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Abstract 
 

This paper details the implementation of a new adaptive technique for color-texture 
segmentation that is a generalization of the standard K-Means algorithm. The standard 
K-Means algorithm produces accurate segmentation results only when applied to 
images defined by homogenous regions with respect to texture and color since no local 
constraints are applied to impose spatial continuity. In addition, the initialization of the 
K-Means algorithm is problematic and usually the initial cluster centers are randomly 
picked. In this paper we detail the implementation of a novel technique to select the 
dominant colors from the input image using the information from the color histograms. 
The main contribution of this work is the generalization of the K-Means algorithm that 
includes the primary features that describe the color smoothness and texture 
complexity in the process of pixel assignment. The resulting color segmentation 
scheme has been applied to a large number of natural images and the experimental data 
indicates the robustness of the new developed segmentation algorithm.       
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1. Introduction    
 
Image segmentation is one of the most important precursors for image processing–based 
applications and has a crucial impact on the overall performance of the developed systems. Robust 
segmentation has been the subject of research for many years, but the published work indicates that 
most of the developed image segmentation algorithms have been designed in conjunction with 
particular applications. The aim of the segmentation process consists of dividing the input image 
into several disjoint regions with similar characteristics such as color and texture. Robust image 
segmentation is a difficult task since often the scene objects are defined by image regions with non-
homogenous texture and color characteristics and in order to divide the input image into 
semantically meaningful regions many developed algorithms either use a priori knowledge in 
regard to the scene objects or employ the parameter estimation for local texture [1]. The 
development of texture alone approaches proved to be limited and the use of color information in 
the development of joint color-texture models has led to the development of more robust and 
generic segmentation algorithms [2,3,4]. The area of color image analysis is one of the most active 
topics of research and a large number of color-driven segmentation techniques have been proposed. 
Most representative color segmentation techniques include histogram-based segmentation, 
probabilistic space partitioning and clustering [5], region growing, Markov random field and 
simulated annealing [6]. All these techniques have the aim to reduce the number of color 
components from the input image into a reduced number of components in the color segmented 
image that are strongly related to the image objects. 
       In this paper we have developed a new technique that is a generalization of the standard K-
Means clustering technique. The K-Means clustering technique is a well-known approach that has 
been applied to solve low-level image segmentation tasks. This clustering algorithm is convergent 
and its aim is to optimize the partitioning decisions based on a user-defined initial set of clusters 



that is updated after each iteration. This procedure is computationally efficient and can be applied 
to multidimensional data but in general the results are meaningful only if homogenous non-textured 
color regions define the image data. The applications of the clustering algorithms to the 
segmentation of complex color-textured images is restricted by two problems. The first problem is 
generated by the starting condition (the initialization of the initial cluster centers), while the second 
is generated by the fact that no spatial (regional) cohesion is applied during the space partitioning 
process. In this paper we developed a new space-partitioning scheme that addresses both these 
limitations.  
       The selection of initial cluster centers is very important since this prevents the clustering 
algorithm to converge to local minima, hence producing erroneous decisions. The most common 
initialization procedure selects the initial cluster centers randomly from input data. This procedure 
is far from optimal because does not eliminate the problem of converging to local minima and in 
addition the segmentation results will be different any time the algorithm is applied. To circumvent 
this problem some authors applied the clustering algorithms in a nested sequence but the 
experimental data indicated that this solution is not any better than the random initialization 
procedure. In this paper we propose a different approach to select the cluster centers by extracting 
the dominant colors from the color histograms. The developed procedure is generic and proved to 
be very efficient when applied to a large number of images. There are other initialization schemes 
proposed in the literature and for more details the reader can refer to [7]. 
       The second limitation associated with the K-Means (and in general clustering algorithms) is 
generated by the fact that during the space partitioning process the algorithm does not take into 
consideration the local connections between the data points (color components of each pixel) and 
its neighbors. This fact will restrict the application of clustering algorithms to complex color-
textured images since the segmented output will be over-segmented.  To address this issue we have 
generalized the K-Means algorithm to evaluate along with the pixel color information two more 
distributions that sample the local color smoothness and the local texture complexity. In this regard 
to sample the local color smoothness, the image is filtered with an adaptive diffusion scheme while 
the local texture complexity is sampled by filtering the input image with a gradient operator. Thus, 
during the space partitioning process, the developed algorithm attempts to optimize the fitting of 
the diffusion-gradient distributions in a local neighborhood around the pixels under analysis with 
the diffusion (color)-gradient distributions for each cluster. This process is iteratively applied until 
convergence is reached. We have applied the developed spatial clustering algorithm on a large 
selection of images with different level of texture complexity and on test data that has been 
artificially corrupted with noise.  
 
2. K-Means Algorithm 
 
In general, spatial partitioning methods are implemented using iterative frameworks that either 
attempt to minimize the variation within the clusters or attempt to identify the optimal partitions 
based on a set of Gaussian Mixture Models. In this paper we focus on the implementation of the K-
Means algorithm, although the methodology detailed in this paper can be applied to other 
clustering schemes such as fuzzy clustering [8] or competitive agglomerative clustering [9].  
       The K-Means is a nonhierarchical clustering technique that follows a simple procedure to 
classify a given data set through a certain number of K clusters that are known a priori. The K-
Means algorithm updates the space partition of the input data iteratively, where the elements of the 
data are exchanged between clusters based on a predefined metric (typically the Euclidian distance 
between the cluster centers and the vector under analysis) in order to satisfy the criteria of 
minimizing the variation within each cluster and maximizing the variation between the resulting K 
clusters. The algorithm is iterated until no elements are exchanged between clusters. This clustering 
algorithm, in its standard formulation consists mainly of four steps that are briefly described below: 
 
Steps of the classical K-Means clustering algorithm: 

1. Initialization – generate the starting condition by defining the number of clusters and randomly 
select the initial cluster centers. 

2. Generate a new partition by assigning each data point to the nearest cluster center. 
3. Recalculate the centers for clusters receiving new data points and for clusters losing data points. 
4. Repeat the steps 2 and 3 until a distance convergence criterion is met. 



As mentioned before, the aim of the K-Means is the minimization of an objective function that 
samples the closeness between the data points and the cluster centers, and is calculated as follows: 
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 is the distance (usually the Euclidian metric) between the data point  and the 

cluster center . As it can be easily observed in equation 1, the assignment of the data points may 
not be unique (a data point can be equally distanced from two or more cluster centers) a case when 
the K-Means algorithm doesn’t find the optimal solution corresponding to the global objective 
function J. In addition, it is sensitive to the initialisation process that selects the initial cluster 
centers (usually randomly picked from input data). If the initial cluster centers are initialised on 
outliers, the algorithm will converge to local minima and this is one of the major drwbacks of this 
space partitioning technique. More importantly this algorithm does not produce meaningful results 
when applied to noisy data or to tasks such as the segmentation of complex textured images or 
images affected by uneven illumination. Since the pixel assignment is performed only by evaluating 
the color information in a certain color space, the connection between the data point under 
evaluation and its neighbours is not taken into account, a fact that will lead to a partition of the 
input data into regions that are not related to the scene objects. In the remainder of this paper we 
will detail a histogram based procedure used to select the dominant colors from input data and the 
development of a new data assignment strategy that evaluates not only the pixel’s color components 
but also the local color-texture complexity, which allows us to obtain homogenous clusters.  
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3. Automatic Seed Generation  
 
Since the random selection of the initial cluster centers from image data is not an appropriate 
solution, we have developed a new scheme to perform the initialization for the K-Means algorithm 
with the dominant color components that are extracted from the color histograms of the input 
image. In this regard, we have constructed the histogram for each color channel and partitioned 
them linearly into R sections (where R is a fixed value, R>K and nk is the number of pixels 
contained in the bin k) and for each section of the histograms is determined the bin that has the 
highest number of elements: 
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We continue with ranking the peaks obtained from color histograms in agreement with the number 
of elements that are sorted in descending order. Finally, we form the color seeds (dominant colors) 
starting with the histogram peak that has the highest number of elements. This process can be 
summarized by the following pseudo-code sequence: 
 

1. Construct the histograms for each color channel 
2. Partition each histogram into R sections 
3. Compute the peaks in each section and rank the peaks, p1, p2,…, pR where p1 has the    
   highest number of elements 
4. Start to form the color seeds for highest peak pi  
       if(pi→red) mark the pixels in the red channel and calculate the gmean and bmean  for    
                 marked pixels from green and blue channels   
       if(pi→green) mark the pixels in the green channel and calculate the rmean and bmean  for  
                 marked pixels from red and blue channels   
       if(pi→blue) mark the pixels in the blue channel and calculate the rmean and gmean  for  
                 marked pixels from red and green channels  

             5. Form the color seed and eliminate pi from the list 
             6. Repeat the steps 4 and 5 until the desired number of color seeds has been reached.   

 



4. Diffusion-based Filtering 
 
As it was mentioned in Section 3, one of our aims is to sample the local color smoothness. This can 
be achieved by filtering the data with a smoothing operator that eliminates the weak textures. The 
standard linear smoothing filtering schemes based on Gaussian weighted spatial operators or non-
linear filters such as the median, reduce the level of noise but this advantage is obtained at the 
expense of poor feature preservation (i.e. suppression of narrow details in the image). To 
circumvent this problem we have developed an adaptive diffusion based filtering scheme that was 
originally developed by Perona and Malik with the purpose of implementing an optimal, feature 
preserving smoothing strategy [10]. In their paper, smoothing is formulated as a diffusive process 
and is performed within the image regions and suppressed at the regions boundaries. This non-
linear smoothing procedure can be defined in terms of the derivative of the flux function that is 
illustrated in equation 3. 
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where u is the input data, D represents the diffusion function and t indicates the iteration step. The 
smoothing strategy described in equation 3 can be implemented using an iterative formulation as 
follows: 
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where  is the gradient operator defined in a 4-connected neighborhood, λ is the contrast 
operator that is set in the range 0<λ<0.16 and d is the diffusion parameter that controls the 
smoothing level. It should be noted that in cases where the gradient has high values, the value for 
diffusion function D(∇I)→0 and the smoothing process is halted. 
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5. Spatial K-Means Clustering Algorithm (S-KM) 
 
One of the main problems associated with standard clustering algorithms is the lack of using any 
spatial continuity with respect to the local texture and color information in the space partitioning 
process. Thus the application of these algorithms is restricted to input images that are defined by 
homogenous color regions. Our aim is to develop a space-partitioning algorithm that is able to 
return meaningful results even when applied to complex natural scenes that exhibit large variation 
in color and texture. In order to produce accurate non-fragmented segmented results, we need to 
sample the homogeneity of a color-texture descriptor in a given region. Nonetheless the robust 
evaluation of the texture is a very difficult task, since the texture is not constant within the image 
and this would require complex models to describe it at micro and macro level. As we are 
interested in evaluating the complexity of the image locally, we reformulate the problem since we 
do not need precise models for texture and rather the evaluation of the local image complexity in a 
data with a reduced number of color components. Using these assumptions, a large number of 
algorithms have been developed to address the problem of robust segmentation of complex images 
and the most representative are the mean shift [2], adaptive clustering algorithm [3] and the 
extension of the diffusion based algorithms [10]. Our algorithm is novel, since it attempts to 
minimize the errors in the assignment of the data points into clusters by evaluating the local texture 
complexity using two measures that constrain the region intensity (color smoothness) and the 
spatial continuity (texture complexity). In this regard, the clustering algorithms are perfectly suited 
to perform this task and the main difficulty resides in the selection of optimal features that are able 
to produce clusters with spatial homogeneity. In addition, these measures have to be sufficiently 
generic, to be able to accommodate the local variation in texture scale and the local variation in 
color. To address these problems we propose to use two types of descriptors along with color 
information. To sample the local color homogeneity, we evaluate the distribution of the data in the 
image resulting after the application of the diffusion filtering (see equation 4). The local texture 



complexity is sampled by the gradient data that is calculated using the Laplace operator that has 
been chosen for its low computational cost and its omni-directional properties (this assures 
immunity to texture rotation). Thus, the process of space partitioning is modified to accommodate 
these two distributions that are calculated as follows: 
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Using the equation 6, we calculate the distributions from diffused and gradient images in the local 
neighborhood (n, m) for each data point. The global objective function depicted in equation 1 is 
modified to accommodate the diffusion-gradient distributions as follows: 
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where is the local color smoothness distribution (calculated from diffused image) for the 

data point i, is the color smoothness distribution for cluster j,  is the local texture 

complexity (calculated from the gradient data) for the data point i,  is the texture 

complexity for cluster j, and KS is the Kolmogorov-Smirnov metric that is calculated using the 
following expression: 
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where the na and nb are the number of data points in the distribution Ha and Hb respectively. The KS 
similarity measure is bounded in the interval [0,2] and we have readjusted the metric j

j
i cx −)(  to 

be also bounded (normalization with respect to the maximum value of the respective color space, 
i.e. 255 for RGB). The HDiff

(j) and HGrad
(j) distributions are recalculated after each iteration. It is 

important to note that during the space partitioning process (minimization of the objective function 
illustrated in equation 7) the number of clusters are reduced, since some clusters from the initial set 
will disappear as the clusters become more compact after each iteration. The developed algorithm 
is convergent and to improve the computational overhead we have applied the K-Means algorithm 
in the standard form for the first 5 iterations and then the spatial and color continuity constraints 
HDiff

(j) and HGrad
(j) are evaluated. This approach also improve the stability of the algorithm, since the 

HDiff
(j) and HGrad

(j) distributions can be calculated only after the algorithm executes at least one 
iteration.  
 

6. Experiments and Results 
 
In this section we examine the performance of the developed algorithm on a large number of 
images. The first test is performed on a synthetic color image that is corrupted with noise 
(standard deviation 30 grayscale values – see Figure 1). To assess the efficiency of our 
method, we compare the results against the segmentation results returned by the mean shift 
algorithm, which is widely accepted as the standard color segmentation framework.  
Additional results are illustrated in Figures 2 and 3, where the algorithm has been applied to 
a complex natural image and a natural image defined by a low signal to noise ratio. It can be 
observed that our algorithm produces better visual results than the mean shift algorithm. The 
parameters for our method are set as follows: initial number of clusters = 10 and diffusion 
parameter = 30 (all images). The parameters for Comaniciu-Meer algorithm (Edison 
implementation) are set as follows: spatial filter=8, color=50 and minimum region size=200 
when applied to the noisy image illustrated in Figure 1(a), spatial filter=7, color=6.5 and 
minimum region size=20 when the algorithm was applied to the image depicted in Figure 
2(a) and spatial filter=7, color=15 and minimum region size=20 for the image depicted in 
Figure 3(a). The parameters for mean-shift algorithm are selected to generate the best results. 



       
                                  (a)                                  (b)                                 (c) 
Figure 1.  Segmentation results on a test image. (a) Test image corrupted with Gaussian noise 

(standard deviation 30 grayscales). (b) Segmented result – our algorithm (final number of 
regions=3). (c) Segmented result –mean shift algorithm (final number of regions=3). 

 
 

   
                       (a)                                                (b)                                                  (c) 

Figure 2.  Segmentation results. (a) Input image. (b) Segmented result- our algorithm (final 
no of regions=7). (c) Segmented result – mean shift algorithm (final no of regions=223). 

 
 

      
                               (a)                                          (b)                                          (c) 

Figure 3. Segmentation results for a low-resolution natural image. (a) Input image. (b) 
Segmented result – our algorithm (final number of regions =6). (c) Segmented result – mean 

shift algorithm (final number of regions=27). 
 

Another aim is to evaluate the behavior of our algorithm with respect to different color 
spaces. As expected, the RGB color space is non-linear and does not provide optimal color 
separation and our experiments indicate that better segmentation is achieved when the color 
images are converted to YIQ and HSI color spaces. Figures 4 and 5 depict the segmentation 
results when our algorithm has been applied to two test images. Our experiments indicate 
that best segmentation is obtained when the images are converted to YIQ color space. To 
fully evaluate the performance of our algorithm we evaluated the segmentation error for a 
natural image and for its version corrupted with additional noise (see Figure 6) when 
compared to the ground truth (manual segmentation), while the parameters of the algorithm 
(for this implementation the diffusion and gradient distributions are calculated within a 
square window, n=m) are varied. From the graphs illustrated in Figure 7, it can be noted the 
good stability of the developed algorithm when the parameters are varied.  From these graphs 
it can also be observed that the segmentation error tends to be reduced with the increase of 
the diffusion parameter and this is generated by the fact that the smoothing is more 
pronounced and this translates into a more discriminative power for diffusion distribution in 
equation 7. The selection of the optimal window size is a difficult problem since a large 
window increases the discriminative power of the HDiff  and HGrad distributions, but on the 
other hand increases the errors around the cluster borders. The optimal trade-off is achieved 
when the window size is set in the range [7×7, 11×11]. 



   
       (a)                      (b) 

   
          (c)                  (d) 

Figure 4.  Segmentation results. (a) Test image. (b) Segmented result – RGB color space. 
(c) Segmented result – YIQ color space. (d) Segmented result – HSI color space. 

 

     
     (a)                                          (b) 

     
                                                 (c)                                          (d) 

Figure 5.  Segmentation results. (a) Test image. (b) Segmented result – RGB color space. 
(c) Segmented result – YIQ color space. (d) Segmented result – HSI color space. 

 

       
                                                     (a)                                             (b) 

Figure 6. Test images used in the evaluation of the developed algorithm. (a) Test image with low 
resolution. (b) Image corrupted with additional noise (standard deviation 30 grayscales). 
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Figure 7. Performance of the developed algorithm when the diffusion and window size parameters 
are varied (blue dark noiseless image-Figure 6(a), purple noisy image-Figure 6(b)).  

 
7. Conclusions 
 

The aim of this work is the development of a new color segmentation algorithm, which is a 
generalization of the K-Means clustering algorithm. In its standard form the application of the K-
Means algorithm to the segmentation of natural images is hindered by the fact that no constraints 
with respect to texture complexity or color continuity are employed during the space partitioning 
process. By reformulating the objective of the clustering process, we have developed a spatial 
constrained clustering algorithm that is found to be a powerful technique to identify continuous 
clusters in the color images that are strongly related with the scene objects. The developed 
algorithm has been tested and evaluated on a large number of natural images. The experimental 
data indicates that our algorithm is generic and it is robust to changes in local texture and produces 
accurate results even when applied to images characterized by a low signal to noise ratio. 
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