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A b s t r a c t

Colon cancer is the second leading cause of cancer related deaths in the developed 
nations. Early detection and removal of colorectal polyps via screening is the most 
effective way to reduce colorectal cancer (CRC) mortality. Computed Tomography 
Colonography (CTC) or V irtual Colonoscopy (VC) is a rapidly evolving non-invasive 
technique and the medical community view this medical procedure as an alterna­
tive to  the standard  colonoscopy for the detection of colonic polyps. In CTC  the 
first step for autom atic polyp detection for 3D visualization of the colon structure 
and autom atic polyp detection addresses the segmentation of the colon lumen. The 
segmentation of colon lumen is far from a trivial task as in practice many datasets 
are collapsed due to  incorrect patient preparation or blockages caused by residual 
w ater/m aterials left in the colon. In this thesis a robust m ulti-stage technique for 
autom atic segmentation of the colon is proposed tha t maximally uses the anatomi­
cal model of a generic colon. In this regard, the colon is reconstructed using volume 
by length analysis, orientation, length, end points, geometrical position in the vol­
um etric data, and gradient of the centreline of each candidate air region detected 
in the  CT data. The proposed m ethod was validated using a to ta l of 151 standard 
dose (lOOmAs) and 13 low-dose (13mAs-40mAs) datasets and the collapsed colon 
surface detection was always higher than  95% w ith an average of 1.58% extra colonic 
surface inclusion.

The second m ajor step of autom ated CTC  attem pts the identification of col­
orectal polyps. In this thesis a robust m ethod for polyp detection based on sur­
face curvature analysis has been developed and evaluated. The convexity of the 
segmented colon surface is sampled using the surface normal intersection, Hough 
transform , 3D histogram, Gaussian distribution, convexity constraint and 3D region 
growing. For each polyp candidate surface the morphological and statistical features 
are extracted and the candidate surface is classified as a polyp/fold structure using 
a Feature Normalized Nearest Neighbourhood classifier. The devised polyp detec­
tion scheme entails a low com putational overhead (typically takes 3.60 minute per 
dataset) and shows 100% sensitivity for polyps larger than  10mm, 92% sensitivity 
for polyps in the range 5 to 10mm and 64.28% sensitivity for polyp smaller than 
5mm. The developed technique returns in average 4.01 false positives per dataset.

The patient exposure to ionising radiation is the m ajor concern in using CTC  as 
a mass screening technique for colonic polyp detection. A reduction of the radiation 
dose will increase the level of noise during the acquisition process and as a  result the 
quality of the CT d a ta  is degraded. To fully investigate the effect of the low-dose 
radiation on the performance of autom ated polyp detection, a phantom  has been 
developed and scanned using different radiation doses. The phantom  polyps have 
realistic shapes (sessile, pedunculated, and flat) and sizes (3 to  20mm) and were 
designed to  closely approxim ate the real polyps encountered in clinical CT data. 
A utom atic polyp detection shows 100% sensitivity for polyps larger than  10mm and 
shows 95% sensitivity for polyps in the range 5 to 10mm. The developed method



was applied to  CT d a ta  acquired a t radiation doses between 13 to 40mAs and the 
experimental results indicate th a t robust polyp detection can be obtained even at 
radiation doses as low as 13mAs.
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C h a p t e r  1

I n t r o d u c t i o n

Colon cancer is the second leading cause of cancer-related deaths in the developed 

nations [1, 2, 3, 4, 5]. Bowel cancer statics in the  UK show th a t 35,600 new cases 

were diagnosed in 1999 and it is the contributing factor for 16,170 deaths in 2001 

[2], In the United Stated, 130,200 new cases were diagnosed and 56,300 deaths 

were reported from colon cancer [4] in 2000. In Ireland, 2720 (1232 women and 

1488 men) [3] deaths were reported during the period of 1998 to 2000. Statistics in 

Ireland show [3] th a t colon cancer was the second leading cause of cancer related 

deaths for women and the th ird  leading cause of cancer related deaths for men. 

Greenlee et. al. [4] dem onstrate th a t the probability of developing invasive colon 

cancer in a life tim e is 1 in 18(5.55%). In general, colon cancer develops as an in­

testinal polyp (adenoma) which is an abnormal growth of the colonic tissue. Over 

time, some of these polyps may become cancerous. Early detection and removal of 

polyps via screening is the most effective way to  reduce the colorectal cancer (CRC) 

m ortality [6, 7, 8, 9]. Screening techniques th a t are available for detection of colonic 

polyps are Fecal Occult Blood Test (FOBT), Flexible Sigmoidoscopy, Barium En­

ema, Colonoscopy and DNA Stool Test. Colonoscopy is widely considered as the 

most sensitive m ethod for detection of colonic neoplasia among all above mentioned 

screening technique [10, 11]. Colonoscopy is performed by experienced gastroen­

terologists using a colonoscope. The colonoscope is a flexible tube consisting of a 

cam era and a light unit. The gastroenterologist inserts the colonoscope through the 

anus of the patien t and advances it to the end of the colon (cecum). The light and 

cam era in the endoscope allows the gastroenterologist to  look into the scope or at a 

TV monitor. Magnified images allows the gastroenterologist to see any changes in 

the tissue of the  colon. If abnormalities or polyps are found in the colon, the gas­

troenterologist uses the  channels of the endoscope to obtain biopsies (small pieces
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of tissue) or remove polyps. The gastroenterologist also uses the enclosure channels 

to introduce or withdraw fluid or air from the colon. The whole procedure takes 

about 20 m inute to one hour.

Before performing colonoscopy each patient under goes a bowel preparation 

which includes dietary control and bowel cleansing. In general, the patient should 

not eat any solid food at least 24 hours before examination. Two methods are 

commonly used for bowel cleansing. The first involves drinking about one gallon of 

an undigestible solution th a t allows bowel cleansing. The second involves taking a 

solution called ’’Fleet Phosphosoda” along w ith several cups of liquid. Prior to the 

examination, a combination of sedative and narcotic is used to  make the patient re­

lax and insensitive to  unpleasant sensations. Thus, colonoscopy is an invasive, time 

consuming, expensive and complex procedure. In conventional colonoscopy, the  as­

sociated risk of perforation is 0.005% to 0.09% and the  m ortality risk is 0.001% 

[12, 13]. In addition to  th a t, conventional colonoscopy fails to reach the cecum 

which results in an incomplete exam ination for 5% of the patients [12, 14].

Computed Tomography Colonography (CTC) also known as V irtual Colonoscopy 

[15, 16, 17, 18, 19] is a  rapidly evolving medical imaging technique for the detection 

of colorectal polyps. In this m ethod, the CT scan of the abdomen of a patient is 

performed by an experienced radiologist. CT scan images perm it interactive viewing 

of the colon w ith two-dimensional (2D) and three-dimensional (3D) image display 

techniques. This imaging m ethod is being widely investigated as a non-invasive 

exam ination procedure for the detection of colorectal polyps and many researchers 

have advocated CTC  as the optim al mass screening technique to investigate the 

colorectal cancer [20]. Since the introduction of CTC, a significant number of stud­

ies have been conducted to  evaluate the performance of this non-invasive medical 

investigation [17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28]. The radiologists perform a 

visual exam ination of either two-dimensional CT images or three-dimensional CTC, 

or both. The CTC  research shows th a t 3D CTC  is as good as optical colonoscopy 

as a screening tool for the early detection of colorectal cancer [29, 30, 31]. The CTC  

exam is less invasive and takes only a few minutes (typically 12-60 minutes). Recent 

studies [21, 26, 28, 32, 33] dem onstrate th a t VC shows a sensitivity in polyp de­

tection comparable to  conventional colonoscopy. In 2004, the complete V3D-Colon 

W orkstation obtained the FDA 510(k) market clearance and started  to be used in 

current clinical investigations.
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High resolution CT data  offers a shear volume of information to a radiologist 

to  visualize and interpret. Typically, a dataset (supine or prone view) has 200- 

500 slices of images depending on the patient size and reconstruction interval. A 

reconstruction interval of 1.5mm generates 200-350 images per dataset. Thus, visual 

evaluation of high resolution CT da ta  is a tim e consuming procedure and limited by 

human factors, such as perceptual errors and eye fatigue [34, 35]. The development 

of Computer-Aided Detection (CAD) m ethods can improve both  the sensitivity and 

efficiency of CTC. In recent years, research has focused on developing autom ated 

CAD systems to detect colonic polyps. Recent studies [35, 36, 37, 38, 39, 40, 41, 42] 

indicate th a t CAD-CTC offers similar performance as manually analysed CTC. The 

CAD-CTC systems need to  offer all facilities provided by the VC systems in terms 

of d a ta  visualization and interpretation but prim arily they should be designed to 

detect and report autom atically the colorectal polyps larger than  5mm which are 

clinically significant. It should be noted th a t the CAD-CTC systems can be used 

off-line by processing the  datasets in batch mode. Thus the realtim e operation is not 

a critical requirement for the developed CAD-CTC systems. However recent CAD- 

CTC systems are able to process the CT data  significantly faster than  the radiologist 

(typical tim e required by the radiologist to process one dataset is in the range of 

12-20 minutes). Currently the CAD-CTC systems are used as a second reader tha t 

assists the radiologists to  improve the quality of the clinical investigation (it is useful 

to  note th a t there is no agreement between radiologists in regard to  the use of the 

CAD-CTC systems in clinical investigations). The high sensitivity of these CAD 

based polyp detection m ethods dem onstrates th a t the CAD-CTC can be successfully 

used in clinical studies. Usually the CAD-CTC scheme are m ultistage and the key 

components are illustrated in Figure 1.1.

Most docum ented CAD based polyp detection techniques consist of mainly four 

main phases: Colon segmentation, polyp candidate generation, feature extraction, 

and classification (see Figure 1.1). Colon segmentation and the surface generation 

from the volumetric CT data  are the prim ary steps for autom atic polyp detection. In 

CT data, the air insufflated colon provides a high voxel intensity difference between 

gas (-1000 Hounsfield Unit(HU)) and tissue (40HU) surface. Hence, theoretically, 

the segmentation of the colon can be done using a manually inserted seed point in 

conjunction w ith a simple 3D region growing algorithm. But colon segmentation 

faces two m ajor problems. Firstly, the colon is not the only air filled area inside the

3
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Figure 1.1: Key component of CAD-CTC.

CT data. Secondly, the  remaining residual m aterial and water can create multiple 

collapses in the colon. Thus, the colon segmentation is far from a trivial task  and 

a number of additional processing steps have to  be applied in order to  perform 

autom atic colon segmentation.

In this research, an autom atic segmentation technique of collapsed colons is 

developed based on the geometrical properties of the colon. Initially, the lung and 

surrounding air voxels is removed from the volumetric CT data. Then the remaining 

air voxel regions in the CT da ta  are labelled using a 3D region growing algorithm. 

The geometrical features like volume by length (V /L), orientation, length, end points, 

position in the  volumetric data, and gradient of the centreline of each labelled object 

are used for colon detection. Figure 1.2 shows the 3D surface of two autom atically 

segmented collapsed colons.

The second step of CAD-CTC  is the polyp candidate surface generation (CSG). 

The neighbouring voxels of the segmented d a ta  having HU values higher than  a 

threshold are assigned as the surface of the colon. Figure 1.3a shows a segmented 

colon and Figure 1.3b illustrate the surface of the segmented colon. In general, 

polyps are spherical or elliptical in shape and are defined by the abnormal growth 

of tissue in the inner wall of the colon. Hence, the candidate voxels for polyps have 

a convex shape compared to the surrounding surface of the colon. But polyps are 

not the only convex structure, folds have also convex shapes when compared to  the
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Figure 1.2: 3D surface of two autom atically segmented colon.

smooth colon surface. Figure 1.4a shows a CT  slice containing a pedunculated polyp. 

Figures 1.4b, 1.4c show the rendered 3D surface of a polyp and a fold extracted by 

the candidate surface generation. Therefore, the  polyp candidate generation from 

the colonic wall provides the prim ary difference between convex and non-convex 

candidate structures. It is useful to  note th a t a better segmentation of convex 

surfaces will result in an increased sensitivity and a t the  same tim e decreasing the 

false positive ra te  incidence in CAD-CTC.
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Figure 1.3: (a) Segmented colon, (b) The surface of the segmented colon.

The th ird  step of CAD-CTC  is represented by the feature extraction. As indi­

cated above polyps can be typically approxim ated by spherical or elliptical surfaces 

whereas the folds can be approxim ated by cylindrical surfaces. B ut this geometrical 

approxim ation for polyps faces two m ajor problems. Firstly, the size of the polyps
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(a) (b) (c)

Figure 1.4: Example of polyp and fold in CT data, (a) A pedunculated polyp shown 
with arrow sign (b) 3D surface of the pedunculated polyp (c) 3D surface of a fold.

varies from 2mm to 20mm or above. Secondly, polyps found in clinical studies have 

shapes th a t are significantly different than  a spherical/elliptical shape. In general, 

polyps are classified as sessile, pedunculated (Figure 1.4a), flat and depressed flat. 

Taken into consideration th a t the polyps have a large range of shapes and sizes, the 

calculation and selection of features from candidate surface plays a crucial role in 

CAD-CTC.

The fourth and the  last step of CAD -CTC  is represented by the classification 

of polyp candidate surfaces into polyps or folds. The selection of an appropriate 

classifier in conjunction with the appropriate feature normalization scheme are the 

two main components of the  classification process. Several classifiers th a t are com­

monly used by different authors CAD -CTC  are the Support Vector Machine (SVM), 

Neural Network Classifiers and Bayes classifiers.

In the last decade, the introduction of the multi-slice CT scanners boosted the 

use of CT in the field of medical imaging for the detection of different diseases in 

hum an population. The main concern associated w ith CT investigations is the level 

of radiation dose associated w ith modern CT scanners [43, 44], CT accounts for 4% 

of the medical radiographic examinations and contributes with 35-40% of the to tal 

collective radiation dose received by the patients [45]. Brenner et al. [46] stated 

th a t the patient exposure to ionising radiation is the m ajor concern in using CTC  

as a mass screening technique for colonic polyp detection. The medical literature 

indicates th a t the effective dose used for C T C  varies from 5 to 20 mSv [32, 47, 48, 49. 

50] and this radiation level may result in a 0.02% to 0.05% risk for inducing cancer 

in patients older than  50 years. It can be concluded th a t the ionising radiation needs
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to  be reduced as much as possible in CT colonography. In this regard, by keeping 

the param eters KVp, and collimation constant, the radiation exposure received by 

the patient can be reduced by decreasing the tube current (mA). But a low tube 

current increases the noise in image acquisition and this will require more complex 

C AD -CTC  m ethods to  robustly detect the polyps in CT data. To analyze the effect 

of low dose on colonic polyp detection in CT colonography, a synthetic phantom  has 

been designed and constructed. The phantom  (synthetic) polyps were made by latex 

having a HU value of -90. Polyps have various shapes (Pedunculated, sessile, flat, 

and flat depressed) and sizes (3mm to  18mm). The phantom  was scanned using a 

16-slice Somatom Sensation Siemens CT scanner a t different radiation doses (mAs) 

from lOOmAs to  13mAs. A statistical polyp detection m ethod was employed to 

analyze the effect of low-dose on C AD -C TC  (see C hapter 3). The developed polyp 

detection algorithm uses the surface normals intersection to calculate the initial 

center points for candidate polyps. Then the candidate surfaces were created by 

evaluating the normal distance to  the center of the  colonic surface. In addition, 

to  remove the non-convex and disjoint surface points, the candidate surface was 

further processed by 3D region growing, surface norm al direction and convexity 

test. Figure 1.5 presents the 3D surface of two polyps and two folds after candidate 

surface generation.

C h a p te r  1 I n t r o d u c t io n

(a) (b) (c) (d)

Figure 1.5: 3D surface of polyps and fold after the  application of the candidate 
surface generation (a) and (b) illustrate the 3D surface of two polyps, (c) and (d) 
depict the  3D surface of two folds.

Since the polyp surfaces are defined by the abnorm al growth of tissue in the 

colon wall and can be approxim ated by spherical or elliptical shape, the surface 

normals associated w ith polyp surfaces show highest concentration in the center of 

the  polyp. On the other hand, folds resemble cylindrical surfaces. Thus, the surface



normals for fold surfaces are evenly distributed along the  long axis of the cylinder. 

In this research work, the geometrical and statistical features evaluate the normal 

concentration for polyps and folds. Colonic surfaces associated with folds show a 

higher surface variation when compared w ith colonic surfaces generated by polyps. 

To classify the candidate surface (CS) as polyp or fold, the surface variation of CS 

is measured using the statistical features (e.g. Standard Deviation (SD) of surface 

number, SD  of the principle axis of ellipsoid fitting, SD  of the radius of sphere 

fitting) th a t are inputs for a multi-class classifier.

Most authors suggested to  divide the polyps into three different classes according 

to their sizes. F irst class represents polyps higher or equal than  10mm (>  10m m).  

Second class includes polyps between 5 to  10mm (>  5m m  to < 10m m )).  Third 

class represents polyps smaller than  5mm. This approach was followed in this thesis 

and the  classifiers were trained w ith polyp and fold surfaces th a t were segregated 

by size. The convex structures are classed into polyps and folds using a multi-class 

feature normalized nearest neighbourhood(FNNN) classifier. The developed CAD- 

C T C  system has been evaluated on phantom  data  and patient da ta  th a t was scanned 

a t normal and low-dose radiation levels.

1 . 1  C o n t r i b u t i o n s

The main aim of this research is the development of a robust CAD -CTC  system 

and to  evaluate its performance when applied to  standard  and low dose CT data. 

The main contributions resulting from this investigation include:

•  The development of an autom ated technique able to  perform robust colon 

segmentation in CAD-CTC. The developed m ethod successfully segmented 

146 (96.95%) out of 151 colons w ith an average of 1.58% extra colonic surface 

inclusion [51, 52],

• A detailed analysis of the geometrical and statistical features employed for 

robust classification of polyps and folds. The devised polyp detection scheme 

shows 100% sensitivity for polyps larger than  10mm, 92% sensitivity for polyps 

in the range 5 to  10mm and 64.28% sensitivity for polyps smaller than  5mm 

with an average of 4.01 false positives per dataset [53, 54, 55, 56, 57].

•  Design and construction of a phantom  to  generate synthetic da ta  and evaluate

C h a p te r  1 I n t r o d u c t io n
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the effect of low dose on the  overall performance of the  developed CAD-CTG  

system. It was concluded th a t a radiation dose as low as 13mAs is feasible to 

be used in standard  C T C  clinical exam inations [58, 59, 60].

•  Development of efficient segm entation and classification algorithms suitable 

for fast polyp detection. The average com putation tim e for polyp detection is 

3.60 minute per dataset when the  algorithm is run on a standard  PC [55].

1 . 2  D o c u m e n t  O r g a n i z a t i o n

C hapter 1 introduces V irtual Colonoscopy and outlines the  key components of an 

autom ated C AD -CTC  system. C hapter 2 details the development of an autom ated 

colon segm entation method. C hapter 3 describes the  algorithm developed for auto­

m atic CAD based polyp detection. C hapter 4 discusses the  effect of low-dose and CT 

scanning param eters on the performance of the developed autom atic polyp detection 

scheme. C hapter 5 analyses the performance of the  developed CAD -CTC  system. 

Finally, C hapter 6 concludes this thesis and discussed the  further developments th a t 

can be made on the  discussed CAD -C TC  system.

C h a p te r  1 I n t r o d u c t io n
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C h a p t e r  2

S e g m e n t a t i o n

In CTC, the detection of polyps and cancerous lesions depends on the accurate 

identification of the colon wall and consequently relies heavily on colonic distension 

and bowel preparation. Currently, two types of bowel preparation are widely used in 

CTC. The first involves a colonic lavage and insufflation with air prior to CT imaging 

(non-oral contrast enhanced). The second involves colonic lavage and the introduc­

tion of an iodinated contrast agent to homogeneously liquefy and opacify the faecal 

m atter prior to air insufflations (oral-contrast enhanced). Most existing autom atic 

colonic surface detection techniques are proposed for the oral-contrast enhanced pa­

tient preparation [16, 61, 62] while limited research has addressed the autom atic 

colonic surface detection for the non-oral contrast enhanced patient preparation 

[63, 64, 65, 66, 67, 68]. The m ethod proposed by W yatt et al. [63] for autom atic 

segmentation of the colon includes, the removal of surrounding air voxels, distance 

transform ation, seed point selection, labelling of the air voxel area inside of the 

body, and applying the elongation and location criteria. After the removal of the 

surrounding air voxels from the  CT data, W yatt et al. employed a distance trans­

form in the binary d a ta  to extract the seed points. They used -800HU as threshold 

for binary image creation. In general the colon is the largest air filled area inside 

of the abdomen. Therefore, a maximum distance is a good approxim ation for seed 

point selection. The detected seed points were used to  segment the colon using a 3D 

region growing algorithm. They also used the elongation criteria for differentiating 

the large bowel from the stomach. Since the seed point selection was done based on 

the distance transform , the inclusion of the extra colonic surfaces (small intestine 

and stomach) were large (28 ex tra  colonic surfaces in 20 datasets) and showed only 

40-80% recovery of the  colon surface. The m ethod was tested for both  oral contrast 

and w ithout oral contrast patien t da ta  and required approxim ately 60-65 minute to
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examine a dataset. M asutani et al.[64] proposed a m ethod to remove the lung tis­

sues, surrounding air voxels, bones from the dataset and then identify the largest air 

volume as the colon. If collapses appear in the colon, the largest air volume in the 

CT data  was assigned as the colon and the other regions having volume 25% (vol­

ume threshold (R f C)) of the  largest volume were considered as parts of the colon too. 

As this technique evaluates the  air regions only w ith respect to the R f c threshold, 

parts of the small bowel can be misinterpreted as part of the colon by the auto­

m atic segmentation process. On the other hand, small parts of the  collapsed colon 

may be incorrectly removed. Nappi et al. [65] proposed a  different segmentation 

m ethod th a t detects the colon as the  intersection of the Anatom y Based Extracted 

(ABE) surface w ith the  Colon Based E xtracted (CBE) surface. ABE uses the same 

volumetric features proposed by M asutani et al. [64]. In CBE method, a 3D region 

growing was initiated from the  rectum  and this process continues until a stopping 

rule th a t checks for certain experim entally validated conditions is upheld. If the 

conditions were not m et, the region growing process was re-started from an auto­

m atically selected new seed point and the stopping rule is re-evaluated. Finally, 

the intersection surface between ABE and CBE was declared as the colon surface. 

This m ethod reduced the extra-colonic surface inclusion from 25.6% to 12.6%. Ior- 

danescu et al. [66] proposed an autom atic seed placement m ethod using one seed 

point near the rectum  for well-distended colon and two seed points a t rectum  and 

cecum for collapsed colon segmentation. Their m ethod has shown th a t for 83.2% 

of the datasets the colon segmentation was complete and 9.6% of datsets shows 

partial colon segmentation. The remaining 7.2% datasets require a manual seeded 

segmentation. Since, their m ethod used two seed points, the segmentation of the 

colons with multiple segments (higher than  two) requires manual intervention. Li 

et al. [67] showed a m ethod for autom atic seed selection for colon segmentation. 

The selected seeds are used in conjunction with 3D region growing algorithm for 

colon segmentation. Their m ethod, initially segment the CT da ta  by applying a 2D 

region growing algorithm  slice by slice. The center point of each 2D segmented area 

were selected as seed points. Then all the 2D seed points were analysed and refined 

using shape and size based filters. The filtered 2D points are used to  segment the 

colon using a 3D region algorithm. Their m ethod results in 87.5% colon surface cov­

erage with 6% extra colonic surface inclusion. The proposed shape and size filters 

can create similar results for collapsed colons and small intestine, hence autom atic
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segmentation can excludes part of the  colon or can include extra colonic surface 

or both. Frimmel et al. [68] m ethod uses the centerline and the colon geometry 

for autom atic segmentation. After the  removal of the surrounding air voxels from 

th e  CT data, their m ethod calculate the  centerline of air filled regions inside the 

abdomen. They calculated the bounding box param eters for each centerline and 

used some predefined thresholds to accept or reject the centerline section derived 

from the small intestine. Their m ethod shows 96% sensitivity for autom atic colon 

segmentation.

All of the above segmentation techniques discussed above show different levels 

of accuracy and indicate th a t further investigations are needed in order to obtain 

a robust technique for autom atic segmentation of collapsed colons especially for 

non-oral contrast-enhanced patient preparation. In this chapter a novel method for 

autom atic segmentation of collapsed colon lumen based on a prior knowledge of the 

colon geometrical features and anatom ical structure is proposed.

2 . 1  M a t e r i a l s  a n d  m e t h o d

Prior to  their scheduled exam ination all patients were instructed to  take a low- 

residue diet for 48 hours followed by clear fluids for 24 hours. Prior to  the day 

of exam ination, patients were prescribed one sachet of Pixcolax at 8.00, a second 

sachet of Pixcolax at 12.00, a sachet of clean prep in a litre of cold water a t 18.00 

and a Senokot tab let a t 23.00. Before the CT scan, a rectal tube is inserted and 

the colon is gently insufflated w ith room air at the maximum level tolerated by the 

patient. All scans were obtained on a commercially available Siemens Somatom 4 

slice m ultidetector Spiral CT scanner. The scanning param eters were 120kVp, stan­

dard  dose (lOOmAs) and low dose (13mAs-40mAs) effective tube current, 2.5mm 

collimation, 3mm slice thickness, 1.5mm reconstruction interval, and 0.5s gantry ro­

tation. The da ta  acquisition procedure takes from 10 to 30s, hence, CT acquisitions 

were performed in a single breath-hold. The procedure was first performed with 

the patient head first supine position and then repeated w ith the patient head first 

prone position. The num ber of slices varies from 200-350 depending on the height 

of the  patient. Typical to tal size of the volumetric da ta  is approxim ately 150MB.

C h a p te r  2 S e g m e n ta t io n
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2 . 2  A u t o m a t e d  S e g m e n t a t i o n  o f  C o l l a p s e d  C o l o n

C h a p te r  2 S e g m e n ta t io n

In CTC , the  presence of high contrast gas/tissue interface in the  air insufflated 

colon makes the segmentation of the colon lumen a relatively simple task. However, 

the  autom atic segmentation of the entire colon has to address two m ajor problems. 

Firstly, in CT d a ta  the colon is not the only gas filled organ, it also includes the 

gas filled lung, stomach and small bowel. In particular the small bowel may confuse 

the  autom atic colon segmentation process. Secondly, obstructions can occur in the 

colon itself due to  peristalsis, residual faeces, w ater and insufficient air insufflation. 

Such obstructions can create multiple collapses in the  colon and the  complexity of 

the  autom atic colon segmentation is significantly increased. Figure 2.1 shows the 

overview of the proposed algorithm. The proposed m ethod initially removes the 

surrounding air voxels and lung tissues from the volumetric CT d a ta  while the next 

step identifies and labels all remaining air regions in the volumetric data. Volume 

by length (V /L) analysis, orientation, length, end points, geometrical position in 

the volumetric data, and gradient of centreline of each labelled object were used 

as geometrical features for autom atic colon segmentation. Consequently, the pro­

posed autom atic segmentation technique includes the outer air segmentation, lung 

segmentation, labelling, V /L  analysis, and gradient of centreline calculations.

O n g in a l d a ta  (D IC O M )
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Figure 2.1: Overview of the proposed colon segmentation algorithm.

13



2.2.1 Surrounding Air Voxel Removal

Colon detection begins with the removal of surrounding air voxels that was per­

formed using a standard seeded 3D region growing algorithm [69]. The seed points 

for 3D region growing were selected as the left and right-most column voxels from 

the first slice of the volumetric data. The threshold (Ta) employed to evaluate the 

similarity measure for region growing was automatically selected from the global 

histogram. The second peak (Ta) of the global histogram as illustrated in Figure 2.2 

was algorithmically detected and used as the threshold for region growing.

x105

C h a p te r  2 S e g m e n ta t io n

HU Value

Figure 2.2: Global histogram of the CT volumetric data. Ta is the threshold used 
for 3D region growing. Tf and Tm represents the histogram peaks for fat and lean 
tissue respectively.

2.2.2 Lung D etection

In all head first supine or prone volumetric CT datasets the lungs are always visible 

in the first slice. Consequently, after the removal of the surrounding air voxel, the 3D 

region growing process starting in the first slice of the volumetric data will segment 

the lung tissues. To detect the lungs, the algorithm described in this chapter checks 

for the presence of isolated blood vessels inside the segmented area (see Figure 2.3). 

If multiple isolated blood vessels are detected, the segmented area is considered to 

be lung tissue; otherwise it is defined as a candidate region of the colon structure. 

Based on the analysis of the local histogram of 25 datasets (calculated from the 

first five slices of the volumetric data), it was found that a threshold greater than 

-800HU returns the best segmentation for blood vessels from the surrounding lung 

air. Hence the segmentation threshold was set to -800HU.
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(a) (b)

Figure 2.3: Detected lung from the first slice of the volumetric data, (a) Parts of 
colon (in yellow) and lung, (b) Detected lung (in red). Vessels are marked in green 
in both (a) and (b) (Results best viewed in colour).

2.2.3 Labelling the Inside Area

Once the lungs have been segmented, the remaining air regions are the colon, 

small intestine and stomach. In this step, labelling was performed using a 42/46- 

neighbourhood structured element 3D region growing algorithm (see Figure 2.4). 

The 42 neighbourhood region growing was used if the voxel width or height was 

higher than 0.611mm, otherwise a 46 neighbourhood was used (in general, voxel di­

mensions are: depth 1.5mm, width and height 0.50-0.90mm). The 42/46 neighbour­

hoods are used to make the region growing approximately isometric. The threshold 

for region growing was automatically selected from the global histogram and is usu­

ally in the range -800HU to -900HU. The labelling of the air regions was performed 

in two phases. In the first phase, any air voxels (less than the threshold) in the vol­

umetric data initiates the region growing and continue to label all the connected air 

voxels. The region growing process will stop when no neighbouring voxel with HU 

values less than the threshold are found. The last voxel where the region growing 

stopped was considered as the first end point (FEP) (see Figure 2.5a) of the labelled 

region. In the second phase, the region growing process starts from the first end 

point and labels all the voxels in the region that are already checked in the first 

phase of labelling. At the end of the second phase, the last voxel where the region 

growing stopped was considered as the second end point (SEP) (see Figure 2.5b). 

Similarly, all the air regions in the volumetric data will be labelled two times to 

calculate the two end points. During the labelling process the following information
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is also stored for each labelled region: total voxel count, flag value, average HU 

value, region bounding box coordinates and orientation.

IS

V

Figure 2.4: Seeds used for region growing, (a) 42 voxels seed, (b) 46 voxels seed.

(a) (b)

Figure 2.5: Labelling using 3D region growing, (a) Detection of first end point, (b) 
Detection of second end point.

The high end point (HEP) illustrated in Figure 2.6a is detected as the FEP at 

the end of first phase of labelling. In the second phase, region growing starts from 

the HEP and the algorithm is iterated until the second end point (SEP) is detected. 

In this situation, the labelled region will be assigned as O R IE N T  Jl. Similarly, the 

orientation index for each labelled region is recorded as O R IE N T  A, ORIENT-3  

or O R IE N T  A  as illustrated in Figures 2.6a, 2.6c, 2.6d. It is worth noting that for 

a well-distended colon supine view the orientation O R IE N T  A  will never occur.

2.2.4 Colon D etection

The colon and the small intestine are approximately 1.5m and 7-10m long, respec­

tively [70]. Anatomy of the colon shows that it is shorter and thicker than the
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Figure 2.6: The four possible orientations used to differentiate a well-distended colon 
and a collapsed colon.

small intestine. The volume of each labelled region is calculated using the following 

equation:

Volume = vx * vy * vz * n (2.2.1)

where vx, vy and vz are the voxel width, height and depth respectively and n is 

total number of voxels in the region.

The length of each labelled region was calculated between the two end points using 

the Dijkstra shortest path algorithm [71], In Figure 2.7 the V/L analysis for 35 

datasets is illustrated. The upper and lower curves represent the colon and small in­

testine V/L  values respectively. As the small bowel is long and thin when compared 

to the large bowel, the V/L  analysis provides a distinctive feature for automatic 

colon detection.

In general, the V/L  value for a well-distended colon is higher than 600m m 2. To 

provide a high degree of tolerance in V/L threshold, it was determined experimen­

tally that a well-distended colon must have a V/L  value higher than 300mm2. The 

results of developed method indicate that this V/L threshold was robust when the 

segmentation algorithm was applied to a large number of datasets.

2.2.5 Well D istended (Intact) Colon D etection

The devised algorithm firstly checks whether the colon has a collapsed segment or 

not. The algorithm is initiated with the detection of the rectum. In general, the
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Volume /Length Analysis
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Figure 2.7: Volume/Length analysis provides a distinctive feature to differentiate 
the colon from small bowel.

rectum is the only air filled area that is located at the end of the dataset. To make 

sure that the selected object is inside the body, the voxels located around its neigh­

bourhood are tested within a circular region of interest. The colon will be declared 

as well distended if the selected rectum object fulfills certain conditions.

a) The detected rectum must have a V/L  value higher than 300m m 2, a length higher 

than 700mm. The detected rectum segments with a length higher than 700mm in­

dicate that are connected with parts of the sigmoid colon and descending colon. 

In this condition, if collapses appear between transverse and descending colon or 

transverse and ascending colon, the V/L value of the rectum will be less than the 

V/L value of the ascending colon and consequently the colon will be assumed to be 

collapsed.

b) Detected rectum object orientation number (Figure 2.6) must not be O R IE N T  A  

for supine data and O R IE N T  A  for prone data.

c) Validation of the colon geometry. Projection of the well-distended model for 

colon in the XZ plane is depicted in Figure 2.8. The geometrical approximation of

18



the colon was calculated dynamically from the labelled regions (V/L > 100m m 2) 

coordinates (left most, right most, top, bottom, front and back) as indicated in 

Figure 2.8. Sometimes collapses in the sigmoid colon can create colon objects with 

a V/L value less than 300m m 2 and to include all these objects the threshold was 

fixed to 100mm2. For a well-distended colon, the air region detected as rectum 

will have one end point near the rectum and other end point (cecum point) closer 

to the cecum. To declare the detected labelled air region as well-distended colon, 

parts of it must fulfill the ascending and descending colon geometry (see Figure 2.8). 

Otherwise it will be declared as collapsed colon.

C h a p te r  2 S e g m e n ta t io n

Top

uroZ

Figure 2.8: An ideal model for a well-distended colon.

2.2.6 Collapsed Colon D etection

Collapsed colon detection is performed in two phases. In the first phase, the large 

segments (with V /L  > 300) are detected and in the second phase the small objects 

(with V/L  < 300) are detected. The detection of the large segments starts from the 

rectum. It detects the closest placed large segments using the Euclidean distance be­

tween the end points (Figure 2.9) and checks for the condition (a) and (c) which are 

detailed in Section 2.2.5. This process continues until the conditions (a) and (c) are 

met. It is worth noting that in some cases detection of the ascending colon appears
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after the rectum (clockwise detection) as depicted in Figure 2.9b. This condition 

occurs if large parts of the descending and sigmoid colon are filled with residual 

material. In this situation the V/L threshold is automatically changed to 200mm? 

to meet the geometrical condition (c) detailed in Section 2.2.5. Small-labelled ar­

eas (with V/L  < 300) are either part of the small intestine or the colon. As their 

anatomical and geometrical properties are quite similar, perfect colon identification 

is far from a trivial task. The segmentation scheme detailed in this chapter analyses 

the small segments (with V /L  < 300) using their position, gradient of the centreline, 

length, and distance.

(a ) (b ) (c)

>? V
Ml) (o)

Figure 2.9: Examples for object detection (V/L  > 300) in collapsed colon for supine 
data, a) Four objects with V /L  > 300 in expected direction, b) Two objects 
with V /L  > 300 in anti clockwise direction, c) Two objects with V /L  > 300 in 
expected direction, d) Anti clockwise direction occurred in the third object, e) 
Object detected in expected direction.

Centreline and gradient detection: Initially the centrelines of each labelled air region 

were detected using the method described by Sadleir and Whelan [72]. To reduce the 

noise in the centreline detection, a three-step procedure was employed [73]. Firstly, 

a second order low pass filter was applied to remove the high frequency components 

of the centreline. Secondly, the filtered centreline was down-sampled (typically by 

a factor of seven). Thirdly, three cubic B-spline interpolations were constructed for 

the resulting down-sampled set of points (one for each of the three orthogonal direc­

tions) . The gradient of the centreline was calculated using the first derivative of the 

interpolated centreline. The Grad/Num feature was calculated using the following 

equation:

G r a d / N u m  =  1 / n ' y ^ g r a d  (2.2.2)
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where grad is the gradient in each voxel and n is the number of voxel in the centreline.
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m l

Figure 2.10: Example of a colon with three large labelled objects (V/L > 300) and 
few small segments either part of colon or small bowel

Figure 2.10 shows three large segments (with V /L  > 300) and few small segments 

(with V /L  < 300) which are either part of the colon or small bowel. The first step 

detects the small objects placed between the large segments 1 and 2 depicted in 

Figure 2.10, and in the second step the small objects between the large segments 2 

and 3 will be detected. Detection of these small segments has been done using four 

different parameters (distance threshold, orientation, length threshold, gradient of 

centerline) as follows:

r<a r  j  r  j

(a) (b) (c) (d)

Figure 2.11: Example of removing small intestine, (a) Rejected two small intestine 
(F and G) due to distance threshold (b) One small intestine (E) rejected due to 
improper orientation (c) Small intestine (D) removed using the length threshold and
(d) Small object with high curvature A is rejected by the gradient threshold.
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a) Distance Threshold: The small object (V/L  < 300) with one or both end 

points w ithin the circular region of interest illustrated in Figure 2.11a will be de­

tected as candidate colon object. Also, all the small objects (V/L < 300) with the 

exception of F  and G in Figure 2.10 will be accepted as colon object (Figure 2.11a).

b) Orientation: The small object E  shown in Figure 2.11a have one end point 

near to  the large segment 1 and other end point near to  the large segment 3. So, 

its location violate the  geometrical constraint and will be rejected (Figure 2.11b).

c) Length Threshold: The small object D in Figure 2.11b will be rejected because 

do not pass the length threshold test (see Figure 2.11c). The length threshold was 

set as twice the distance of the large segments. For instance if the large segments 1 

and 2 shown in Figure 2.11a have a distance between the endpoints equal to  50mm, 

the length threshold will be set to  100mm.

d) Gradient Threshold: As the geometry of the small bowel shows high degree of 

curvature when compared to  the  curvature of the  colon, the Grad/Num  of the small 

bowel have a higher value than  the Grad/Num  value of the small colon parts. If the 

detected small segment has a Grad/Num  value higher than  a threshold is rejected 

and declared as part of the  small bowel (see Figure 2.l id ) .

2 . 3  R e s u l t s

The segmentation was performed on 151 standard  dose (lOOmAs) and 13 low dose 

(13mAs to 40mAs) supine and prone patient datasets (87 patient datasets, see Ta­

ble 2.1). The proposed autom atic segmentation m ethod reliably detected 63 stan­

dard  dose (lOOmAs) and 5 low-dose well-distended colons w ithout inclusion of any 

E xtra  Colonic Surface (ECS) areas. Consequently the colon surface detection was 

100% and the EC S  error was 0%. The detection of the collapsed colons was per­

formed in several phases. The detection of large segments (with V /L  > 300) was 

performed in the first phase and 219 air regions for standard  dose were detected in 

83 datasets and for low-dose d a ta  20 large segments were detected in 8 datasets. 

O ut of these 239 regions, 238 were colon parts and one was a section of the small 

bowel. The detection of small regions (V/L < 300) was done in the second phase. In 

to ta l 349 (V/L < 300) small air regions were detected in 83 standard  dose datasets 

of which 161 were colon surfaces and 188 were ECSs  and 12 colon objects were 

missed. In 8 low-dose datasets 31 (V/L  < 300) small objects were detected of which

C h a p te r  2 S e g m e n ta t io n
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10 were colon surface and 21 were ECSs and 4 colon surfaces were missed. In 83 

standard dose collapsed colons, the surface detection was always higher than 95% 

(see Figure 2.13). Only in five cases it was less than 98% and in three cases it was 

(98% to 99%). For the remaining datasets the recovery of colon surface was higher 

than 99% out of 83 collapsed colons. The largest ECS inclusion was 14.26% with a 

mean of 1.58%. In 8 low-dose collapsed colons, five shows 0% ECSs surface inclu­

sion with 100% colonic surface detection, one shows 6.5% ECSs inclusion, one shows 

4.7% ECSs inclusion with 96.3% of the colon surface detected and the other one was 

detected as intact colon and missed 13% of the colonic surface (see Figure 2.14).

C h a p te r  2 S e g m e n ta t io n

Table 2.1: Patient data information

Dose in (mAs) Number of 
supine data

Number of 
prone data

100 81 70
50 0 1
40 1 0
30 1 3
20 0 2
13 0 5

Data Error 4 6
Total 87 87

E r r o r  P e r c e n t a g e  o f  E x t r a  C o l o n i c  S u r f a c e  I n c l u s i o n  i n  C o l l a p s e d  

C o l o n

16
14

1 4 7  1 0  1 3  1 6  1 9  2 2  2 5  2 8  3 1  34  3 7  4 0  4 3  4 6  4 9  5 2  5 5  5 0  6 1  64  67  7 0  73  7 6  79  8 2  

Number of Collapsed Colon

Figure 2.12: Percentage error for ECS in 83 collapsed colons. 40 collapsed colons 
without inclusion of ECS.

To examine the performance of automatic colon segmented algorithm, an ex­

perienced radiologist from Mater Hospital, Dublin performed a manually seeded 

segmentation and it was used as the ground truth data. Since the manual mark-
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E r r o r  P e r c e n t a g e  o f  C o l o n i c  S u r f a c e  M i s s i n g  i n  C o l l a p s e d  C o l o n  

D e t e c t i o n

Humber o£ Collapsed Colon

Figure 2.13: Percentage error for undetected colonic surface in 83 collapsed colons.
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(a) (b)

Figure 2.14: (a) 3D surface of the colon segmented by the Radiologist, (b) 3D 
surface of the colon after automatic segmentation.

ing of the colon area was not feasible due to the enormous amount of data to be 

analyzed, it has been decided to segment each colon segment individually using a 

standard seeded region growing algorithm. In this way the radiologist segmented 

the colon manually using multiple seed points and 3D region growing. To further 

improve the quality of the ground truth we plan to eliminate the inter and intra ob­

server variability by involving more radiologists in the manual segmentation process. 

In this research the results returned by the automatic segmentation were compared 

with the ground truth data side by side using 2D axial views. Any area which was 

seen in the automatic segmented colon but not found in manually segmented colon 

was declared as ECS and any area excluded by the automated segmentation method 

was considered as missing. Thus 188 objects (V/L  < 300) were declared as ECS’s 

out of 349 objects (V/L  < 300) for standard dose datasets and 21 objects were
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declared as as ECS’s out of 31 objects (V/L  < 300) for low-dose datasets.
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Figure 2.15: Example of manual and automatic segmentation. Figures (a-d) show 
the 3D surface of the colon segmented by the radiologist. Figures (e-h) show the 
automatically segmented colon surfaces.

The method proposed by Nappi et al. [65] shows an average of 12.5% ECS 

inclusion with a mean of 0.9% undetected colonic surface which are higher than the 

proposed algorithm average ECS (1.58%) inclusion and mean undetected colonic 

surface (0.32%). Iordanescu et al. [66] method shows 83.2% success rate for complete 

automatic segmentation of colons. The developed method provides 94.79% success 

rate for automatic segmentation of collapsed colon when applied to 96 datasets. 

Overall sensitivity of automatic colon segmentation is 96.95% in 164 datasets.

The proposed algorithm fails to produce meaningful results when applied to 5 

out of 164 datasets due to inappropriate bowel distension (more than 50% of the 

colon area was filled with fluid and/or residual materials see Figure 2.17). Another 

advantage of the proposed technique is its low computational cost where the typical 

processing time for overall segmentation was approximately 3.4min (see Table 2.2) 

on a Pentium IV 1.6GHz PC with 1024MB RAM.
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Table 2.2: Average computation time (in seconds) for well colon segmentation (col­
lapsed and well distended).

Surrounding air voxel removal time 
Lung detection time 

Labelling time 
Length detection (shortest path) time 

Centerline calculation time

28.65
13.03
128.32
19.63
15.74

overall time (seconds) 205.37
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Figure 2.16: Example of manual and automatic segmentation. Figures (a-e) show 
the 3D surfaces of the colons segmented by the radiologist. Figures (f-j) show the 
3D surfaces of colons segmented by the automatic segmentation.

2 . 4  D i s c u s s i o n

The experimental data indicates that the segmentation algorithm detailed in this 

chapter returns reliable colon segmentation under all routinely encountered imaging 

conditions. Well-distended colons have been detected without any inclusion of the 

small bowel (see Figures 2.18, 2.19 and Table 2.3). When dealing with collapsed 

colons, the detection of surfaces with a V/L  > 300 have generated only one false 

positive in all datasets used in this study (Figures 2.20, 2.21, and 2.22). Small section 

areas (with V/L  < 300) include the colon and the small intestines and the final 

results indicate an average of 1.58% and 1.41% ECS surface inclusion for standard 

and low dose data respectively and average of 99.68% and 96.52% colon surface
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Figure 2.17: Example of a poorly distended collapsed colon.

detection for standard and low dose patient data respectively. Results show that 

the developed method reliably detects well-distended colons and the large segments 

in collapsed datasets with a low ECS inclusion in small segments detection. Tables

2.3 and 2.4 illustrate the performance of the automatic segmentation technique when 

applied to standard and low dose datasets.

Table 2.3: Results for standard dose patient data

Rating Criteria Results
Collapsed colon Intact Colon

Excellent Includes no small intestine 
and entire colon segmented

41(49.39%) 63

Good Includes a small part of the small 
intestine and segmented entire colon

25(30.12%) 0

Fair Includes large part of 
small intestine > 10%

6(7.22%) 0

Poor Includes small intestine < 5% 
and missing colon

10(12.04%) 0

Very Poor Missing > = 5%  and 
includes small intestine

1(1.20%) 0

Total 83 63

In this chapter, a novel scheme for automatic segmentation of collapsed colon is
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Table 2.4: Results for low dose patient data

Rating Criteria Results
Collapsed colon Intact Colon

Excellent Includes no small intestine 
and entire colon segmented

5(62.5%) 5

Good Includes a small part of the small 
intestine and segmented entire colon

0(0%) 0

Fair Includes large part of 
small intestine >  10%

1(12.5%) 0

Poor Includes small intestine <5%  
and missing colon

1(12.5%) 0

Very Poor Missing > =  5% and 
includes small intestine

1(12.5%) 0

Total 8 5

(a) (b)

Figure 2.18: Iso-surface of well-distended colons with the centreline superimposed.

(a) (b)

Figure 2,19: Iso-surface of well-distended colons.
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(a) (b) (c)

Figure 2.20: Collapsed colon (standard dose), (a) Three colon surfaces with V/L  > 
300 and seven colon surfaces with (V /L  < 300) and six ESCs with (V /L  < 300). 
(b) Three colon surfaces with V/L  > 300, twelve colon surfaces with (V/L < 300) 
and eleven ECSs with (V/L  < 300). (c) Five colon surfaces of V /L  > 300, nine 
colon parts with (V /L  < 300), and seven ESCs with (V/L < 300).

(a) (b) (c) (d)

Figure 2.21: Collapsed colon (standard dose), (a) Two colon surfaces with V/L  > 
300, one colon surface with (V /L  < 300) and four ESCs with (V/L < 300). (b) 
Two colon surfaces with V /L  > 300, one colon part with (V/L  < 300), and one 
extra-colonic surface with (V/L  < 300). (c) Two colon surfaces with V /L  > 300, 
two colon parts of (V/L  < 300), and two ESCs with (V/L  < 300). (d) Six colon 
surfaces with V /L  > 300.

detailed based on the inclusion of geometrical feature such as V/L  analysis, orienta­

tion, end points, gradient of centreline, and directions (clockwise or anticlockwise). 

The experimental data indicates that the V/L analysis provides a better approach 

to discriminate the colon parts from the small bowel. In the calculation of V/L, 

morphological labelling was used for finding the end points and the volume and the 

shortest path algorithm was used for finding the length. For well-distended colon 

detection, the features included in the segmentation process are V/L, length, ori-
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(a) (b) (c)

Figure 2.22: Collapsed colon (low dose), (a) Three colon surfaces with V /L  > 300 
(b) Two colon surfaces with V /L  > 300, one colon part with (V/L < 300), (c) Three 
colon surfaces with V /L  > 300, four colon parts of (V/L < 300).

entation, and geometrical position in the volumetric data. In the detection of the 

large segments of collapsed colon (with V/L  > 300), the developed method em­

ployed the geometrical position, V/L, length and direction as features. The features 

that are used for collapsed small colon segments (V/L  < 300) detection are end 

points, length, distance and gradient of centreline. All threshold parameters used 

in the automatic segmentation scheme were selected with a high degree of tolerance 

and they proved to be robust in the segmentation process. Any dataset without a 

labelled region of length less than 400mm was declared to be a poorly distended 

dataset and the algorithm rejects the dataset as unsuitable for automated analysis. 

This condition arises when the datasets have nearly 50% of the regions filled with 

residual material and fluid.

The developed method for automatic segmentation successfully identified the 

colonic lumen from volumetric CT data. In 96 supine and prone (88 standard 

and 8 low-dose) datasets containing collapsed colon data, the segmentation method 

detects 99.68% of the colonic wall and shows 94.79% sensitivity for collapsed colon 

detection. The overall sensitivity in colon detection was 96.95%. In 63 datasets the 

well-distended colons were detected without any inclusion of extra-colonic surface. 

The performance of the developed algorithm makes it suitable for 3D visualization 

of the colon surface and advanced polyp detection.

After segmentation the next step in CAD-CTC is automatic polyp detection. 

The following chapter deals with the development of CAD algorithms for automatic 

polyp detection in CAD-CTC. The chapter details the development of three different
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feature detection schemes for colonic polyp detection in CAD-CTC and the methods 

are as follows:

• Geometrical features based method.

• Statistical features based method

• 3Db features based method.

C h a p te r  2 S e g m e n ta t io n
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C h a p t e r  3

CT Colonography is a rapidly evolving technology for the detection of colorectal 

polyps and many studies have dem onstrated th a t its sensitivity in polyp detection 

is comparable to  the  sensitivity offered by conventional colonoscopy [21, 23, 26, 

29, 32, 33, 34], In this regard, Fenlon et al. [21] indicate th a t C TC  returns 

100% sensitivity for the detection of C TC  polyps greater than  10mm and 83% 

sensitivity for detection of polyps in the range 6-9mm polyps. This conclusion is 

supported by other studies [32, 74, 75, 76] where it is dem onstrated th a t CTC  is 

as good as standard  colonoscopy for the detection of colonic polyps. More recently, 

P ickhardt et al. [29] performed a detailed comparison between C T C  and standard 

Colonoscopy and they concluded th a t C T C  can increase the sensitivity of polyp 

detection when applied as a second reader w ith Colonoscopy. In their study, the 

reported sensitivities for C T C  and optical colonoscopy for polyps >  10mm were 

92.2% and 88.2%, for polyps >  9mm were 91.8% and 90.2%, for polyps >  8m m  were 

92.6% and 89.5%, for polyps >  7m m  were 89.5% and 90.2%, for polyps >  6m m  were 

85.7% and 90.0% respectively. From these results they concluded th a t the sensitivity 

in polyp detection offered by C T C  matches closely the sensitivity achieved by optical 

colonoscopy and C T C  is feasible to be used in clinical examinations.

Since the introduction of C T C  in 1994 [15], a large number of techniques in 

the  fields of 3D visualization, such as the rendering of the colon surface, centerline 

calculation, and colon wall unfolding were developed to provide the radiologists 

with all types of 2D and 3D information required to  identify the colorectal polyps. 

[77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. However the development of new CT 

imaging modalities, the high resolution CT data  offers a large volume of information 

th a t is required to be visualized and interpreted by the radiologists (the typical time 

required to  process a dataset based on a visual exam ination is in the range 12-60
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minutes). As pointed out in the study by Pickhardt et al. [29] the performance of 

the  radiologists can be effected by factors such as perceptual errors [88, 89] and 

eye fatigue [34, 35]. Johnson et al. [88] study shows th a t 34% (20 of 59) of the 

large polyps were missed in C T C  due to perceptual errors. Hence, Ven Gelder et 

al. [89] suggested th a t the introduction of CAD  based autom atic polyp detection in 

C T C  is a viable solution to reduce the  perceptual errors associated with the visual 

interpretation of the C T C  datasets. Thus, the development of CAD  methods can 

improve both  the sensitivity and efficiency of CTC. In the last decade a significant 

am ount of research has been focused on developing autom ated CAD  of colonic polyps 

and a large number of CAD-based polyp detection techniques have been proposed.

One of the  first C AD -C TC  systems was proposed by Vining et al. [90] where the 

detection of colonic polyps was based on surface curvature analysis. In the exper­

im ental section of their paper they indicated th a t the CAD -CTC  system achieved 

73% sensitivity w ith 9 to  90 false positives (F P )/da tase t.

The polyp detection system developed by Summers et al. [91] attem pts to  iden­

tify the polyps in the CT data  using a multi-stage geometrically-driven approach. 

Initially, they detect the  convex surfaces th a t protrude inward from the colon by ap­

plying a kernel filer th a t is constructed using partial derivatives. After the detection 

of the candidate surface, they used shape-based criteria derived from the principle 

curvature (kmin and kmax), mean curvature (H), sphericity ratio s =  {kmax — kmin) /H  

and minimum polyp size. They used very restrictive sphericity criteria in order to 

reduce the false positives but their technique shows zero sensitivity for polyps in the 

range 5-10mm (0 out of 4) and 100% sensitivity for polyps >  lOmm (6 out of 6). 

Later, Summers et al. [36] proposed a new m ethod m ethod where they applied a 

different shape based filter (calculated from kmin, kmax, and H)  to  reduce the level 

of FP  bu t keeping th e  sensitivity at 100%. One problem with this approach is the 

fact th a t the sensitivity and specificity of the system depend on the filter chosen to 

evaluate the local colon curvature and the reported sensitivities in polyp detection 

are in the range 29% to 100% with 6 to  20 F P s/da tase t.

Yoshida et al. [37, 92] proposed the use of shape index (cup, rut, saddle, ridge, 

cap), curvedness values (calculated on small volumes of interest) and fuzzy clustering 

in order to perform candidate polyp surface generation. The principal curvature 

{kmin and kmax) derived from the Gaussian and the mean curvature was used to 

calculate the shape index and curvedness for each colonic wall voxel. They showed
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th a t all types of colon shapes can be mapped in the interval S7e[0,1] as follows: cup 

(0.0), saddle (0.5), ridge (0.75), and cap (1.0). On the other hand, they showed th a t 

the curvedness is also an indicator of the variation of the local curvature and they 

used a predefined threshold with a  value between 0.9 to  1.0 for SI and 0.08m-1 to

0.20mm-1 for curvedness to generate the initial seed points. The C-Means clustering 

was used to generate the candidate surfaces and to  reduce the incidence of non polyp 

surface generated by noise. The CAD -CTC  system [92, 37] employed features 

such as the shape index, curvedness, m agnitude of CT values, CT values, gradient 

concentration (GC) and direction of the gradient concentration (DGC) calculated 

from candidate surfaces to classify them  into polyps or folds. They reported 95% 

sensitivity in polyp detection w ith 1.2 FP per dataset, bu t the FPs increased with 

a factor of 1.5 when the sensitivity was increased to  100%.

Paik et al [35, 93] developed a new algorithm called surface normal overlap 

th a t was applied to  colorectal polyp detection. Their algorithm is based on the 

assumption th a t the colorectal polyps are convex structures and the local normal 

intersection density samples the local convexity for each voxel of the colon wall. The 

normal overlap technique was used to  identify suspicious convex structures while the 

polyp detection is performed by assessing the deviation of these convex structures 

from a stochastic model employed to  define the  shape of a nominal polyp. This 

algorithm shows 100% sensitivity in detecting polyps larger than  10mm with 7 FP 

datasets. No experim ental da ta  is provided in regard to the sensitivity of their CAD- 

C T C  system when applied to  the identification of small (<  5m m )  and mid-sized 

polyps (between 5-10mm).

Kiss et al. [94, 95, 96] m ethod also employed the surface norm al intersection 

for the detection of convex surface from the colonic wall. To generate the polyp 

candidate surface, they  applied the Hough Transform to calculate the center points 

and used 3D region growing to  find the candidate surface from the  convex voxels 

of the colon wall. Gaussian distribution of the Hough points was used to  calculate 

the  normal concentration of the candidate surface. Two different region growing 

techniques (weighted region growing and greedy region growing) were employed to 

generate candidate surfaces from the center points and least square ellipsoid fitting 

was used to calculate the three axes of the candidate surface resulting from these 

two region growing algorithms. The number of normal intersections for each Hough 

point, Gaussian distribution, three axes of the surface resulting from the greedy
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region growing and three axes of the  surface generated by the weighted region grow­

ing were used as input features for a probabilistic neural network (PNN) classifier. 

Their CAD -CTC  system achieved 90% sensitivity for polyps larger than 6mm with 

2.82 F P s/da tase t. Recently, a different C AD -C TC  system has been proposed by 

Kiss et al. [38] th a t analyses the  slope density function as a discriminative feature 

to  classify the convex candidate surfaces into polyps and folds. The initial stage 

of their system identifies the candidate surfaces by intersecting the colon wall with 

a reform atted plane perpendicular on the local normal surface. If the intersection 

patch between the planar and the colon surface is filled with voxel da ta  the colon 

surface is concave and is declared part of the healthy colon tissue. Otherwise is 

a convex surface th a t is generated either by polyps or folds. The resulting can­

didate surfaces are evaluated statistically using the slope density function, which 

shows peaks for elongated surfaces and smooth values for ellipsoidal surfaces. This 

property of the SDF is very useful as it provides robust discrimination between the 

polyps and folds as the  folds resemble elongated cylindrical surfaces whereas polyps 

ellipsoidal surfaces. Their m ethod obtained the following performance in polyp de­

tection: 33.33% sensitivity for polyps smaller than  5mm, 85.70% for polyps in the 

range 6-9mm, 90% for polyps larger than  9mm and 100% sensitivity for cancerous 

lesions. Kiraly et al. [97] proposed a fast detection m ethod using a gradient-based 

filter and shows 96% sensitivity for polyp greater than  5mm w ith 5.76 false positive 

per dataset.

Acar et al [39, 98] employed a different approach based on the edge flow displace­

m ent th a t is applied to  obtain robust polyp detection. They developed a method 

to  extract the candidate surfaces based on the Hough Transform th a t evaluates the 

norm al intersections using the  assum ption th a t the  normal intersection will be high 

for convex (cap-like) structures. After the extraction of the candidate surfaces, they 

scrolled these surfaces w ith a planar perpendicular on the main axis of the surface 

and they com puted the edge ffow from the extrem ity of the surface towards its 

center. The divergence of the edge flow is used to  determine whether the candidate 

surface is generated by a polyp or a fold. They applied this technique on 48 datasets 

and their experiments indicate th a t their m ethod achieved 35% specificity a t a  sen­

sitivity rate  of 100%. This m ethod was further advanced by G okturk et al. [99] 

when they applied the random ly oriented triple orthogonal planes a t the location 

of each candidate surface. They applied this approach to  sample the sphericity of
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the candidate surface based on the fact th a t any random  planar slicing through a 

spherical surface will generate a circle. The reported experimental results indicated 

th a t they achieved 69% specificity at a  sensitivity rate  of 100%. No detailed analy­

sis with respect to  the  size of the  polyps is provided. Wang et al. [40] stated  th a t 

the inclusion of morphological and texture features can reduce 10 times the false 

positives when compared to  the standard  shape-based approach. Wang et al. [100] 

combined the tex ture features and global curvature for autom atic polyp detection 

and shows 100% sensitivity for >  10mm with 2.0 false positive per dataset. Jerebko 

et al. [41] employed a multiple neural network classification scheme to achieve a 

36% reduction in FPs and a 20% reduction in false negative (FN)detection. Later, 

Jerebko et al. [101] employed a support vector machines committee classification 

scheme to achieve 81% sensitivity with 2.6 false positive per dataset. Iordanescu et 

al. [102] developed a rectal tube detection m ethod th a t was applied to reduce the 

FPs generated by the rectal tube. Li et al. [67] proposed m ethod employed different 

geometric features such as maximum polyp radius calculated from the minimum 

curvature, minimum polyp radius derived from the  maximum curvature, candidate 

surface area, roundness of the  candidate surface and elongation factor for classifi­

cation of the candidate surfaces into polyps or folds. Their m ethod achieved 90% 

sensitivity w ith 2 FPs per dataset.

All the above mentioned CAD -CTC  techniques show 100% or close to 100% 

sensitivities in the detection of polyps >  10mm, while the sensitivities in the detec­

tion of polyps in the range [5 — 10)mm vary from 70% to  95%. The reported false 

positive rates vary from 2.0 to  90 per dataset. Among all the developed CAD -CTC  

techniques, Yoshida et al. [37, 92] and Kiss et al. [38] methods show best results 

for sensitivity and false positives incidence per dataset. Yoshida et al. technique 

achieved a sensitivity of 100% per patient with 2.0 false positive. But it is worth 

noting th a t the sensitivity dropped to 90% when it was presented as per polyp. Also 

the polyps smaller than  5mm were completely ignored in their evaluation. Kiss et 

al. [38] m ethod shows 90.90% sensitivity for polyps >  9mm and 100% sensitivity for 

colorectal tum ors w ith a false positive rate of 2.48. Their m ethod shows 33.33% sen­

sitivity for polyps <  6m m  and 85.70% sensitivity for polyp between 6 — 9mm where 

the d a ta  used in their experiments has been acquired with 0.8mm reconstruction 

interval. It is also useful to  note th a t both Kiss et al. and Yoshida et al. CAD-CTC  

techniques evaluated the difference in the geometrical shapes between polyps and
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folds.

In this thesis these geometrically-driven approaches will be further advanced by 

developing a number of CAD polyp detection techniques where the discrimination 

between polyps and folds is performed using the features th a t sample the morphology 

of the  local 3D data. All the proposed polyp detection methods employed different 

features derived from the colon wall in order to classify optimally the candidate 

surfaces into polyps and folds. The first polyp detection scheme called geometrical 

fitting approach evaluates the discriminative power of the features calculated from 

the colon surface using least square approxim ation (ellipsoid, sphere, plane) in order 

to  perform polyp identification. The second m ethod uses the statistical features 

derived from the colonic surface. The th ird  m ethod analyses the 3Decibel (3dB) 

attenuation  on th e  surface variation curve and surface norm al concentration for 

polyp detection.

3 . 1  G e o m e t r i c a l  F i t t i n g  A p p r o a c h

Figure 3.1, gives an overview of the proposed algorithm. In this section, the seg­

m entation, polyp surface generation and feature extraction phases of the algorithm 

are discussed in detail.

3 D  V o lu m e  D a t a
S e g m e n t a t io n  a n d  

P o ly p  S u r fa c e  D e te c t io n
A u to m a t ic  C o lo n  S e g m e n ta t io n  

o r
M a n u a l ly  s e e d e d  s e g m e n ta t io n

G e o m e t r ic a l  F e a tu r e  
E x tra c t io n

T ra in  D a t a T e s t  D a ta

N o r m a l iz e d  N e a r e s t  
N e ig h b o u r h o o d  C la s s if ie r

1
D e c is io n :  P o ly p , n o n -p o ly p

Figure 3.1: Overview of the Geometrical F itting  CAD -CTC  system.

3.1.1 Segm entation

C T C  images provide high contrast between the gas and colon surface. Using a 

region growing [69] algorithm the gaseous region can be segmented successfully. 

Sometimes remaining residual m aterial and w ater can create collapses in the colon 

and the region growing algorithm may require multiple seed points to  segment the
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entire colon. The developed CAD-CTC system provides both the manual assisted 

segmentation and the complete automatic segmentation detailed in Chapter 2. The 

manually placed seed segmentation used -800HU as threshold, as suggested in [72, 

90] whereas the automatic colon segmentation detects the threshold (from -900HU 

to -800HU) automatically from the global histogram (see Figure 2.2). The colonic 

wall (CW) is defined as the adjacent voxels having HU values higher than -800HU 

or the automatically detected threshold.

3.1.2 Polyp Surface D etection
3 . 1 . 2 . 1  3 D  H o u g h  T r a n s f o r m

The normal vector for each voxel in the CW-set was calculated using the Zuker and 

Hummel operator [103]. Each voxel in the CW  creates 7 Hough points (HP) (see 

Figure 3.2) in the normal direction from 2.5mm to 10mm (2.5, 3.75...8.75, 10.0) by 

varying the parameter t in Eq. 3.1.1,

p = pi +  t x n  (3.1.1)

where pi is the colon wall voxel and n is the normal vector to that voxel. In Eq. 3.1.1 

the value of t starts from 0.1 and increases with the step size of 0.1mm until all the 

HP points situated at distances 2.5, 3.75, 5.0, 6.25, 7.5, 8.75, and 10.00mm are 

generated. The term Hough Point has been introduced in order to highlight the 

similarity with the Hough Transform that is applied to identify the 3D spherical 

objects in CT data.

Figure 3.2: Surface normal and the distribution of the 7 Hough Points (HP) in the 
normal direction.
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3 . 1 . 2 . 2  3 D  H i s t o g r a m

The HPs are uniformly distributed from 2.5mm to 10mm along the normal vector 

direction for each voxel of the colon wall (CW) and the intersections between the HPs 

are recorded (see Figure 3.2) in a 3D histogram. Thus, the 3D histogram records the 

intersections between the HPs that are in fact intersection of the normal vectors. 

As the normal vectors are determined using 3D local operators their orientation 

is sensitive to abrupt changes in the 3D structure of the CW, and to reduce the 

level of noise in the histogram a weighted smoothing procedure is applied using the 

expression illustrated in Eq. 3.1.2,

T 7- C j r  7 X  '  ( 5 )  X  V O X e l n e i g h b o U T  / r j  -( r ) \

Vsmooth = Voxel +  > ------- ----- TTr.-------------  i3-1-2)
0

where 6 is equal to 1/ y/2.

3 . 1 . 2 . 3  N o n  M a x i m u m  S u p p r e s s i o n

After smoothing, all HP’s having histogram values higher than 4.0 intersections are 

considered as initial candidate center points (ICCP) of the candidate polyp surfaces. 

Non maximum suppression was applied in the ICCP set to create potential center 

points. The cluster of surface points was created by including the HPs and their 

corresponding surface voxels within a certain distance from ICCP (10mm to 25mm). 

It is useful to remember that folds are generally shaped like cylinders and show a 

uniform distribution of the number of intersections generated by the HPs along 

the axis of the cylinder. Conversely, polyps resemble either spherical or ellipsoidal 

shapes and show a narrow peak in the 3D histogram. A minimum distance of 

10mm was experimentally selected in initial clustering to include the highest possible 

number of surface points in the clustered surface. The distance threshold varies from 

10mm to 25mm depending on the histogram value for each center point in ICCP. 

The candidate surface cluster may include surrounding non-convex surface points 

or disconnected surfaces (Figure 3.3) that may create problems when the candidate 

surface is analysed to decide if it is a polyp or a fold. To eliminate these undesired 

surface points from the initial cluster, a Candidate Surface Processing procedure is 

applied. This procedure is described in detail in the next section.
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(a) (b) (c)

Figure 3.3: 3D Surface after initial clustering (a) 3D surface of an inserted tube, (b) 
3D surface of a fold and (c) 3D surface of a polyp

3 . 1 . 2 . 4  C a n d i d a t e  S u r f a c e  P r o c e s s i n g

To remove the  non-convex surface points and the disjoint points from the initial clus­

ter, a C andidate Surface Processing procedure th a t calculates the Gaussian mapping 

for each cluster and performs a non-convex surface voxel removal test was developed.

1. Gaussian Center and Radius Detection-. To calculate the center and radius of 

each cluster, a Gaussian distribution depicted in Eq. 3.1.3 was calculated for each 

HP  of the cluster,
N

GMi = Y ^ e {- x2l2-°*a) (3.1.3)
6=i

where the variable x is the distance between the HPs, a  is the standard  deviation 

and is set to 1. The quantity  N  is the number of HPs in the cluster and j  takes 

values between 1...N.

The HP w ith the highest Gaussian distribution was set as the  center of the clus­

tered surface and the Euclidian distance between the center and its corresponding 

surface point is the radius of the  cluster. The Gaussian distribution is an efficient 

feature th a t can be used to  discriminate between polyps and folds. In this regard, 

the Gaussian distribution has high values for polyps and low values for folds.

2. Surface Convexity Test Let 5  be a surface voxel, n  be the normal vector 

at the surface voxel S  and Q be the  intersection point of the surface normal and 

the perpendicular line from the center of the cluster to  the surface normal (see 

Figure 3.4). To remove the non-convex points from the initial cluster a simple 

surface convexity test was employed. In this regard, the non-convex surface point

S will be removed from the cluster if the dot product <  S Q ,n  > is less than  zero. 

In Figure 3.4, the  points s i  and s4 and their associated HPs will be removed from
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the cluster as they do not pass the convexity test. The normal distance from the 

center of the cluster (CP) to the surface normal at position SP and the distance 

between the surface point (SP) and the intersection point (IP)(see Figure 3.5) were 

also checked. If the distance between the surface point SP and the intersection 

point IP is larger than 10mm (the maximum HP distance), the surface point SP is 

eliminated from the candidate surface.

C h a p te r  3 C A D - C T C  P o ly p  D e te c t io n

Figure 3.4: Convexity test. The point C is the center of the cluster. The surface 
points s2 and s3 pass the convexity test whereas the surface points si and sJt and 
their associated Hough points will be removed from the candidate surface as they 
do not obey the condition < S Q ,n  > less than zero.

SP

SP - Surface Point 
CP - Center Point 
IP - Intersection Point

IP

Figure 3.5: SP, CP and IP are the surface point, center point and intersection point 
respectively. The circles between the SP and IP represent the 7 Hough points for 
each surface point.

After the removal of the non-convex surface voxels, each cluster was further 

processed to evaluate discontinuities in the surface under examination. If discon­

tinuities exist in the surface area, the cluster is divided into multiple clusters and 

their Gaussian map, center and radius are recalculated (see Figure 3.6).

3.1.3 Feature Extraction of Geom etrical F itting

The aim of the method detailed in this section is to calculate the features associated 

with each cluster surface, which will be considered as input for the classifier. The 

features must be selected in order to maximize the discriminative power between
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(a) (b) (c)

Figure 3.6: 3D surface resulting after the re-clustering phase, (a) 3D surface of 
the inserted tube illustrated in Figure 3.3a, (b) 3D surface of the fold illustrated in 
Figure 3.3b, (c) 3D surface of the polyp illustrated in Figure 3.3c.

polyps and folds. Recall that the nominal model for polyp is either spherical or 

ellipsoidal, while the nominal model for fold is cylindrical [35, 95]. The features 

computed are: the Gaussian distribution, least square approximation of the sphere 

fitting radius and error, least square approximation of the three axis of the ellipsoid 

and ellipsoid fit error. In our experiments we have evaluated a large number of 

features and in the final implementations we have retained only those that exhibit 

maximal discrimination between polyps and folds. An automatic feature selection 

technique would be difficult to be devised since the geometrical features do not re­

spond linearly to polyps having different sizes. Thus, the automatic feature selection 

method was not examined as part of this study.

The Gaussian distribution which estimates the center and radius of each cluster 

was calculated in the candidate surface processing (see Section 3.1.2.4). For folds the 

the value of the Gaussian distribution is considerably smaller than the value of the 

Gaussian distribution calculated for surfaces generated by polyps (see Figure 3.7). 

Sphere fitting for each cluster was performed in two phases. Firstly, the error in 

the least square sphere fitting [104, 105] was calculated using the existing Gaussian 

center and the Gaussian radius of the cluster. Secondly, the cluster radius and 

the center point were re-calculated using a least square sphere fitting algorithm 

[104, 105]. Experimental results indicate that for spherical polyps, the Gaussian 

radius and the cluster center were very close to those obtained using the least square 

estimated sphere and the error in fitting is small. For folds the least square estimated 

radius is higher than the Gaussian radius and the sphere fitting error is significantly 

higher than the fitting error for polyps. This is illustrated in Figure 3.8 (note that
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Figure 3.7: Gaussian distribution, (a) and (b) show the Gaussian distribution for 
different classes of polyps (a) and folds (b) respectively(polyps and folds classes are 
sorted by size in ascending order).

polyp and fold classes are ordered by size in the diagram) where the sphere fitting 

error for a large variety of polyps and folds is plotted. Experimental results also 

show that the change in the fitted sphere radius for the candidate surface and the 

half radius surface was significantly higher for folds when compared to polyps (see 

Figure 3.9).
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Sphere F itting  E rror o f  polyps and  folds
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Figure 3.8: Sphere fitting error analysis, (a) and (b) represent sphere fitting error 
analysis for different classes of polyps and folds respectively(polyps and folds classes 
are sorted by size).

The principal axes of the fitted ellipsoid and its associated estimation error [104] 

were calculated for each polyp candidate surface and its derived half radius surface. 

The half radius surface voxels are determined from the existing cluster and includes 

those surface voxels, which have a distance from the center of cluster to the surface 

normal less than a half radius threshold (HRT). The HRT is selected in conjunction 

with the Gaussian distribution value and varies from 2mm for small candidate sur-
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Figure 3.9: Change in sphere radius, (a) and (b) depict the change in sphere radius 
for different classes of polyps and folds.

faces to 5mm for large candidate surfaces. The minimum value of HRT (2mm) was 

experimentally selected. The Surface Change Rate (SCR) value computed using the 

equation 3.1.4 is minimal for polyps (see Figure 3.10) but it is large for folds (see 

Figure 3.11, 3.12),

SC R  = (Nt  -  N h ) /N h (3.1.4)

where N T is the number of surface voxels in the cluster and N h  is the number of
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surface voxels in the half radius surface.

It was also found that the change in the major axis direction of the fitted ellipsoid 

for the candidate surface and the half radius surface was significantly higher for folds 

when compared to polyps (see Figure 3.13). Similarly, change in the ellipsoid fitting 

error for the candidate surface and the half radius surface was higher for folds when 

compared to polyps (see Figure 3.14)
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Figure 3.10: Surface change rate, (a) and (b) show surface change rate for different 
classes of polyps and folds.
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Chapter 3 CAD-CTC Polyp Detection

F ig u re  3.11: 3D  s u r fa c e  g e n e ra t io n  o f  a  p o ly p  (a) a n d  i t s  h a lf  r a d iu s  su rfa c e  (b ) . N o 
s ig n if ic a n t d iffe ren ces  b e tw e e n  th e m  a re  n o tic e d .

F ig u re  3.12: 3D  su rfa c e  g e n e ra t io n  o f  a  fo ld  (a ) a n d  i t s  h a lf  ra d iu s  su rfa c e  (b ) . I t  
c a n  b e  n o tic e d  a  s ig n if ic a n t d iffe ren ce  b e tw e e n  th e m .

T h e  o th e r  f e a tu re s  t h a t  a re  u se d  fo r  c la ss ify in g  th e  c a n d id a te  su rfa c e  a s  p o ly p s  

a n d  fo ld s  a re  s p h e re  r a d iu s ,  c h a n g e  in  s p h e re  r a d iu s ,  p r in c ip le  ax es  o f  e llip so id  

f i t t in g , c h a n g e  in  G a u s s ia n  d is t r ib u t io n .  A ll th e  a b o v e  m e n tio n e d  fe a tu re s  e x h ib it  

h ig h  d is c r im in a t io n  b e tw e e n  p o ly p s  a n d  fo ld s  a s  i l lu s t r a te d  in  F ig u re s  3 .8 , 3 .10 , 3 .13  

a n d  th e s e  f e a tu re s  a re  th e  in p u ts  fo r  tw o  d iffe re n t c la ss ifie rs  t h a t  a re  u se d  to  c la ss ify  

t h e  c a n d id a te  su rfa c e s  in to  p o ly p s  a n d  fo lds.

3.1.4 C lassification

F o r p o ly p /f o ld  c la s s if ic a tio n  a  m u ltip le -c la s s -s e g re g a te d  fe a tu re  n o rm a lize d  n e a r ­

e s t  n e ig h b o rh o o d  (F N N N ) c la ss ifie r d e ta i le d  in  [106], P ro b a b ilis tic  N e u ra l N e tw o rk  

(P N N ) [107] w e re  em p lo y e d . T o  e v a lu a te  th e  p e r fo rm a n c e  o f t h e  F N N N  c la ss ifie r i ts  

p e r fo rm a n c e  w as  c o m p a re d  a g a in s t  th e  p e r fo rm a n c e  o f o n e  o f  th e  c o m m o n ly  u se d  

c la s s if ic a tio n  sc h e m e s , n a m e ly  th e  P N N  c la ss ifie r. T h e  F N N N  c la s s if ic a tio n  sch em e
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F ig u re  3.13: T h e  c h a n g e  in  m a jo r  a x is  o r ie n ta tio n , (a ) a n d  (b ) d isp la y  th e  c h an g e  
in  m a jo r  ax is  o r ie n ta t io n  fo r  d iffe re n t c lasses  o f p o ly p s  a n d  folds.

c o n s is ts  o f tw o  s ta g e s . F ir s t ly , th e  t r a in in g  d a ta b a s e  is  c r e a te d  b y  u s in g  th e  fe a tu re s  

d e ta i le d  in  th e  p re v io u s  s e c tio n  fo r e a c h  c lass o f p o ly p s  a n d  fo lds. F e a tu re s  o f each  

c la ss  w ere  n o rm a liz e d  in  o rd e r  to  av o id  th e  s i tu a t io n s  w h e re  th e  fe a tu re s  w ith  th e  

la rg e s t  v a lu es  s u b d u e  th e  r e m a in in g  ones. T h e  fe a tu re  n o rm a liz a tio n  sch em e  w as 

p e r fo rm e d  in  o rd e r  to  n o rm a liz e  each  fe a tu re  to  ze ro  m e a n  a n d  u n i t  v a r ia n c e  (see 

E q . (3 .1 .5 ) a n d  (3 .1 .6 ))
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F ig u re  3 .14: C h a n g e  in  e llip so id  f i t t in g  e r ro r , (a )  a n d  (b )  d isp la y  th e  c h a n g e  in  th e  
e llip so id  f i t t in g  e r ro r  fo r d if fe re n t c la sse s  o f  p o ly p s  a n d  fo lds.

m,i =

X j \ i \  =

k

Xj[i\ — m,i

Si = (3 .1 .5 )

(3 .1 .6 )f o r  j  =  l , . . . , k ,  * =  1 , . . . , n

w h e re  n  d e fin e s  th e  n u m b e r  o f  f e a tu re s  p e r  p a t t e r n ,  m,- a n d  .?» a re  th e  m e a n  a n d  th e  

v a r ia n c e  o f  th e  i t h  fe a tu re s , X j is th e  u n p ro c e s se d  j t h  p a t t e r n ,  k  d e fin es  th e  n u m -
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b e r  o f p a t t e r n s  c o n ta in e d  in  th e  m o d e l d a ta b a s e  a n d  X j  r e p re s e n ts  th e  n o rm a liz e d  

j t h  p a t te r n .  T h e  c la s s if ic a tio n  s ta g e  c o m p u te s  th e  E u c lid ia n  d is ta n c e  b e tw e e n  th e

w h e re  X j  is th e  j  t h  p a t t e r n  fro m  th e  m o d e l d a ta b a s e  a n d  Y  d e fin es  th e  p a t t e r n  fro m  

th e  in p u t  su rfa c e  to  b e  c la ssified . T h e  in p u t  is d e c la re d  as p o ly p  if  th e  m in ( d is t j )  

b e lo n g s  to  p o ly p  c lass , o th e rw ise  d e c la re d  as fold.

P ro b a b i l i s t ic  n e u ra l  n e tw o rk s  a re  r a d ia l  b a s is  n e tw o rk s  s u i ta b le  fo r a  la rg e  ra n g e  

o f c la s s if ic a tio n  p ro b le m s . P N N  is c o n s t r u c te d  o n  a  fe e d -fo rw a rd  a r c h i te c tu re  a n d  

s u p e rv is e d  t r a in in g  a lg o r i th m  t h a t  is  b a s e d  o n  b a c k  p ro p a g a t io n . P N N  allow s in c re ­

m e n ta l  le a rn in g  w h e re  n e w  t r a in in g  d a t a  c a n  b e  a d d e d  a t  a n y  t im e  w i th o u t  re q u ir in g  

r e t r a in in g  o f  th e  e n t i r e  n e tw o rk .

T h e  F N N N  t r a in in g  d a ta b a s e s  c o n s is t  o f five p o ly p s  a n d  five fo ld s  d a ta b a s e s . 

T h e  p o ly p s  w ere  c la ss ified  in to  sm a ll  sp h e ric a l, m e d iu m  sp h e r ic a l, b ig  sp h e ric a l, 

e ll ip t ic a l ,  a n d  n o n -s p h e r ic a l  p o ly p . T h e  fo ld  d a ta b a s e  w as  a lso  c la ssified  as sm a ll 

fo ld s , sm a ll co n v ex  su rfa c e , m e d iu m  fo ld s , la rg e  fo ld s, tu b e . I n  F ig u re s  3 .8 , 3 .10 

a n d  3 .13  class-1  po lyp , c la ss-2  po lyp , c la ss- 3  po lyp  a n d  c lass-4  p o lyp  r e p re s e n t  sm a ll, 

m e d iu m , la rg e  a n d  e l l ip tic a l p o ly p s  re s p e c tiv e ly  a n d  c la s s . l  fo ld , c la ss -2  fo ld , c la s s S  

fo ld  a n d  cla ss-4  fo ld  r e p re s e n t  la rg e  fo ld s , m e d iu m  size  fo ld s , sm a ll fo ld s  a n d  sm a ll 

c o n v e x  su rfa c e s  re sp e c tiv e ly . C l a s s S  p o ly p  a n d  c la ss-5  fo ld  in  F ig u re  3 .10  a n d  3.13 

r e p re s e n t  n o n  s p h e r ic a l p o ly p s  a n d  in s e r te d  tu b e s  re sp e c tiv e ly . In  t o t a l  64 p o ly p s  

a n d  155 fo ld s  w ere  u s e d  to  t r a i n  t h e  F N N N  a n d  P N N  ( th is  te c h n iq u e  h a s  b e e n  

d e v e lo p e d  f irs t a n d  i t  h a s  b e e n  t r a in e d  o n  a  sm a lle r  n u m b e r  o f  fa lse  p o s itiv e s  th a n  

th e  m e th o d s  d isc u s se d  in  s e c tio n s  3 .2 .2  a n d  3 .3 .1 ). B y  e x p e r im e n ta t io n  i t  h a s  b e e n  

d e m o n s tr a te d  t h a t  t h e  a p p ro a c h  o f s e g re g a tio n  in  p o ly p  t r a in in g  b y  size offered  

t h e  o p t im a l  so lu tio n  to  in c re a s e  th e  id e n tif ic a t io n  r a te  e sp e c ia lly  fo r sm a ll p o ly p s  

( <  5m m )  b u t  n o t  a t  t h e  e x p e n s e  o f  in c re a s in g  th e  leve l o f fa lse  p o s itiv e s .

T h e  g e o m e tr ic a l f e a tu re -b a s e d  a p p ro a c h  is o n ly  s u i ta b le  fo r th e  C T  d a t a  a c q u ire d  

a t  3 .0 m m  slice  th ic k n e s s  a n d  1 .5 m m  r e c o n s tru c t io n  in te rv a l  w h ic h  is  th e  s ta n d a r d  

p ro to c o l  u se d  in  t h e  M a te r  H o s p i ta l  D u b lin  (c lin ica l p a r tn e r ) .  M o d if ic a tio n s  in  

t h e  r e c o n s tru c t io n  in te rv a l  g e n e ra te  c h a n g e s  in  th e  su rfa c e  a r e a  fo r p o ly p  c a n d id a te  

s u r fa c e  a n d  m a y  a l t e r  th e  f e a tu re  v a lu e s  c a lc u la te d  f ro m  th e  c a n d id a te  su rface .

in p u t  p a t t e r n s  c a lc u la te d  fro m  c a n d id a te  su rfa c e s  a n d  th e  p a t t e r n s  c o n ta in e d  in  th e  

d a ta b a s e ,
n
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H e n c e , th e  g e o m e tr ic a l f e a tu re -b a s e d  te c h n iq u e  is s u i ta b le  o n ly  to  b e  a p p lie d  to  C T  

d a ta s e t s  a c q u ire d  w ith  th e  p ro to c o l  u s e d  in  th e  t r a in in g  s ta g e . T o  o v erco m e th e s e  

p ro b le m s  s t a t i s t i c a l  f e a tu re -b a s e d  m e th o d s  w ere  d e v e lo p e d  w h e re  3D  in te rp o la t io n s  

a re  a p p lie d  in  o rd e r  to  g e n e ra te  is o m e tr ic  d a ta s e ts .

3.2 Statistical Feature based method

T h e  s ta t i s t i c a l  f e a tu re -b a s e d  m e th o d  c o n s is ts  o f  five s te p s  a s  i l lu s t r a te d  in  F ig ­

u re  3 .15 . In i t ia l ly  th e  n o n - is o m e tr ic  p a t i e n t  d a t a  w as  c o n v e r te d  to  iso m e tr ic  d a ta  

b y  u s in g  c u b ic  in te rp o la t io n . S e g m e n ta t io n  o f  th e  co lo n  is  p e r fo rm e d  u s in g  m a n ­

u a lly  p la c e d  seed  p o in ts  in  c o n ju n c t io n  w i th  3D  re g io n  g ro w in g  (6 -n e ig h b o u h o o d )  

a lg o r i th m  [69]. T h re s h o ld  fo r th e  re g io n  g ro w in g  w as s e t  to  -8 0 0 H U  as  su g g e s te d  

in  3 .1 .1 . T h e  v o x e ls  a d ja c e n t  t o  th e  co lo n  voxel h a v in g  H U  v a lu e s  h ig h e r  t h a n  -800 

d e fin e  t h e  co lo n  w all. P o ly p  c a n d id a te  g e n e ra t io n  in c lu d e s  th e  a p p l ic a t io n  o f H o u g h  

T ra n s fo rm , 3 D  H is to g ra m , s m o o th in g  o f  t h e  H P  sp a c e , in i t ia l  c e n te r  p o in t  c a lc u la ­

t io n , c lu s te r in g  o f  t h e  co lo n ic  v o x e ls  a n d  c a n d id a te  su rfa c e  p ro c e ss in g . T h e  H o u g h  

T ra n s fo rm  u s e d  to  g e n e ra te  th e  c a n d id a te  su rfa c e s  is s im ila r  to  th e  m e th o d  d isc u sse d  

in  t h e  s e c tio n  3 .1 .2 .1 . In  th is  s te p  e a c h  su rfa c e  v o x e l c re a te s  8  H P  in  n o rm a l d ire c ­

t io n  f ro m  2 m m  to  1 0 m m . T h e  3D  h is to g ra m  c re a tio n  a n d  s m o o th in g  is  s im ila r  w ith  

t h e  p ro c e d u re  d e s c r ib e d  in  s e c tio n  3 .1 .2 .2 . In i t ia l  c e n te r  p o in ts  w ere  d e r iv e d  u s in g  

th e  n o n -m a x im u m  s u p p re s s io n  d isc u s se d  in  3 .1 .2 .3 . L a s t  s te p  o f  p o ly p  c a n d id a te  

g e n e ra t io n  is  th e  c a n d id a te  su rfa c e  p ro c e s s in g  w h ic h  in c lu d e s  th e  G a u s s ia n  c e n te r  

a n d  r a d iu s  d e te c t io n  a n d  a  s u r fa c e  c o n v e x ity  te s t .

Chapter 3 CAD-CTC Polyp Detection

Figure 3.15: S tatistica l feature-based algorithm  for polyp  detection.
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3.2.1 Candidate Surface Processing

T o rem o v e  th e  n o n -c o n v e x  su rfa c e  p o in ts  fro m  th e  in i t ia l  c lu s te r , th e  C a n d id a te  

S u rfa c e  P ro c e s s in g  c a lc u la te s  th e  G a u s s ia n  m a p p in g  o n  e ach  c lu s te r  to  c a lc u la te  th e  

G a u s s ia n  c e n te r  a n d  r a d iu s  a s  d is c u s se d  in  S e c tio n  3 .1 .2 .4 .

T o  rem o v e  th e  n o n  co n v ex  su rfa c e  p o in ts  f ro m  th e  in i t ia l  c lu s te r  tw o  d iffe ren t 

c o n v e x ity  te s t s  w ere  p e r fo rm e d  o n  th e  in i t ia l  c lu s te r .

1. T h e  f irs t s te p  invo lv es  th e  c o n v e x ity  t e s t  d e s c r ib e d  in  S e c tio n  3 .1 .2 .4 . In  th is  

m e th o d , a  n o n -c o n v e x  su rfa c e  p o in t  S  w ill b e  re m o v e d  fro m  th e  c lu s te r  if  th e  d o t 

p r o d u c t  ( <  S Q , n  > )  is  less t h a n  ze ro , w h e re  n  is  th e  n o rm a l v e c to r .

2. T h e  se c o n d  s te p  a im s  to  f u r th e r  re fin e  th e  c a n d id a te  su rfa c e  a n d  is b a s e d  on  

th e  su rfa c e  c o n v e x ity  t e s t  p ro p o s e d  b y  K iss  e t  al. [94]. F o r ea c h  v o x e l p i  b e lo n g in g  

to  a  c lu s te r (V F ) , a  b o u n d in g  b o x  B  is  d e fin ed . A s  su g g e s te d  b y  K iss  e t  al. [94] 

t h e  d im e n s io n  o f  th e  b o u n d in g  b o x  w a s  s e t  t o  4. F o r ea c h  vox e l p 2 t B  P | W ,  th e  

n o rm a l in c id e n c e  a n a ly s is  is  e v a lu a te d  (see  F ig u re  3 .16 ) a n d  th e  v a lu e s  Vc a n d  Vt a re  

c o m p u te d . Vc d e fin e s  th e  n u m b e r  o f  v oxe ls  s i tu a te d  in  B { ^ \W  t h a t  s a t is fy  T convex, 

w h ile  Vt r e p re s e n ts  th e  t o ta l  n u m b e r  o f  v oxe ls in  B {~ }W . F in a lly , th o s e  p o in ts  ( p i ) 

w h e re  Vc/ V t is h ig h e r  t h a n  re m a in  in  th e  c lu s te r  w h ile  th e  o th e r s  a re  rem o v ed . 

T h re s h o ld  v a lu e s  fo r  T convex, Thus w e re  e x p e r im e n ta l ly  s e t  to  0.4  a n d  0 .2  re sp e c tiv e ly  

(K iss  e t  al. [94]).
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(a) (b)

F ig u re  3 .16: C o n v e x ity  te s t ,  (a ) v o x e l p \  is co n v ex  b e c a u s e  th e  in te r s e c t io n  b e tw e e n  
th e  ta n g e n t  t o  p i  a n d  th e  n o rm a l  v e c to r  o f  th e  n e ig h b o r in g  vox e l p 2 is in s id e  th e  
co lo n  a re a , (b ) v o x e l p \  is n o n -c o n v e x  c b e c a u se  th e  in te r s e c tio n  b e tw e e n  th e  ta n g e n t  
to  p i  a n d  th e  n o rm a l v e c to r  o f  th e  n e ig h b o r in g  voxel p 2 is  o t  s id e  th e  co lo n  a rea .

A f te r  th e  re m o v a l o f  th e  n o n -c o n v e x  su rfa c e  v oxels f ro m  th e  c a n d id a te  su rface , 

e a c h  c lu s te r  w a s  f u r th e r  p ro c e s se d  to  e v a lu a te  d is c o n tin u it ie s  in  th e  c a n d id a te  s u r ­

face . I f  d is c o n tin u it ie s  e x is t  in  t h e  c a n d id a te  su rfa c e , th e  c lu s te r  w as  d iv id e d  in to
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m u ltip le  c lu s te rs . F ig u re  3 .17  sh o w s th r e e  p o ly p  su rfa c e s  a n d  in  F ig u re  3 .18  th re e  

fo ld  su rfa c e s  o b ta in e d  a f te r  c a n d id a te  su rfa c e  p ro c e ss in g  a re  i l lu s tr a te d .

Chapter 3 CAD-CTC Polyp Detection

(a) (b) (c)

F ig u re  3.17: 3D  su rfa c e  o f th r e e  p o ly p s  o b ta in e d  a f te r  c a n d id a te  su rfa c e  p ro cess in g .

(a) (b) (c)

F ig u re  3.18: 3D  su rfa c e  o f th r e e  fo ld s  o b ta in e d  a f te r  c a n d id a te  su rfa c e  p ro cess in g .

3.2.2 Statistical features extraction

T h e  m a in  o b je c t iv e  o f th is  te c h n iq u e  is  to  e x t r a c t  f e a tu re s  f ro m  th e  c a n d id a te  su r­

faces t h a t  o ffer th e  b e s t  d is c r im in a t io n  b e tw e e n  p o ly p s  a n d  fo ld s. R e c a ll t h a t  th e  

p o ly p s  c a n  b e  m o d e lle d  as s p h e r ic a l o r  e ll ip tic a l in  s h a p e  w h e re a s  fo ld s  c a n  b e  m o d ­

e lled  a s  c y lin d ric a l. T h u s , m o s t  o f th e  su rfa c e  n o rm a ls  o f th e  voxe ls a s s o c ia te d  w ith  

a  p o ly p  su rfa c e  in te r s e c t  c lo se  to  th e  c e n te r  o f  th e  su rfa c e  (see F ig u re  3 .19). For 

fo ld  su rfa c e s , th e  n o rm a ls  fo r su rfa c e  voxe ls  in te r s e c t  a lo n g  th e  p r in c ip a l  ax is  o f th e  

c y lin d e r  as i l lu s t r a te d  in  F ig u re  3 .20 . T o  d if fe re n tia te  p o ly p  a n d  fo ld  su rfaces , a  

n u m b e r  o f  f e a tu re s  a re  c a lc u la te d  f ro m  th e  c a n d id a te  su rfa c e  b a s e d  o n  th e  v a r ia tio n  

o f  th e  c o n c e n tra t io n  o f th e  su rfa c e  n o rm a ls  w ith  re s p e c t  to  th e  c e n te r  o f th e  su rface . 

In  th is  r e g a rd , a  s e t  o f  s ta t i s t i c a l  f e a tu re s  w ere  e x t r a c te d  fro m  th e  c a n d id a te  su rface .
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The statistical features include standard deviation (SD) of surface variation, SD of 

the three axes of the ellipsoid, SD of the sphere radius, SD of the ellipsoid fitting 

error, SD of the sphere fitting error, Gaussian distribution, principal axes of the 

ellipsoid and sphere radius.
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(a) (b) (c)

Figure 3.19: Normal concentration for three polyp candidate surfaces.

(a) (b) (c)

Figure 3.20: Normal concentration for three fold candidate surfaces.

Standard deviation (SD) of the surface variation: The aim of this feature is to 

evaluate the rate of surface change. In order to evaluate the standard deviation 

(SD) of the rate of change for a candidate surface the number of surface voxels were 

calculated at each radius starting from dmax towards the minimum radius that was 

set to 1mm. The goal of this procedure is to determine how many voxels from the 

candidate surfaces are situated at a particular distance with respect to the center, 

this will generate the surface number SN. The equations required to calculate the 

surface number SNj  for each radius are illustrated in equations 3.2.1 to 3.2.3, where 

N  is the number of steps required to sample the surface curvature.
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Step =  (dmax — 1.0)/N (3.2.1)

R j =  dmax -  Step x j  for  j  = 1,..., N, (3.2.2)

S N j =  J 2  Voxel (3.2.3)
Rj

Figures 3.21 and 3.22 illustrate the voxel distribution with respect to each radius 

Rj for different classes of polyps and folds.

Surface analysis for polyp

0 -fc«— 1 . I r I - y. V i H
1 2 3 4 5 6 1 S 9 10 11 12 13 14 15 16 17 IB 19 20 

Radius Rj

Figure 3.21: Number of surface voxels for each radius (Rj) for polyp classes.

Surface analysis for fold

1 2 3 4 5 5 7 0 9 10 11 12 13 14 15 16 17 18 19 20
Radius Rj

Figure 3.22: Number of surface voxels for each radius (Rj) for fold classes.

From these images (see Figures 3.21 and 3.22) it can be observed that the 

number of voxels for folds decrease rapidly while for polyps it is almost constant. 

Thus the surface number can be used to determine the change in curvature and this 

is best sampled by the standard deviation (SD) that is calculated as illustrated in 

equations 3.2.4 to 3.2.6.
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1 N
S N jmean =  - J 2 S N j (3-2-4)

N  ■ 1 3=1
SN;

S N jnarm=  J for  j  —  1 : /V. (3.2.5)

S N sd =
\

1 *
-  J 2 ( S N inorm ~ S N jmean)2 (3.2.6)

J=1

The discrim ination offered b y  the standard deviation (SD) of the surface variation 

for different classes of polyps and folds is depicted in Fig. 3.23. It can be observed 

that this feature is quite effective in discrim inating polyps from all types of folds.

Standard deviation o f  surface change curve fo r polyp

Polyp_l Class 
* Polyp_2 Class 

■ * _ Polyp_3 Class 
~ * Polyp 4 Class

0.5
0.4

S 0.3
0.2

0.1

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Number o f polyp surface

(a)

Standard deviation o f  surface change curve fo r fo ld

Number of fold surface

(b)

Figure 3.23: Standard deviation of the surface variation, (a) and (b) show the SD 
of the surface change for different classes of polyps and folds respectively (classes 
are sorted in ascending order w ith  respect to  the size of the polyps/folds).

SD of the three axes of the ellipsoid: changes in the radius Rj for each candidate 

surface from 1 to  N  in equations 3.2.1 to  3.2.3 create N  surfaces for each radius Rj.
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Let P C S j  be the N  number of surfaces for a polyp candidate surface P C S 1 (where 

i varies from 1 to the number of candidate surface in the dataset). Least square 

ellipsoid fitting [104, 105] was employed on each P C S j  (where j  varies from 1 to N) 

surface to calculate the three axes of the ellipsoid. Then the SD of the three axes of 

the ellipsoid for each P C S 1 surface are calculated using the equations 3.2.4 to 3.2.6. 

T he discrimination offered by the standard deviation (SD) of the three axes of the 

ellipsoid for different classes of polyps and folds is depicted in Figures 3.24, 3.25 

and 3.26. It can be observed that this feature is effective in discriminating polyps 

from all types of folds.

Standard deviation o f m ajor axis fo r polyps 

0.8 -------------------------------------------------------------
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0,7

0.6 T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Number of polyp surface

(a)

Standard deviation o f  major axis fo r  folds

Number o f fold surface 

(b)

Figure 3.24: Standard deviation of the m ajor axis of ellipsoid fitting, (a) and (b) 
show the SD of the m ajor axis of different classes of polyps and folds (classes are 
sorted in ascending order w ith  respect to  the size of the polyps/folds).

Similarly, the SD of ellipsoid fitting error, SD of sphere radius and SD of sphere 

fitting error were calculated for each candidate surface. Figure 3.27 illustrates the
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Standard deviation of second axis for polyps

-  Polyp_l Class

- Polyp_2 Class

- Polyp_3 Class 

■ Polyp„4 Class

Number of polyp surface

(a)

Standard deviation o f  second axis fo r folds

Number o f fo ld  surface

(b)

F ig u re  3.25: S ta n d a r d  d e v ia t io n  o f th e  se c o n d  a x is  o f e llip so id  f i t t in g , (a ) a n d  (b ) 
sh o w  th e  S D  o f t h e  se c o n d  ax is  o f  d iffe re n t c la sse s  o f  p o ly p s  a n d  fo ld s  re sp ec tiv e ly .

S D  o f e llip so id  f i t t in g  e r ro r  fo r  d iffe re n t c la sse s  o f  p o ly p s  a n d  fo lds. T h is  fe a tu re  

o ffers g o o d  d is c r im in a t io n  b e tw e e n  fo ld  a n d  p o ly p  c a n d id a te  su rfaces . F ig u re s  3 .28 

a n d  3 .29  d e p ic t  th e  p lo t  o f th e  SD  o f th e  s p h e re  r a d iu s  a n d  sp h e re  f i t t in g  e r ro r  fo r 

p o ly p  a n d  fo ld  su rfa c e s . I t  c a n  b e  o b se rv e d  t h a t  b o th  SD  of th e  s p h e re  r a d iu s  a n d  

s p h e re  f i t t in g  e r ro r  sh o w  e ffec tive  d is c r im in a t io n  b e tw e e n  p o ly p  a n d  fo ld  su rfa c e s .

T h e  o th e r  f e a tu re s  t h a t  a re  u s e d  in  th is  m e th o d  a re  th e  G a u s s ia n  d is t r ib u t io n , 

le n g th  o f  th e  e llip so id  m a jo r  a x is  a n d  s p h e re  r a d iu s .  A ll th e  ab o v e  m e n tio n e d  fea ­

tu r e s  w ere  in p u t  fo r  t h e  F N N N  a n d  P N N  c la ss ifie rs  d isc u sse d  in  S e c tio n  3 .1 .4 . T h e  

F N N N  t r a in in g  d a ta b a s e s  c o n s is t  o f  fo u r  p o ly p s  a n d  fo u r  fo ld s  d a ta b a s e s .  T h e  

p o ly p s  u se d  fo r  t r a in in g  w ere  s e g re g a te d  in to  sm a ll  sp h e r ic a l, m e d iu m  sp h e ric a l, 

b ig  sp h e r ic a l, n o n -s p h e r ic a l  p o ly p . T h e  fo ld  d a ta b a s e  w as  a lso  d iv id e d  in to  sm a ll 

fo ld s , m e d iu m  fo ld s , la rg e  fo ld s  a n d  c o n v e x  su rfa c e s . In  F ig u re s  3 .24 , 3 .25 , 3 .26,
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Standard deviation of third axis for polyps

Number o f polyp surface

(a)

Standard deviation o f  th ird axis fo r folds

Number of fold surface 

(b)

F ig u re  3.26: S ta n d a r d  d e v ia t io n  (S D ) o f th e  t h i r d  a x is  o f e llip so id  f i t t in g , (a ) a n d  
(b )  sh o w  th e  S D  o f th e  t h i r d  a x is  o f d if fe re n t c la sse s  o f p o ly p s  a n d  fo ld s  re sp ec tiv e ly .

3 .27 , 3 .28 , 3 .2 9  c la ss-1  p o lyp , c la ss^2  p o lyp , c la ss -3  p o lyp  a n d  class-4  P°lyP  r e p re s e n t  

sm a ll, m e d iu m , la rg e  a n d  n o n -s p h e r ic a l  p o ly p s  r e s p e c tiv e ly  a n d  class-1  fo ld , c la ss-2  

fo ld , c la ss-3  fo ld  a n d  c la ss-4  fo ld  r e p re s e n t  la rg e  fo ld s , m e d iu m  size  fo ld s, sm a ll fo ld s 

a n d  sm a ll  c o n v e x  s u r fa c e  re sp e c tiv e ly . In  t o t a l  67  p o ly p s  a n d  348 fo ld s  w ere  u s e d  to  

t r a in  t h e  F N N N  a n d  P N N  c lassifie rs .

3.3 3dB Feature-based approach

T h e  g e o m e tr ic a l f e a tu re -b a s e d  a p p ro a c h  d isc u s se d  in  th e  p re v io u s  s e c tio n  em p lo y ed  

le a s t  s q u a re  a p p ro x im a t io n  (e llip so id , sp h e r ic a l)  fo r  a n a ly s is  o f  th e  g e o m e tr ic a l s h a p e  

o f th e  c a n d id a te  s u r fa c e  in  o rd e r  t o  e x t r a c t  th e  f e a tu re s  u s e d  fo r p o ly p  a n d  fo ld  c la ss i­

f ic a tio n . T h e  s t a t i s t i c a l  fe a tu re -b a s e d  a p p ro a c h  a lso  u s e d  le a s t  s q u a re  a p p ro x im a tio n
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Standard deviation of ellipsoid error for polyps

- ■ Polyp_l Class 

— Polyp_2 Class 

— Polyp_3 Class 

—*— Polyp _4 Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Number o f polyp surface

(a)

Standard deviation o f ellipsoid error for folds

■ Fold_l Class 

• Fold_2 Class 

-  • *  ■ -  Fold_3 Class 

Fold_4 Class

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Number o f fold surface

(b)

Figure 3.27: Standard deviation (SD) of the ellipsoid fitting error, (a) and (b) 
show the SD of the ellipsoid fitting error for different classes of polyps and folds 
respectively (classes are sorted in ascending order w ith  respect to the size of the 
polyps/folds).

(ellipsoid, sphere) for calculating the statistical feature for candidate polyp surface. 

T he least square approxim ation is a maximum likelihood estim ator and tries to find 

the fitted param eter from a particular data  set. T h e least square approximation 

performs poorly when the data  is sparse or noisy. To avoid the problems associated 

w ith the least square approxim ation, the 3dB feature-based m ethod evaluates the 

geom etry of the local colon surfaces by analysing the variation in the candidate sur­

face. The proposed m ethod consists of five steps similar to the statistical feature 

based m ethod outlined in Figure 3.15. T he steps of the algorithm including data 

interpolation, colon segm entation, polyp candidate surface generation used in the 

development of the 3dB feature-based are discussed in detail in Section 3.2.1. A fter
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Standard deviation of sphere radius for polyps

—■ Polyp_l Class 

Polyp„2 Class 

*  Polyp_3 Class 

— Polyp_4 Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Number o f polyp surface

(a)

■ Fold_l Class 

■ ■ Fold_2 Class 

*  ' ”  Fold_3 Class 

Fold_4C lass

(b)

Figure 3.28: Standard deviation (SD) of the sphere radius of polyp and fold surfaces,
(a) and (b) show the SD of the sphere radius for different classes of polyps and folds 
respectively.

candidate surface generation the features that are calculated for classification are 

the maximum distance from the cluster center to the surface normal, the standard 

deviation (SD) of the surface variation, the 3-decibel (dB) attenuation point on the 

surface change curve and the surface number concentration. In the remainder of 

t his section these features will be presented in detail.

Standard deviation (SD) of the surface variation: The aim of this feature is to 

evaluate the rate of surface change and its calculation is discussed in Section 3.2.2.

M aximum distance calculation: T h e maxim um  distance between the center of 

the candidate surface and the norm al vectors of the candidate surface shows a good 

discrim inative power in separating spherical surfaces from cylindrical surfaces. In 

this regard, the m axim al distance should be significantly higher if the candidate sur-

Standard deviation o f sphere radius fo r folds

Number o f fold surface
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Standard deviation o f sphere fittin g  error fo r polyps

Number of polyp surface

Polyp_l Class 

' *  Polyp_2 Class 

“ *  Polyp_3 Class 

Polyp-4 Class

Standard deviation o f  sphere fittin g  error fo r folds

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Number o f fold surface

(b)

Figure 3.29: Standard deviation (SD) of the sphere fitting error for polyp and fold 
surfaces, (a) and (b) show the SD of the sphere fitting error for different classes of 
polyps and folds respectively.

face belongs to a fold class than in cases when they belong to a polyp class. This can 

be observed in Figure 3.30. where the maximum distance dmax is plotted for differ­

ent classes of polyps and folds. From Figure 3.30 it can be noticed that this feature 

is effective in discrim inating sm all/m edium  polyps (<  lOrmn) when compared to 

folds. T he maxim um  distance dmax does not provide optim al discrimination when 

the size of the polyp is higher than 10mm (see the plot for class polyp 3 in Figure 

3.30).

T h e 3dB attenuation point on surface change curve: T h e 3dB point refers to the 

number of steps required by the SN j  to reach the 3 dB (3dB =  SNj/y/2) fall 

in the total voxel count of the candidate surface. T he number of steps required to 

reach the 3dB point is generally higher for polyps than for folds and this is illustrated
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Maximum Distance for polyps and folds

— Polyp Class_l

—  Polyp Class J2 

i— Polyp Class_3

—  Polyp Class_4

— -Fo ld  Class__l

■ - - Fold Class__2

■ ■ - Fold Class _3

■ ■ ■ Fold Class__4

Polyps and Folds indices

Figure 3.30: M axim um  distance dmax for different classes of polyps and folds (classes 
are sorted in ascending order w ith respect to  the size of the polyps/ folds)

3dBstep for polyps and folds

— •—  Polyp Class_l 

— ■—  Polyp Class_2 

— * —  Polyp Class_3 

— ■—  Polyp Class_4 

-  — -  -F o ld  Class_l 

- - - - - - -  FoldClass_2

............ Fo ld  Class_3

Fold Class_4

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Polyps and Folds indices

Figure 3.31: T h e number of steps required in reaching the 3dB point on surface 
change for different classes of polyps and folds.

in Figure 3.31. T his feature is useful in discrim inating small and medium polyps 

from all types of folds.

Surface normal concentration: Recall that for each colon wall voxel 8 H P ’s were 

created along the direction of the normal vector from 2.0mm to 10.0mm and the 

G aussian distribution has been used to determine the surface center. The normal 

concentration is given by the number of surface points that generate intersections 

w ithin 1.25mm from the calculated surface center. A s the shape of polyps resem­

bles a spherical surface it is expected that the surface normal concentration to be 

higher than that calculated for folds (see Figure 3.32). In Figure 3.32 it can be 

observed that the surface normal concentration offers a good discrimination between 

large polyps (>  10mm) and all types of folds. T his is very useful as the features
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♦—  Polyp Class_l 

■—  Polyp Class_2 

* — Polyp Class_3 

■—  Polyp Class_4 

• • ■ • Fold Class_l 

Fold Ciass_2

----- Fold Class_3

-a—  Fold Class_4

F ig u re  3.32: S u rfa c e  n o rm a l c o n c e n tr a t io n  fo r d if fe re n t c la sse s  o f  p o ly p s  a n d  folds.

d is c u s s e d  b e fo re  w ere  a b le  to  d is c r im in a te  r o b u s t ly  o n ly  s m a l l /m e d iu m  p o ly p s  w h ile  

t h e  d is c r im in a tio n  fo r la rg e  p o ly p s  w a s  less p ro n o u n c e d .

3.3.1 P o ly p /fo ld  classification

T o  c la ss ify  th e  c a n d id a te  su rfa c e  in to  p o ly p s  o r  fo ld s , th e  c a lc u la te d  fe a tu re s  a re  

th e  in p u ts  fo r th r e e  d iffe re n t c la ss ifie rs  n a m e d  F N N N , P N N  a n d  S u p p o r t  V e c to r 

M a c h in e s  (S V M ). T h e  F N N N  a n d  P N N  c la ss ifie rs  a re  d isc u s se d  in  S e c tio n  3 .1 .4 . 

T h e  S u p p o r t  V e c to r  M a c h in e s  (S V M s)[1 0 8 , 109, 110] a re  p o w e rfu l to o ls  fo r d a ta  

c la s s if ic a tio n . F o r c la s s if ic a tio n  p u rp o s e s , S V M s fin d  a  h y p e rs u r fa c e  in  th e  sp a c e  

o f  p o s s ib le  in p u ts .  T h e  h y p e r  s u r f  ace  is g e n e ra te d  b y  th e  b o r d e r  b e tw e e n  p o s itiv e  

a n d  n e g a tiv e  s a m p le s  c o n ta in e d  in  th e  t r a in in g  s e t  a n d  th e  c la s s if ic a tio n  re s u lts  a re  

le ss  a c c u ra te  if  th e  p a t t e r n s  a s s o c ia te d  w ith  th e  t e s t  d a t a  a re  p o s it io n e d  close  to  

th e  b o u n d a r y  o f  th e  h y p e rs u r fa c e . T h e re  a re  se v e ra l k e rn e ls  d e v e lo p e d  fo r c re a tin g  

d iffe re n t ty p e s  o f  h y p e rs u r fa c e s  w h ile  th e  l in e a r , r a d ia l  b a s is , p o ly n o m ia l a n d  s ig m o id  

a re  m o s t  c o m m o n  S V M  k e rn e ls  u s e d  fo r c la ss if ic a tio n . F o r in s ta n c e , if  a  t r a in in g  se t 

o f  in s ta n c e - la b e l  p a ir s  a re  (X i , y i) ,  i  =  1 , . . . ,  I w h e re  X ie R n a n d  y e (  1, — I ) 1, th e  S V M  

k e rn e l is: K ( x i , x j ) =  (j)(xi)T <p(xj). T h e  fo u r  b a s ic  k e rn e ls  m e n tio n e d  ab o v e  c a n  b e  

c o n s t r u c te d  a s  fo llow s:

•  lin e a r: K ( x i , x j ) = x f x j

•  p o ly n o m ia l: K ( x i , x j ) =  (x f x j  +  r ) d , 7  >  0 .

•  r a d ia l  b a s is  fu n c t io n  ( R B F ) : i f ( a ; i ,Xj )  =  e x p ( —7  || Xi — Xj  | |2 ) , 7  >  0 .

Surface normal concentration for polyps and folds

Polyps and Folds indices
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•  s ig m o id : K ( x i , x j ) =  t a n h ^ x f x j  +  r ) .

T h e  im p le m e n ta t io n  so f tw a re  o f  t h e  SVM w as d e v e lo p e d  b y  G u n n  [109] a n d  th e  

c o d e  w a s  w r i t te n  in  M A T L A B . T h e  SVM c lassifie r w a s  u s e d  to  sh o w  th e  ro b u s tn e s s  

o f th e  f e a tu re s  c a lc u la te d  fro m  th e  p o ly p  c a n d id a te  su rfa c e  in  a  n o n - lin e a r  fe a tu re  

sp a c e  a n d  to  p ro v id e  in d ic a tiv e  r e s u l ts  fo r  C A D -C T C .  F o r  th e  d e v e lo p e d  C A D -C T C  

s y s te m  t h e  5 - th  o rd e r  p o ly n o m ia l k e rn e l w as  e m p lo y e d  fo r  SVM c la ss if ic a tio n . T h e  

t r a in in g  se t  c o n s is ts  o f  81 p o ly p s  a n d  348 fo lds. T h e  sa m e  t r a in in g  d a t a  w as u se d  

to  t r a in  th e  P N N  a n d  F N N N  c la ss ifie rs .

In  t h e  n e x t  c h a p te r ,  th e  c o n s tru c t io n  o f  a  s y n th e t ic  p h a n to m  a n d  th e  g e n e ra tio n  

o f  C T  t e s t  d a t a  ( s ta n d a r d  a n d  low  d o se ) is  p ro v id e d . T h e  d e v e lo p m e n t o f  a  sy n ­

th e t i c  p h a n to m  w as  a n  im p o r ta n t  o b je c tiv e  o f th is  re se a rc h  b e c a u s e  a llow ed  u s  to  

in v e s t ig a te  th e  fo llo w in g  p ro b le m s :

•  E x p o s u re  to  t h e  io n iz in g  r a d ia t io n  d o e s  n o t  a llo w  th e  p a t ie n ts  to  b e  s c a n n e d  

successive ly . T h u s , th e  c o n s t r u c t io n  o f a  s y n th e t ic  p h a n to m  w a s  n e c e ssa ry  

in  o rd e r  to  g e n e ra te  t e s t  d a t a  w h e re  th e  p h a n to m  w as  s c a n n e d  in  d iffe ren t 

p o s itio n s . T h is  C T  d a t a  c a n  b e  u s e d  to  e v a lu a te  w h e th e r  t h e  r e s u l ts  r e tu rn e d  

b y  th e  C A D - C T C  sy s te m s  a r e  r e p e a ta b le  w ith  re s p e c t  to  th e  p o ly p  d e te c tio n , 

in  C A D - C T C

•  E v a lu a te  th e  in flu e n c e  o f  n o ise  in  lo w -d o se  o n  th e  o v e ra ll p e r fo rm a n c e  o f th e  

C A D - C T C

•  D e te c t io n  o f  o p t im u m  s c a n n in g  p a ra m e te r s  t h a t  c a n  b e  u s e d  to  g e n e ra te  th e  

lo w -d o se  C T  d a t a  fe a s ib le  t o  b e  u s e d  b y  th e  C A D -C T C  s y s te m s

•  D e v e lo p m e n t o f  s ta n d a r d  te s t in g  d a ts e t s  t h a t  c a n  b e  u s e d  in  th e  d e v e lo p m e n t 

p h a s e  o f  t h e  C A D -C T C .

Chapter 3 CAD-CTC Polyp Detection
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Chapter 4 

Phantom

T h e  m a jo r  c o n c e rn  a s s o c ia te d  w ith  C T C  is th e  fa c t  t h a t  th e  p a t ie n ts  a re  s u b je c te d  

to  h ig h  lev e l o f  io n is in g  r a d ia t io n . T h e  m e d ic a l l i t e r a tu r e  in d ic a te s  t h a t  th e  effec tive  

d o se  u s e d  fo r  C T C  v a rie s  f ro m  5 to  20 m S v  [32, 47 , 48 , 49 , 50, 111] a n d  th is  

r a d ia t io n  leve l m a y  re s u l t  in  a  0 .05%  r is k  fo r in d u c in g  c a n c e r  in  p a t ie n ts  o ld e r  t h a n  50 

y e a rs  [112]. B re n n e r  e t al. [112] s tu d y  in d ic a te s  t h a t  th e  in c id e n c e  o f  in d u c e d  c a n c e r  

is in  d i r e c t  r e la t io n  to  th e  e ffec tive  r a d ia t io n  d o se  (see  F ig u re -4 .1 )  a n d  th e  c a n c e r  r isk  

in c re a se s  w i th  d e c re a s in g  ag e  [113]. I n  th is  r e g a rd , C o h e n  [114] sh o w s t h a t  th e  r isk  

o f  in d u c in g  c a n c e r  in  p a t ie n ts  is s ig n if ic a n tly  lo w ered  w h e n  th e y  a re  s u b je c te d  to  low- 

lev e l r a d ia t io n  e x p o s u re  a n d  a n  im p o r ta n t  n u m b e r  o f  s tu d ie s  a re  d e d ic a te d  to  id e n tify  

t h e  m in im a l lev e l o f  r a d ia t io n  d o se  t h a t  c a n  b e  fe a s ib ly  u se d  in  C T C  [111, 115, 

116, 117, 118]. T h e  id e n tif ic a t io n  o f t h e  o p t im a l  s c a n n in g  p a r a m e te r s  (c o llim a tio n , 

s lice  th ic k n e s s , t a b le  sp e e d , r e c o n s tru c t io n  in te rv a l)  is a  d ifficu lt p ro b le m  a n d  th is  

p ro c e d u re  is a p p lie d  o n  s y n th e t ic  p h a n to m s  t h a t  a re  d e s ig n e d  to  a c c u ra te ly  m o d e l 

t h e  h u m a n  b o d y  [119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130], In  

th i s  sen se , B e a u lie u  e t  al. [119] u se d  s p h e r ic a l p la s t ic  b e a d s  to  m o d e l p o ly p s  w h ile  

D a c h m a n  e t  a l. [120] c re a te d  fa lse  p o ly p s  in  a  p ig  co lo n  b y  p u c k e r in g  th e  m u c o sa  

o f  th e  co lo n . T h e ir  s tu d ie s  fo c u se d  o n  f in d in g  th e  im a g in g  e ffec t o f  c o llim a tio n , 

tu b e  c u r r e n t  (p itc h )  a n d  o r ie n ta t io n  w h e n  th e y  a n a ly s e d  d iffe re n t s izes a n d  ty p e s  of 

p o ly p s . S im ila r  s tu d ie s  w ere  p e r fo rm e d  b y  T a y lo r  e t  al. [121] a n d  S p r in g e r  e t  al. [122], 

W h i th in g  e t  a l. [123] u se d  a  d iffe re n t a p p ro a c h  a n d  in  o rd e r  to  e v a lu a te  th e  a r te fa c ts  

g e n e ra te d  b y  th e  c o llim a tio n  a n d  th e  t u b e  c u r r e n t  th e y  c o n s t r u c te d  a n  a ir  filled  

a c ry lic  c y lin d e r  w e re  s y n th e t ic  p o ly p s  o f  d iffe re n t sizes w ere  a t ta c h e d  o n  th e  in n e r  

s id e  o f  t h e  a c ry lic  tu b e .  L a g h i e t  al. [126] a n d  E m b le to n  e t  al. [127] u se d  s y n th e tic  

a n d  p ig  co lo n s  a n d  th e i r  te s t s  in d ic a te  t h a t  a  c o llim a tio n  o f  4  x  2 .5  to  1 .2 5 m m  

r e c o n s t ru c t io n  in te rv a l ,  t u b e  c u r r e n t  o f 40  m A s  a re  s a t is f a c to ry  p a ra m e te r s  to  b e
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used for clinical C T C  examinations. O zgun et al. [128] used latex m aterial to build 

phantom polyps having dimensions ranging from 1mm to 10mm. T heir tests were 

focused on finding the minimal tube current that allows the detection of polyps 

larger than 5mm. T h ey reported that the detection of all types of polyps larger 

than 5mm is feasible only at current tubes in the range 60mAs to lOOmAs.
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Figure 4.1: Breakdown by cancer type, (a) and (b) show the lifetime attributable 
cancer m ortality risks as a function of age at a single acute radiation exposure for 
females (a) and males (b) as estim ated by the N ational Academ y of Sciences B E IR  
V  (Biological Effects of Ionizing Radiations) com m ittee [113].

T he aim of this chapter is to  study the effect of all scanning param eters (mAs, 

slice thickness, reconstruction interval, field o f view, table speed) using a novel
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synthetic phantom. T h e phantom  has been specifically designed for C A D -C TG  

to simulate colon polyps w ith different shapes (pedunculated, sessile and flat) and 

sizes (3 to  18mm). In this studies the d ata  is evaluated using a developed autom ated 

C A D -G T C  system  in order to  determ ine the influence of the scanning parameters 

on polyp detection. A  special emphasis of this study is placed on determining the 

minimal radiation dose that allows robust identification of colonic polyps but not at 

the expense of reduced sensitivity in polyp detection.

4.1 Materials and Methods

4.1.1 Phantom  design

A  synthetic phantom  was constructed using a P V C  tube, two acrylic tubes, two 

plastic plates and latex  m aterial to  em ulate the colon wall, polyps and folds. The 

external P V C  tube is 230mm long w ith  a diam eter of 300mm. A crylic tubes are 

235mm long and the dimensions of the inner and outer diameters are 40mm and 

50mm respectively. Hounsfield Unit (HU) values of the P V C  tube, acrylic tubes 

and plastic plates are 1500, 100, 90 respectively. The construction of the synthetic 

phantom  is illustrated in Figure 4.2.

(a) (b)

Figure 4.2: Synthetic colon phantom, (a) Longitudinal view, (b) Transversal view.

T he polyp inserts for phantom  were made by latex m aterial having a H U  value of 

-95. W e have chosen to use latex as this m aterial allows us to  generate very realistic 

shapes (pedunculated, sessile, flat, flat-depressed) for polyps and folds as illustrated
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in  F ig u re  4 .3 . In  a d d i t io n  th e  H U  v a lu e s  a s s o c ia te d  w ith  th e  la te x  m a te r ia l  a p p ro x ­

im a te  w ell th e  H U  v a lu e s  o f th e  co lo n  w a ll (~ 1 0 H U ) . In  C T C  t h e  la rg e  d iffe rence  

b e tw e e n  th e  H U  v a lu e s  a s s o c ia te d  w i th  th e  a ir  v o x e ls  (-1000H U ) a n d  th e  H U  v a lu es  

o f th e  co lo n  t is s u e  is  e v a lu a te d  to  id e n tify  th e  su rfa c e  o f th e  c o lo n  w all. T h e  m o d e l 

fo r  p o ly p s  w as  m a d e  fro m  c lay  a n d  l iq u id  la te x  w as  p o u re d  o n to  th e  m o d e l to  c re a te  

th e  la te x  p o ly p  in s e r ts  (see F ig u re  4 .3 ) . T o  m a k e  th e  su rfa c e  o f th e  la te x  sh e e t 

m o re  r e a l is t ic  th e  th ic k n e s s  o f  th e  s h e e t  w as  m a d e  u n e v e n . W e h a v e  c r e a te d  tw o  

s h e e ts  o f  la te x  c o n ta in in g  48 p o ly p s  h a v in g  d iffe re n t sizes (7 f la t p o ly p s , 2 d e p re sse d  

f la t  p o ly p s , 15 n o n -s p h e r ic a l  p o ly p s , 2 p e d u n c u la te d  p o ly p s , 22 s p h e r ic a l /e l l ip t ic a l  

p o ly p s )  a n d  6  h a u s t r a l  fo lds. In  F ig u re  4 .4  se v e ra l 3D  v iew s o f so m e  r e p re s e n ta t iv e  

s y n th e t ic  p o ly p s  a re  d e p ic te d .

4.1.2 Image acquisition

T h e  d e v e lo p e d  p h a n to m  d e s c r ib e d  in  S e c tio n  2.1 w as s c a n n e d  u s in g  a  16-slice  S iem en s 

S o m a to m  S e n s a tio n  C T  s c a n n e r  in  t h e  M a te r  H o s p ita l ,  D u b lin , I re la n d . T h e  p h a n ­

to m  h a s  b e e n  s c a n n e d  in  lo n g i tu d in a l  ( p h a n to m  w as  p la c e d  p a ra l le l  to  th e  C T  sc a n ­

n e r  b e d )  a n d  t r a n s v e r s a l  d ire c tio n s , w h e re  th e  s c a n n in g  p a r a m e te r s  (slice  th ic k n e ss , 

fie ld  o f  v iew , ta b le  s p e e d , r e c o n s t ru c t io n  in te rv a l  a n d  m A s) w ere  v a r ie d . A ll scan s  

w e re  p e r fo rm e d  a t  1 2 0 k V p  a n d  1 .5 m m  x  16 c o llim a tio n . I t  is u se fu l to  n o te  t h a t  

t h e  e ffec tiv e  r a d ia t io n  d o se  is in f lu e n c e d  b y  th e  v a lu e  o f th e  t u b e  v o lta g e  b u t  its  

r e la t io n s h ip  w ith  im a g e  q u a lity , t is s u e  c o n tr a s t  a n d  im a g e  n o ise  is c o m p le x  a n d  th e  

e ffec t o f  th is  p a r a m e te r  w o u ld  b e  d iff ic u lt to  b e  e v a lu a te d . T h e re fo re , in  th is  e x p e r­

im e n ts  th e  v a lu e  o f  th is  p a r a m e te r  is  m a in ta in e d  c o n s ta n t  (120  k V p ) a n d  a n o th e r  

r e a s o n  is th e  f a c t  t h a t  th is  is  th e  s t a n d a r d  v a lu e  o f th e  tu b e  v o lta g e  u s e d  in  c lin ica l 

e x a m in a tio n s . T h e  s c a n n e r  u s e d  in  t o  g e n e ra te  th e  C T  d a t a  a llow s th e  p o s s ib ili ty  to  

a d ju s t  th e  v a lu e  o f  c o llim a tio n  to  0 .7 5 m m  b u t  th e  v a lu e  o f c o llim a tio n  w as  fixed  a t  

1 ,5m m  in  o rd e r  to  re d u c e  th e  r a d ia t io n  d o se . In  th is  re g a rd , a  C T  sc a n  p e rfo rm e d  

w ith  1 .5 m m  c o ll im a tio n  a n d  3 m m  slice  th ic k n e s s  w ill r e s u l t  in  a n  e n e rg y  im p a r te d  of 

7 .0 m S v  w h ile  th e  e n e rg y  im p a r te d  fo r a  C T  sc a n  w ith  0 .7 5 m m  c o llim a tio n  a n d  3 m m  

slice  th ic k n e s s  is 7 .8 m S v  w h ic h  is  to  h ig h  to  b e  u s e d  sa fe ly  in  c lin ic a l s tu d ie s . T h e  

s m o o th in g  re c o n s t ru c t io n  f i l te r  u s e d  w as  th e  B 3 0  f ilte r  [131] a n d  th is  f i l te r  h a s  b e e n  

e m p lo y e d  b a s e d  o n  i t s  o p t im a l  p e r fo rm a n c e  in  d a t a  s m o o th in g  a n d  n o ise  rem o v a l 

( th is  is th e  f i l te r  u s e d  in  m o s t c lin ic a l s tu d ie s  fo r a b d o m in a l  C T  sc a n s ) .

In  c o n ju n c tio n  w i th  o u r  c lin ic a l p a r tn e r s  f ro m  M a te r  H o s p ita l  w e h a v e  ch o sen

Chapter 4 Phantom
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Figure 4.3: L atex sheet w ith  various types of polyps and folds.

the following spread of parameters: field of view: 325 and 360mm, table speed: 20 

to 30 m m /rotation, slice thickness of 2 and 3mm and mAs: 100, 80, 70, 60, 50, 40, 

30, 20 and 13 (13 m A s is the minimum value that can be set for Siemens Somatom 

Sensation C T  scanner used in these experiments). These scanning parameters have 

been divided into six protocols as follows:

•  Protocol 1: Collim ation 1.5 x  16mm, slice thickness 3mm, reconstruction in­

terval 1.5mm, field of view 325mm, table speed 30mm/rotation, mAs: 100, 

80, 70, 60, 50, 40, 30, 20 and 13. This protocol was used to identify the effect 

of radiation dose and scan orientation (longitudinal and transversal scans) on
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(c) (d)

Figure 4.4: 3D longitudinal views of the synthetic polyps made from latex.

the perform ance of the developed autom atic C A D -C T C  system.

•  Protocol 2: Collim ation 1.5 x  16mm, slice thickness 3mm, reconstruction in­

terval 1.5m m, field of view  360mm, table speed 30mm/rotation, mAs: 50, 30, 

20 and 13. T his protocol was employed to evaluate the influence of the field 

of view  and the variation of the radiation dose.

• Protocol 3: Collim ation 1.5 x  16mm, slice thickness 3mm, reconstruction in­

terval 1m m , field of view  325mm, table speed 30mm/rotation, mAs: 100, 80, 

70, 60, 50, 40, 30, 20 and 13. This protocol was used to analyse the effect of 

the reconstruction interval and the radiation dose.

•  Protocol 4: Collim ation 1.5 x  16mm, slice thickness 2mm, reconstruction in­

terval 1m m , field of view  325mm, table speed 30mm/rotation, mAs: 100, 50, 

40, 30, 20 and 13. T his protocol was used to generate C T  data where the 

effect of the slice thickness and the radiation dose is analysed.

71



• Protocol 5: Collim ation 1.5 x  16mm, slice thickness 2mm, reconstruction in­

terval 0.8mm, field of view  325mm, table speed 30mm/rotation, mAs: 100, 50, 

40, 30, 20 and 13. This protocol was employed to analyse the joint effect of 

the slice thickness, reconstruction interval and radiation dose.

• Protocol 6: Collim ation 1.5 x  16mm, slice thickness 3mm, reconstruction in­

terval 1.5mm, field of view  325mm, table speed 20mm/rotation, mAs: 100, 

50, 40, 30 and 20. This protocol was used to find the effect of table speed at 

different radiation doses.

W ith  a multi-slice C T  scanner, the selection of the (reconstructed) slice w idth is 

independent of patient dose, being solely reliant on collimation selected. Therefore 

if the collim ation remains the same, the selection of a 5mm slice width will generate 

the same radiation dose as a 3mm slice thickness. It has been found that the Siemens 

Som atom  Sensation 16 slice C T  scanner shows similar im parted radiation dose for 

both 3mm and 5mm (7m Sv for both 3mm and 5mm at lOOmAs). Thus, it has been 

decided to ignore the 4mm, 5mm slice thickness in this study since these settings 

w ill have virtu ally  no effect on the im parted radiation dose received by the patients.

As already explained, for Siemens Somatom multi-slice C T  scanner the variation 

in the table speed is possible, but by increasing the table speed (reduce the duration 

of the C T  scan) does not vary the patient dose, as this scanner utilises the ’’ effec­

tive tube current” model where the m As is kept constant throughout (a variation 

in scanning tim e results in a concomitant variation in m As). In this study, the ta­

ble speed has been varied to evaluate the influence of the motion artefacts on the 

performance of the CAD -CTC.  Thus, only the 30m m/rotation and 20mm/rotation 

table speeds were chosen to use in this study.

A s mentioned earlier, a collim ation of 1.5m m  was used for two reasons. F irstly  

because this setting is recognised as adequate to detect clinically significant colonic 

polyps (5mm and greater). Secondly while a 0.75 collim ation was possible w ith the 

Siemens scanner, this setting generates a m arkedly increased patient dose. A  1.5mm 

collimation, w ith 3mm slice w idth results in a scan time of 10.2sec and an imparted 

energy of 7.0mSv. T he 0.75mm collimation setting w ith a 3mm slice results in a scan 

tim e of 20.14sec and an associated im parted energy of 7.8mSv. This was deemed

Chapter 4 Phantom
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to be unacceptable as this radiation dose is too high to be used safely in clinical 

examinations.

4.1.3 Characterisation o f phantom  C T data

T he m ethod applied for feature detection for phantom  polyp is the m ethod based 

on the statistical features that is discussed in C hapter 3.2. T he statistical features 

include the standard deviation (SD) of surface variation, SD of the three axes of the 

ellipsoid, SD of the sphere radius, SD of the ellipsoid fitting error, SD of the sphere 

fitting error, Gaussian distribution, principal axes of the ellipsoid and sphere radius. 

In this section we evaluate the statistical features for phantom polyps, real polys 

and folds in order to  illustrate the fact that the phantom  polyps emulate closely the 

polyps encountered in clinical studies. Figure 4.5 shows the standard deviation of 

the surface variation for 45 phantom  polyps (14 polyps >  10mm, 20 polyps between 

[5 — 10)mm, 5 polyps <  5m m  and 6 flat polyps) and 41 real patient polyps and 

274 folds w ith different sizes. T he SDs of surface variation for phantom polyps are 

placed close to those of the real polyps. Similarly, the features: SD of m ajor axis, 

SD of ellipsoid error, SD of sphere radius and SD of sphere error for phantom exhibit 

similar characteristics w ith  the real polyps as illustrated in Figures 4.6 to Figure 4.9.

Standard deviation o f  surface change curve fo r po lyp  and folds

Chapter 4 Phantom

— ♦—  Phantom Polyps 
— ■—  Real Polyps 
■■■*"■ Fold Class_l 

Fold Class_2 
Fold Class_3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Number of candidate surface

Figure 4.5: Standard deviation of the surface variation for phantom polyps, real 
polyps and folds.
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Standard deviation o f m ajor axis fo r polyps and folds

—*— Phantom Polyps 
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■ ■■*•■• Fold Class_3

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
Number of candidate surface

Figure 4.6: Standard deviation of the m ajor axis of ellipsoid fitting for phantom 
polyps, real polyps and folds.

Standard deviation o f  e llipsoid error fo r polyps and folds

♦ Phantom Polyps 
—■— Real Polyps 
*■»**• Fold Class_l 

Fold Class_2 
....... p0]d ciass_3

Number of candidate surface

Figure 4.7: Standard deviation (SD) of the ellipsoid fitting error for phantom polyps, 
real polyps and folds.

4.2 CAD-CTC polyp detection algorithm

T h e m ethod applied for autom atic polyp detection in phantom data was the statis­

tical feature based m ethod discussed in Chapter 3.2.
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Standard deviation of sphere radius for polyps and folds
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Figure 4.8: Standard deviation (SD) of the sphere radius for phantom  polyps, real 
polyps and folds.

Standard deviation o f sphere fittin g  error fo r polyps and folds
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Figure 4.9: Standard deviation (SD) of the sphere fitting error for phantom polyps, 
real polyps and folds.

4.3 Experiments and results
T h e aim of this section is to  evaluate the influence of the scanning parameters on 

the overall polyp detection results in C A D -C T C  systems. In order to  evaluate this, 

the synthetic phantom  detailed in Section 2 has been scanned and a total of 46 C T  

datasets have been acquired using the six protocols mentioned in Section 4.1.2.

W hen the C A D -C T C  system  has been applied to  C T  data acquired using the 

P rotocol 1, the results indicate that 100% sensitivity has been achieved for polyps 

larger than 10mm in both  longitudinal and transversal positions for all radiation 

levels (100 to 13 m As). For medium size polyps (5mm to 10mm) the sensitivity was
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100% in all cases but 20 and 30 m As, where the sensitivity rate was 95%. The re­

duction in sensitivity was caused by the undetected polyp illustrated in Figure 4.10a 

which was situated close to the end plates. T he sensitivity in polyp detection when 

the C A D -C T C  algorithm  was applied to C T  data acquired using the Protocol 1 is 

illustrated in Figure 4.11.
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(a) (b)

Figure 4.10: (a) Polyp undetected by the C A D -C T C  algorithm  when the C T  data 
was acquired using the Protocols 1, 3 and 6. (b) Polyp undetected by the C A D -C T C  
algorithm  when the data  was acquired using the Protocols 2, 4 and 5.

T he sensitivity of the C A D -C T C  technique when applied to C T  phantom data 

acquired using the P rotocol 2 is 100% for polyps larger than 10mm. The sensitivity 

for medium size polyps (5 to 10 mm) dropped to 95% when the phantom  was scanned 

w ith 30, 20 and 13 m As. There was only one polyp undetected for data acquired 

w ith  this protocol and it is illustrated in Figure 4.10b.

For C T  data acquired using the Protocol 3, the polyp detection for all scans show 

100% sensitivity except the case when the phantom has been scanned with 30mAs. 

T he polyp undetected is illustrated in Figure 4b. T he polyp detection sensitivity 

when the scans were perform ed using the Protocol 4 is 100% for polyps larger than 

10mm for all radiation doses except lOOmAs. T he sensitivity in polyp detection for 

medium size polyps is also 100% except in the case where the phantom has been 

scanned w ith 30mAs when the sensitivity dropped to 95%. T he polyp missed by 

the C A D -C T C  system  is illustrated in Figure 4a. T he sensitivity in polyp detection 

obtained when the C A D -C T C  system  was applied to C T  data scanned using the 

Protocol 5 is lower than the sensitivity obtained when the Protocols 1 to 4 were 

employed. T he reason for this is that no interpolation was applied to obtain an
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T a b le  4 .1: R e s u lts  o f th e  a u to m a te d  p o ly p  d e te c t io n  fo r P ro to c o l-1  ( C o llim a tio n : 
1.5 x  1 6 (m m ), S lice T h ic k n e ss : 3 m m , R e c o n s tru c t io n  In te rv a l: 1 .5 m m , F ie ld  o f view : 
3 2 5 m m , T a b le  S p eed : 3 0 m m /r o ta t io n .

P ro to c o l D ire c tio n m A s S e n s itiv ity (% ) F P
L arge:

U

M edium
20

: S m a ll:  
5

F la t:
9

Total:
4 8

1 L o n g 1 0 0 14(100) 2 0 ( 1 0 0 ) 5(100) 4 (4 4 .4 ) 43 (8 9 .9 ; 1

1 L o n g 80 14(100) 2 0 ( 1 0 0 ) 5(100) 5(55) 4 4 (9 1 .7) 2

1 L on g 70 14(100) 2 0 ( 1 0 0 ) 5(100) 5(55) 44 (9 1 .7 ; 2

1 L o n g 60 14(100) 2 0 ( 1 0 0 ) 5 (1 0 0 ) 5(55) 4 4 (9 1 .7 ; 2

1 L ong 50 14(100) 2 0 ( 1 0 0 ) 5(100) 5(55 ) 4 4 (9 1 .7 ; 1

1 L o n g 40 14(100) 2 0 ( 1 0 0 ) 5 (100) 4 (4 4 .4 ) 4 3 (8 9 .9 ; 1

1 L o n g 30 1 4(100) 19(95) 5(100) 5 (5 5 ) 4 3 (8 9 .9 ; 2

1 L on g 2 0 1 4(100) 19(95) 5(100) 4 (4 4 .4 ) 4 2 (8 7 .5 ; 2

1 L on g 13 1 4(100) 2 0 ( 1 0 0 ) 5 (100) 4 (4 4 .4 ) 4 3 (8 9 .9 ; 3
1 T ra n 1 0 0 1 4(100) 2 0 ( 1 0 0 ) 5 (100) 2 (2 2 .2 ) 4 1 (8 5 .4 ; 3
1 T ra n 60 1 4(100) 2 0 ( 1 0 0 ) 5 (100) 3 (3 3 .3 ) 4 2 (8 7 .5 ; 5
1 T ra n 50 1 4(100) 19(95) 5(100) 2 (2 2 .2 ) 4 0 (8 3 .3 ; 4
1 T ra n 40 1 4(100) 2 0 ( 1 0 0 ) 5 (100) 2 (2 2 .2 ) 4 1 (85 .4 ; 4
1 T ra n 30 1 4(100) 19(95) 5(100) 2 (2 2 .2 ) 4 0 (83 .3 ; 4
1 T ra n 2 0 14(100) 19(95) 5(100) 3 (3 3 .3 ) 4 1 (85 .5 ; 4
1 T ra n 13 14(100) 2 0 ( 1 0 0 ) 5 (100) 3 (3 3 .3 ) 42 (87 .5 ] 4

is o m e tr ic  d a ta s e t  a s  th e  r e c o n s tru c t io n  in te rv a l  is 0 .8 m m  a n d  th e  v oxe l re s o lu tio n  is 

a lm o s t  th e  sa m e  in  a ll d ire c t io n s  ( th e  low er p e r fo rm a n c e  o f  th e  C A D - C T C  s y s te m  

w h e n  a p p lie d  to  d a ta s e t s  a c q u ire d  u s in g  th e  P ro to c o l  5 is ju s t i f ie d  s in c e  th e  c lassifie r 

is t r a in e d  o n ly  w i th  in te r p o la te d  d a ta ) .  S e n s it iv i ty  a c h ie v e d  fo r p o ly p  d e te c tio n  

w h e n  th e  C A D - C T C  a lg o r i th m  h a s  b e e n  a p p lie d  to  C T  d a t a  o b ta in e d  u s in g  th e  

P r o to c o l  6  is 100%  fo r a ll r a d ia t io n  d o se s  e x c e p t th e  case  w h e n  th e  d a t a  is s c a n n e d  

w i th  20 m A s. T h e  p o ly p  m is se d  b y  th e  p o ly p  d e te c t io n  a lg o r i th m  is i l lu s t r a te d  in  

F ig u re  4 .1 0 a . R e s u lts  o f th e  a u to m a te d  p o ly p  d e te c t io n  fo r a ll 46 s c a n s  u se d  in  

th e s e  e x p e r im e n ts  a re  d e p ic te d  in  F ig u re s  4 .11  to  4 .16 . I t  is u se fu l to  n o te  t h a t  th e  

o v e ra ll s e n s i t iv i ty  a c h ie v e d  b y  th e  d e v e lo p e d  C A D - C T C  s y s te m  is lo w ered  b y  th e  

in c lu s io n  o f  f la t  p o ly p s . T h e  s e n s i t iv i ty  r a t e  fo r f la t p o ly p s  is b e tw e e n  22%  to  55%  

a n d  th e  d e v e lo p e d  m e th o d  h a s  n o t  b e e n  d e s ig n e d  to  d e te c t  th is  c la ss  of c o lo re c ta l 

p o ly p s . T h e  f la t  p o ly p s  h a v e  d is t in c t  sh a p e s  a n d  th e i r  id e n tif ic a t io n  sh o u ld  b e  

a p p ro a c h e d  b y  a  C A D - C T C  s y s te m  t h a t  is sp ec if ica lly  d e s ig n e d  to  d e a l w ith  th is  

ty p e  o f  p o ly p s  [132],
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Sensitivity of Polyp Detection for Protocol-1 Longitudinal CT data
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(b)

F ig u re  4 .11 : S e n s it iv i ty  o f th e  p o ly p  d e te c t io n  a lg o r i th m  w h e n  a p p lie d  to  C T  d a t a  
(P ro to c o l-1 : C o ll im a tio n  1.5 x  1 6 m m , slice  th ic k n e s s  3 m m , re c o n s tru c t io n  in te rv a l 
1 .5 m m , fie ld  o f  v iew  3 2 5 m m , ta b le  s p e e d  3 0 m m /r o ta t io n )  a c q u ire d  a t  d iffe ren t r a ­
d ia t io n  d o ses , (a ) a n d  (b ) sh o w  th e  s e n s it iv i t ie s  fo r P ro to c o l-1  lo n g itu d in a l  a n d  
t r a n s v e r s a l  C T  d a t a  re sp e c tiv e ly .

4.3.1 Effect o f slice th ickness, reconstruction  interval and 
tab le speed

T o  a n a ly s e  th e  e ffec t o f  slice  th ic k n e s s  a n d  r e c o n s tru c t io n  in te rv a l, th e  s y n th e tic  

p h a n to m  h a s  b e e n  sc a n n e d  u s in g  p ro to c o ls  w h e re  th e s e  p a r a m e te r s  a re  v a rie d  (P ro ­

to c o ls  1 ,3 ,4  a n d  5 ). A n  im p o r ta n t  s te p  p re c e d in g  th e  a p p l ic a t io n  o f th e  C A D -C T C  

a lg o r i th m  is d a t a  in te rp o la t io n .  A ll C T  d a ta s e t s  w e re  in te r p o la te d  in  o rd e r  to  m a k e  

th e m  iso m e tr ic  e x c e p t cases  w h e n  th e  p h a n to m  w a s  sc a n n e d  u s in g  th e  P ro to c o l  5. 

T h e  C T  d a t a  o b ta in e d  u s in g  th e  P ro to c o l  5 w as  n o t  in te r p o la te d  a s  th e  voxel re so lu -
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Sensitivity of Polyp Detection for Protocol-2 CT data
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Figure 4.12: Sensitivity of the polyp detection algorithm  when applied to Protocol-2 
C T  data.

Sensitivity of Polyp Detection for Protocol-3 CT data
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Figure 4.13: Sensitivity of the polyp detection algorithm  when applied to Protocol-3 
C T  data.

tion is almost similar in all directions (voxel w idth and height: 0.7mm, voxel depth: 

0.8mm). T he experim ental results indicate that the perform ance of the C A D -C T C  

algorithm  is virtu ally  unchanged when it is applied to C T  data acquired using the 

Protocols 1,3 and 4. The results obtained when the algorithm  has been applied 

to d ata  acquired using the Protocol 5 were worse than those obtained when the 

algorithm  was applied to C T  data obtained using other protocols. This has been 

generated by the fact that data  interpolation has a sm oothing effect on the 3D mor­

phology of the colon wall and another im portant factor is th at the classifier was 

trained only w ith interpolated data.

T he field of view  was set to  360mm for Protocol 2 and to 325mm for other
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Sensitivity of Polyp Detection for Protocol-4 CT data
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Figure 4.14: Sensitivity of the polyp detection algorithm  when applied to Protocol-4 
C T  data.

Sensitivity of Polyp Detection for Protocol-5 CT data
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Figure 4.15: Sensitivity of the polyp detection algorithm  when applied to Protocol-5 
C T  data.

protocols. T he experim ental d ata  indicates that the field of view  does not have a 

significant im pact on the perform ance of the autom ated polyp detection algorithm.

Another param eter of interest is the table speed. To evaluate the influence 

of this param eter on the overall polyp detection results, we set this parameter 

to 20mm/rotation for P rotocol 6 and 30 m m /rotation for Protocols 1 to 5. A t 

30m m/rotation and 20mm/rotation table speeds the energy im parted is 7.0mSv 

at lOOmAs. This param eter has a negligible effect on the radiation dose since the 

Siemens scanner used in these experim ents utilises the ’’ effective tube current” model 

where a variation in the scan tim e (the lower the scan tim e the higher the table speed) 

implies a concom itant variation in the tube current. For Siemens Som atom  16 slice
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Figure 4.16: Sensitivity of the polyp detection algorithm  when applied to Protocol-6 
C T  data.

C T  scanner the lowest m As that can be set at 20mm/rotation table speed is 20mAs 

whereas for 30mm/rotation table speed the lowest m As is 13. This param eter was 

varied to  evaluate only the effect of the m otion artefacts and the experim ental re­

sults indicate that the table speed has a m arginal effect on the overall performance 

of the developed C A D -C T C  system . Sm all benefits have been observed when the 

algorithm  has been applied to the detection of small (not clinically significant) and 

flat polyps.

4.3.1.1 Level o f noise and th e  radiation dose

In this element of the study another aim was to evaluate the correlation between the 

image noise and the radiation dose. In this regard five circular regions of interest 

(ROIs) were selected w ith a radius of 20 voxels that are evaluated for 3 consecutive 

slices (see Figure 4.17). Since the d ata  is homogenous (the phantom is filled with 

water) the level of noise can be accurately sampled by calculating the standard 

deviation (SD) of the voxel distribution within the circular region of interest.

For C T  d ata  scanned using the Protocols 1 and 3 the SD increased w ith a factor 

of 2.67 (SD =  26.59 for lOOmAs and SD =  70.95 for 13m As) when the scan was 

perform ed at 13m As when compared to the case when the phantom was scanned 

w ith  lOOmAs radiation dose. T h e relation between the noise level and the radiation 

dose is illustrated in Figure 4.18.

Sensitivity of Polyp Detection for Protocol-6 CT data
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Figure 4.17: F ive regions of interests located on the phantom to evaluate the noise 
level.

Noise in CT data at different radiation dose

Protocol-1 
Protocol-3 
Protocol-6

mAs

Figure 4.18: T he relationship between noise level and the radiation dose.

4.4 Discussion and Conclusion

T h e experim ental d ata  presented in this chapter is obtained by scanning the syn­

thetic phantom  described in Section 4.1. A lthough the phantom was designed to 

em ulate as closely as possible the real clinical conditions it is worth noting that the 

synthetic d ata  is not affected by factors such as motion artefacts (caused by breath­

ing) or the presence of residual m aterial such as fluid and stool that are currently 

experienced when analysing real patient data. One of the main aims of this investi­

gation was the development of a study environment th at allows us to  determine the 

influence of the scanning param eters on the perform ance of the polyp detection al­

gorithm. Currently, the perform ance of the existing C A D -C T C  system s is evaluated 

on real patient d ata  that is supplied by  different research organizations that are not
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available for com puter vision community. Therefore the absence of standard test 

data makes the perform ance evaluation of these system s restricted to  the scenario 

they were tested. Thus, another im portant merit of this investigation is the genera­

tion of ground truth  synthetic data that can be used to test all developed systems in 

the same conditions. For comparison purposes the phantom data are made available 

on request from the following web page: http://w w w .eeng.dcu.ie/~w helanp/cadctc. 

T ypical size of a C T  dataset is in the range (70-125M B). It is useful to note that 

recently the W alter Reed Arm y M edical Center (W R A M C ) database has been made 

available to the research community which will help the evaluation of the developed 

C A D -C T C  system s but the main advantage of using synthetic data is the generation 

of unam biguous ground truth  data (requires no validation by radiologists) that can 

be used especially in the development phase of the C A D -C T C  systems.

T he developed C A D -C T C  system  indicates that autom ated polyp detection is 

feasible even at radiation doses as low as 13m As. T he sensitivity rate in polyp de­

tection achieved by the developed C A D -C T C  system  is always higher than 90% for 

polyps larger than 5mm and the overall sensitivity for all types of polyps is higher 

than 80%. T he sensitivity rate would be even higher as the developed m ethod has 

not been trained for the detection of flat polyps. For the flat polyps the achieved 

sensitivity is in the range 22% to 55%. In these experiments one polyp (see Fig­

ure 4.10a) has been placed closed to the outer plastic plates of the phantom and at 

low radiation doses the image noise joined the surface of the polyp w ith the surface 

of the plastic p late and the classifier assigned this surface to be part of a fold. It is 

worth mentioning that this situation will not appear in clinical studies.

T he main merit of this research work is the development of a realistic phantom 

that closely simulates the situations encountered in real clinical studies. Thus, the 

main emphasis was placed on evaluating the influence of the scanning parameters on 

the perform ance of the autom ated polyp detection. From these parameters attention 

was focused on the radiation dose, as the main concern regarding C T  examinations 

is the exposure of the patients to ionizing radiation. Recent studies demonstrated 

th at C T  which accounts for 4% of the medical radiographic exam inations contributes 

35-40% of the cum ulated radiation dose received by the patients [45]. The current 

study reveals th at the reduction of m As from 100 to 13 reduced the energy imparted 

from 7.0mSv to 0.92 m Sv as it is illustrated in Figure 4.19.

Also another im portant issue addressed in this chapter is the relationship between

Chapter 4 Phantom
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Imparted energy at different radiation dose
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mAs

Figure 4.19: Radiation dose received by the patient at different mAs.

the radiation dose and the im pact on the perform ance of the C A D -C T C  polyp 

detection algorithm. In this regard, experim ental data  indicated that the level of 

image noise when the phantom  was scanned w ith 13m As was higher w ith a factor of 

2.67 than in the case when the phantom  was scanned w ith lOOmAs radiation dose. 

A lthough the level of noise significantly increased at low radiation dose the effect on 

the performance in polyp detection is minimal. The experimental data  presented 

in Figures 4.11 to 4.16 indicates that the sensitivity in polyp detection for polyps 

larger than 5mm is always above 95%. Results also show a small increase in false 

positives at 13m As but the effect on true positive detection rate is not noticeable. 

The im pact of the field of view  and the reconstruction interval was negligible and 

it was virtually  elim inated by the sm oothing effect of the data interpolation that is 

applied to make the dataset isometric.

T he main conclusion of this chapter in relation to  the radiation dose is in line with 

the reported results provided in a number of publications [129, 88, 121, 125, 133] 

where is investigated the optim al scanning parameters. Based on our experiments 

the following low-dose protocol: collimation 1.5 x  16m m , slice thickness 3mm, re­

construction interval 1.5mm, table speed 30mm/rotation, radiation dose 13m As can 

be potentially used for detection of colorectal polyps larger than 5mm in clinical 

studies.

In the next chapter, experim ental results of autom atic polyp detection for the 

developed C A D -C T C  system  is discussed for standard and low dose real patients 

datasets, patient datasets w ith synthetic polyps and phantom datasets.
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C h a p t e r  5

E x p e r i m e n t a l  E v a l u a t i o n

The developed C A D -C T C  system  comprises of an algorithm  for autom atic colon 

segm entation (see Chapter 2), three different feature extraction schemes for auto­

m atic polyp detection (see Chapter 3) and an analysis of the effects of different C T  

scanning param eters on the C A D -C T C  using a synthetic phantom (see Chapter 4). 

Experim ental results of the autom atic colon segm entation (Chapter 2) shows that 

the m ethod is suitable for colon surface generation for autom atic polyp detection 

in CAD -CTC.  Based on the geom etrical shape of the polyp and fold surfaces, three 

different feature extraction schemes were discussed in Chapter 3. The first method, 

named geometrical fitting, used the least squares approxim ation in conjunction with 

surface normal concentration for autom atic polyp detection in CAD-CTC.  T he sec­

ond m ethod calculates the statistical features using the least squares approximation. 

T he third m ethod employed the 3dB point on surface variation curve in conjunction 

w ith the calculation of the standard deviation of surface variation and surface nor­

mal concentration. In this chapter, the perform ance of the above mentioned polyp 

detection techniques w ill be analysed in detail. For clarity purposes the results were 

presented in tabular and graphical forms instead of using the R O C  curves.

5.1 Results of Geometrical fitting

48 patients’ (80 supine and prone) data w ith 120 polyps and five patients’ data with 

33 synthetic generated polyps [134] of various sizes were tested using the geometrical- 

driven m ethod detailed in Section 3.1. For manual assisted colon segmentation, the 

overall sensitivity of the developed technique when applied to real patient C T C  

d ata was 74.53% and the rate of false positives per dataset was 3.90 (see Table 5.1). 

T h e sensitivity of the C A D -C T C  system  for polyps >  10m m was 100%, for polyps
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[5 — 10mm) was 91.67%  and for polyps <  5m m  was 67.95%. For mass and flat 

polyps the sensitivities were 90.91% and 33.33% respectively. In total 317 folds 

were detected in 80 patients data  (Table 5.2). W hen the C A D -C T C  system  applied 

the autom atic colon segm entation algorithm, the overall sensitivity was 70.75% with 

3.50 false positives per dataset. The sensitivity for polyps >  10mm was 100%, for 

polyps [5 — 10mm) was 91.67% and for polyps <  5m m  was 62.82%. For manual 

assisted segm entation, the overall sensitivity for synthetic polyps was 90.91% and 

the rate of false positives was 3.6 per dataset (Table 5.3). T he overall sensitivity for 

polyps greater than 5mm was 100.00% and the sensitivity for polyps less than 5mm 

was 66.66%. when the autom ated segmentation was applied the overall sensitivity 

was 87.88% w ith  2.2 false positive per dataset. T he sensitivity for polyps >  10mm, 

[5 — 10mm) and <  5mm  were 100%, 94.12% and 66.67% respectively.

Table 5.1: Performance analysis for real patient C T  data
T ype Number FN N N PN N

T P Manual Sens. Auto. Sens. TP Sens.

<  5m m 78 53 67.95% 62.82% 49 62.82%
[5 — 10)mm 24 22 91.67% 91.67% 16 66.67%

> 10mm 4 4 100% 100% 4 100%
F lat 3 1 33.33% 33.33% 1 33.33%
Mass 11 10 90.91% 72.73% 8 72.73%
Total 120 90 74.53% 70.75% 78 65%

F P 3.90 3.50 5.83

Table 5.2: Statistics for false positives
T yp e Number
Fold 145 45.74%

Convex Surface 112 35.33%
Residual M aterial 37 11.67%

Tube 23 7.25%
Total 317 -

The proposed m ethod was also applied to the detection of polyps in phantom 

data acquired using the Protocol-1 (collimation: 1.5x16m m , slice thickness: 3mm, 

reconstruction interval: 1.5mm, table speed: 30m m/rotation and mAs: 100, 40, 30, 

20, 13) data. It has been already mentioned in Chapter 4 that one polyp in the 

phantom d ata was placed close to  the plastic plate and at low doses the image noise 

joined the surface of the polyp w ith the surface of the plastic plate. Since these
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Table 5.3: Perform ance analysis for syn th etic  polyp  data
Type Number FN NN PN N

TP Manual Sens. Auto. Sens. TP Sens.

< 5mm 6 4 66.67% 66.67% 2 33.33%
[5 — 10)mm 17 17 100% 94.12% 15 88.23%

>  10mm 9 9 100% 100% 7 77.78%
Flat 1 0 0% 0% 0 33.33%

Total 33 30 90.91% 87.88% 24 72.73%

F P 3.6 2.2 6.4

situation will not be encountered in real clinical studies, this polyp was ignored in 

the evaluation of the polyp detection techniques and the total number of polyps is 

47 instead of 48. T he overall sensitivities for lOOmAs, 40mAs, 30mAs, 20mAs, and 

13m As phantom data were 87.23%, 87.23%, 82.98%, 87.23% and 82.98% respec­

tively. The sensitivities for polyps >  10mm were 100%, 100%, 92.86%, 100% and 

92.86% for the phantom  d ata  acquired using the following radiation doses: lOOmAs, 

40mAs, 30m As, 20mAs and 13m As respectively. T he sensitivity for polyps in the 

range [5 — 10mm) was 100% for lOOmAs, 40mAs, 20mAs and 13m As except the 

30mAs phantom data, where it was 94.74%. The sensitivity for polyps <  5m m was 

80% for lOOmAs, 40mAs, 30mAs, 20mAs and 13mAs.

Table 5.4: Perform ance analysis for (lOOmAs) longitudinal phantom polyp data

T yp e Number FN N N PN N
TP Sensitivity TP Sensitivity

< 5mm 5 4 80% 3 60%
[5 — 10)m m 19 19 100% 18 94.74%

>  10mm 14 14 100% 13 92.86%
Flat 9 4 44.44% 2 22.22%

Total 47 41 87.23% 36 76.60%
F P 2 2

T he P N N  classifier was also employed to classify the candidate surfaces into 

polyps or folds. T he overall sensitivity for P N N  classifier was 65% w ith 5.83 false 

positive per dataset. T he sensitivity for polyps >  10m m was 100%, for polyps 

[5 — 10mm) was 66.67% and for polyps <  5m m  was 62.82%. The sensitivities for 

masses and flat polyps were 72.72% and 33.33% respectively. The overall sensitivity 

for synthetic polyps was 72.73% and the false positive level was 6.4 per dataset 

(Table 5.3). T he sensitivity for polyps >  10mm and [5 — 10mm) were 77.78%
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Table 5.5: Performance analysis for low-dose (40 m As) longitudinal phantom polyp 
data

Chapter 5 Experimental Evaluation

m As Type Number FN NN PN N
T P S e n s i t iv i ty T P S e n s i t iv i ty

40 <  5m m 5 4 80% 3 60%
40 [5 — 10)mm 19 19 100% 18 94.74%
40 >  10mm 14 14 100% 14 100%
40 F lat 9 4 44.44% 1 11 .11%

Total 47 41 87.23% 36 76.60%
F P 3 4

and 88.23% respectively. T he sensitivity for polyps smaller than 5mm was 33.33%. 

Results of the P N N  classifier are shown in Tables 5.1 5.2, 5.3, 5.4, 5.5, 5.6,5.7,5.8 and 

these results demonstrate th at the F N N N  classifier outperforms the P N N  classifier.

Table 5.6: Perform ance analysis for low-dose (30mAs) longitudinal phantom polyp 
data

mAs T yp e Number FNNN PN N
T P S e n s i t iv i ty T P S e n s i t iv i ty

30 <  5m m 5 4 80% 3 60%
30 [5 — 10)m m 19 18 94.74% 15 78.94%
30 >  10mm 14 13 92.86% 12 85.71%
30 Flat 9 4 44.44% 1 11.11%

Total 47 39 82.98% 31 65.96%
F P 4 4

To determine whether a polyp was correctly detected by the proposed algorithm, 

we compared the polyp location w ith  the C T C  reports performed by the radiologists. 

Also we compared the result w ith  the colonoscopy reports. In our tests we used both 

supine and prone views for polyp detection.

5.1.1 D iscussion  on th e  perform ance o f th e G eom etrical F it­
ting  A pproach

T he proposed C A D  system  for colorectal polyp detection provides high sensitivity 

for medium and large polyps, while maintaining a low false positive incidence per 

dataset. Also in these experim ents two different classifiers were evaluated in order 

to determine the optim al classification scheme that minimizes the false positive 

incidence while keeping the sensitivity higher than 90% for polyps larger than 5mm.



Table 5.7: Performance analysis for low-dose (20mAs) longitudinal phantom polyp 
data

Chapter 5 Experimental Evaluation

m As T ype Number FNNN PN N
T P S e n s i t iv i ty T P S e n s i t iv i ty

20 <  5m m 5 4 80% 3 60%

20 [5 — 10)mm 19 19 100% 16 84.21%
20 >  10 m m 14 14 100% 12 85.71%

20 Flat 9 4 44.44% 2 22.22%

Total 47 41 87.23 33 70.21%
F P 4 2

Table 5.8: Performance analysis for low-dose (13m As) longitudinal phantom polyp 
data

m As T ype Number FN NN PN N
T P S e n s i t iv i ty T P S e n s i t iv i ty

13 < 5 m m 5 4 80% 3 60%

13 [5 — 10)mm 19 19 100% 17 89.47%

13 >  10mm 14 13 92.85% 12 85.71%
13 F lat 9 3 33.33% 2 22.22%

Total 47 39 82.98% 34 72.34%

F P 3 4

T he developed C A D - C T C  system  shows a relative low sensitivity for small polyps 

(67.95%). Since the proposed C A D - C T C  system  used data  w ith 3mm collimation 

and 1 .5mm reconstruction interval, the number of surface voxels that belong to 

polyps smaller than 5mm is small, and this was the reason w hy the sensitivity for 

small polyps was drastically reduced. Another reason for missing small polyps was 

the condition where the polyp was adjacent to folds. Therefore, the features derived 

from small polyps when positioned adjacent to folds show similar characteristics 

as generic folds, and the classifier detected them as folds. W hen the C A D  system 

was applied to real datasets, 16% (4 out of 25) of the undetected small polyps were 

placed adjacently to folds and the classifier failed to identify them correctly.

T h e developed C A D - C T C  m ethod presents better results for the detection of 

small and medium size polyps when applied to lower resolution data (reconstruction 

interval (RI) 1.5mm) compared to the high resolution C T  data used to evaluate the 

m ethods developed by Kiss et al. [96, 38] (0.8mm RI), Summers et al. [91] (1.0mm 

RI), A car et al. [39] (1.0-1.50mm RI), and K iraly  et al. [97] (1.0mm RI). Also it is
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w o r th  m e n tio n in g  t h a t  th e  d e v e lo p e d  C A D - C T C  a lg o r i th m  e x h ib its  a  re m a rk a b le  

ro b u s tn e s s  to  n o ise . T o  d e m o n s t r a te  th is ,  th e  d e v e lo p e d  a lg o r i th m  w as  a p p lie d  to  

lo w -d o se  p h a n to m  d a ta s e t s  (c lin ic a l in v e s t ig a tio n s  in  I r e la n d  ty p ic a lly  u se  100m A s 

as a  s t a n d a r d  d o se ) a n d  n u m e r ic a l  r e s u l ts  a re  d e p ic te d  in  T a b le s  5 .4  to  5.8.

O n e  p a r t ic u la r  a d v a n ta g e  o f th e  d e v e lo p e d  C A D - C T C  s y s te m  m e th o d  is i ts  low  

c o m p u ta t io n a l  o v e rh e a d  a n d  m o re  im p o r ta n t ly  i t  sh o w s h ig h  s e n s i t iv i ty  fo r m e d iu m  

[5 — 1 0 m m ) a n d  la rg e  ( >  1 0 m m ) p o ly p s  w h ile  th e  fa lse  p o s itiv e  r a te  is m a in ta in e d  

a t  low  levels.

5 . 2  R e s u l t s  o f  S t a t i s t i c a l  F e a t u r e  B a s e d  A p p r o a c h

In  o rd e r  to  e v a lu a te  th e  p e r fo rm a n c e  o f th e  s ta t i s t i c a l  f e a tu re -b a s e d  C A D -C T C  

m e th o d ,  50 p a t i e n t s ’ (80 s u p in e  a n d  p ro n e )  d a ta s e t s  w ith  127 p o ly p s , 11 low -dose  

p a t ie n ts  d a ta s e t s  (1 3 -4 0 m A s) w ith  2 p o ly p s , five p a t i e n t s ’ d a ta s e t s  w ith  33 s y n th e tic  

p o ly p s  [134], 25 W R M C  p a t ie n t  (47  s u p in e  a n d  p ro n e )  d a ta s e t s  w ith  54  p o ly p s  [135] 

o f v a r io u s  s izes w e re  u se d  fo r  e x p e r im e n ta t io n . T h e  o v e ra ll s e n s i t iv i ty  o f th e  p o ly p  

d e te c t io n  u s in g  th e  F N N N  c la ss if ie r  fo r  re a l p a t ie n t  d a t a  w as  71 .65%  a n d  th e  false  

p o s it iv e  leve l p e r  d a ta s e t  w as  4 .01  (T a b le  5 .9 ). T h e  s e n s i t iv i ty  o f  th e  C A D -C T C  

te c h n iq u e  fo r p o ly p s  >  1 0 m m  w a s  100% , fo r p o ly p s  [5 — 1 0 m m ) w as  92%  a n d  for 

p o ly p s  <  5 m m  w as  6 4 .25% . T h e  s e n s it iv i t ie s  fo r m a ss  a n d  f la t  p o ly p s  w ere  72.72%  

a n d  66 .67%  re sp e c tiv e ly . In  t o t a l  323  fo ld s  w e re  d e te c te d  in  80 s u p in e  a n d  p ro n e  

re a l  p a t ie n t  d a t a  (T a b le  5 .1 0 ). 53%  o f th e  fa lse  p o s itiv e s  w ere  g e n e ra te d  b y  fo lds, 

14%  w ere  c a u s e d  b y  th e  r e s id u a l  m a te r ia l ,  27%  w ere  sp u r io u s  c o n v e x  su rfa c e s  a n d  

3 .41%  w ere  su rfa c e s  g e n e ra te d  b y  th e  r e c ta l  tu b e .  T h e  o v e ra ll s e n s i t iv i ty  in  p o ly p  

d e te c t io n  u s in g  th e  P N N  c la ss ifie r fo r  th e  re a l p a t ie n t  d a t a  w as  61 .417%  (T a b le  5.9) 

a n d  th e  fa lse  p o s it iv e  p e r  d a ta s e t  w as  2 .41. T h e  s e n s i t iv i ty  fo r  p o ly p s  >  1 0 m m  w as 

100% , fo r p o ly p s  [5 — 1 0 m m ) w as  84%  a n d  fo r p o ly p s  <  5 m m  w as  58 .33% . T h e  

s e n s it iv i t ie s  fo r f la t  p o ly p s  a n d  m a sse s  w ere  0%  a n d  36 .36%  re sp ec tiv e ly .

T h e  o v e ra ll s e n s i t iv i ty  o f  t h e  s y s te m  u s in g  th e  F N N N  c la ss ifie r w h e n  a p p lie d  to  

th e  d e te c t io n  o f s y n th e t ic  p o ly p s  w a s  84 .85%  a n d  th e  r a te  o f  fa lse  p o s itiv e s  w as 2.8 

p e r  d a ta s e t  (T a b le  5 .1 1 ). T h e  s e n s i t iv i ty  fo r p o ly p s  la rg e r  t h a n  5 m m  w as 100.00%  

a n d  th e  s e n s it iv i ty  fo r p o ly p s  sm a lle r  t h a n  5 m m  w as  33 .33% . T h e  o v era ll s e n s itiv ity  

o f t h e  s y s te m  u s in g  th e  P N N  c la ss if ie r  w h e n  a p p lie d  to  th e  d e te c t io n  o f s y n th e tic  

p o ly p s  w as  8 4 .8 5 %  (T a b le  5 .1 1 ) w ith  a  r a t e  o f  fa lse  p o s it iv e s  o f  2 .8  p e r  d a ta s e t .
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Table 5.9: Perform ance analysis for real polyp  data
T ype Number FN N N PN N

T P S e n s i t iv i ty . T P S e n s i t iv i ty
< 5m m 84 54 64.28% 49 58.33%

[5 — 10)mm 25 23 92% 21 84%
>  10mm 4 4 100% 4 100%

Flat 3 2 66.66% 1 0.0%
Mass 11 8 72.73% 8 36.36%
Total 127 91 71.65% 78 61.417%

F P 4.01 2.84

Table 5. 0: Statistics for false positives - F N N N  classifier
T yp e Number
Fold 174 53.87%

Convex Surface 90 27.86%
Residual M aterial 48 14.87%

Tube 11 3.41%
Total 323 -

T he sensitivity for polyp >  5m m  was 84.85%. T he overall sensitivity in polyp 

detection using F N N N  classifier for W R M C  data was 87.04% (Table 5.12) with a 

false positive rate of 2.17. T h e sensitivities for polyps >  10mm, [5 — 10)mm and 

<  5m m  were 100%, 90.32% and 60% respectively. The sensitivity for flat polyps was 

33.33%. T he W R M C  patient datasets are contrast enhanced and require electronic 

cleansing. Since, the proposed C A D - C T C  m ethod did not implemented the option 

for electronic cleansing, the features associated w ith the contrast enhanced material 

were ignored.

Table 5.11: Perform ance analysis for synthetic polyp data
T yp e Number FN N N PN N

T P S e n s i t iv i ty T P S e n s i t iv i ty
<  5m m 6 2 33.33% 2 33.33%

[5 — 10)mm 17 17 100% 17 100%
>  10mm 9 9 100% 9 100%

F lat 1 0 0% 0 0%

Total 33 28 84.85% 28 84.85%
F P 2.8 2.8

T he developed C A D -C T C  system  was also evaluated on five 13m As patient 

datasets, three 30mAs patient datasets, two 20mAs patient datasets and one 40mAs
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Table 5.12: Perform ance a n a ly s is  for W R ’
T ype Number FN N N PN N

TP Sens. TP Sens.
< 5mm 5 3 60% 2 40%

[5 — 10)mm 31 28 90.32% 24 77.42%
>  10 mm 15 15 100% 14 93.33%

F lat 3 1 33.33% 0 0%
Total 54 47 87.04% 41 74.07%

F P 2.17 1.44

VIC patients data

patient dataset. The overall sensitivity for both the F N N N  and P N N  classifiers 

were 50% 5.15. T h e sensitivity for polyps smaller than 5mm was 50%. The false 

positives per dataset were 2.18 and 1.27 when the system  employed the FN N N  and 

P N N  classifiers.

Table 5.13: Performance analysis for low-dose patients data
Type Number FN N N PN N

TP Sens. TP Sens.

< 5mm 2 1 50% 1 50%
Total 2 1 50% 1 50%

F P 2.18 1.27

T he average size of a typical interpolated C T  dataset was 300MB for each view. 

T he average tim e required for processing each volume of data was approxim ately 

3.60min (see Table 5.14) on a Pentium -IV  1.6 GHz processor machine w ith 1G B  

memory.

Table 5.14: Average com putation tim e (in seconds) for polyp detection
Candidate surface generation time 

Feature extraction tim e 
Classification

193
21.5
0.7

overall tim e (seconds) 215.2

5.2.1 Discussion o f S ta tis tica l Features

T h e proposed statistical feature-based C A D  system  for colonic polyp detection pro­

vides high sensitivity yet m aintaining a low false positive incidence per dataset. The 

developed polyp detection scheme was not able to correctly classify the polyps that 

are adjacent to fold or on fold, elongated and flat. Figure 5.1 illustrates a small
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polyp situated on a fold that is missed b y  the C A D -C T C  system. Since the polyp 

was adjacent to  a fold surface, the candidate surface includes large parts of the fold 

and the features derived from the candidate surface shows similar value as the sur­

faces generated by folds. As a result the classifier assigned the candidate surfaces as 

being generated by a fold. Figure 5.1.b shows an elongated 7mm polyp which was 

also missed by the developed C A D -C T C  technique. Since the shape of the polyp 

was elongated, the features calculated from the candidate surface have strong sim­

ilarities w ith  those calculated from surfaces generated by folds. Figure 5.1.C shows 

a flat polyp missed by the developed C A D -C T C  system. The flat polyps have dis­

tinct geom etrical shapes when compared to the sessile and pedunculated polyps and 

the developed polyp C A D -C T C  system  perform ed poorly for the detection of flat 

polyps.

(a) (b) (c)

Figure 5.1: Missed polyps and their 3D surfaces.

T he statistical feature-based system  detected 323 false positive in 80 patient 

datasets. 53.87% of the false positives were generated by folds and Figure 5.2 shows 

a number of surfaces that were incorrectly classified by the developed C A D -C T C  

system . 14.87% of the false positives were generated by the residual m aterial and 

three surfaces (FPs) generated by residual m aterial are illustrated in Figure 5.3. It 

is useful to note that these false positives can be eliminated by applying texture 

analysis [40] as they have different C T  densities than the colon tissue.

T he experim ental data indicates th at the statistical feature-based polyp detec­

tion technique shows robustness in detection of polyps when applied to low dose 

d ata  (13m As) w ith  a very low rate of false positives (2.18) per dataset. Another 

advantage of the C A D -C T C  m ethod detailed in this section is its low com putational
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(d) (e) (f)

Figure 5.2: D etected false positive and their 3D surfaces.

overhead and more im portantly it shows high sensitivity for medium [5 — 10mm) 

and large (>  10mm) polyps that are clinically significant.

5 . 3  R e s u l t s  o f  3 d B  F e a t u r e - B a s e d  A p p r o a c h

In order to evaluate the 3dB feature-based C A D -C T C  technique, 50 patient (80 

supine and prone) datasets w ith 127 polyps, 11 low-dose (13-40mAs) patient datasets 

w ith  2 polyps, five patients datasets w ith  33 synthetic polyps [134], a phantom with 

47 polyps and 44 W R M C  patient datasets (82 supine and prone) w ith 78 polyps of 

various sizes were used for experimentation. T he overall sensitivity of the developed 

technique for the F N N N  classifier when applied to standard dose (lOOmAs) real 

patient data was 71.65%  and the false positive level per dataset was 5.15 (Table 5.15). 

Sensitivity for polyps >  10m m was 100%, for polyps [5 — 10mm) was 92% and 

for polyps <  5m m  was 65.47%. For mass and flat polyps the sensitivities were 

63.64% and 66.67% respectively. In total 408 folds were detected in 80 patients data 

(Table 5.16). T h e overall sensitivity of the C A D -C T C  m ethod using the P N N  and
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: D etected residual m aterial and their 3D surfaces.

S V M  classifiers when applied to the standard dose real patient data were 67.72% and 

70.08% respectively. T he sensitivity for polyps >  10m m was 100% for both PNN  

and SV M  classifiers. T h e P N N  and SV M  classifiers show 84% and 88% sensitivities 

for polyps w ith  sizes between [5 — 10)mm. T h e sensitivities for polyps <  5m m  , 

flat polyps and masses were 59.52%, 66.66% and 81.82% when the algorithm  was 

applied w ith P N N  classifier. T he sensitivity for polyps <  5m m  , flat polyps and 

masses were 64.29%, 66.67% and 63.64% when the algorithm  was applied w ith SVM  

classifier. The false positive rate for P N N  and S V M  classifiers were 4.19 and 3.58 

respectively.

T he overall sensitivities of the system  when applied to synthetic datasets were 

84.85%, 87.88% and 87.88% for FNNN, P N N  and SVM  classifiers (Table 5.17). The 

rate of false positives was 2.8, 2.6 and 2.8 per dataset for FNNN, P N N  and SVM  

respectively. T h e sensitivity for polyps greater than 5mm was 100.00% for all three 

classifiers. Sensitivities for polyps smaller than 5mm was 33.33%, 50% and 50% for 

FNNN, P N N  and SVM  respectively.
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T ype Number FN N N PN N SVM
TP Sens. TP Sens. TP Sens.

< 5m m 84 55 65.47% 50 59.52% 54 64.29%
[5 — 10)mm 25 23 92% 21 84% 22 88%

>  10mm 4 4 100% 4 100% 4 100%
Flat 3 2 66.67% 2 66.67% 2 66.67%
Mass 11 7 63.64% 9 81.82% 7 63.64%
Total 127 91 71.65% 86 67.72% 89 70.08%

F P 5.15 4.19 3.58

Table 5. 6: Statistics for false positives - FN N N  classifier
T ype Number
Fold 222 54.41%

Convex Surface 118 28.92%
Residual M aterial 55 13.48%

Tube 13 3.18%
Total 408 -

T he overall sensitivity in polyp detection for W R M C  data was 91.02%, 78.21% 

and 83.83% for FNNN, P N N  and SV M  respectively (Table 5.18). The false positive 

rate per dataset is 2.68, 2.36 and 2.16 for FNNN, P N N  and SVM  respectively. The 

sensitivities for polyps >  10mm, [5 — 10)m m  and <  5m m  were 100%, 93.75% and 

70% respectively ( f ( F NNN)  classifier). The sensitivities for the P N N  classifier for 

polyps >  10mm, [5 — 10)m m  and <  5m m  were 100%, 79.17%  and 70% respectively. 

T he sensitivities of the SVM  classifier for polyps >  10mm, [5 — 10)m m  and <  5mm 

were 100%, 85.41% and 70% respectively. T he sensitivities for flat polyps were 75%, 

0% and 25% for FNNN, P N N  and S VM  respectively.

T he algorithm  was also applied for autom atic polyp detection to lOOmAs, 70mAs,

Table 5.17: Perform ance analysis of 3dB feature approach for synthetic poly
T yp e Number FN N N PN N SVM

TP Sens. TP Sens. TP Sens.
<  5m m 6 2 33.33% 3 50% 3 50%

[5 — 10)m m 17 17 100% 17 100% 17 100%
> 10mm 9 9 100% 9 100% 9 100%

Flat 1 0 0% 0 0% 0 0%
Total 33 28 84.85% 29 87.88% 29 87.88%

F P 2.8 2.6 2.8

p data
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Table 5.18: Perform ance analysis of 3dB feature approach when applied to the 
W R M C  polyp d ata______________________________________________

T ype Number FNNN PN N SVM
TP Sens. TP Sens. TP Sens.

< 5mm 10 7 70% 7 70% 7 70%
[5 — 10)mm 48 45 93.75% 38 79.17% 41 85.41%

>  10mm 16 16 100% 16 100% 16 100%
Flat 4 3 75% 0 0% 1 25%

Total 78 71 91.02% 61 78.21% 65 83.83%
F P 2.68 2.36 2.16

30mAs, 20mAs and 13m As phantom data. T he overall sensitivities w ith the FNN N  

classifier for lOOmAs, 70mAs, 40mas, 30mAs, 20mAs and 13mAs were 89.36%, 

89.36%, 87.23%, 85.11% , 82.98% and 85.11%  respectively (see Tables 5.19 to 5.24). 

The sensitivities of the PN N  classifier for lOOmAs, 70mAs, 40mAs, 30mAs, 20mAs 

and 13m As were 87.23%, 80.85%, 80.85%, 85.11% , 80.85% and 78.72% respectively. 

The sensitivities of the SVM  classifier for lOOmAs, 70mAs, 40mAs, 30mAs, 20mAs 

and 13m As were 89.36%, 87.23%, 85.11% , 87.23, 82.98% and 82.98% respectively. 

The sensitivities for polyps >  10mm were 100% for FNNN, PN N  and SVM  classi­

fiers. T he FN N N  classifier shows 100% sensitivity for polyps between [5 — 10)mm 

at lOOmAs, 70mAs, 40mAs, 20mAs, and 13m As radiation doses and 94.74% sensi­

tiv ity  at 30mAs radiation dose. The sensitivities of the P N N  classifier for polyps 

between [5 — 10)mm at lOOmAs, 70mAs, 40mAs, 30mAs, 20mAs and 13m As are 

100%, 89.47%, 89.47%, 94.73%, 94.73% and 89.47% respectively. T he sensitivities 

of the SVM  classifier for [5 — 10)mm polyps at lOOmAs, 70mAs, 40mAs, 30mAs, 

20mAs and 13m As are 100%, 94.73%, 100%, 100%, 100% and 94.73% respectively. 

The m ethod also shows 50% sensitivity for small polyps when it was applied to 

low-dose patient data w ith a false positive level smaller than 3.0 per dataset (see 

Table 5.25).

5.3.1 Discussion o f 3dB Features

The proposed 3dB feature-based C A D -C T C  system  for colonic polyp detection pro­

vides high sensitivity for both FN N N  and SV M  classifiers. A ll three classifiers 

(FNNN, PN N, SVM ) show 100% sensitivity for polyps >  10mm. T he experimental 

data indicates that the FNN N  shows better performance in polyp detection when 

compared to the performance of the P N N  classifier especially for the detection of
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T y p e N u m b e r F N N N P N N S V M
TP Sens. TP Sens. TP Sens.

<  5 m m 5 5 100% 5 100% 5 100%
[5 — 1 0 )m m 19 19 100% 19 100% 19 100%

>  1 0 m m 14 14 100% 14 100% 14 100%
F la t 9 4 44 .44% 3 33 .33% 3 33 .33%

T o ta l 47 42 89 .36% 41 87 .23% 41 89 .36%
F P 4 2 2

T a b le  5.20: P e r fo rm a n c e  analysis of 3d B  f e a tu re  approach fo r  7 0 m A s phantom d a t a
T y p e N u m b e r F N N N P N N S V M

TP Sens. TP Sens. TP Sens.
<  5 m m 5 5 100% 4 80% 5 100%

[5 — 1 0 )m m 19 19 100% 17 89 .47% 18 94 .73%
>  1 0 m m 14 14 100% 14 100% 14 100%

F la t 9 4 44 .44% 3 33 .33% 4 44 .44%

T o ta l 47 42 89 .36% 38 80 .85% 41 87 .23%
F P 4 1 2

m e d iu m  sized  p o ly p s  ([5 — 1 0 )m m ). T h e  SVM  c la ss if ie r  sh o w s b e s t  p e rfo rm a n c e  

w ith  re s p e c t  to  th e  fa lse  p o s it iv e s  level p e r  d a ta s e t  w h e n  c o m p a re d  to  F N N N  a n d  

P N N  c lassifie rs . T h e  d e v e lo p e d  p o ly p  d e te c t io n  sc h e m e  w h e n  u se d  w ith  th e  FN N N  

c la ss ifie r m isse d  5 p o ly p s  w ith  sizes b e tw e e n  5 -8 m m  in  M a te r  a n d  W R M C  p a t ie n t  

d a ta s e ts .  O n  th e  o th e r  h a n d  th e  SVM  c la ss ifie r m is se d  10 p o ly p s  w ith  size b e tw e e n  

5 -8 m m . T h e  SVM  c la ss if ie r  d e m o n s tr a te s  low er d e te c t io n  r a te  fo r p o ly p s  w ith  sizes 

b e tw e e n  5 -8 m m  w h e n  c o m p a re d  to  th e  p o ly p  d e te c t io n  r a te  o ffered  b y  th e  FNN N  

c lassifie r. A ll th r e e  c la ss if ie rs  fa ile d  to  d e te c t  th e  p o ly p s  w h e n  th e y  a re  a d ja c e n t  to  

fo lds.

B a s e d  o n  th e  r e p o r te d  r e s u l ts  w e c o n c lu d e  t h a t  th e  d e v e lo p e d  C A D -C T C  s y s te m  

T a b le  5.21: P e r fo rm a n c e  analysis o f 3dB  fe a tu re  approach fo r  4 0 m A s phantom d a ta
T y p e N u m b e r F N N N P N N S V M

TP Sens. TP Sens. TP Sens.
<  5 m m 5 5 100% 5 100% 5 100%

[5 — 1 0 )m m 19 19 100% 17 89 .47% 19 100%
>  1 0 m m 14 14 100% 14 100% 14 100%

F la t 9 3 33 .33% 2 22.22% 2 22.22%

T o ta l 47 41 87 .23% 38 80 .85% 40 85 .11%
F P 4 2 2
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T yp e Number FN N N PN N SVM
TP Sens. TP Sens. TP Sens.

< 5m m 5 5 100% 5 100% 5 100%
[5 — 10)mm 19 18 94.74% 18 94.73% 19 100%

> 10mm 14 14 100% 14 100% 14 100%
Flat 9 3 33.33% 3 33.33% 3 33.33%

Total 47 40 85.11% 38 85.11% 41 87.23%
F P 4 4 1

Table 5.23: Perform ance analysis of 3dB feature approach for 20mAs phantom data
T yp e Number FN NN PN N SVM

TP Sens. TP Sens. TP Sens.

< 5m m 5 5 100% 5 100% 5 100%
[5 — 10)mm 19 19 100% 18 94.73% 19 100%

> 10mm 14 14 100% 14 92.86% 14 100%
Flat 9 1 11.11% 2 22.22% 1 11 . 1 1 %

Total 47 39 82.98% 38 80.85% 39 82.98%
F P 4 3 2

show similar or better perform ance in polyp detection when compared to the perfor­

mance of the C A D -C T C  m ethods reported in [35, 37, 38, 40, 41, 90, 91, 96, 98, 99] 

for polyps >  10m m (sensitivity of 100%). T he proposed system  outperforms the 

m ethods proposed in [35, 37, 38, 40, 41, 90, 91, 96, 98, 99] when applied to the 

detection of small and medium size polyps. The rate of false positives for FNN N  

classifier (5.15 per dataset) is lower than the rate achieved by the methods pro­

posed by [35, 40, 41, 90, 91, 98, 99] but shows a higher level of false positive when 

compared to the C A D -C T C  techniques developed by [37, 38, 96]. T he false pos­

itives level reported by Yoshida et al. and Kiss et al. are 2 to 3.5 and 2.48 per 

dataset respectively. On the other hand, the false positives level achieved by the

Table 5.24: Perform ance analysis of 3dB feature approach for 13m As phantom data
T yp e Number FN NN PN N SVM

TP Sens. TP Sens. TP Sens.

< 5m m 5 5 100% 4 80% 5 100%
[5 — 10)m m 19 19 100% 17 89.47% 18 94.73%

> 10mm 14 13 100% 14 100% 14 100%
Flat 9 3 33.33% 2 22.22% 2 22.22%

Total 47 40 85.11% 37 78.72% 39 82.98%
F P 2 3 2
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Table 5.25: Perform ance analysis of 3dB feature approach
T yp e Number FN N N PN N SVM

TP Sens. TP Sens. TP Sens.
< 5m m 2 1 50% 1 50% 1 50%

Total 2 1 50% 1 50% 1 50%
F P 2.54 2.81 2.27

br low-dose patient data

3dB feature-based technique when using the SV M  classifier is 3.57 when applied to 

the M ater Hospital datasets and 2.16 when applied to the W R M C  datasets. The 

experim ental results also indicate that the developed C A D -C T C  method shows ro­

bustness in autom atic polyp detection when applied to low-dose patient data while 

m aintaining a low level of false positives per dataset.

5 . 4  C o n c l u s i o n

In this chapter results of three different polyp detection schemes are presented. A ll 

the three m ethods show 100% sensitivity for polyps >  10m m and 92% sensitivity for 

polyps 5 — 10mm and 64% or higher sensitivity for polyps <  5mm. It is also useful 

to note that all three techniques are affected by similar false positive such as those 

generated by residual m aterial, rectal tubes, and small folds. The first method which 

uses geom etrical features is optim ised for the non-isotropic C T  datasets used by our 

clinical partners. T he second m ethod based on statistical features and the third 

m ethod based on 3dB and surface variation features are robust techniques suitable 

for all kinds of datasets and are tested on publicly available W R M C  datasets. The 

experim ental results indicate that the developed C A D -C T C  system  shows similar 

results to both manual C T C  and the traditional optical colonoscopy approach, thus 

m aking it suitable tool to be used in clinical studies [51, 52, 53, 54, 55, 56, 57].
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C h a p t e r  6

T he main aim of this research was the development of a fully autom atic CAD-  

C T C  system  that can be applied for the robust identification of colorectal polyps 

in C T C  datasets acquired using standard and low dose radiation. The developed 

system  consists of a number of distinct stages where the focus of this thesis is 

in the autom atic colon segmentation, candidate surface extraction, classification, 

and the analysis of the effects of low-dose on autom atic polyp detection in CAD- 

CTC. This research work has generated a number of significant novel theoretical 

and experim ental contributions in all of these processing stages. The theoretical 

contributions generated from this research work are as follows:

•  Development of an algorithm  for autom atic segm entation of collapsed colon in 

C T C

•  Development of three distinct polyp detection schemes in C T C

•  Development of a gradient operator for robust polyp detection in low-dose 

C A D -C T C

T he experim ental contributions of this research are as follows:

•  Design and construction of a synthetic phantom

• D etection of optim um  scanning parameters for C A D -C T C  systems

•  Development of standard testing datasets that can be used in the development 

of the CAD-CTC.

T he first step of the developed C A D -C T C  system  addresses the problem of 

autom atic colon segmentation. A s discussed in Chapter 2, the manually assisted 

colon segm entation technique based on standard region growing is feasible only
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when applied to C T  data acquired in ideal conditions. In m any clinical studies, 

the colon data is often collapsed (approxim ately 50% of the total examinations) 

due to either insufficient colon insufflation or to  blockages caused by water and 

residual material. Thus, one of the main objectives of this research work was the 

development of an autom atic colon segmentation technique that is able to perform 

robust colon segmentation when applied to well-distended and collapsed C T  data. In 

this sense, an autom atic colon segm entation technique has been developed and it is 

explained in detail in Chapter 2. T he developed technique is a m ulti-stage approach 

where the colon is reconstructed based on morphological measurements associated 

with the candidate colon segments (V /L  analysis) and by enforcing the geometrical 

constraints imposed by a generic model of a well-distended colon. T he autom atic 

segm entation of colons in collapsed C T  d ata  is a relatively unexplored research topic 

and this is illustrated by the literature review presented in the introductory part of 

C hapter 2. W hen the autom atic colon segmentation technique was applied to 88 

standard dose and 8 low dose datasets the experim ental data  indicates that this fully 

autom atic m ethod is able to detect 99.68% of the total colon wall when applied to 

standard dose collapsed C T  data  and 96.52% when applied to low dose collapsed C T  

data. T he perform ance of the colon segmentation technique detailed in this thesis 

is superior than the perform ance of other published autom atic colon segmentation 

techniques [65, 66].

T he second step of the C A D -C T C  system  deals w ith the problem of polyp detec­

tion. T his is the main subject of this research work detailed discussion is provided 

in Chapter 3. The approach described in this thesis is based on a geometrical anal­

ysis of the colon wall and it has several well-defined stages including the extraction 

of polyp candidate surfaces, feature extraction and classification. T he first step of 

the polyp detection algorithm  consists of identification of the colon surfaces that 

have strong convex characteristics. In order to achieve this goal, a technique that 

evaluates the intersection of the normal vectors has been developed. To eliminate 

polyp candidate surfaces w ith low convex properties, the algorithm  applies further 

processing including the calculation of the Gaussian distribution of the Hough points 

and a convexity test. In order to  extract the optim al features that can be used for 

polyp detection, three feature extraction techniques have been developed and exam­

ined. T he aim of all techniques investigated in this thesis was the extraction of the 

optim al features that can be used for robust classification based on the observation
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that polyps have spherical/ellipsoidal shapes whereas folds have cylindrical shapes. 

In this regard, the first technique analysis the geometrical features that measure in 

the least square sense the sim ilarity between the candidate surface and the ellip­

soidal and spherical surfaces. T h e  sensitivities in polyp detection achieved by this 

technique for polyps >  10m m  and polyps between [5 — 10mm) are 100% and 91.67% 

respectively and the rate of false positives per dataset is 3.90. T he second polyp de­

tection technique attem pts to sample the surface variation using statistical features 

that are calculated using the least square approxim ation between candidate surfaces 

and ellipsoidal/spherical surfaces. T h e sensitivities in polyp detection achieved by 

the statistical feature-based technique in the detection of polyps >  10mm and polyps 

between [5 — 10mm) are 100% and 92% respectively and the rate of false positives 

per dataset is 4.01. T he third polyp detection technique evaluated in this thesis 

evaluates the surface variation sampled by the 3dB attenuation point on the sur­

face change curve, surface normal concentration and maxim um  distance constraint. 

T his techniques has been evaluated using three classification schemes, the FNNN, 

P N N  and SV M  and the overall perform ance in polyp detection for polyps >  10mm 

and polyps between [5 — 10mm) are 100% and 92% respectively (FN N N  classifier). 

T he lowest false positives level (3.58) has been obtained when the polyp detection 

technique has been used in conjunction w ith the SV M  classifier. The overall perfor­

mance of the polyp detection m ethods evaluated in this thesis compares well with 

the performances achieved by the most advanced C A D -C T C  techniques evaluated 

in Chapter 5.

A  distinct part of this research work was the development of a synthetic phantom 

that is used to  investigate the influence of the scanning param eters on the overall 

perform ance of the developed C A D -C T C  techniques. As indicated in Chapter 1, 

the m ajor concern associated w ith  C T C  is the patient exposure to ionising radiation 

and this is a m ajor deterring factor in using C T C  as a mass screening technique. 

M any studies reviewed in Chapter 4 indicate that the risk of inducing cancer to pa­

tients that undergo C T  exam inations is significantly reduced if they are subjected 

to low radiation levels. To address this issue an im portant aim of this research was 

to analysis the effect of low radiation dose (and other scanning parameters such as 

reconstruction interval and table speed) on the overall performance of the developed 

C A D -C T C  system. In order to perform a detailed analysis on this subject, a syn­

thetic phantom has been developed where we were able to create synthetic polyps

Chapter 6 Conclusion and Future Works
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w ith different shapes and sizes that approxim ate with high accuracy the real polyps 

encountered in clinical studies. The development of the synthetic phantom allowed 

us to generate a large number of datasets acquired using six different protocols that 

were used to evaluate the performance of the C A D -C T C  systems. The experimental 

results indicate that accurate polyp detection can be performed even at radiation 

doses as small as 13mAs.

6 . 1  F u t u r e  W o r k

T he developed technique has been designed to detect the polyps in datasets that 

were obtained w ithout oral enhanced patient preparation such as the W R M C  data. 

A lthough the C A D -C T C  technique described in this thesis can be applied w ith no 

restriction to oral-enhanced C T C  datasets it is useful to mention that the overall 

level of false positives can be substantially reduced if the m ethod were to incor­

porate an advanced electronic cleansing procedure [136, 137, 138] that will allow 

the identification of false positives caused by the residual m aterial. In addition, a 

digital cleansing procedure will also be beneficial for the detection of polyps that 

are immersed in the w ater left in the colon at the tim e of the C T  examination.

A nother possible development would be the implementation of a new polyp can­

didate surface technique that will improve the detection for small polyps (<  5mm) 

situated adjacently to large folds. T he experim ental results indicate that 14% of the 

undetected small polyps were placed adjacently to folds and this condition gener­

ated candidate surfaces that include m any sections of the folds. This has a negative 

im pact on the overall perform ance as the system  assigned these surfaces as being 

generated by folds. In order to address this problem we have developed an alter­

native surface extraction technique based on a 3D level-set implementation (see 

Appendix-b) and the initial results are encouraging.

T h e reduction of the level of false positives can be achieved by evaluating the 

shape of the candidate surface in the frequency domain. Recently, Miranda et 

al. [139] proposed a novel technique that evaluates the 3D histogram calculated 

from the candidate surface in the frequency domain and they demonstrated that 

the use of spectral information can be used for robust polyp identification.

T h e developed C A D -C T C  system  can be further developed in order to reduce 

the com putational tim e required to  process the C T  datasets. Currently, the average
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com putational tim e required by the system  to process one datasets is 3.6 minutes 

and this processing tim e can be considerably reduced since the developed algorithms 

for colon segm entation and polyp detection have not been optimised for speed.

T he results of the autom atic polyp detection show that the 11-16%  of the false 

positives are generated due to the residual m aterial in the colon. The reduction of 

these false positive can be done by implementing texture analysis [40] of the polyp 

and residual material.

T he developed C A D -C T C  system  used FN N N , PN N  ans SV M s classifiers (see 

C hapter 3) for classification of polyp candidate surface as polyp or fold. Experi­

m ental results (see Chapter 5.3) show that all the three classifiers illustrate similar 

sensitivity for polyp greater than 5mm. These results indicate that the features 

derived from the polyp candidate surface are robust for classification of the candi­

date surface as polyp or fold. B u t further im plem entation of advanced classification 

scheme like com m ittee of SVM s [101] can increase the sensitivity of polyp detection 

while the false positive level can be reduced.

A s indicated in Chapter 5, the developed C A D -C T C  system  was tested on 11 

low-dose patient d ata  having only 2 polyps smaller than 5mm. T he amount of low- 

dose patient d ata  available to test the system  did not allow us to fully characterise the 

perform ance of the C A D -C T C  techniques discussed in Chapter 3. Our future work 

w ill involve the validation of the C A D -C T C  system  on a larger number of standard 

and low-dose datasets including the data  supplied by our clinical partners (Mater 

Hospital) and public available C T C  databases like W R M C  [135] and A C R IN  [140] 

th at are recently m ade available.
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A p p e n d i x  A

The extraction of the gradient information from 3D surfaces plays an important role 

for many applications including 3D graphics and medical imaging. The extraction 

of the 3D gradient information is performed by filtering the input data with high 

pass filters that are typically implemented using 3 x 3 x 3  masks. Since these filters 

extract the gradient information in a small neighborhood, the estimated gradient 

information will be very sensitive to image noise. The aim of this Appendix is to 

detail the implementation of an optimized 3D gradient operator that is applied to 

sample the local curvature of the colon wall in C T  data and evaluate its influence 

on the overall performance of the developed CAD-CTC method. The developed 

3D gradient operator has been applied to extract the local curvature of the colon 

wall in a large number C T datasets captured with different radiation doses and the 

experimental results are presented and discussed.

A - l  M a t h e m a t i c a l  b a c k g r o u n d  o f  g r a d i e n t  d e t e c ­

t i o n

In image processing the gradient operators are widely used to identify strong data 

features such as edges or the local orientation of the curves and surfaces. The 

extraction of the local derivative from a continuous signal can be done by applying 

directly the well-known derivative formula:

Def{ f (x) )  =  lima^ o +  (A-l.l)
a

When designing a gradient operator one should bear in mind that the image data 

is discrete and the finite differences cannot be applied without compromising the 

accuracy of the gradient approximation [141, 142, 143, 144], Thus, it is assumed that 

the original continuous optical signal that generates the image has been uniformly 

sampled at a rate of T samples per length. Using the Nyquist sampling theorem 

the continuous signal can be reconstructed from these discrete samples as follows:
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/(* ) =  ~  K T )' s (x) =  (A '1-2)2/fc=l

In equation B-1.2 the term f[k\ represents the discrete sampled signal and s(x) 

defines the sampling function that can be approximated with the sine function. 

Hence, to obtain the gradient of the discrete signal derivative was required for the 

reconstructed signal f (x) that is depicted in equation A-1.2.

N N
Der( f ( x)) =  f[k]der(s(x -  K T )) =  ̂  f[k]s'(x - KT) (A-1.3)

1 k= 1

where s/ represents the derivative of the sine function. As the derivative of

the sine function is dependent on the sampling frequency, it is worth noting that 

the spectrum of the discrete signal is bounded by ̂  that is in agreement with the 

sampling theorem. It was noted that the derivative of sine signal decays relatively 

slowly and the implementation of an optimal gradient filter would require large fil­

ters that are not feasible to be applied in practice due to the onerous computational 

cost required to extract the partial derivatives. Next, a practical method will be in­

troduced to design one-dimensional (1-D) gradient filters whereas the generalization 

to multiple dimensions is a relatively simple task.

In order to design gradient operators that are to be applied to discrete signals 

several constraints have been considered. The vision literature indicates that the

gradient filters are anti-symmetric and usually have an odd order. Thus, the 1-D

gradient filter can be represented in the following generic form:

d(k) =  [d-N, d-N+i, d-i , 0, d i,..., rfjv-i, d?j\, d-k = —dk, k = 1,..., N (A-1.4)

In order to design 1-D derivative filters several constraints were imposed for 

parameters dk as illustrated in the following expressions [143],

N
4  =  0 (A-1.5)

k=—N

N
dkK  =  0 (A-1.6)

k=-N
In this way, the equation 5 translates in the requirement that the derivative filter 

should have the sum of the coefficients equal to 0, while equation A-1.6 can be used
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to select the values for dk coefficients. The derivative operator has to fulfill the 

condition illustrated in equation A-1.5 to achieve insensitivity to DC signals. Since 

the derivative filters are anti-symmetric the first coefficient of the operator can be 

determined using the following relationship:

N

k=2
Using the formulas illustrated in equations 4 to 7, a 5 x 5 x 5 derivative filter 

that is applied to extract the gradient in the x direction has the following mask 

[-1 8 0-8 1]/12 «[1 4 6 4 1]/16, where • defines the convolution operator. To 

extract the gradient for other directions the 5 x 5 x 5  mask need to be rotated

in the direction required for a particular axis. It can be noted that this operator,

as expected, represents the direct extension of the 5 x 5  Sobel operator to the 3D 

case. Using equations 5 to 7, a new 5 x 5  gradient operator can be developed that 

implements a two-peak operator illustrated in Figure A-l. This gradient operator 

shows two peaks in the frequency domain and it will provide improved performance 

when applied to data with step discontinuities or 3D C T datasets defined by a low 

signal to noise ratio such as the low-dose C T  data.

-.125 -.25 - 5  -.25 -.125 -2 5  -.5 - ID  - 5  -.25
-.2 5  - .5  - ID  - .5  -.25 - .5  - ID  -2 .0  -1.0 - .5
- .5  - ID  -2 .0  -1 ,0  - .5  -1.0 -2 .0  -4 .0  -2 D  -1.0 O^j

-.2 5  - .5  - ID  - .5  -.25 - .5  - ID  -2 D  -1 .0  - .5
-.125 -.25 - .5  -  25 -.125 -  25 - .5  -1.0 -  5  -.25

.25 .5 1.0 .5 .25 .125 .25 5  .25 .125
5 1.0 2D ID .5 .25 .5 1.0 5  .25

1.0 2.0 4D 2.0 1.0 5  1.0 2D 1.0 .5
5 1.0 2D ID .5 .25 .5 1.0 5  .25

.25 .5 1.0 5 .25 .125 .25 5 .25 ,125

Figure A-l: The masks of the 5 x 5 x 5 3D OptDer operator to extract the gradient 
in the ̂  axis (the mask 05 x 5 indicates a 5 x 5 mask where all elements are zero)

In these experiments the effect of using several filters including the 3 x 3 x 3  

Zucker-Hummel operator, 5 x 5 x 5  Sobel operator and 5 x 5 x 5  optimized operator 

- OptDer filter (for more details about the implementation of optimal derivative 

filters refer to [141, 142]) on the overall performance of the CAD-CTC system has 

been evaluated. A  particular interest we had in assessing the performance of these 

gradient operators when applied to CTC datasets that have been acquired with 

different radiation doses. In these experiments it has became clear that the 3 x 3 x 3
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gradient masks are inefficient in sampling the correct curvature of the colon wall 

when dealing with irregular surfaces while the optimized 5 x 5 x 5  gradient operator 

was able to return improved performance (this operator has been designed using 

the masks illustrated in Figure A-l). The experiments were performed on CTC 

prone and supine views where the reconstruction interval was set to 1.5mm. The 

tests were conducted on phantom (synthetic) data and on real patient data. Of 

particular interest was the evaluation of the level of false positives detected by the 

automated CAD-CTC system and a detailed performance of the developed system 

is illustrated in Tables 1 to 5 where different gradient operators are evaluated.

A - 2  R e s u l t s  a n d  D i s c u s s i o n s

The statistical feature-based method discussed in Chapter 3 was used for automatic 

polyp detection CAD-CTC. The efficiency of the derivative operators was evaluated 

on 52 standard dose (lOOmAs) patient datasets (prone and supine views) with 75 

polyps, 9 low dose (13-50mAs) patient data with 2 small polyps and phantom data 

(low-dose and standard dose) with 48 polyps of various sizes and shapes.

Table A-l: Sensitivity for synthetic phantom data (polyps > =  10mm).
mAs Total Sensitivity

Zuker Sobel OptDer
100 14 100% 100% 100%
40 14 100% 100% 100%
30 14 100% 92.85% 100%
20 14 100% 100% 100%
13 14 92.85% 92.85% 100%

Table A-2: Sensitivity for synthetic phantom data (poly1
mAs Total Sensitivity

Zuker Sobel OptDer
100 20 100% 100% 100%
40 20 100% 100% 100%
30 20 95% 90% 95%
20 20 100% 100% 95%
13 20 95% 95% 100%

ps [5 — 10)mm).

When the CAD-CTC system was applied on phantom data the OptDer operator 

shows 100% sensitivity for polyps > =  10mm for datasets acquired with radiation
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Table A-3: Sensitivity for synthetic flat polyps.
m As Total Sensitivity False Positive

Zuker Sobel OptDer Zuker Sobel OptDer
100 9 55% 55% 44.44% 1 1 1

40 9 33.33% 33.33% 44.44% 2 1 1

30 9 44.44% 44.44% 55% 0 2 2

20 9 11 .11% 33.33% 44.44% 2 2 2

13 9 22.22% 22.22% 44.44% 2 2 3

Table A-4: Sensitivity for polyps > =  5mm in real patient standard dose (lOOmAs) 
data. ._____ ______________________________ ____________________

m As Total Sensitivity False Positive
Zuker Sobel OptDer Zuker Sobel OptDer

100 18 88.89% 88.89% 88.89% 4.32 4.69 4.71

doses in the range 100-13mAs where the Zucker-Hummel and Sobel operators shows 

92.85% sensitivity at 30mAs and 13m As radiation doses (see Table A - l) . Figure A- 

2(a) illustrates the 3D surface extraction for a 12mm polyp when the Zucker-Hummel 

operator was applied to  com pute the surface normal vectors and Figure A-2(b) 

shows the surface extraction using the O ptD er operator. Figure A-3 illustrates the 

surface extraction for an 8 mm phantom polyp from a dataset scanned w ith 13mAs. 

It can be noted that in both cases the CAD-CTC system  achieved a more accurate 

surface extraction when the O ptD er operator was employed. Due to incomplete 

surface segmentation the developed CAD-CTC system  missed the polyp illustrated 

in Figure 2 when the Zucker-Hummel operator was used to extract the surface 

normal vectors (see Table A - l) , whereas the polyp was correctly detected when the 

O ptD er operator was applied. In Figures 2 and 3 it can be also observed that the 

O ptD er operator generates better surface normal concentration than the Zucker- 

Hummel operator. T h e  application of the O ptD er operator to extract the surface 

normal vectors offers better detection for polyps in the range 5-10mm than the

Table A-5: Sensitivity for polyps <  5mm in real patient’s standard and low dose 
data. _____________ ________________________

m As Total Sensitivity
Zuker Sobel OptDer

100 48 60.41% 60.41% 68.75%
13-40 2 50% 100% 100%
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Sobel operator (see Table A-2). It also provides a better detection of flat polyps 

when compared to the performance of the Zucker-Hummel and Sobel operators 

(see Table A-3). W hen the Zuker-Hummel, Sobel and O ptD er operators were used 

to calculate the surface normals of the colon wall for standard dose real patient 

datasets, the sensitivities for the detection of polyps > =  5mm were 88.89% (see 

Table A-4) for all operators, but the O ptD er operator provides higher sensitivity 

(see Table A-5) in the detection of small polyps (<  5mm) than the Zucker-Hummel 

and Sobel operators. Table A-5 indicates that the overall sensitivity for polyp 

detection was highest when the O ptD er operator was used and the experimental 

data  indicates that this operator outperformed the Zucker-Hummel and the Sobel 

operators especially when the system  is applied to low-dose datasets.

(a) (b)

Figure A-2: 3D surface extraction of a 12mm phantom polyp (radiation dose 
13m As). (a) The 3D surface extracted by the C A D -C T C  system  using the Zucker- 
Hummel operator, (b) T he 3D surface extracted by the C A D -C T C  system using 
the O ptD er operator.

A - 3  C o n c l u s i o n s

T h e main objective of this Appendix was to address the problem of robust calcula­

tion of the surface curvature in 3D C T  data. A s numerous autom ated C A D - C T C  

system s identify the colorectal polyps based on analysing the local convexity of the 

colon surface, one of the most im portant steps in this analysis is the precise calcula­

tion of the normal vectors. In this regard, a number of 3D gradient operators were 

investigated and the experim ents were conducted on a large number of synthetic 

and real patient datasets. Experim ental data  indicated that the commonly used 3D
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(a) (b)

Figure A-3: 3D surface extraction of a 12mm phantom polyp (radiation dose 
13m As). (a) T he 3D surface extracted by the C A D -C T C  system  using the Zucker- 
Hum m el operator, (b) T he 3D surface extracted by the C A D -C T C  system using 
the O ptD er operator.

gradient operators such as Zucker-Hummel and Sobel fail to accurately determine 

the normal vector when dealing w ith datasets characterized by a low signal to noise 

ratio. To address this problem a new gradient operator was proposed that was able 

to return better perform ance when applied to C T  data  th at is acquired w ith different 

radiation dose levels.
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T his section describes a m ethod for the accurate segm entation of polyp candidate 

surface using a level-set segm entation method. The level set is a deformable surface 

th at evolves under a force that includes gradient and curvature. The curvature 

property was exploited in the evolution to extract only the surface of the candidate 

polyp to avoid over segm entation of the colon wall.

B - l  L e v e l - S e t  I n i t i a l i s a t i o n .  F a s t - M a r c h i n g  A l g o ­

r i t h m

T he formulation of the level-set formulation is conceptually simple. The evolving 

curve or front T, evolves as the zero levelset of a higher dimensional function (fi. This 

function deforms w ith  a force F  that is dependent on both curvature of the front 

and external forces in the image. T he force acts in the direction of the normal to 

the front.

(fit +  F\V0| =  0 cf)(x,y,t =  0) =  given (B - l.l)

T he proposed im plem entation is a standard two step approach which includes a 

fast-m arching initial step to speed up the segmentation. Fast marching is a special 

case of the above equation where F(x,y)  >  0. Let T ( x , y ) be the time when the 

front T crosses the point (x ,y ). T he function T(x,y)  then satisfies the equation;

|V T |F  = 1 (B-l.2)

which sim ply says th at the gradient of the arrival tim e is inversely proportional 

to the speed of the surface. T he T  function is evaluated using the diffusion and 

attraction to pixels within the front. This forces the front to  grow out from its 

initial position to points w ith  the smallest value of T{x,y).  The T ( x ,y ) function is 

then updated until the front converges to a stable state.
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T he theory behind level-set segm entation is largely based on work in partial dif­

ferential equations and the propagation of fronts under intrinsic properties such as 

curvature [145, 146]. Representing the boundary as the zero level set instance of a 

higher dimensional function (f>, the effects of curvature can be easily incorporated. 

<j> is represented by the continuous Lipschitz function <p(s,t =  0) =  FzLd, where d is 

the signed distance from position s to  the initial interface TO (see Equation B-2.1). 

T he distance is given a positive sign outside the initial boundary (DQ), a negative 

sign inside the boundary (|fi \ <9i2|) and zero on the boundary (<9£1).

/ —d Vs e \ <9fA 
¿ ( s ) = |  0 V s e d t t  . (B-2.1)

\ + d  Vs e R n \ d t t )

From this definition of 0, intrinsic properties of the front can be easily deter­

mined, like the normal n =  ± |^ [ ■

Since curvature of the polyp is an im portant factor in the segmentation evolution, 

particular emphasis is given to this measure. T he mean curvature (H), is connected 

to the physical evolution of soap bubbles and the heat equation as follows:

"  =  V W  ( B - 2 -2 )

Gaussian curvature (K ), has also being used to model physical problems and can be 

calculated using the following expression:

r„ V<pTAdj(HW)V<p
K  = --------- w w --------- ( ’

where is the Hessian m atrix of <j), and Adj(H)  is the adjoint of the m atrix H.

The proposed m ethod used the Neskovic and K im ias [147] measure of curvature 

which involves both mean and Gaussian. In this approach, the direction of flow is 

obtained from the M ean curvature while the m agnitude of the flow is dictated by 

the Gaussian curvature. This is appropriate as the M ean curvature alone can cause 

singularities and extracts the strictly  convex surface of the polyp candidate.

k =  sign(H)y/K +  \K\ (B-2.4)

Using this value for k, the level set is iteratively updated w ithin a defined narrow 

band around the segmented boundary to increase the com putational efficiency. The



& + ! =  (f>t +  K t { 1 -  £K)\V| +  /3V /.V 0 (B-2.5)

where £ and beta are user defined param eters (see Table 1), k is the curvature term 

defined in Equation B-2.4and K j  is the gradient dependent speed term  and is given 

by i +v j  ■ T he third term, V / .V 0  represents the attraction force vector normal to 

the front.

Possible polyp candidate centres are determined over the entire data set by cal­

culating the normal vectors at each voxel on the colon wall. Polyp candidates are 

defined as regions of high convexity, therefore the centres for possible polyp candi­

dates are located at points that contain high concentration of normal intersections 

(see Chapter 3).

T h e level set is initialised at the polyp candidate centres and grows outwards 

until a stable boundary is encountered. T he convex surface is m aintained by placing 

a high influence on the curvature parameter. Once the level-set has converged the 

surface of the polyp candidate is taken as all boundary points that have an associated 

gradient in order to ensure that only the colon surface is extracted.

Table B -l: Control param eters used in the level-set segmentation [148],

A p p e n d ix  B

following equation details the update parameters

Index Control Param eters Values
1 Fast-M arching Iterations 3
2 Level-set Iterations 10
3 Level-set £ 0.5
4 Level-set (3 0.08
5 Level-set Narrow bandwidth 10

Once the true surface of the polyp candidates has being extracted, they are 

passed to a classifier to determ ine whether they are polyps or folds. The statistical 

features th at are discussed in Chapter 3 are used to classify the candidate polyp 

surfaces into polyps or folds using the F N N N  classifier.

B - 3  R e s u l t s

In total 181 polyp candidates were tested through the volume. V isual representa­

tions of the segm entation polyp are shown in Figure B -l. Table B - l lists the user 

defined param eters used in the level-set algorithm. From this table it can be seen
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that curvature is given a large influence to preserve the convexity of the polyp can­

didate surface. The narrow bandwidth is given a small value of 10 to increase the 

efficiency of the update.

A p p e n d ix  B

(a) (b) (c)

. lì Haft
(d) (e) (f)

Figure B -l: Images above show the polyp candidate renderings of the extracted 
surface. Figures (a)-(c) show correctly classified polyps, where Figures (d)-(f) show 
correctly classified folds.

Table B-2 shows the measured point-to-curve error between the autom atic seg­

m entation results against those found from a manual segmentation of the small 

number of polyp candidates. Indicated in the table are the average error, standard 

deviation of the error and the rootm ean - square (RM S) of the error. This error is 

measured in voxels.

Table B-2: Control param eters used in the level-set segmentation.
Average Standard Deviation RM S

0.298 0.587 0.661

Table B-3 gives the results on two real patient supine data sets. From the high 

number of polyp surface candidates( 181 and 191), a relatively low number are de­

tected (6 and 3). T he results show a sensitivity of 100% for all polyps larger than
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5mm. In current clinical studies the polyps below 5mm are discarded in the classifi­

cation. One cause that generated the low sensitivity for detection of polyps smaller 

than 5mm is the low curvature difference between the polyp and the colon wall, 

therefore parts of the colon wall is taken into the candidate surface (see Figure B-2). 

One particular advantage of this surface extraction technique is the low number of 

false positives present in the analysed data.

A p p e n d ix  B

Ta ale B-3: Performance analysis for autom atic polyp detection
D ata Size D etected T P F P Missed

D ata  1 Supine >  5 mm 6 3 3 0
(181 surf.) <  5 mm 0 0 0 2

D ata 2 Supine >  5 mm 3 2 1 0
(191 surf.) <  5 mm 0 0 0 2

Total 9 5 4 4

Figure B-2: One of the <  5mm  polyps misclassified due to the inclusion of colon 
wall in the surface extraction.

In conclusion, the accurate segm entation described in this A ppendix is the first 

im portant step in the classification of polyp candidates into polyp and fold. This 

A ppendix describes a m ethod for the extraction of accurate polyp candidate surfaces 

using a level-set segmentation. T h e level-set is initialised using the distribution of 

surface normal vectors and the resulting surfaces are classified into polyp and non­

polyp. T he level-set evolution is constrained by the image gradients and by the 

curvature of the boundary and is able to perform robust polyp segmentation when 

applied to  standard and low dose datasets.
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