps while the false positive rate is maintained

at low levels.

5.2 Results of Statistical Feature Based Approach

In order to evaluate the performance of the statistical feature-based CAD-CTC
method, 50 patients’ (80 supine and prone) datasets with 127 polyps, 11 low-dose
patients datasets (13-40mAs) with 2 polyps, five patients’datasets with 33 synthetic
polyps [134], 25 WRMC patient (47 supine and prone) datasets with 54 polyps [135]
of various sizes were used for experimentation. The overall sensitivity of the polyp
detection using the FNNN classifier for real patient data was 71.65% and the false
positive level per dataset was 4.01 (Table 5.9). The sensitivity of the CAD-CTC
technique for polyps > 10mm was 100%, for polyps [5—10mm) was 92% and for
polyps < 5mm was 64.25%. The sensitivities for mass and flat polyps were 72.72%
and 66.67% respectively. In total 323 folds were detected in 80 supine and prone
real patient data (Table 5.10). 53% of the false positives were generated by folds,
14% were caused by the residual material, 27% were spurious convex surfaces and
3.41% were surfaces generated by the rectal tube. The overall sensitivity in polyp
detection using the PN N classifier for the real patient data was 61.417% (Table 5.9)
and the false positive per dataset was 2.41. The sensitivity for polyps > 10mm was
100%, for polyps [6 —10mm) was 84% and for polyps < 5mm was 58.33%. The
sensitivities for flat polyps and masses were 0% and 36.36% respectively.

The overall sensitivity of the system using the FNNN classifier when applied to
the detection of synthetic polyps was 84.85% and the rate of false positives was 2.8
per dataset (Table 5.11). The sensitivity for polyps larger than 5mm was 100.00%
and the sensitivity for polyps smaller than 5mm was 33.33%. The overall sensitivity
of the system using the PNN classifier when applied to the detection of synthetic

polyps was 84.85% (Table 5.11) with a rate of false positives of 2.8 per dataset.
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Table 5.9: Performance analysis for real polyp data

Type Number FNNN PNN
TP Sensitivity. TP  Sensitivity
< 5mm 84 54 64.28% 49 58.33%
[5— 10)mm 25 23 92% 21 84%
> 10mm 4 4 100% 4 100%
Flat 3 2 66.66% 1 0.0%
Mass 11 8 72.73% 8 36.36%
Total 127 91 71.65% 78 61.417%
FP 4.01 2.84

Table 5. O: Statistics for false positives - FNNN classifier

Type Number
Fold 174 53.87%
Convex Surface 90 27.86%
Residual Material 48 14.87%
Tube 11 3.41%
Total 323 -

The sensitivity for polyp > 5mm was 84.85%. The overall sensitivity in polyp
detection using FNNN classifier for WRMC data was 87.04% (Table 5.12) with a
false positive rate of 2.17. The sensitivities for polyps > 10mm, [5 — 10)mm and
< bmm were 100%, 90.32% and 60% respectively. The sensitivity for flat polyps was
33.33%. The WRMC patient datasets are contrast enhanced and require electronic
cleansing. Since, the proposed CAD-CTC method did not implemented the option
for electronic cleansing, the features associated with the contrast enhanced material

were ignored.

Table 5.11: Performance analysis for synthetic polyp data

Type Number FNNN PNN
TP Sensitivity TP  Sensitivity
< 5mm 6 2 33.33% 2 33.33%
[5— 10)mm 17 17 100% 17 100%
> 10mm 9 9 100% 9 100%
Flat 1 0] 0% 0] 0%
Total 33 28 84.85% 28 84.85%
FP 2.8 2.8

The developed CAD-CTC system was also evaluated on five 13mAs patient

datasets, three 30mAs patient datasets, two 20mAs patient datasets and one 40mAs
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Table 5.12: Performance analysis for WRVIC patients data

Type Number FNNN PNN

TP Sens. TP Sens.

< 5mm 5 3 60% 2 40%
[5—10)mm 31 28 90.32% 24 77.42%
> 10mm 15 15 100% 14 93.33%

Flat 3 1 33.33% 0 0%
Total 54 47 87.04% 41 74.07%

FP 2.17 1.44

patient dataset. The overall sensitivity for both the FNNN and PNN classifiers
were 50% 5.15. The sensitivity for polyps smaller than 5mm was 50%. The false
positives per dataset were 2.18 and 1.27 when the system employed the FNNN and

PNN classifiers.

Table 5.13: Performance analysis for low-dose patients data

Type Number FNNN PNN
TP Sens. TP Sens.
< 5mm 2 1 50% 1 50%
Total 2 1 50% 1 50%
FP 2.18 1.27

The average size of a typical interpolated CT dataset was 300MB for each view.
The average time required for processing each volume of data was approximately
3.60min (see Table 5.14) on a Pentium-IV 1.6 GHz processor machine with 1GB

memory.

Table 5.14: Average computation time (in seconds) for polyp detection
Candidate surface generation time 193

Feature extraction time 21.5
Classification 0.7
overall time (seconds) 215.2

5.2.1 Discussion of Statistical Features

The proposed statistical feature-based CAD system for colonic polyp detection pro-
vides high sensitivity yet maintaining a low false positive incidence per dataset. The
developed polyp detection scheme was not able to correctly classify the polyps that

are adjacent to fold or on fold, elongated and flat. Figure 5.1 illustrates a small
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polyp situated on a fold that is missed by the CAD-CTC system. Since the polyp
was adjacent to a fold surface, the candidate surface includes large parts of the fold
and the features derived from the candidate surface shows similar value as the sur-
faces generated by folds. As a result the classifier assigned the candidate surfaces as
being generated by a fold. Figure 5.1.b shows an elongated 7mm polyp which was
also missed by the developed CAD-CTC technique. Since the shape of the polyp
was elongated, the features calculated from the candidate surface have strong sim-
ilarities with those calculated from surfaces generated by folds. Figure 5.1.C shows
a flat polyp missed by the developed CAD-CTC system. The flat polyps have dis-
tinct geometrical shapes when compared to the sessile and pedunculated polyps and

the developed polyp CAD-CTC system performed poorly for the detection of flat

polyps.

@ (b) ©

Figure 5.1: Missed polyps and their 3D surfaces.

The statistical feature-based system detected 323 false positive in 80 patient
datasets. 53.87% of the false positives were generated by folds and Figure 5.2 shows
a number of surfaces that were incorrectly classified by the developed CAD-CTC
system. 14.87% of the false positives were generated by the residual material and
three surfaces (FPs) generated by residual material are illustrated in Figure 5.3. It
is useful to note that these false positives can be eliminated by applying texture
analysis [40] as they have different CT densities than the colon tissue.

The experimental data indicates that the statistical feature-based polyp detec-
tion technique shows robustness in detection of polyps when applied to low dose
data (13mAs) with a very low rate of false positives (2.18) per dataset. Another

advantage of the CAD-CTC method detailed in this section is its low computational
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Figure 5.2: Detected false positive and their 3D surfaces.

overhead and more importantly it shows high sensitivity for medium [5 — 10mm)

and large (> 10mm) polyps that are clinically significant.

5.3 Results of 3dB Feature-Based Approach

In order to evaluate the 3dB feature-based CAD-CTC technique, 50 patient (80
supine and prone) datasets with 127 polyps, 11 low-dose (13-40mAs) patient datasets
with 2 polyps, five patients datasets with 33 synthetic polyps [134], a phantom with
47 polyps and 44 WRMC patient datasets (82 supine and prone) with 78 polyps of
various sizes were used for experimentation. The overall sensitivity of the developed
technique for the FNNN classifier when applied to standard dose (IOOmAs) real
patient data was 71.65% and the false positive level per dataset was 5.15 (Table 5.15).
Sensitivity for polyps > 10mm was 100%, for polyps [65 — 10mm) was 92% and
for polyps < 5mm was 65.47%. For mass and flat polyps the sensitivities were
63.64% and 66.67% respectively. In total 408 folds were detected in 80 patients data

(Table 5.16). The overall sensitivity of the CAD-CTC method using the PNN and
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Figure 5.3: Detected residual material and their 3D surfaces.

SV M classifiers when applied to the standard dose real patient data were 67.72% and
70.08% respectively. The sensitivity for polyps > 10mm was 100% for both PNN
and SVM classifiers. The PNN and SVM classifiers show 84% and 88% sensitivities
for polyps with sizes between [5 — 10)mm. The sensitivities for polyps < 5mm ,
flat polyps and masses were 59.52%, 66.66% and 81.82% when the algorithm was
applied with PNN classifier. The sensitivity for polyps < 5mm , flat polyps and
masses were 64.29%, 66.67% and 63.64% when the algorithm was applied with SVM
classifier. The false positive rate for PNN and SVM classifiers were 4.19 and 3.58
respectively.

The overall sensitivities of the system when applied to synthetic datasets were
84.85%, 87.88% and 87.88% for FNNN, PNN and SVM classifiers (Table 5.17). The
rate of false positives was 2.8, 2.6 and 2.8 per dataset for FNNN, PNN and SVM
respectively. The sensitivity for polyps greater than 5mm was 100.00% for all three
classifiers. Sensitivities for polyps smaller than 5mm was 33.33%, 50% and 50% for

FNNN, PNN and SVM respectively.
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Table 5.15: Performance analysis of 3dB feature approach for real polyp data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 84 55 65.47% 50 59.52% 54 64.29%
[5—10)mm 25 23 92% 21 84% 22 88%
> 10mm 4 4 100% 4 100% 4 100%
Flat 3 2 66.67% 2 66.67% 2 66.67%
Mass 11 7 63.64% 9 81.82% 7 63.64%
Total 127 91 71.65% 86 67.72% 89 70.08%
FP 5.15 4.19 3.58

Table 5. 6: Statistics for false positives - FNNN classifier

Type Number
Fold 222 54.41%
Convex Surface 118 28.92%
Residual Material 55 13.48%
Tube 13 3.18%
Total 408 -

The overall sensitivity in polyp detection for WRMC data was 91.02%, 78.21%
and 83.83% for FNNN, PNN and SVM respectively (Table 5.18). The false positive
rate per dataset is 2.68, 2.36 and 2.16 for FNNN, PNN and SVM respectively. The
sensitivities for polyps > 10mm, [5— 10)mm and < 5mm were 100%, 93.75% and
70% respectively (f(FNNN) classifier). The sensitivities for the PNN classifier for
polyps > 10mm, [6—10)mm and < 5mm were 100%, 79.17% and 70% respectively.
The sensitivities of the SVM classifier for polyps > 10mm, [5—10)mm and < 5mm
were 100%, 85.41% and 70% respectively. The sensitivities for flat polyps were 75%,
0% and 25% for FNNN, PNN and SVM respectively.

The algorithm was also applied for automatic polyp detection to IOOmAs, 70mAs,

Table 5.17: Performance analysis of 3dB feature approach for synthetic poly p data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 6 2 33.33% 3 50% 3 50%
[5—10)mm 17 17 100% 17 100% 17 100%
> 10mm 9 9 100% 9 100% 9 100%
Flat 1 0 0% 0 0% 0] 0%
Total 33 28 8485% 29 87.88% 29 87.88%
FP 2.8 2.6 2.8
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Table 5.18: Performance analysis of 3dB feature approach when applied to the
WRMC polyp data

Type Number FNNN PNN SVM

TP Sens. TP Sens. TP Sens.

< 5mm 10 7 70% 7 70% 7 70%
b—10)mm 48 45 93.75% 38 79.17% 41 85.41%

> 10mm 16 16 100% 16 100% 16 100%

Flat 4 3 75% 0 0% 1 25%
Total 78 71 91.02% 61 78.21% 65 83.83%

FP 2.68 2.36 2.16

30mAs, 20mAs and 13mAs phantom data. The overall sensitivities with the FNNN
classifier for IOOmAs, 70mAs, 40mas, 30mAs, 20mAs and 13mAs were 89.36%,
89.36%, 87.23%, 85.11%, 82.98% and 85.11% respectively (see Tables 5.19 to 5.24).
The sensitivities of the PNN classifier for IOOmAs, 70mAs, 40mAs, 30mAs, 20mAs
and 13mAs were 87.23%, 80.85%, 80.85%, 85.11%, 80.85% and 78.72% respectively.
The sensitivities of the SVM classifier for IOOmAs, 70mAs, 40mAs, 30mAs, 20mAs
and 13mAs were 89.36%, 87.23%, 85.11%, 87.23, 82.98% and 82.98% respectively.
The sensitivities for polyps > 10mm were 100% for FNNN, PNN and SVM classi-
fiers. The FNNN classifier shows 100% sensitivity for polyps between [5— 10)mm
at I00mAs, 70mAs, 40mAs, 20mAs, and 13mAs radiation doses and 94.74% sensi-
tivity at 30mAs radiation dose. The sensitivities of the PNN classifier for polyps
between [5— 10)mm at I0OOmAs, 70mAs, 40mAs, 30mAs, 20mAs and 13mAs are
100%, 89.47%, 89.47%, 94.73%, 94.73% and 89.47% respectively. The sensitivities
of the SVM classifier for [5— 10)mm polyps at IOOmAs, 70mAs, 40mAs, 30mAs,
20mAs and 13mAs are 100%, 94.73%, 100%, 100%, 100% and 94.73% respectively.
The method also shows 50% sensitivity for small polyps when it was applied to
low-dose patient data with a false positive level smaller than 3.0 per dataset (see

Table 5.25).

5.3.1 Discussion of 3dB Features

The proposed 3dB feature-based CAD-CTC system for colonic polyp detection pro-
vides high sensitivity for both FNNN and SVM classifiers. All three classifiers
(FNNN, PNN, SVM) show 100% sensitivity for polyps > 10mm. The experimental
data indicates that the FNNN shows better performance in polyp detection when

compared to the performance of the PNN classifier especially for the detection of
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Table 5.19: Performance analysis of 3dB feature approach for I0OrnAs phantom data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 5 5 100% 5 100% 5 100%
[5—10)mm 19 19 100% 19 100% 19 100%
> 10mm 14 14 100% 14 100% 14 100%
Flat 9 4 44.44% 3 33.33% 3 33.33%
Total 47 42 89.36% 41 87.23% 41  89.36%

FP 4 2 2

Table 5.20: Performance analysis of 3dB feature approach for 70mAs phantom data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 5 5 100% 4 80% 5 100%
[6G—10)mm 19 19 100% 17 89.47% 18  94.73%
> 10mm 14 14 100% 14 100% 14 100%
Flat 9 4 44.44% 3 33.33% 4 44 .44%
Total 47 42 89.36% 38 80.85% 41 87.23%

FP 4 1 2

medium sized polyps ([5 —10)mm). The SVM classifier shows best performance
with respect to the false positives level per dataset when compared to FNNN and
PNN classifiers. The developed polyp detection scheme when used with the FNNN
classifier missed 5 polyps with sizes between 5-8mm in Mater and WRMZC patient
datasets. On the other hand the SVM classifier missed 10 polyps with size between
5-8mm. The SVM classifier demonstrates lower detection rate for polyps with sizes
between 5-8mm when compared to the polyp detection rate offered by the FNNN
classifier. All three classifiers failed to detect the polyps when they are adjacent to

folds.

Based on the reported results we conclude that the developed CAD-CTC system

Table 5.21: Performance analysis of 3dB feature approach for 40mAs phantom data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 5 5 100% 5 100% 5 100%
[5—10)mm 19 19 100% 17  89.47% 19 100%
> 10mm 14 14 100% 14 100% 14 100%
Flat 9 3 33.33% 2 22.22% 2 22.22%
Total 47 41 87.23% 38 80.85% 40 85.11%

FP 4 2 2
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Table 5.22: Performance analysis of 3dB feature approach for 30mAs phantom data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 5 5 100% 5 100% 5 100%
[5—10)mm 19 18 94.74% 18 94.73% 19 100%
> 10mm 14 14 100% 14 100% 14 100%
Flat 9 3 33.33% 3 33.33% 3 33.33%
Total 47 40 85.11% 38 85.11% 41 87.23%

FP 4 4 1

Table 5.23: Performance analysis of 3dB feature approach for 20mAs phantom data

Type Number FNNN PNN SVM
TP Sens. TP Sens. TP Sens.
< 5mm 5 5 100% 5 100% 5 100%
[5—10)mm 19 19 100% 18 94.73% 19 100%

> 10mm 14 14 100% 14 92.86% 14 100%

Flat 9 1 11.11% 2 22.22% 1 11.11%

Total 47 39 8298% 38 80.85% 39 82.98%

FP 4 3 2

show similar or better performance in polyp detection when compared to the perfor-
mance of the CAD-CTC methods reported in [35, 37, 38, 40, 41, 90, 91, 96, 98, 99]
for polyps > 10mm (sensitivity of 100%). The proposed system outperforms the
methods proposed in [35, 37, 38, 40, 41, 90, 91, 96, 98, 99] when applied to the
detection of small and medium size polyps. The rate of false positives for FNNN
classifier (5.15 per dataset) is lower than the rate achieved by the methods pro-
posed by [35, 40, 41, 90, 91, 98, 99] but shows a higher level of false positive when
compared to the CAD-CTC techniques developed by [37, 38, 96]. The false pos-
itives level reported by Yoshida et al. and Kiss et al. are 2 to 3.5 and 2.48 per

dataset respectively. On the other hand, the false positives level achieved by the

Table 5.24: Performance analysis of 3dB feature approach for 13mAs phantom data

Type Number FNNN PNN SVM

TP Sens. TP Sens. TP Sens.

< 5mm 5 5 100% 4 80% 5 100%
[5—10)mm 19 19 100% 17 89.47% 18 94.73%

> 10mm 14 13 100% 14 100% 14 100%
Flat 9 3 33.33% 2 22.22% 2 22.22%
Total 47 40 85.11% 37 78.72% 39 82.98%

FP 2 3 2
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Table 5.25: Performance analysis of 3dB feature approach br low-dose patient data

Type Number FNNN PNN SVM
TP Sens. TP  Sens. TP Sens.
< 5mm 2 1 50% 1 50% 1 50%
Total 2 1 50% 1 50% 1 50%
FP 2.54 2.81 2.27

3dB feature-based technique when using the SVM classifier is 3.57 when applied to
the Mater Hospital datasets and 2.16 when applied to the WRMC datasets. The
experimental results also indicate that the developed CAD-CTC method shows ro-
bustness in automatic polyp detection when applied to low-dose patient data while

maintaining a low level of false positives per dataset.

5.4 Conclusion

In this chapter results of three different polyp detection schemes are presented. All
the three methods show 100% sensitivity for polyps > 10mm and 92% sensitivity for
polyps 5 —10mm and 64% or higher sensitivity for polyps < 5mm. It is also useful
to note that all three techniques are affected by similar false positive such as those
generated by residual material, rectal tubes, and small folds. The first method which
uses geometrical features is optimised for the non-isotropic CT datasets used by our
clinical partners. The second method based on statistical features and the third
method based on 3dB and surface variation features are robust techniques suitable
for all kinds of datasets and are tested on publicly available WRMC datasets. The
experimental results indicate that the developed CAD-CTC system shows similar
results to both manual CTC and the traditional optical colonoscopy approach, thus

making it suitable tool to be used in clinical studies [51, 52, 53, 54, 55, 56, 57].
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C h apter 6

Conclusion and Future Works

The main aim of this research was the development of a fully automatic CAD-
CTC system that can be applied for the robust identification of colorectal polyps
in CTC datasets acquired using standard and low dose radiation. The developed
system consists of a number of distinct stages where the focus of this thesis is
in the automatic colon segmentation, candidate surface extraction, classification,
and the analysis of the effects of low-dose on automatic polyp detection in CAD-
CTC. This research work has generated a number of significant novel theoretical
and experimental contributions in all of these processing stages. The theoretical

contributions generated from this research work are as follows:

e Development of an algorithm for automatic segmentation of collapsed colon in

CTC
» Development of three distinct polyp detection schemes in CTC

e Development of a gradient operator for robust polyp detection in low-dose

CAD-CTC
The experimental contributions of this research are as follows:
e Design and construction of a synthetic phantom
e Detection of optimum scanning parameters for CAD-CTC systems

« Development of standard testing datasets that can be used in the development

of the CAD-CTC.

The first step of the developed CAD-CTC system addresses the problem of
automatic colon segmentation. As discussed in Chapter 2, the manually assisted

colon segmentation technique based on standard region growing is feasible only
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when applied to CT data acquired in ideal conditions. In many clinical studies,
the colon data is often collapsed (approximately 50% of the total examinations)
due to either insufficient colon insufflation or to blockages caused by water and
residual material. Thus, one of the main objectives of this research work was the
development of an automatic colon segmentation technique that is able to perform
robust colon segmentation when applied to well-distended and collapsed CT data. In
this sense, an automatic colon segmentation technique has been developed and it is
explained in detail in Chapter 2. The developed technique is a multi-stage approach
where the colon is reconstructed based on morphological measurements associated
with the candidate colon segments (V/L analysis) and by enforcing the geometrical
constraints imposed by a generic model of a well-distended colon. The automatic
segmentation of colons in collapsed CT data is a relatively unexplored research topic
and this is illustrated by the literature review presented in the introductory part of
Chapter 2. When the automatic colon segmentation technique was applied to 88
standard dose and 8 low dose datasets the experimental data indicates that this fully
automatic method is able to detect 99.68% of the total colon wall when applied to
standard dose collapsed CT data and 96.52% when applied to low dose collapsed CT
data. The performance of the colon segmentation technique detailed in this thesis
is superior than the performance of other published automatic colon segmentation
techniques [65, 66].

The second step of the CAD-CTC system deals with the problem of polyp detec-
tion. This is the main subject of this research work detailed discussion is provided
in Chapter 3. The approach described in this thesis is based on a geometrical anal-
ysis of the colon wall and it has several well-defined stages including the extraction
of polyp candidate surfaces, feature extraction and classification. The first step of
the polyp detection algorithm consists of identification of the colon surfaces that
have strong convex characteristics. In order to achieve this goal, a technique that
evaluates the intersection of the normal vectors has been developed. To eliminate
polyp candidate surfaces with low convex properties, the algorithm applies further
processing including the calculation of the Gaussian distribution of the Hough points
and a convexity test. In order to extract the optimal features that can be used for
polyp detection, three feature extraction techniques have been developed and exam-
ined. The aim of all techniques investigated in this thesis was the extraction of the

optimal features that can be used for robust classification based on the observation
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that polyps have spherical/ellipsoidal shapes whereas folds have cylindrical shapes.
In this regard, the first technique analysis the geometrical features that measure in
the least square sense the similarity between the candidate surface and the ellip-
soidal and spherical surfaces. The sensitivities in polyp detection achieved by this
technique for polyps > 10mm and polyps between [5—10mm) are 100% and 91.67%
respectively and the rate of false positives per dataset is 3.90. The second polyp de-
tection technique attempts to sample the surface variation using statistical features
that are calculated using the least square approximation between candidate surfaces
and ellipsoidal/spherical surfaces. The sensitivities in polyp detection achieved by
the statistical feature-based technique in the detection of polyps > 10mm and polyps
between [5— 10mm) are 100% and 92% respectively and the rate of false positives
per dataset is 4.01. The third polyp detection technique evaluated in this thesis
evaluates the surface variation sampled by the 3dB attenuation point on the sur-
face change curve, surface normal concentration and maximum distance constraint.
This techniques has been evaluated using three classification schemes, the FNNN,
PNN and SVM and the overall performance in polyp detection for polyps > 10mm
and polyps between [5— 10mm) are 100% and 92% respectively (FNNN classifier).
The lowest false positives level (3.58) has been obtained when the polyp detection
technique has been used in conjunction with the SVM classifier. The overall perfor-
mance of the polyp detection methods evaluated in this thesis compares well with
the performances achieved by the most advanced CAD-CTC techniques evaluated
in Chapter 5.

A distinct part of this research work was the development of a synthetic phantom
that is used to investigate the influence of the scanning parameters on the overall
performance of the developed CAD-CTC techniques. As indicated in Chapter 1,
the major concern associated with CTC is the patient exposure to ionising radiation
and this is a major deterring factor in using CTC as a mass screening technique.
Many studies reviewed in Chapter 4 indicate that the risk of inducing cancer to pa-
tients that undergo CT examinations is significantly reduced if they are subjected
to low radiation levels. To address this issue an important aim of this research was
to analysis the effect of low radiation dose (and other scanning parameters such as
reconstruction interval and table speed) on the overall performance of the developed
CAD-CTC system. In order to perform a detailed analysis on this subject, a syn-

thetic phantom has been developed where we were able to create synthetic polyps
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with different shapes and sizes that approximate with high accuracy the real polyps
encountered in clinical studies. The development of the synthetic phantom allowed
us to generate a large number of datasets acquired using six different protocols that
were used to evaluate the performance of the CAD-CTC systems. The experimental
results indicate that accurate polyp detection can be performed even at radiation

doses as small as 13mAs.

6.1 Future W ork

The developed technique has been designed to detect the polyps in datasets that
were obtained without oral enhanced patient preparation such as the WRMC data.
Although the CAD-CTC technique described in this thesis can be applied with no
restriction to oral-enhanced CTC datasets it is useful to mention that the overall
level of false positives can be substantially reduced if the method were to incor-
porate an advanced electronic cleansing procedure [136, 137, 138] that will allow
the identification of false positives caused by the residual material. In addition, a
digital cleansing procedure will also be beneficial for the detection of polyps that
are immersed in the water left in the colon at the time of the CT examination.

Another possible development would be the implementation of a new polyp can-
didate surface technique that will improve the detection for small polyps (< 5mm)
situated adjacently to large folds. The experimental results indicate that 14% of the
undetected small polyps were placed adjacently to folds and this condition gener-
ated candidate surfaces that include many sections of the folds. This has a negative
impact on the overall performance as the system assigned these surfaces as being
generated by folds. In order to address this problem we have developed an alter-
native surface extraction technique based on a 3D level-set implementation (see
Appendix-b) and the initial results are encouraging.

The reduction of the level of false positives can be achieved by evaluating the
shape of the candidate surface in the frequency domain. Recently, Miranda et
al. [139] proposed a novel technique that evaluates the 3D histogram calculated
from the candidate surface in the frequency domain and they demonstrated that
the use of spectral information can be used for robust polyp identification.

The developed CAD-CTC system can be further developed in order to reduce

the computational time required to process the CT datasets. Currently, the average
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computational time required by the system to process one datasets is 3.6 minutes
and this processing time can be considerably reduced since the developed algorithms
for colon segmentation and polyp detection have not been optimised for speed.

The results of the automatic polyp detection show that the 11-16% of the false
positives are generated due to the residual material in the colon. The reduction of
these false positive can be done by implementing texture analysis [40] of the polyp
and residual material.

The developed CAD-CTC system used FNNN, PNN ans SVMs classifiers (see
Chapter 3) for classification of polyp candidate surface as polyp or fold. Experi-
mental results (see Chapter 5.3) show that all the three classifiers illustrate similar
sensitivity for polyp greater than 5mm. These results indicate that the features
derived from the polyp candidate surface are robust for classification of the candi-
date surface as polyp or fold. But further implementation of advanced classification
scheme like committee of SVMs [101] can increase the sensitivity of polyp detection
while the false positive level can be reduced.

As indicated in Chapter 5, the developed CAD-CTC system was tested on 11
low-dose patient data having only 2 polyps smaller than 5mm. The amount of low-
dose patient data available to test the system did not allow us to fully characterise the
performance of the CAD-CTC techniques discussed in Chapter 3. Our future work
will involve the validation of the CAD-CTC system on a larger number of standard
and low-dose datasets including the data supplied by our clinical partners (Mater
Hospital) and public available CTC databases like WRMC [135] and ACRIN [140]

that are recently made available.
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A ppendix A

The extraction of the gradient information from 3D surfaces plays an important role
for many applications including 3D graphics and medical imaging. The extraction
of the 3D gradient information is performed by filtering the input data with high
pass filters that are typically implemented using 3 x 3 x 3 masks. Since these filtars
extract the gradient information in a small neighborhood, the estimated gradient
information will be very sensitive to image moise. The aim of this Appendix s to
detail the implementation of an optimized 3D gradient operator that is applied to
sample the local curvature of the colon wall In CT data and evaluate its influence
on the owerall performance of the developed CAD-CTC method. The developed
3D gradient operator has been applied to extract the local curvature of the colon
wall in a large number CT datasets captured with different radiation doses and the
experimental results are presented and discussed.

A -1 M athem atical background of gradient detec-

tion

In image processing the gradient operators are widely used to identify strong data
features such as edges or the local orientation of the curves and surfaces. The
extraction of the local derivative from a continuous signal can be done by applying
directly the wel I-known derivative formula:

Def{f(x)) = lima”™o a +(A-L.D

When designing a gradient operator one should bear inmind that the image data
Is discrete and the finite differences cannot be applied without compromising the
accuracy of the gradient approximation [141, 142, 143, 144], Thus, itisassumed that
the original continuous gptical signal that generates the image has been uniformly
sampled at a rate of T samples per length. Using the Nyquist sampling theorem

the continuous signal can be reconstructed from these discrete samples as folloss:
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1) = o ~KT)s()= 4 (A'1-2)

In equation B-1.2 the term f[k\ represents the discrete sampled signal and s(x)
defines the sampling function that can be approximated with the sine function.
Hence, to obtain the gradient of the discrete signal derivative was required for the
reconstructed signal f(x) that isdepicted In equation A-12.
N N
Der(f(x)) = flklder(s(x - KT)= " f[k]s'(x - KT)(A-1.3)
1 k=1
where s/ represents the derivative of the sine function. As the derivative of

the sine function Is dependent on the sampling frequency, it isworth noting that
the spectrum of the discrete signal isbounded by A that Is In agreement with the
sampling theorem. Itwas noted that the derivative of sine signal decays relatively
slowly and the implementation of an optimal gradient filter would require large fil-
ters that are not fessible to be applied in practice due to the onerous computational
cost required to extract the partial derivatives. Next, a practical method will be in-
troduced to design one-dimensional (1-D) gradient filterswhereas the generalization
to multiple dimensions is a relatively simple task.

In order to design gradient operators that are to be applied to discrete signals
several constraints have beenconsidered. The visionliteratureindicates  that the
gradient filersare anti-symmetric and usually have an oddorder. Thus, the 1-D
gradient filer can be represented in the following generic form:

d(k) = [d-N, d-N+i,  d-i, 0,di, ...\, d?)\, d-k = —dk,k = L...,N  (A-1.4)

In order to design 1-D derivative filters several constraints were imposed for
parameters dk as illustrated in the following expressions [143],

N
4 =0 (A-1.5)
k=N
N
dkk = 0 (A-1.6)
k=-N

In thisway, the equation 5 translates in the requirement that the derivative filier
should have the sum of the coefficients equal to O, while equation A-1.6 can be used
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to select the values for dk ccefficiets. The derivative operator has to fulfill the
condition illustrated in equation A-1.5 to achieve insensitivity to DC sigmals. Since
the derivative filters are anti-symmetric the first coefficient of the operator can be
determined using the following relationship:

N

k=2

Using the formulas illustrated in equations 4 t0 7, a 5 x 5 x 5 derivative filter

that s applied to extract the gradient in the x direction has the followving mask
[11 8 0-8 1}J/12 «[1 4 6 4 1}J/16, where = defines the convolution operator. To
extract the gradient for other directions the 5 x5 x5 mask needtobe rotated
in the direction required for a particular axis. It can be noted that thisoperator,
as expected, represents the direct extension of the 5x 5 Sobel operator to the 3D
case. Using equations 5 to 7, a new 5x5 gradient operator can be developed that
implements a two-peak operator illustrated in Figure A-1. This gradient operator
shows two peaks In the frequency domain and rtwill provide improved performance
when applied to data with step discontinuities or 3D CT datasets defined by a low
signal to noise ratio such as the low-dose CT data.

-125 -25 -5 -25 -125 -25 -5 ~-ID -5-25

-.25 -.5-1D -.5 -.25 -5 ~-ID -2.0-1.0 -5
-5 -ID-2.0-1,0 -.5 -1.0 -2.0 -4.0-2D -1.0 O”7j
-.25 -.5-1D -.5 -.25 -5 ~-ID -2D -1.0 -5
-.125 -25 -5-25 -125 -25 -5 -1.0-5 -.25
25 5 10 5 .25 125 .25 5 25 125
5 102D ID 5 255 10 5 25
10 20 4D 20 10 510 2D 10 5
5 102D ID 5 255 10 5 25
25 5 10 5 .25 125 .25 5 25 125

Figure A-I: The masks ofthe 5x 5x 5 3D OptDer operator to extract the gradient
in the N axis (the mask 05xs Indicates a 5 x 5 mask where all elements are zero)

In these experiments the effect of using several filters including the 3 x 3 x 3
Zucker-Hummel operator, 5x5x5 Sobel operator and 5x5x5 optimized operator
- OptDer filer (for more details about the implementation of optimal derivative
filters refer to [141, 142]) on the owerall performance of the CAD-CTC system has
been evaluated. A particular interest we had in assessing the performance of these
gradient operators when applied to CTC datasets that have been acquired with
different radiation doses. In these experiments it has became clear that the 3x3x 3
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gradient masks are inefficient in sampling the correct curvature of the colon wall
when dealing with irregular surfaces while the optimized 5x5x5 gradient operator
was able to retumn improved performance (this operator has been designed using
the masks illustrated in Figure A-1). The experiments were performed on CTC
prone and supine views where the reconstruction internval was set to 1.5mm. The
tests were conducted on phantom (synthetic) data and on real patient data. Of
particular interest was the evaluation of the lewel of false positives detected by the
automated CAD-CTC system and a detailed performance of the developed system
is illustrated in Tables 1 to 5 where different gradient operators are evaluated.

A -2 Results and Discussions

The statistical feature-based method discussed in Chapter 3 was used for automatic
polyp detection CAD-CTC. The efficiency of the derivative operators was evaluated
on 52 standard dose (100mAs) patient datasets (prone and supine views) with 75
polyps, 9 low dose (13-50mAs) patient data with 2 small polyps and phantom data
(low-dose and standard dose) with 48 polyps of various sizes and shapes.

Table A-I: Sensitivity for synthetic phantom data (polyps >= 10mm).
mAs Total Sensitivity
Zuker Sobel  OptDer
100 14 100% 100% 100%
40 14 100% 100% 100%
30 14 100%  92.85%  100%
20 14 100% 100% 100%
13 14 92.85% 92.85%  100%

Table A-2: Sensitivity for synthetic phantom data (polyps [5—10)mm).
mAs Total Sensitivity
Zuker Sobel OptDer
100 20 100%  100% 100%
40 20 100%  100% 100%
30 20 95%  90% 95%
20 20 100%  100% 95%
13 20 95%  95% 100%

When the CAD-CTC systemwas applied on phantom data the OptDer operator
shows 100% sensitivity for polyps >= 10mm for datasets acguired with radiation
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Table A-3: Sensitivity for synthetic flat polyps.

mAs Total Sensitivity False Positive
Zuker Sobel  OptDer Zuker Sobel OptDer
100 9 55% 55% 44.44% 1
40 9 33.33% 33.33% 44.44% 2 1 1
30 9 44.44% 44.44% 55% 0 2 2
20 9 11.11% 33.33% 44.44% 2 2 2
13 9 22.22% 22.22% 44.44% 2 2 3

Table A-4: Sensitivity for polyps >= 5mm in real patient standard dose (I0OOmMAs)
data.

mAs Total Sensitivity False Positive
Zuker Sobel  OptDer Zuker Sobel OptDer
100 18 88.89% 88.89% 88.89%  4.32 4.69 4.71

doses in the range 100-13mAs where the Zucker-Hummel and Sobel operators shows
92.85% sensitivity at 30mAs and 13mAs radiation doses (see Table A-1). Figure A-
2(a) illustrates the 3D surface extraction for a 12mm polyp when the Zucker-Hummel
operator was applied to compute the surface normal vectors and Figure A-2(b)
shows the surface extraction using the OptDer operator. Figure A-3 illustrates the
surface extraction for an 8 mm phantom polyp from a dataset scanned with 13mAs.
It can be noted that in both cases the CAD-CTC system achieved a more accurate
surface extraction when the OptDer operator was employed. Due to incomplete
surface segmentation the developed CAD-CTC system missed the polyp illustrated
in Figure 2 when the Zucker-Hummel operator was used to extract the surface
normal vectors (see Table A-I), whereas the polyp was correctly detected when the
OptDer operator was applied. In Figures 2 and 3 it can be also observed that the
OptDer operator generates better surface normal concentration than the Zucker-
Hummel operator. The application of the OptDer operator to extract the surface

normal vectors offers better detection for polyps in the range 5-10mm than the

Table A-5: Sensitivity for polyps < 5mm in real patient's standard and low dose
data.

mAs  Total Sensitivity
Zuker Sobel  OptDer
100 48 60.41% 60.41% 68.75%
13-40 2 50% 100% 100%
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Sobel operator (see Table A-2). It also provides a better detection of flat polyps
when compared to the performance of the Zucker-Hummel and Sobel operators
(see Table A-3). When the Zuker-Hummel, Sobel and OptDer operators were used
to calculate the surface normals of the colon wall for standard dose real patient
datasets, the sensitivities for the detection of polyps >= 5mm were 88.89% (see
Table A-4) for all operators, but the OptDer operator provides higher sensitivity
(see Table A-5) in the detection of small polyps (< 5mm) than the Zucker-Hummel
and Sobel operators. Table A-5 indicates that the overall sensitivity for polyp
detection was highest when the OptDer operator was used and the experimental
data indicates that this operator outperformed the Zucker-Hummel and the Sobel

operators especially when the system is applied to low-dose datasets.

(@) (b)

Figure A-2: 3D surface extraction of a 12mm phantom polyp (radiation dose
13mAs). (a) The 3D surface extracted by the CAD-CTC system using the Zucker-
Hummel operator, (b) The 3D surface extracted by the CAD-CTC system using
the OptDer operator.

A -3 Conclusions

The main objective of this Appendix was to address the problem of robust calcula-
tion of the surface curvature in 3D CT data. As numerous automated CAD-CTC
systems identify the colorectal polyps based on analysing the local convexity of the
colon surface, one of the most important steps in this analysis is the precise calcula-
tion of the normal vectors. In this regard, a number of 3D gradient operators were
investigated and the experiments were conducted on a large number of synthetic

and real patient datasets. Experimental data indicated that the commonly used 3D
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@ (b)

Figure A-3: 3D surface extraction of a 12mm phantom polyp (radiation dose
13mAs). (a) The 3D surface extracted by the CAD-CTC system using the Zucker-
Hummel operator, (b) The 3D surface extracted by the CAD-CTC system using
the OptDer operator.

gradient operators such as Zucker-Hummel and Sobel fail to accurately determine
the normal vector when dealing with datasets characterized by a low signal to noise
ratio. To address this problem a new gradient operator was proposed that was able
to return better performance when applied to CT data that is acquired with different

radiation dose levels.
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This section describes a method for the accurate segmentation of polyp candidate
surface using a level-set segmentation method. The level set is a deformable surface
that evolves under a force that includes gradient and curvature. The curvature
property was exploited in the evolution to extract only the surface of the candidate

polyp to avoid over segmentation of the colon wall.

B -1 Level-Set Initialisation. Fast-M arching Algo-

rithm

The formulation of the level-set formulation is conceptually simple. The evolving
curve or front T, evolves as the zero levelset of a higher dimensional function (. This
function deforms with a force F that is dependent on both curvature of the front
and external forces in the image. The force acts in the direction of the normal to
the front.

@it+ F\VO| = 0 ch(x,y,t = 0) = given (B-1.1

The proposed implementation is a standard two step approach which includes a
fast-marching initial step to speed up the segmentation. Fast marching is a special
case of the above equation where F(x,y) > 0. Let T(x,y) be the time when the

front T crosses the point (x,y). The function T(x,y) then satisfies the equation;
IVTIF =1 (B-1.2)

which simply says that the gradient of the arrival time is inversely proportional
to the speed of the surface. The T function is evaluated using the diffusion and
attraction to pixels within the front. This forces the front to grow out from its
initial position to points with the smallest value of T{x,y). The T(x,y) function is

then updated until the front converges to a stable state.
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B -2 Level-Set Analysis

The theory behind level-set segmentation is largely based on work in partial dif-
ferential equations and the propagation of fronts under intrinsic properties such as
curvature [145, 146]. Representing the boundary as the zero level set instance of a
higher dimensional function @& the effects of curvature can be easily incorporated.
<$is represented by the continuous Lipschitz function <p(s,t = 0) = FzLd, where d is
the signed distance from position s to the initial interface TO (see Equation B-2.1).
The distance is given a positive sign outside the initial boundary (DQ), a negative

sign inside the boundary (|fi \ <Gi2]) and zero on the boundary (<9£l).

| —d Vse \<OfA
¢(s)=1 0 Vsedtt : (B-2.1)
\+d VseRn\dtt)

From this definition of O, intrinsic properties of the front can be easily deter-
mined, like the normaln= £ |~ [ m

Since curvature of the polyp is an important factor in the segmentation evolution,
particular emphasis is given to this measure. The mean curvature (H), is connected

to the physical evolution of soap bubbles and the heat equation as follows:

" = VW (B -2 -2)
Gaussian curvature (K), has also being used to model physical problems and can be
calculated using the following expression:

r, VPTAdj(HW)V<p
K = W W ( '

where is the Hessian matrix of ), and Adj(H) is the adjoint of the matrix H.

The proposed method used the Neskovic and Kimias [147] measure of curvature
which involves both mean and Gaussian. In this approach, the direction of flow is
obtained from the Mean curvature while the magnitude of the flow is dictated by
the Gaussian curvature. This is appropriate as the Mean curvature alone can cause

singularities and extracts the strictly convex surface of the polyp candidate.

k = sign(H)y/K + \K\ (B-2.4)

Using this value for k, the level set is iteratively updated within a defined narrow

band around the segmented boundary to increase the computational efficiency. The
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following equation details the update parameters
&+! = B+ Kt{l - £K\V| + /3V/.VO (B-2.5)

where £ and beta are user defined parameters (see Table 1), k is the curvature term
defined in Equation B-2.4and Kj is the gradient dependent speed term and is given
by i+vj mThe third term, V/.V O represents the attraction force vector normal to
the front.

Possible polyp candidate centres are determined over the entire data set by cal-
culating the normal vectors at each voxel on the colon wall. Polyp candidates are
defined as regions of high convexity, therefore the centres for possible polyp candi-
dates are located at points that contain high concentration of normal intersections
(see Chapter 3).

The level set is initialised at the polyp candidate centres and grows outwards
until a stable boundary is encountered. The convex surface is maintained by placing
a high influence on the curvature parameter. Once the level-set has converged the
surface of the polyp candidate is taken as all boundary points that have an associated

gradient in order to ensure that only the colon surface is extracted.

Table B-1: Control parameters used in the level-set segmentation [148],

Index Control Parameters Values
1 Fast-Marching lterations 3
2 Level-set Iterations 10
3 Level-set £ 0.5
4 Level-set 3 0.08
5 Level-set Narrow bandwidth 10

Once the true surface of the polyp candidates has being extracted, they are
passed to a classifier to determine whether they are polyps or folds. The statistical
features that are discussed in Chapter 3 are used to classify the candidate polyp

surfaces into polyps or folds using the FNNN classifier.

B -3 R esults

In total 181 polyp candidates were tested through the volume. Visual representa-
tions of the segmentation polyp are shown in Figure B-l. Table B-I lists the user

defined parameters used in the level-set algorithm. From this table it can be seen
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that curvature is given a large influence to preserve the convexity of the polyp can-
didate surface. The narrow bandwidth is given a small value of 10 to increase the

efficiency of the update.

(a) (b) (©
I\
(d) () (f)
Figure B-l: Images above show the polyp candidate renderings of the extracted

surface. Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f) show
correctly classified folds.

Table B-2 shows the measured point-to-curve error between the automatic seg-
mentation results against those found from a manual segmentation of the small
number of polyp candidates. Indicated in the table are the average error, standard
deviation of the error and the rootmean - square (RMS) of the error. This error is

measured in voxels.

Table B-2: Control parameters used in the level-set segmentation.
Average Standard Deviation RMS
0.298 0.587 0.661

Table B-3 gives the results on two real patient supine data sets. From the high
number of polyp surface candidates( 181 and 191), a relatively low number are de-

tected (6 and 3). The results show a sensitivity of 100% for all polyps larger than
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5mm. In current clinical studies the polyps below 5mm are discarded in the classifi-
cation. One cause that generated the low sensitivity for detection of polyps smaller
than 5mm is the low curvature difference between the polyp and the colon wall,
therefore parts of the colon wall is taken into the candidate surface (see Figure B-2).
One particular advantage of this surface extraction technique is the low number of

false positives present in the analysed data.

Ta ale B-3: Performance analysis for automatic polyp detection
Data Size Detected TP FP Missed
Data 1 Supine > 5mm 6 3 3 0]
(181 surf.) < 5mm
Data 2 Supine > 5mm
(191 surf) < 5mm
Total

o O N O
A DNMNODN

0
1
0
4

© O w o

Figure B-2: One of the < 5mm polyps misclassified due to the inclusion of colon
wall in the surface extraction.

In conclusion, the accurate segmentation described in this Appendix is the first
important step in the classification of polyp candidates into polyp and fold. This
Appendix describes a method for the extraction of accurate polyp candidate surfaces
using a level-set segmentation. The level-set is initialised using the distribution of
surface normal vectors and the resulting surfaces are classified into polyp and non-
polyp. The level-set evolution is constrained by the image gradients and by the
curvature of the boundary and is able to perform robust polyp segmentation when

applied to standard and low dose datasets.
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