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In this paper we propose a fast method for edge thinning and linking that consists of two phases. The

�rst phase involves the integration of the edge structure by aggregating in a hierarchical manner the edge

information contained in a relatively small collection of images of di�erent edge densities. The second

phase performs edge thinning and linking using the information associated with the endpoints of the ag-

gregated edge results. The particular novelty of this approach lies in the labelling scheme which assigns

the directionality of the endpoints based only on local knowledge. As a consequence, it relaxes the demand

of a priori knowledge and furthermore assures an accurate and eÆcient search for edge paths in the image.
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1. Introduction

The successful detection of edge information in an image is an important precursor to many

image processing and analysis operations. Since edges are determined by sharp changes in grey

level transitions, their extraction generally entails a two-stage process. Initially the edges are

enhanced using partial derivatives, then, the edge detection output is analysed in order to decide

whether a particular pixel is an edge or not [3,8]. Although robust edge detection has been a

goal of computer vision for many decades, the current range of edge operators fail to correctly

recover the entire edge structure associated with a given image. This is due to the presence of

image noise and to the small variations in the grey level (or colour) distribution. Thus, the image

noise will generate extraneous edges while a small variation of the image intensity distribution

will contribute to gaps in edges. As an immediate result, the meaningful regions derived from

the image under analysis are not correctly outlined. To address this issue further processing

that takes into account the local information revealed in the edge detection output has to be

considered.

There are various techniques which address the problem of improving the quality of the edge

detection. Approaches that have been used include morphological methods [1,4,15,18], Hough

transform [6], probabilistic relaxation techniques [7], multiresolution methods [5,11,19] and the

use of additional information such as colour [13]. In general, morphological approaches o�er a

fast solution and they attempt to maximally exploit the local information, which unfortunately

is not always suÆcient. In contrast, multiresolution and multiscale methods try to enhance

the edge structure by aggregating the information contained in a stack of images with di�erent

spatial resolutions. These methods also referred to as pyramidal techniques usually outperform

morphological techniques, but this is obtained at a high computational cost.

In this paper, we describe a morphological-based algorithm for edge thinning and linking. A



2

general problem related to morphological approaches is the choice of optimal parameters for

the edge operator. In this regard, we proposed an eÆcient method to tackle this problem by

aggregating the edge information contained in a stack of images in a hierarchical manner. Then,

the endpoints (edge terminators) are detected and labelled by analysing the local edge structure.

Finally, the gaps in edges are bridged in agreement with the directionality of the endpoints. An

overview of the developed edge linking algorithm is illustrated in Figure 1.
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Figure 1. Outline of the edge linking algorithm.

2. Sequential edge reconstruction

As we mentioned earlier, choosing the optimal parameters for an advanced edge operator

represents a diÆcult problem. To reduce the spurious responses generated by image noise, the

input image is usually smoothed by applying a Gaussian �lter [12]. Consequently the �rst

parameter is the standard deviation �, a parameter that determines the size and ultimately

the scale of the Gaussian operator. To further improve the edge detecting output, Canny [3]

proposed a method based on thresholding with hysteresis. This technique evaluates the output

of the edge detector using two threshold values (referred to as high and low thresholds) and works

as follows: if an edge response is greater than the higher threshold it is considered as a valid edge

point. Then, any candidate edge pixels that are connected to valid edge points and are above the

lower threshold are also assigned as edge points. A similar approach was employed by Shen and

Castan [14] when they developed an optimal edge detector based on ISEF (In�nite Symmetric

Exponential Filter) for recovering step-like edges. Because the optimal set of these parameters

is dependent on the input image, it is diÆcult to apply simple criteria to consistently determine

these parameters. As most developed systems have been designed to perform a speci�c task, it

makes it diÆcult to use them in other applications.

To address this problem, many researchers have tried to tackle this issue on a global basis

by building a stack of images in which the scale parameter is varied. However, it makes sense

to improve the edge structure by aggregating the edge information starting from images with

low resolutions towards those with a higher resolution, but this entails a high computational

cost since the convolution masks become larger when � increases. Also choosing the right scales

is not a simple issue [10,19]. In addition, the appearance and the localisation of edges within

the image are increasingly disturbed when � increases and this complication may cause a real

problem when edges are reconstructed.

To avoid such problems and to maintain a low computational overhead, we choose to vary

the threshold parameters while the scale parameter is kept constant to the default value (� =

1.0 for Canny or a0 = 0.45 for ISEF-based GEF edge operator [14]). This approach has the

advantage that the edge operator has to be applied only once while the thresholding process is

sequentially applied to obtain the stack of images with di�erent edge densities.

At this stage, a key problem consists of selecting the optimal range for the threshold param-

eters. Our aim is to have the edge segments presented in the output image as large as possible.

Smaller segments (less than 4 pixels) are generally due to noise. In this regard, we choose the
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Figure 2. The image stack. (a) Input image. (b) The low edge density image. (c) The medium

edge density image. (d) The high edge density image.

lower threshold by analysing the level of small edge segments that are present in the edge de-

tected output. The algorithm increases the value of the lower threshold incrementally (during

this phase the higher and lower thresholds are linked together) until the ratio between the num-

ber of edge pixels derived from small segments and the number of edge pixels derived from large

segments is smaller than a preset value. When this criterion is upheld, the lower threshold value

is �xed and by increasing the value of the higher threshold the images with a coarser level of

edge detail are obtained. The maximum value for the higher threshold is dependent upon the

edge detector used (for example it takes a value of 20 for the GEF edge operator). To increase

robustness to noise we considered an image stack which contains three images with a di�erent

level of edge detail (see Figure 2).

This solution is advantageous as it allows the removal of noise at each iteration. Also, the

scene may contain objects that have a low contrast against the background; consequently they

will not be present in the image with the lowest level of edge detail. Once the stack of images

are processed (see Figure 2), the algorithm attempts to combine the edge information between

them by using the following procedure:

1. Initially the image with lowest edge density is subtracted from the medium edge density

image.

2. The resulting image is labelled using a graph-based algorithm [9] and the length of each

edge segment is computed.

3. The next step involves analysing the edge structure contained in both images, namely the

image with the lowest edge density and the labelled image. If any edge pixel is connected to

an edge segment from the labelled image, the edge segment is added to the edge structure

in the image with lower edge density.
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Figure 3. The edge reconstruction process for images illustrated in Figure 2. (a) The subtraction

of the low edge density image from the medium edge density image image. (b) The resulting

image after �rst iteration. (c) The subtraction of the resulting image from the high edge density

image. (d) The output image.

4. The edge segments from the labelled image that are not connected to the edge structure

in the lower edge density image are analysed in order to decide if they are valid edge

segments. If the labelled segments under examination contain more than 4 edge pixels,

they are added to the edge structure of the image with a lower edge density. The aim of

this operation is to remove the isolated and the small undesirable edge responses that are

caused by noise.

When this process is completed, the image resulting from the �rst step is subtracted from

the high edge density image. Then, the edges are aggregated using the same procedure out-

lined above. Figure 3 shows the results obtained after the application of the proposed edge

reconstruction scheme.

3. Iterative edge thinning

Multiple edge replications represent another typical error associated with edge detecting op-

erators. Thus, there are cases where the edge responses are several pixels wide. Since our goal

consists of reconnecting the interrupted edges using only local information, multiple edge re-

sponses may generate incorrect linking decisions. Therefore to use the local information more

eÆciently, a thinning algorithm has to be applied to remove the unnecessary edge responses. In

this regard, an iterative morphological thinning algorithm based on the use of L-type structuring

elements was implemented [16]. This algorithm is de�ned as follows:

I � S = I � (I 
 S) (1)



5

where I is the image containing the edge information, S is the structuring element, � denotes the

thinning operation and 
 de�nes the binary hit or miss transformation. The thinning process

is convergent and stops when two successive images in the sequence are identical.

4. Endpoints recovery and labelling

Although the proposed scheme signi�cantly improves the edge structure, there are situations

where gaps in edges exist in the output image. To correct this problem we propose a method

to bridge the gaps by analysing the singular edge points which are referred to as endpoints.

Extracting the endpoints entails a simple morphological analysis [17] and consists of a set of

3�3 masks that are applied to the resultant image after the application of the edge reconstruction

process.
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Figure 4. The masks used to detect the endpoints.

Figure 4 illustrates the masks used to detect the endpoints, where the pixel under investigation

is highlighted and mask entries indicated by `x' can take any value (0 or 1) but at least one of

them has the value 1. This ensures that the single edge pixels are not marked as endpoints.

To eÆciently close the gaps in edges, we need to determine the scanning direction for each

endpoint by evaluating the linked edge pixels that generate it.
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Figure 5. Situations where the edge direction (indicated with an arrow) is derived from straight

edges.

As can be easily observed, the masks illustrated in Figure 4 contain some information that

gives a useful clue regarding the endpoint direction. Unfortunately, this gives only 4 scanning

directions which is not suÆcient to always �nd the correct result. To avoid such limitation we

extend the search for edge links to 8 directions, a situation when supplementary information

has to be evaluated. As Figure 5 illustrates, there are cases when the endpoint is generated by

a straight edge, a situation where the scanning direction can be easily established.

This may not be the case for curved edges, when the edge direction is not as well de�ned. A

typical situation is illustrated in Figure 6 where the endpoint direction is evaluated by analysing
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Figure 6. The edge direction derived from curved edges.

the local information for a larger neighbourhood. In Figure 6 only the �rst 3 directions are

illustrated, while the remaining directions can be obtained by rotating the masks.

5. Edge linking

The last step of the algorithm deals with searching for possible edge paths by using the

information derived from the endpoints. The scanning process is iterative and starts at the

endpoint under investigation.
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Figure 7. The edge linking process. (a) The edge structure around an endpoint. (b) Scanning

the 3 � 3 neighborhood (the pixels are evaluated in alphabetic order). (c) Scanning the 5 � 5

neighborhood (the previous area is not taken into account). (d) The result after the Bresenham

algorithm is applied.

This process is de�ned as follows:

1. Initially the algorithm evaluates the 3�3 neighbourhood at the side given by the endpoint

direction. In order to avoid closed loops of edges, the pixels situated in the endpoint's

neighbourhood are evaluated in a strict order. Thus, the pixels which lie on the endpoint

direction are evaluated �rst. If there are no edge pixels detected, the scanning continues

by evaluating the remaining pixels, starting with those closer to the endpoint.

2. If no connections are detected, the algorithm evaluates the 5 � 5 neighbourhood while

ignoring the 3� 3 area which was already assessed.

3. If the scanning process fails to �nd an edge pixel, the algorithm analyses the 7� 7 neigh-

bourhood by using the same procedure outlined above.
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Figure 8. The edge linking results when the algorithm is applied to the image illustrated in

Figure 3d. The linking pixels are shaded and for clarity some details are magni�ed.

4. If a connection is detected, a path is established between the endpoint and the detected

edge point by using the Bresenham algorithm [2]. In other words a line is drawn between

the endpoint and the edge pixel.

Figure 7 illustrates the edge linking process described above. The mask entries marked with

`�' indicate that they were already veri�ed.

6. Experiments and results

To evaluate the performance of the proposed edge linking scheme, it was tested on several

images. Initially, the algorithm was tested on noiseless images and results of the complete process

(a) (b) (c)

Figure 9. (a) The input image corrupted with Gaussian noise. (b) The result after edge recon-

struction. (c) Edge linking results.

can be seen in Figure 8. As Figure 8 illustrates, the algorithm was able to handle even diÆcult

situations such as edge bifurcation. This can be observed in the image details.
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To verify the algorithm's robustness to noise, we corrupted the image illustrated in Figure 2a

with additive Gaussian noise of standard deviation 30 grey-levels. In Figure 9b the result of

the edge reconstruction process is illustrated. Note that the edge segments caused by noise are

removed except in the case where they make contact with the edge structure presented in the

lower edge density images. Figure 9c illustrates the output after the edge linking algorithm is

applied.

Next, to verify the validity of the proposed algorithm, we tested its performance on a range of

images de�ned by various scenes and its results are compared side by side with those returned

by the multiresolution sequential edge linking algorithm (M-SEL)[5]. Figures 10 and 11 illustrate

the results of the proposed edge linking algorithm and the M-SEL algorithm when applied to a

set of standard test images.

(a) (b) (c)(c)

Figure 10. (a) The input image. (b) Edge linking results returned by the proposed algorithm.

(c) Edge linking results returned by the M-SEL algorithm.

(a) (b) (c)

Figure 11. (a) The input image. (b) Edge linking results returned by the proposed algorithm.

(c) Edge linking results returned by the M-SEL algorithm.

By analysing the results illustrated above we can conclude that the performance of the pro-

posed algorithm compares well when compared with that o�ered by the M-SEL algorithm. It

can be noticed that our algorithm has the ability to �nd the correct linking path even in the

cases when dealing with complex edge structures while avoiding problems such as closed loops

of edges that can be observed in the edge linking maps returned by the M-SEL algorithm. These

results also indicate that our approach deals better with straight edges while the M-SEL algo-

rithm, as can be seen in Figure 11, favors curved edges. At the same time some limitations of our

approach can be mentioned. The �rst is derived from the fact that the proposed algorithm is not
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able to cope with gaps larger than 7 pixels (M-SEL approach also exhibits the same limitation).

The scanning process can be extended to search until a connection is found, but since the gaps

are bridged using the Bresenham algorithm [2] the geometry of the curved scene objects is not

preserved. However, large gaps cannot be eÆciently closed using only the local edge information

and to address this problem robustly supplementary knowledge has to be considered.

An important issue is the computational eÆciency. Achieving reasonable timing using a

complex edge operator such as Canny is diÆcult, since the computational time required to

extract the edge structure derived from a 256�256�256 greyscale image is 4900 ms when running

on a PC with a Pentium 133 processor (32 Mb RAM and running Windows 98). Therefore for

this implementation we choose a computationally eÆcient edge detector, namely the ISEF-

based GEF operator where the processing time is 545 ms. Also, it is worth mentioning that

this advantage is obtained without reducing signi�cantly the edge recovering performance. The

processing time associated with the edge reconstruction, thinning and linking algorithm depends

on the complexity of the edge structure. Timings for proposed edge linking algorithm and M-SEL

algorithm are depicted in Table 1.

Table 1

Computational overhead associated with our algorithm and M-SEL algorithm

Input image Proposed algorithm (sec) M-SEL algorithm (sec)

Figure 2a 1.46 163

Figure 9a 1.52 165

Figure 10a 1.58 174

Figure 11a 1.55 166

7. Conclusions

It has been generally believed that edge reconstruction has to be based on either computa-

tionally intensive multiresolution approaches [5,19] or on methods which attempt to enhance

the edge structure using probabilistic relaxation [7]. In this paper we have described an eÆ-

cient morphological approach to improve the quality of the edge detection. The proposed edge

thinning and linking scheme has two key components. The �rst component maximises the edge

detection globally by aggregating the information contained in a small collection of edge images.

The second component attempts to correct the local imperfections in the edge detected out-

put by maximally exploiting the information around singular points. The resulting algorithm

is computationally eÆcient and has the particular advantage that it can be applied to scenes

where no a priori knowledge is available. Also, experimental results indicate that in contrast

with approaches which involve �ltering, the local edge features are not sacri�ced at the expense

of noise reduction.
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