
 

Abstract—The accurate identification and recognition of the 
traffic signs is a challenging problem as the developed systems 
have to address a large number of imaging problems such as 
motion artifacts, various weather conditions, shadows and partial 
occlusion, issues that are often encountered in video traffic 
sequences that are captured from a moving vehicle. These factors 
substantially degrade the performance of the existing traffic sign 
recognition (TSR) systems and in this paper we detail the 
implementation of a new strategy that entails three distinct 
computational stages. The first component addresses the robust 
identification of the candidate traffic signs in each frame of the 
video sequence. The second component discards the traffic sign 
candidates that do not comply with stringent shape constraints, 
and the last component implements the classification of the traffic 
signs using Support Vector Machines (SVMs). The main novel 
elements of our TSR algorithm are given by the approach that 
has been developed for traffic sign classification and by the 
experimental evaluation that was employed to identify the 
optimal image attributes that are able to maximize the traffic sign 
classification performance. The TSR algorithm has been 
validated using video sequences that include the most important 
categories of signs that are used to regulate the traffic on the Irish 
and UK roads, and it achieved 87.6% sign detection, 99.2% 
traffic sign classification accuracy and 86.7% overall traffic sign 
recognition.  

Index Terms—Traffic signs, Color segmentation, Shape 
analysis, Image attributes, Support Vector Machines. 

I. INTRODUCTION 
raffic signs have primarily the role to regulate the 
traffic and to provide information for drivers about road 
quality, traffic restrictions, warnings, possible 

directions, etc.  The vast majority of the road (or traffic) signs 
are standardized and they have distinct shapes and color 
patterns to allow their easy identification in all weather and 
illumination conditions. With the increased traffic congestion 
that was witnessed over the past decades, the correct 
recognition of the road signs plays an important role in 
preventing accidents. In particular the signs that regulate the 
traffic at intersections are of utmost importance since their 
avoidance can result in collisions with extreme consequences. 
The robust identification of the road signs is dependent on 
several physiological and external factors such as weather 
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conditions and events that lead to driver distraction. The ability 
of the driver to locate and identify the traffic signs is highly 
influenced by his/her physical and mental alertness, and the 
most important risk factors are caused by tiredness, emotional 
stress or side effects caused by medication [2,5]. Thus, the 
development of automatic traffic sign recognition (TSR) 
systems is extremely opportune since such systems have an 
important role in preventing accidents, save lives and increase 
the driving performance especially in situations when the road 
signs are partially occluded/damaged or placed in unexpected 
locations. 

Since the video data captured from a moving vehicle present 
a large spectrum of adverse factors (motion artifacts, intensity 
inconsistencies in the optical signal caused by various 
illumination conditions, highlights, shadows, light emitted by 
the headlamps of the incoming vehicles and background 
objects that resemble the color characteristics of particular 
traffic signs), the robust detection and recognition of the traffic 
signs generate a challenging task that has been intensively 
studied during the past two decades. The challenges associated 
with the video data acquisition process are further enhanced by 
the car vibrations that are induced by the uneven road surface, 
changes in the color of the traffic signs that are caused by the 
long exposure to sunlight [1] and by weather-related factors 
such as fog, rain and snow. When all of these factors are 
considered, they generate a wide range of issues that need to be 
addressed by the traffic sign recognition (TSR) systems.  

To this end, various methods for traffic sign recognition 
have been proposed, where several representative approaches 
are detailed in references [2,3,5,7,8,10,11,15]. A common 
element of the published works that addressed the traffic sign 
recognition is that they were based on specific constraints in 
relation to the color and shape of the road signs being 
evaluated. For instance, Escalera et al [8] proposed to initially 
detect the regions of interests associated with the candidate 
traffic signs by using color thresholding and then employing 
the inner part of each candidate region as input for a multilayer 
perceptron neural network classifier. The experiments were 
performed using a relative small subset of traffic signs with 
triangular and circular shapes and results were provided to 
illustrate the response of the classifier to each type of the 
traffic sign. A related approach was proposed by Maldonado-
Bascón et al [2,4] where in the first step a color segmentation 
algorithm was applied to extract the road sign candidates using 
linear SVMs, while in the second stage the candidate regions 
where classified using Gaussian-kernel SVMs.  
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A different solution was proposed by Fleyeh et al [5] where a 
traffic sign detection method based on the evaluation of the 
color and shape was first applied to localize and validate the 
regions of interest that was followed by the calculation of the 
Zernike and Legendre moments that were used as input for a 
SVM classifier. Other authors investigated the optimal way to 
include the color and shape information in the development of 
TSR systems and a representative study has been detailed in 
[15]. The authors of [15] indicate that many published 
algorithms addressed the recognition of narrow categories of 
traffic signs (where the principal interest was the robust 
identification of the speed limit signs), and this observation 
clearly highlights the limitations of the current range of traffic 
sign recognition systems.  

This brief survey on TSR indicates that in spite of the 
numerous previous studies, the problem of traffic sign 
recognition is still an ongoing complex problem. Many prior 
studies were concerned with the identification of the traffic 
signs in ideal conditions and they generally ignored the TSR 
problems that may arise when the video data is captured from a 
moving vehicle in diverse weather conditions. To address 
several challenges associated with TSR, in our work an 
important problem was associated with the identification of the 
image attributes that maximize the results of the multi-class 
traffic sign classification. To further enhance the performance 
of the traffic sign classification, we have developed a 
semantic-based classification approach where distinct 
classifiers were trained based on the color and shape of the 
traffic signs.   

This paper is organized as follows. Section II presents an 
overview of the developed traffic sign recognition system. 
Sections III to V provide details about each computational 
component of the proposed TSR system. Experimental results 
are included in Section VI, and conclusions are provided in 
Section VII. 

II. SYSTEM OVERVIEW 
The overview of our TSR system is shown in Fig. 1. The 

proposed system consists of three main blocks: color 
segmentation, candidate traffic signs validation and traffic sign 
classification. The first component of the TSR system involves 
the application of a color segmentation process to each image 
of the video sequence in order to identify the candidate traffic 
sign regions. The output of the color segmentation step 
comprises a binary image, where the image regions that are 
consistent with the color patterns of the traffic signs are 
marked in white. In this process the small objects are discarded 
by applying connected component labeling and a suite of 
morphological operations. The second component of the 
system performs shape analysis to decide if a candidate region 
is generated by a traffic sign or by a background object. After 
the candidate regions are validated with respect to strict shape 
criteria, they are resized to a predefined dimension to generate 
scale invariant descriptors, which are the input of the third 
component of the system, i.e. the classification stage. Finally, 

the classification results are made available via a graphic 
interface.  

 

 

 
 

Fig. 1. The overview of our traffic sign recognition system. 

III. COLOR SEGMENTATION 
The main objective of the color segmentation is to generate 

a binary image where the objects that have similar chromatic 
characteristics with the road signs are identified. Since the 
chromatic components are not directly emphasized in the 
standard RGB color representation, the color segmentation 
process (when dealing with traffic sign recognition) has been 
often carried out on images that were initially converted to 
HSV or HSI color representations. In the segmentation process 
the Hue component played the central role, as it shows more 
invariance to variations in light conditions, shadows, highlights 
and in the presence of changes in the color saturation [3]. Two 
color segmentation approaches proved dominant in the 
implementation of traffic sign recognition systems, namely the 
Shadow and Highlight Invariant Color Segmentation 
Algorithm [3] and the Escalera method [8]. The experimental 
tests carried out in our study indicated that the Escalera 
method outperformed the algorithm developed by Fleyeh [3] 
and we have adopted this approach in our implementation. The 
method detailed in [3] involves the conversion of the input 
image from RGB to HSI color representation to take advantage 
of the invariant properties of the Hue component, and dynamic 
threshold conditions are imposed to determine the image areas 
that are predominantly red and blue using histogram analysis. 

An example that depicts the results returned by the color 
segmentation process is illustrated in Fig. 2. As shown in this 
diagram, the circular red rim of the traffic sign has been 
correctly identified, but at the same time other objects such as 
the cladding of the buildings, traffic lights and small sections 
from an advertising panel were also highlighted in the output 
image. Thus, in the next stage (see Section IV) all regions 
marked in white in the output image will be evaluated with 
respect to size and shape criteria to ensure that they are 
associated with traffic signs.  
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Fig. 2. An example of red color segmentation for a traffic sign image. 

IV. TRAFFIC SIGN VALIDATION

The traffic sign validation consists of two sequential 
processes. The first process eliminates the small regions that 
are generated by image noise or by red and blue scene objects 
that are too small to be used for classification purposes. The 
second process applies shape analysis to evaluate if the 
remaining segmented objects are potential traffic signs 
candidates. 

A. Removal of the non-plausible candidate regions 
The removal of the non-plausible candidate regions from the 

image resulting from the color segmentation stage involves a 
two-stage procedure. The first stage applies a computationally 
optimized connected component labeling algorithm [9] that 
allocates a distinct label for each candidate region. Then, in the 
second stage, a size filtering process is applied to eliminate the 
candidate regions that do not obey the threshold that is 
imposed by the minimum size criteria. In our implementation 
the minimum size of the region was set to 31×31 since regions 
smaller than this threshold do not carry sufficient information 
to allow the robust evaluation of their shape or to be used for 
traffic sign classification. The application of the size filtering 
process proved a key step in achieving real-time processing, 
since non-plausible candidate regions are not further evaluated 
in the next stage of the algorithm.     

B. Validation of the traffic sign candidate regions 
The standardized traffic signs have three distinct shapes: 

octagonal, triangular and circular. Therefore, the validation of 
the candidate regions is conducted to verify several shape 
measures such as ellipticity, triangularity and rectangularity. 
The identification of the lines and circles in the color 
segmented image can be done using methods based on the 
Hough transform, but this approach is both computationally 
intensive and impractical, as the size of the candidate regions 
is not constant. Thus, a better solution is to evaluate the shape 
of the candidate regions using the Affine Moment Invariant 
(I1) [6]: 
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where ),( yx is the centroid of the candidate region RC. The 
Affine Moment Invariant I1 is calculated using (2) for each 
candidate region and the ellipticity (E) and triangularity (T) [6] 
are determined using the equations (4) and (5), respectively: 

otherwise

ifI
E

I1
216

1
216

1
11

2 I 16
      (4) 

otherwise
ifI

T
I1108

1
108

1
11 I 108

     (5)  

When (4) and (5) are used for shape analysis, an ellipticity 
value E = 1 corresponds to a perfectly circular shape, while, 
similarly, a triangularity value T = 1 implies a perfect 
triangular shape. The rectangularity R is given by the ratio 
between the area of the candidate region and the area of its 
minimum bounding rectangle (MBR). Before we calculate 
these three shape measures, we must verify that the candidate 
region is uniform (i.e. does not contain any holes). Since the 
traffic signs have two different colors, one for the rim and the 
other for the inner part, we recall that only the rim color has 
been used in the segmentation process. Thus, we applied the 
convex hull operation to generate a homogenous object. Table 
I shows the range of values for E, T and R that are used in the 
process of shape validation. Candidate regions that do not obey 
these conditions are eliminated. An interesting observation 
resulting from our experiments is that the {E,T,R} values 
calculated for octagonal shapes are always in the range limits 
for circular shapes, thus no additional shape criteria was 
employed to validate the candidate regions that correspond to 
octagonal traffic signs.   

TABLE I 
RANGE OF THE {E, T, R} VALUES FOR CIRCULAR AND TRIANGULAR SHAPES 

Shape Ellipticity 
(E) 

Triangularity 
(T) 

Rectangularity 
(R) 

Circle/Octagon 0.98 < E < 1.0 T > 0.68 R > 0.69 
Triangle E< 0.78 0.91< T< 1.0 0.49< R< 0.7 

C. Identification and validation of the traffic signs that are 
attached to the same pole 
A problem that often occurs when dealing with the validation 

of candidate regions is given by the situations when multiple 
traffic signs with the same rim color are attached to a common 
pole and they exhibit mutual occlusion. In these situations the 
color segmentation process discussed in Section III will 
generate a single region that contains all traffic signs that are in 
contact to each other or they show any degree of overlap.  
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Fig. 3. Identification of the region of interest for overlapped traffic signs. From 
left to right and top to bottom: input image, color segmentation result, 
identification of the inner parts of the traffic signs and identification of the 
region of interest (marked with a green rectangle) for each traffic sign.  
 
Fig. 3 illustrates an example when the color segmentation 
algorithm identifies a single region for the two traffic signs. 
Obviously this candidate region does not belong to any traffic 
sign category and since the combinations between traffic signs 
that can be attached to a single pole are practically unbounded, 
their recognition cannot be robustly performed during the 
traffic sign classification stage. Instead, we approached this 
problem during the traffic sign validation stage where we 
propose an algorithm to divide the candidate region into parts 
that correspond to each individual traffic sign. Since the 
outline of the overlapped traffic signs is only partially 
occluded, the identification of the complete boundaries of the 
traffic signs’ rims can be obtained by identifying the linear and 
circular features contained in the candidate regions using the 
Hough transform. However, as indicated before, since the size 
of the circular traffic signs is not known in advance, we 
devised a more flexible multi-stage approach which involves 
the identification of the inner sections of the traffic signs. In 
our approach we used the information that the inner parts of 
the traffic signs are painted in bright colors to maximize the 
chromatic contrast with the outline (rim) of the signs. The 
traffic signs that are employed to regulate the Irish and UK 
roads have their inner parts painted in white and the text inside 
the inner regions is painted in black. The approach to identify 
the traffic signs in the presence of overlap is shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The inversion of color segmentation image provides us with 

the inner parts of traffic signs. As shown in Fig. 3, the shapes 
of the inner parts are similar to the shapes of the traffics signs 
that include them, and most importantly the inner parts of the 
overlapped traffic signs are disjoint. Thus, the identification of 
the inner parts of the traffic signs allows us to identify the 
region of interest (or the minimum bounding rectangle (MBR)) 
for each traffic signs contained in the candidate region. To 
achieve this, we need to calculate the coordinates of the 
bounding boxes for all inner parts that were identified using 
(5) and the MBR for each traffic sign is determined by 
enlarging the MBR calculated for the corresponding traffic 
sign’s inner part with respect to the thickness of the traffic 
sign’s rim. The identification of MBRs for overlapped traffic 
signs is illustrated in Fig. 3(b-d). Once the MBRs have been 
determined for all traffic signs present in the input image, the 
last component of the TSR system deals with the classification 
of the traffic signs.   

V. TRAFFIC SIGN CLASSIFICATION 

A. Traffic sign categories 
Our experiments have focused on the recognition of four 

categories of Irish and UK traffic signs [13,14], namely 
prohibitory, mandatory, warning and stop & yield. Fig. 5 
illustrates the traffic signs analyzed in this paper and they are 
categorized in distinct classes with respect to color and shape 
as shown in Table II. In this study we have not addressed the 
identification/recognition of route confirmation traffic signs 
since these signs are not standardized and they are not used to 
regulate the traffic. 

 
 

 
Fig. 5. Four categories of traffic signs evaluated in our paper. 

 
TABLE II 

CATEGORIZATION OF THE TRAFFIC SIGNS WITH RESPECT TO COLOR AND SHAPE 
Color Shape Category 
Red Octagonal Stop 
Red Triangular, pointing downward Yield 
Red Triangular, pointing upward Warning 
Red Circular Prohibitory 
Blue Circular Mandatory 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The method to detect overlapped traffic signs. 
 

Color segmentation 

Inverse of color 
segmentation image 

Shape and size 
validation 

Input image 

Image pre-processing 
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B. SVM Classification 
After the validation of the traffic sign candidate regions is 

finalized, the pictograms encompassed by the candidate 
regions’ MBRs are re-scaled to 31×31 to generate scale 
invariant image attributes, where the feature vector has been 
obtained by scanning the pictogram in a raster scan mode. 
Since the signs can be roughly categorized based on color we 
have employed two SVM classifiers, one for red signs and 
another one for blue traffic signs. We have adopted this 
classification strategy to increase the classification accuracy as 
the number of classes that are trained for each classifier when 
using this approach is reduced.  

 

 
Fig. 6. Pictograms for a 30km/h speed limit sign used for SVM training.        
(a) Grayscale pictograms. (b) Histogram equalized grayscale pictograms.      
(c) Binary pictograms.   
 
 

 

 
Fig. 7. Examples detailing the traffic sign classification (the candidate traffic 
signs regions are marked with rectangles and the classification results are 
shown on the top left side of the image). 
 

A distinct problem that we addressed during the 
development of the proposed traffic sign classification strategy 
was related to the construction of the training set and the type 
of input data that can be used for training and testing purposes. 
As the traffic signs are located outdoor, the pictogram 
information determined from the region of interest (MBR) of 
each candidate region is affected by illumination and 

viewpoint changes that are caused by the improper orientation 
of the traffic signs with respect to the optical axis of the 
camera. To reduce the problems generated by these changes, 
for each class of traffic signs (red and blue categories) we 
constructed a training set that consists of 30 pictograms that 
include illumination and viewpoint changes. Another 
important issue was related to the identification of the input 
data that returns optimal classification results. Thus, in our 
study we evaluated the classification accuracy for three types 
of input data: grayscale pictograms, histogram equalized 
grayscale pictograms and binary pictograms. Fig. 6 presents 
samples that are included in the training set for each type of 
input data and Fig. 7 illustrates examples of the results 
returned by the classification process.  

VI. EXPERIMENTAL RESULTS 
 In our experiments we have analyzed 650 images and 5 

sequences of traffic video data (1600 frames). The speed of the 
vehicle was adjusted according to road conditions and was 
always within legal limits. The image resolution in the video 
sequences is 448x336. The images and video sequences used 
in our experiments have been acquired in diverse environment 
conditions, as indicated in Table III, and they allowed us to 
conduct a comprehensive performance evaluation for our 
traffic sign recognition system. Since the proposed system 
consists of distinct computational components, the 
performance evaluation has been carried out for color 
segmentation, sign validation and overall classification 
accuracy. Detailed experimental results that are obtained for 
various weather conditions, image quality, presence of 
occlusion and state of the traffic signs are reported in Tables 
III and IV. The accuracies of the color segmentation and traffic 
sign validation reported in Table III were calculated as the 
ratio between the number of correctly segmented/validated 
traffic signs and the total number of traffic signs present in the 
image and video sequences. In Table IV the classification 
accuracy has been determined as the ratio between the number 
of correctly classified traffic signs and the total number of 
validated traffic signs. The results reported in Tables III and IV 
are provided to indicate the performances obtained by each 
individual component of the proposed TSR system to avoid the 
problems related to error propagation.  

 
TABLE III 

ACCURACY OF THE COLOR SEGMENTATION AND VALIDATION OF THE TRAFFIC 
SIGN CANDIDATE REGIONS  

Conditions Color 
segmentation  

Validation of 
candidate regions  

Clustered signs 95.6% 90% 
Bad lighting 99.1% 99.1% 

Blurred Signs 80.9% 76.1% 
Damaged Signs 87.2% 84.6% 
High Lighting 98.9% 93.8% 

At Night 91.6% 91.7% 
Occluded Signs 84.6% 65.6% 
Rotated Signs 90.5% 88.6% 

Snow 90.0% 86.6% 
Normal 100% 100% 

Average 91.8% 87.6% 
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TABLE IV 
ACCURACY OF THE TRAFFIC SIGN CLASSIFICATION USING DIFFERENT INPUT 

ATTRIBUTES (C-SVM WITH LINEAR KERNELS) 
Input Attributes Classification accuracy 

Grayscale pictograms 95.9% 
Histogram equalized grayscale pictograms 98.67% 

Binary pictograms 99.2% 
 

The last experiments evaluate the performance of the entire 
(whole) TSR system (overall TSR accuracy), which is given 
by the total number of correctly classified traffic signs and the 
total number of traffic signs present in the image and video 
data. Table V presents comparative overall classification 
results obtained by our and two representative TSR systems. 
To provide more results about the performance of our TSR 
system, in addition to TSR accuracy we also indicate the false 
positives rate (FPR). The overall classification results shown in 
Table V indicate that our TSR algorithm is more accurate than 
the TSR methods detailed in [5] and [15].  

 
TABLE V 

OVERALL ACCURACY: OUR ALGORITHM  AND OTHER  PUBLISHED TSR WORKS 

TSR Method Overall TSR 
Accuracy 

False positive 
rate (FPR) 

Fleyeh [5] 82.3% - 
 Ruta et al [15] 85.3% - 

Our work 86.7% 1.2% 
 

In our implementation we have used the C-SVM classifier 
[12] and best classification results were obtained when linear 
kernels were used to map the feature space and the parameter 
C = 1.0. As indicated in Section V.B three types of pictograms 
were used as input for C-SVM classifiers and the experiments 
show that the best results (see Table IV) were obtained for 
binary traffic sign pictograms. These results were expected as 
the pictogram binarization process removes to a great extent 
the undesired effects that are generated by changes in 
illumination. In line with the increased performance, the use of 
binary pictograms proved opportune for practical reasons as it 
allows real-time operation. The entire TSR algorithm has been 
implemented in C++ using OpenCV [12] and the mean average 
time required to process one image (448×336) is 0.125s when 
the algorithm was executed on a dual-core 2.2 GHz computer. 

VII. CONCLUSIONS 
This paper detailed the development of a new approach for 

traffic sign recognition which involves a three-stage process: 
color segmentation, validation of the traffic sign candidate 
regions with respect to color and shape information and SVM 
traffic sign classification. In this investigation a special focus 
was placed on the evaluation of the proposed traffic sign 
recognition system using challenging video data captured from 
a moving vehicle where of interest was the identification of the 
optimal input patterns that maximize the accuracy of the traffic 
sign classification process. The proposed system obtained 
86.7% overall TSR classification accuracy when it was applied 
to identify four categories of traffic signs. In our future studies 
we will focus on the implementation of robust traffic sign 

tracking algorithms that will be used to enhance the confidence 
of the traffic sign recognition in video data and on the 
extension of the proposed system to handle the recognition of a 
larger set of traffic signs and on the automatic identification of 
the traffic lights.   
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