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Abstract

It is generally been accepted that to develop versatile bin picking systems

capable of grasping and manipulation we require accurate 3-D information.

To accomplish this goal, we have developed a fast and precise range sensor

based on active depth from defocus (DFD). This sensor is used in conjunc-

tion with a three-component vision system, which is able to recognize and

evaluate the attitude of 3-D objects. The �rst component performs scene

segmentation using an edge-based approach. Since edges are used to detect

the object boundaries, a key issue consists of improving the quality of edge

detection. The second component attempts to recognize the object placed

on the top of the object pile using a model-driven approach in which the

segmented surfaces are compared with those stored in the model database.

Finally, the attitude of the recognized object is evaluated using an eigenimage

approach augmented with range data analysis. The full bin picking system

will be outlined and a number of experimental results will be examined.



Keywords: Range sensor; Depth from defocus; Edge linking; Surface match-

ing; Eigenimage analysis.
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1 Introduction

One task that is commonly found across a broad range of modern integrated

manufacturing environments is the need to present parts to automated ma-

chinery from a supply bin. To do this safely and eÆciently within a exible

robotic environment it is necessary to know the items identity, location, shape

and orientation.

One of the main challenges facing a such bin picking system is its abil-

ity to deal with overlapping objects. Initial approaches to this problem

were based on modeling parts using 2-D surface representation. Typical 2-D

representations include invariant shape descriptors (Zisserman et al. 1994),

algebraic surfaces (Kriegman and Ponce 1990) and appearance-based ap-

proaches (Murase and Nayar 1995, Ohba and Ikeuchi 1997). Other systems

tried to recognize the scene objects from the range data using various vol-

umetric primitives such as generalized cylinders (Ponce et al. 1989, Zerroug

and Nevatia 1996), polyhedra (Lowe 1987) and local 3-D shape descriptors

(Johnson and Hebert 1999). While each approach has its associated ad-

vantages and disadvantages, 2-D approaches are generally better suited to

planar object recognition. When dealing with non-planar objects, 2-D rep-

resentations may not provide enough information, hence the need for the

incorporation of an additional cue in the form of range data.
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In this paper we describe the implementation of a bin picking system

based on depth from defocus. Section 2 outlines the overall system, while Sec-

tion 3 describes the implementation of our range sensor. Section 4 presents

the edge-based segmentation algorithm and Sections 5 describes the object

recognition algorithm. This is followed in Section 6 by an outline of the pose

estimation algorithm. Section 7 presents a number of experimental results

illustrating the bene�ts of the approach outlined in this paper.

2 System overview

The operation of the system described in this paper can be summarized as

follows (Fig. 1). The range sensor determines the depth structure using two

images captured with di�erent focal settings. This is followed by the image

segmentation process which decomposes the input image into disjoint mean-

ingful regions. The recognition framework consists of matching the geomet-

rical primitives derived from the segmented regions with those contained in a

model database. The region that gives the best approximation with respect

to the matching criteria is then referred to the pose estimation algorithm in

which the position of the object under investigation is determined by using

a Principal Component Analysis (PCA) approach in conjunction with range

data analysis. Once the object's pose is estimated, the grasping co-ordinates

of the identi�ed object are passed to the bin picking robot.

2



Range sensor

Image segmentation

Object recognition

Pose estimation

Grasping co-ordinates
   of identified object

Model database

 PCA database

Figure 1: Overall system architecture.
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3 Range sensor

The range sensor employed in this application is based on active depth from

defocus approach. This estimates depth by measuring the relative blurring

between two images captured with di�erent focal settings (these are referred

to as the near and far focused images).

The principle of this range sensor extends from the fact that a lens has a

�nite depth of �eld. In this way, if the object to be imaged is placed on the

focal plane, the image formed on the sensing element is sharply in focus as

every point P from the object plane is refracted by the lens into a point p on

the sensor plane. Alternatively, if the object is shifted from the focal plane,

the points situated in the object plane are distributed over a patch on the

active surface of the sensing element. As a consequence, the image formed on

the sensing element is blurred. From this observation, the distance from the

sensor to each point in the scene can be estimated by evaluating the degree

of blurring which is in direct relation to the size of the patch formed on the

sensing element (Fig. 2).

Consequently, the diameter of the patch (blur circle) d is of interest and

can be easily determined by the use of similar triangles:
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Figure 2: The image formation process. Depth is determined by measuring

the relative level of blurring.

where v is the focal distance, D is the aperture of the lens and s is the

sensor distance. Since the parameter v can be expressed as a function of f

and u (Gaussian lens law), Eqn. 1 becomes:
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where u is the object distance and f is the focal length.

It can be observed that d can be positive or negative depending on

whether the image plane is behind or in front of the focal plane If . This

uncertainty indicates that one image is not suÆcient to estimate uniquely the

level of blurring unless a priori information is available (Pentland 1987, Sub-

barao and Surya 1994). A solution to solve this uncertainty consists of em-

ploying two images separated by a known distance b as illustrated in Fig. 2
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(Nayar et al. 1995, Subbarao 1989). This setup enables us to uniquely esti-

mate the depth irrespective of the sign of d.

3.1 Depth estimation using DFD

The blurring e�ect can be seen as a convolution between the focused image

and the blurring function. The blurring function (also referred to as Point

Spread Function (PSF)) can be approximated by a two dimensional Gaussian

(Pentland 1987, Subbarao and Surya 1994), where the standard deviation �

indicates the level of blurring contained in a defocused image.

h(x; y) =
1

2��2
e�

x
2
+y

2

2�2 (3)

This model accurately approximates the actual situation and as a conse-

quence the standard deviation (also known as blur parameter) is proportional

to the blur circle d. The PSF implements a low pass �lter, thus suppressing

the high frequencies (especially those greater than 1=�). Therefore, to isolate

the e�ect of blurring it is necessary to extract the high frequency information

derived from the scene. In order to achieve this goal, the near and far focused

images are �ltered with a 5�5 Laplacian operator, where the �ltered images

can be used to determine the focus level which is directly related to the blur

parameter. One problem with the approach as described is that the high

frequencies derived from the scene are directly employed to estimate depth,
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and as a consequence this approach cannot be used when dealing with scenes

de�ned by textureless objects. To overcome this problem a structured light

is projected onto the scene, thus imposing an arti�cial texture and allowing

us to calculate the depth by measuring the apparent blurring of the pro-

jected pattern. This is referred to as active depth from defocus (Nayar et

al. 1995, Pentland et al. 1994).

3.2 Physical implementation

Our range sensor must be capable of extracting depth information derived

from dynamic scenes. This is implemented using two ITI frame grabbers,

thus allowing us to capture both the near and far focused images simulta-

neously. The scene is imaged using an AF MICRO NIKKOR 60mm F 2.8

lens. A 22mm beam splitter cube is placed between the NIKKOR lens and

the sensing elements. The sensing elements used for this implementation are

two low cost 256� 256 VVL CMOS sensors and are precisely positioned to

ensure that one captures the near focused image while the other acquires the

far focused image. The displacement b between the CMOS sensors is set to

approximately 0.8mm (see Fig. 3).

A structured light pattern is projected onto the scene using a MP-1000

projector �tted with a MGP-10 Moire grating (this is a striped grid with a

density of 10 lines per mm). The lens attached to the projector is the same
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Figure 3: The bifocal range sensor.

type as that used to image the scene.

The sensor is calibrated using a two-step procedure. The �rst step in-

volves obtaining a precise alignment between the near and far focused sensing

elements. This was achieved by employing a calibration pattern consisting

of a dense rectangular grid and the misregistrations between the sensing el-

ements were eliminated using the multi-axis translator which is attached to

one of the CMOS sensors. The second step involves a pixel by pixel calibra-

tion (Ghita and Whelan 2001) applied to determine the gain factor, improve

linearity and eliminate the depth o�sets.

The range sensor computes a depth map in 95ms on a Pentium 133,

32Mb RAM and running Windows 98. The relative accuracy was estimated

for successive depth acquisitions (50 cycles) where a planar object was placed

at di�erent distances from the sensor. Accuracy was de�ned by the maximum

error between the real and estimated depth values contained in a 32 � 32
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pixel area from the depth map. An accuracy level of 3.4% of the overall

ranging distance was achieved when the range sensor was applied to scenes

containing non-specular objects (see Fig. 4 for a typical textureless scene).

A detailed description of the developed range sensor can be found in (Ghita

and Whelan 2001).

4 The edge-based segmentation process

Edges are commonly used in image analysis to detect region boundaries.

Typically, edges are associated with the sharp transitions in the grey level

distribution. But edges are also determined by abrupt changes in the depth

structure. In the former case the edge information is detected from the in-

tensity images while in the latter case the range images are used as input

(Hoover et al. 1996, Jiang and Bunke 1999). But which approach gives the

better results? Henderson (1983) suggested that in the case of shape repre-

sentation where the objects of interest are highly textured and the relative

depth between the objects in the scene is signi�cant, the scene analysis should

be performed on range images. It is important to note that the precision of

the range sensor plays a crucial role in this approach. Alternatively, if the

objects are small and textureless (as is the case in our application) then

the information contained in a range image is not suÆcient to achieve accu-

rate segmentation. As a consequence, better results may be obtained if the
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(a) (b)

(c)

Figure 4: Sample depth map using active DFD. (a) Near focused image. (b)

Far focused image. (c) The resulting depth map.
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intensity images are considered as the input to the segmentation algorithm.

The quality of the segmentation process is also related to the precision

of the edge operator involved. Although robust edge detection has been a

goal of computer vision for many decades, the current range of edge op-

erators fail to correctly recover the entire edge structure associated with a

given image. This is due to the presence of image noise (which can gen-

erate extraneous edges) and the small variation of the image intensity dis-

tribution (which can contribute to gaps in the edges). These facts have

a negative inuence on the segmentation results and as an immediate re-

sult, the segmentation process will fail to identify the meaningful regions

derived from the image under analysis. Therefore to improve the quality of

the edge detection stage and achieve meaningful segmentation, further pro-

cessing that takes into account the local information revealed in the edge

detection output has to be considered. A wide range of techniques have ad-

dressed this problem in the past, including morphological methods (Casadei

and Mitter 1996, Vincent 1993), Hough transform (Gupta et al. 1993), prob-

abilistic relaxation techniques (Hancock and Kittler 1990), multiresolution

methods (Bergholm 1987, Vincken et al. 1996, Eichel and Delp 1985) and

the use of additional cues such as colour (Saber et al. 1997). In general,

morphological approaches o�er a fast solution which attempts to maximally

exploit the local information. In contrast, multiresolution and multiscale
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methods try to enhance the edge structure by combining the information

contained in a stack of images with di�erent spatial resolutions. In the next

section we present a two-step morphological-based algorithm which performs

edge reconstruction followed by edge linking based on information derived

from the edge terminators.

4.1 Sequential edge reconstruction

A general problem related to morphological approaches is the choice of op-

timal parameters for an advanced edge operator. In order to reduce the

spurious responses generated by image noise, the image under investigation

is usually smoothed by applying a Gaussian �lter (Marr and Hildreth 1980).

Hence, the �rst parameter is the standard deviation �, a parameter that

determines the size and ultimately the scale of the Gaussian operator. To

further improve the edge detection output, Canny (1986) proposed a method

based on thresholding with hysteresis. This technique evaluates the output

of the edge detector using two threshold levels (referred to as the high and

low thresholds) in order to remove the weak edge responses. Shen and Castan

(1992) employed a similar approach when they developed an optimal edge

detector based on In�nite Symmetric Exponential Filter (ISEF) for recov-

ering step like edges. It is important to note that the optimal set of these

parameters is dependent on the input image.
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To address this problem, many researchers attempted to tackle this issue

on a global basis by building a stack of images in which the scale parameter

is varied. The edge reconstruction scheme consists of aggregating the edge

information starting from images with low resolutions towards those with a

higher resolution. While this approach is very intuitive, it is computationally

expensive as the convolution masks that implement the Gaussian operator

become larger as � increases. Also choosing the right scales presents a diÆcult

problem (Lindeberg 1993). Moreover, the appearance and the localization of

edges within the image are increasingly disturbed as � increases leading to

possible diÆculties during the edge reconstruction process.

To avoid the problem associated with multiresolution approaches and to

maintain a low computational overhead, we choose to vary the threshold

parameters while the scale parameter is set to the default value (� = 1.0 for

Canny and a0 = 0.45 for the ISEF-based Gradient Exponential Filter (GEF)

edge operator). This approach has the advantage that the Gaussian �lter

and the edge operator has to be applied once while the hysteretic threshold

is sequentially applied in order to obtain the stack of images with di�erent

resolutions (in this context the term resolution de�nes the level of edge detail

that is present in the image following clipping the edge image at a given pair

of threshold values).

At this stage a key question is: what criteria should be employed to select
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(a) (b)

(c) (d)

Figure 5: The image stack. (a) Input image. (b) Low, (c) medium and (d)

high resolution images.
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(a) (b)

(c) (d)

Figure 6: The edge reconstruction process for images illustrated in Fig. 5.

(a) Di�erence between the medium and lowest resolution images. (b) The re-

sulting image after �rst iteration. (c) Di�erence between (b) and the highest

resolution image. (d) The output image.
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the optimal range for the threshold parameters? To answer this it is necessary

to analyze the length of the edge segments contained in the edge detection

output. Our goal is to maximize the length of the edge segments. Small

isolated segments (less than 4 pixels when dealing with images of 256� 256

resolution) are generally due to noise. In this regard, we propose to select

the low threshold by analyzing the level of small edge segments that are

present in the edge detection output. The algorithm is initialized with the

minimal value for the low threshold (during this stage, the high and low

threshold values are set to the same value) and it is incrementally increased

until the ratio between the number of edge pixels derived from small edge

segments and the number of pixels derived from large edge segments is less

than a preset value. When this criterion is upheld, the low threshold is �xed

and by increasing the value of the high threshold a coarser resolution image

is obtained. The maximum value of the high threshold is dependent upon

the edge detector employed (for example it takes a value of 20 for the GEF

edge operator). For this implementation an image stack which contains 3

images (referred to as low, medium and high resolution images) of di�erent

resolutions was considered.

Once the image stack is processed (see Fig. 5), the edges are recon-

structed by analyzing the edge structure of the images contained in the image

stack. Initially, edges are combined between the low resolution image and the
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medium resolution image. The reconstruction process consists of analyzing

the image resulting after the subtraction of the low resolution image from

the medium resolution image. The edge segments that are contained in this

di�erence image are then added to the output image if they are connected to

the edge structure in the low resolution image or their length is greater than

4 pixels. When this process is completed, the output image is subtracted

from the high resolution image. Then, edges are aggregated by repeating the

same procedure outlined above. Fig. 6 illustrates the results obtained after

the application of the proposed edge reconstruction scheme. Note that this

approach allows the removal of noise at each iteration.

4.2 Edge linking

Although the proposed edge reconstruction scheme signi�cantly enhances the

edge structure, there are situations where gaps in edges exist in the output

image. In order to eliminate these errors, we propose to bridge the gaps

in edges by analyzing the pixels around the edge terminators. The opera-

tion required to extract the edge terminators involves a simple morphological

analysis by the application of a set of 3�3 masks to the image resulting from

the edge reconstruction process (Ghita 2000). The next step involves deter-

mining the scanning direction for each edge terminator by analyzing the edge

structure that generates it. The possible edge paths between unlinked edges
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Figure 7: The edge linking results when the algorithm is applied to the image

illustrated in Fig. 6(d) (linking pixels are shaded).

are determined by evaluating the pixels situated in the edge terminator's

neighborhood according to its direction. If a connection is detected, an edge

path is established between the edge terminator and the detected edge pixel

by using the Bresenham algorithm (Bresenham 1965). Results of the edge

linking process are depicted in Fig. 7.

5 Object recognition

Since our application deals with a set of polyhedral objects, it is convenient

to describe them in terms of their surfaces (regions). Thus, the recognition
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of the target objects is de�ned as the recognition of their visible surfaces.

The main problem associated with this approach is deciding on which of the

features derived from the regions' geometrical characteristics should be em-

ployed as primitives for the recognition process. The criteria employed to

select the optimal feature set has to take into consideration factors such as

consistency, accuracy and computation complexity. In this regard, the local

features such as junctions, lines and contour segments appear to be better

suited when dealing with object occlusion. Unfortunately these features are

viewpoint dependent and in addition they create a large number of hypothe-

ses, a fact that requires a computationally intensive veri�cation scheme. In

contrast, global features (attributes) derived from the surfaces associated

with the scene objects o�er good viewpoint invariance and the degree of am-

biguity is drastically reduced. In our present implementation, basic features

such as area, perimeter, shape factor and the maximum distance from the

region's centroid to the region's border are chosen.

The recognition algorithm has two main stages. The training stage con-

sists of building the database by extracting the aforementioned features from

each object of interest. Because the features that describe the objects have

di�erent ranges it is necessary to apply a feature normalization scheme in

order to avoid the situations where the features with the largest values over-

power the remaining ones. The adopted feature normalization scheme ini-
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tially subtracts the feature mean from each feature of the pattern and then

the result is divided with the feature variance (see Eqns. 4 and 5). As a

result, each feature of the pattern is standardized to zero mean and unit

variance.

mi =

Pk
j=1 xj[i]

k
; si =

sPk
j=1(xj[i]�mi)2

k
(4)

Xj[i] =
xj[i]�mi

si
; j = 1; :::; k; i = 1; :::; n (5)

where n de�nes the number of features per pattern, mi and si are the

mean and the variance of the ith feature, xj is the unprocessed jth pattern,

k de�nes the number of patterns contained in the model database and Xj

represents the normalized jth pattern.

The matching stage consists of computing the Euclidean distance between

the input region and the regions contained in the database.

distj =

vuut nX
i=1

(Xj[i]� Y [i])2; i = 1; :::; n (6)

where Xj is the j
th pattern from the model database and Y de�nes the

pattern associated with the input region. The input region is contained in

the database if the minimum distance that gives the best approximation is

smaller than the threshold value '.
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(a) (b)

Figure 8: Determining occluded objects. (a) The input image. (b) The

segmented image where the objects' elevations are highlighted. The occluded

objects are marked with `Occ'.

min(distj) � '; forj = 1; :::; k (7)

It is important to note that the features derived from the scene regions

describe the object of interest globally. Consequently they are consistent only

if the scene objects are mildly occluded. To accomplish this requirement it

is necessary to determine the object situated on the top of the pile. This

approach is very appropriate because the topmost object is rarely occluded

and thus allows easy robotic manipulation.

In order to determine the object placed on the top of the pile, a framework

that deals with a variable number of regions which ful�ll the 3-D criteria was

implemented. The aim of this framework is to identify the situations when

the scene reveals obvious occlusions (Fig. 8).
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(a) (b)

(c)

Selected regions
  are highlighted

Topmost region apro-
ximated by an image 
  from the database

Figure 9: The region-based recognition process. (a) The input image. (b)

Selecting the best-placed objects. (c) The recognized objects considered to

be on the top of the pile.
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The number of remaining regions is further decreased by applying other

selection constraints. For this implementation the area of the selected re-

gions has to be bigger than a preset value that is 80% of the smallest region

contained in the database. Next, from selected regions, the one that gives

the best approximation with respect to the matching criteria belongs to the

object situated on the top of the object pile. This process is illustrated in

Fig. 9. If the matching criterion is not upheld (i.e. the minimum distance is

greater than the preset value '), the robot rearranges the scene in order to

obtain a better con�guration.

6 Pose estimation

Region matching can be extended to pose estimation as follows. For each

model in the database its appearance is sampled over a range of viewing di-

rections. The resulting images form an image set that encodes the attitude

of the object in question. After recognition, the attitude of the object is

determined by matching an image contained in the database. This form of

region matching is not appropriate for two reasons. The �rst is associated

with the dimension of the images contained in the image set. A typical image

is represented by a two dimensional 256 � 256 array of 8-bit intensity and

it would not be feasible to use this information directly as part of the pose

estimation process. The second is related to the number of images used to
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sample the object's appearance. This represents a real problem when deal-

ing with large databases, where the computational load associated with the

matching process becomes impractical. Fortunately, the images contained in

the image set can be compressed in order to speed up matching considerably.

A popular technique for image compression is principal component analysis

(PCA), also known as eigenimage analysis or Karhunen-Loeve expansion.

6.1 Image compression using PCA

PCA is a well-known technique for computing the direction of greatest vari-

ance for an image set. In this formulation a low-dimensional orthogonal

subspace called eigenspace (which describes the entire image set) is created

by computing the eigenvectors of the covariance matrix of the image set.

By projecting the image set on the eigenspace, the result is a collection of

vectors which are the compressed representations of the image set (Turk and

Pentland 1991). The operations mentioned above are briey described in the

next section.

6.2 Computing eigenspace

Lets consider P being the number of images contained in the image set. The

image set matrix is obtained by converting each image into a row vector Il

of size N. The mean of all images contained in the image set is,
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I =
PX
l=1

Il (8)

In order to increase the variance between the images that form the image

set, it is necessary to subtract the mean of the image set from each image.

Îl = Il � I; S = [Î1; Î2; :::; ÎP ]
T (9)

where S is the image set matrix and T de�nes the transpose matrix.

The next step involves computing the covariance matrix C of the image

set (i.e. C = STS). The dimension of this matrix is N � N , a fact that

makes the calculation of its eigenvectors extremely diÆcult. If the number

of images contained in the image set P is smaller than N, it is easier to

calculate the eigenvectors of the reduced covariance matrix. The reduced

covariance matrix is computed using Q = SST but the dimension of the

space is reduced to P. The eigenvectors of Q are computed by solving the

eigenvector equation using the combination Householder Transform - QL

algorithm (Press et al. 1992).

Qui = viui (10)

where ui is the ith eigenvector and vi is the corresponding eigenvalue.

The eigenspace is obtained by multiplying the matrix of eigenvectors U with
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the matrix S. The resulting matrix E de�nes the eigenspace and is P � N

dimensional. If P is still too large, this space can be further reduced by using

only the largest M eigenvalues. In this case the amount of compression is

M/N and the dimension of space is M.

6.3 Database generation

The generation of the database is implemented by the two-stage training

procedure illustrated in Fig. 10. The �rst stage deals with building and

computing the object eigenspace as mentioned in the previous section. One

of the problems associated with this approach is its sensitivity to the location

of the object. To compensate for this problem, the objects are centered

within the image. Another key problem consists of normalizing the image

set by discarding the background (Murase and Nayar 1995). The second

stage computes the database by projecting the normalized image set on the

object's eigenspace.

hl = [e1; e2; :::; eP ]
T (Îl); l = 1; :::; P (11)

where [e1; e2; :::; eP ] is the eigenspace matrix E and hl is a collection of vectors

which de�ne the PCA database.
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segmentation
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    compute the
object eigenspace

 Edge-based
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the regionImage set

   PCA
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First stage
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Compute the eigenspace

Compute the image set projections

Figure 10: The training procedure.

6.4 Pose matching

To match the position of the recognized object, it is necessary to generate

the input image for the pose estimation algorithm. In this way, the region

resulting from the recognition stage is centered within the image and the

mean of the corresponding image set is subtracted from it. Next, the resulting

image is projected on the object's eigenspace as illustrated in Eqn. 12.

hin = [e1; e2; :::; eP ]
T (Îin); Îin = Iin � I (12)

where hin is the projection on the eigenspace of the input image Iin.

The scene-to-model matching consists of evaluating the Euclidean dis-

tances between the projection associated with a scene object and those con-

tained in the PCA database. The minimum distance de�nes the closest
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match. The image is contained in the database if the minimum distance is

smaller than a prede�ned threshold value.

dl = min k hin � hl k� �; l = 1; :::; P (13)

The threshold value � was chosen by analyzing the distribution of data in

the PCA database using the procedure suggested by Nene and Nayar (1995).

6.5 Pose sampling

To sample 6 degree of freedom (DOF) object pose using standard eigenimage

analysis would require to capture all possible orientations for each object

contained in the database. This approach is quite impractical since even at

a coarse rate of pose sample it would require an extensive number of images.

For instance, (Edwards 1996) pointed out that sampling the object pose

at a rate of 10 samples/DOF requires 106 images. Consequently, the pose

estimation has been reformulated in order to reduce the size of the image set.

In this way, eigenimage analysis is employed to constrain one rotational DOF,

i.e. rotation about the z axis, while the remaining two rotational DOF are

constrained by using the range data, i.e. computation of the normal vector

to the surface in question (Ghita 2000). The translational components can

be easily determined by analysing the co-ordinates of the centroid of the

object's surface.
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7 Experiments and results

The DFD-based range sensor outlined in this paper generates 256�256 depth

maps at a rate of 10 frames per second. The selection of an edge operator

that maximizes the ratio quality in edge detection versus processing time was

a key design decision. There is no doubt that achieving reasonable timing

using a complex edge detector such as Canny is diÆcult, since the computa-

tional time required to extract edges from a 256� 256/256 greyscale image

is 4900ms when running on a PC with a Pentium 133 processor. Fortu-

nately, the ISEF-based GEF operator represents an attractive solution since

the corresponding processing time is 545ms, while the edge recovering per-

formance is not signi�cantly reduced. The proposed edge reconstruction and

linking scheme is computationally eÆcient, the processing time required by

these operations is about 500ms (depending on the complexity of the input

image). The computational overhead associated with the recognition and

pose estimation algorithm is very low since all the computationally intensive

operations are performed o�-line.

The proposed bin picking system was evaluated using scenes which con-

tain clutter and occlusion. The cluttered scenes are created by arranging the

objects contained in the database in various ways. The object recognition

scheme described in Section 5 correctly identi�es the topmost object if the
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perspective distortions or the occluding area a�ects less than 20 % of the sur-

face's total area. The object pose is determined using the strategy described

in Section 6. Since the pose estimation process consists of two distinct stages,

the system's performance was analysed for each stage separately. The �rst

stage constrains the rotation about the z axis using eigenimage analysis. The

rotation angle was sampled uniformly with the object lying at on a dark

worktable. For each object of interest the object rotation was sampled by ac-

quiring 24 training images. This generates a 24 dimensional eigenspace and

the resulting manifold was re-sampled to 720 points as described in (Murase

and Nayar 1995). The pose was estimated with an error rate of 2.1 % under

the condition that the tilt of the object is limited to 25 degrees.

The remaining rotations are constrained by the normal vector. Since

range data is used to compute the normal vector, the pose estimation error

is directly related to the precision of the range sensor. In order to simplify

the problems associated with the generation of accurate ground truth orien-

tations, the object rotations about x and y axes were analysed independently.

In our experiments we obtained a maximum error rate of 7 degrees.

Some experimental results are depicted in Fig. 11 and Fig. 12. Fig. 11

illustrates the case where the scene under investigation contains only clut-

ter, while Fig. 12 illustrates the performance of the system when applied to

a scene containing clutter and occlusions. As mentioned earlier, there are
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(a) (b)

(c) (d)

Figure 11: Recognition results when the system is applied to a scene contain-

ing clutter. (a) Input image. (b) The resulting image data (the �rst �gure

de�nes the rank of the region with respect to area, the second is the region's

elevation and the last two represent the region's area and perimeter). (c) The

topmost recognised region. (d) The pose estimation for the topmost object.

situations when all the objects contained in the scene are heavily occluded

or they are positioned in such way that their appearance is signi�cantly dis-

turbed. In such situations the robot rearranges the scene in order to obtain

a better con�guration (Fig. 13).
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(a) (b)

(c) (d)

Figure 12: Recognition results when the system is applied to a scene con-

taining clutter and occlusion. (a) The input image. (b) The resulting image

data. (c) The topmost recognized region. (d) The pose estimation for the

topmost object.

(a) (b)

Figure 13: A typical example that illustrates a case when the scene has to be

rearranged in order to obtain a better con�guration. (a) The input image.

(b) The resulting image data.
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8 Conclusions

The proposed bin picking system consists of four main components: range

sensing, image segmentation, object recognition and pose estimation. The

developed range sensor estimates the depth by measuring the relative blur-

ring contained in a pair of images captured with di�erent focal settings. To

overcome the restriction associated with passive DFD, the current implemen-

tation is based on active DFD, a fact that o�ers the possibility to accurately

estimate the depth even in cases when dealing with textureless scenes. Also,

it is important to note that this range sensing technique allows obtaining

real-time depth estimation at very low cost. The second component of the

system attempts decomposing the image into disjointed meaningful regions

that have strong correlation with the objects that de�ne the scene. A key

issue for an edge-based segmentation technique relates to closing the gaps

between unlinked edges and eliminating the spurious edges that are due to

noise. In Section 4 we have described an eÆcient morphological approach

for edge reconstruction and linking. The particular novelty of this approach

lies in the edge linking scheme which bridges the gaps in edges using only

the local knowledge. As a consequence, it relaxes the demand of a priori

information and assures an accurate and eÆcient search for edge paths in

the image under investigation. The recognition process de�nes the third
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component and consists of analyzing the global geometrical primitives de-

rived from the regions resulting after the application of the segmentation

algorithm. Since this implementation addresses a bin picking application,

key to this approach is the ability to locate the object placed on the top of

the object pile in order to allow easy manipulation. In contrast with other

related implementations (Dickinson et al. 1992, Fan et al. 1989), the current

approach is particularly useful when dealing with small textureless objects,

speci�cally when only a small number of faces are available. The last com-

ponent determines the pose for the recognized object using an eigenimage

approach augmented with a range data analysis. We believe that the current

implementation can be successfully applied to industrial tasks such as sorting

and packing. The experimental results have demonstrated the validity of the

proposed approach.
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