

NeatVision - Visual Programming for
Computer Aided Diagnostic

Applications 1

Paul F. Whelan, PhD

Robert J.T. Sadleir, BEng

Ovidiu Ghita, PhD

This work was supported by the EU Fifth Framework Programme and Science

Foundation Ireland.

Address correspondence to:

Paul F. Whelan
Vision Systems Group,
School of Electronic Engineering
Dublin City University
Dublin 9,
Ireland.
Tel: +353 1 7005489
Fax: +353 1 7005508
E-mail: paul.whelan@eeng.dcu.ie

1 From the Vision Systems Group, School of Electronic Engineering, Dublin City
University, Ireland.

 1

Abstract

This paper will detail a free visual programming based image analysis development

environment for medical imaging applications. The environment provides high-level

access to a wide range of image processing algorithms through a well-defined and

easy to use graphical interface. The system contains over 300 image manipulation,

processing and analysis algorithms. For more advanced users an upgrade path is

provided to extend the core library using the developer’s interface. This additional

freely available plug-in features, automatic source code generation, compilation with

full error feedback and dynamic algorithm updates. The paper will also discuss key

issues associated with the environment and outline the advantages in adopting such a

system for computer aided diagnostic application development. A wide range of

computer aided diagnostic sample applications will also be presented to illustrate the

flexibility of the environment.

One sentence summary: This article introduces a freely available and user-friendly

visual programming based image analysis development environment for computer

aided diagnostic application development.

 2

Introduction

With the ever-increasing capabilities of medical scanners, the quantity and quality of

data to be handled is increasing significantly. Computer Aided Diagnosis (CAD) is

one possible way to deal with such information overload as it assists radiologist

undertake their tasks in an increasingly pressurised work environment. The

development of robust and accurate CAD tools relies heavily on the incorporation of

computer vision techniques into the imaging task. The development of such computer

vision based CAD tools is not a trivial task and requires significant expertise and high

quality easy to use development tools. One approach to this task is through the use of

visual programming to develop the necessary computer vision modules for CAD, such

as those dealing with the analysis of shape, colour (for standard imaging applications)

and texture. Extracting useful information from images is a difficult task and as such

requires a flexible application development environment. The visual programming

environment outlined in this paper (refereed to as NeatVision (1)) is one such system.

It aims to provide novice and experienced CAD developers with access to a multi-

platform (realised through the use of Java) development system. The NeatVision

environment provides an intuitive interface which is achieved using a drag and drop

block diagram approach. Each image processing operation is represented by a

graphical block with inputs and outputs that can be interconnected, edited and deleted

as required. NeatVision (Version 2.1) is available free of charge and can be

downloaded directly via the Internet (1).

While users may have had some prior programming language development

experience, the level of competence can vary significantly. A number of difficulties

 3

arose from using a standard programming language (such as ‘C’). From a technical

perspective, it is clear that the support and maintenance of such libraries of functions

for a wide range of operation systems is impractical. The multi-platform capabilities

of Java led us to consider this as a viable alternative. But more importantly from a

development point of view, we wanted to avoid the situation whereby novice

developers spent a significant proportion of their time on the issues relating to the

actual programming language. Instead we want the focus to be on the development of

novel CAD approaches.

This paper will also outline a wide range of computer aided diagnostic sample

applications, including: CT colon region segmentation, brain region segmentation and

measurement, bilary tree region extraction for MRCP (Magnetic Resonance

Cholangiopancreatography) and the calculation of the ejection fraction from MR

cardio images. By examining these applications we clearly illustrated the power and

flexibility of NeatVision as a CAD development tool.

 4

NeatVision: An Interactive Development

Environment

Visual programming involves defining variables, specifying operations, which are to

be performed on these variables and their derivatives in order to perform a specific

task. This is achieved by creating a structured flow of data using branching, looping

and conditional processing. Traditionally computer programs have been written using

textual programming languages. These programs can process data in a complex

fashion, unfortunately the data paths and the overall structure of the program can not

be easily identified from the textual description. This can make it very difficult to

appreciate the relationship between the source code and the functionality which it

represents. Although the programmer specifies the data flow in a visual program, the

order in which the components execute is defined by the availability of data.

Conditional processing concepts are supported in the visual domain by using

dedicated flow control components. The main disadvantages of existing visual

programming environments includes their cost, lack of cross platform support and the

fact that they tend to be focused on image processing rather than image analysis

applications (the latter must be considered a key element of any practical CAD

application). NeatVision is just one example of a visual programming development

environment for computer vision; other notable examples include commercial

programmes such as Khoros (2) and WiT (3). While Khoros and WiT lack a medical

imaging focus, they do provide a good selection of general image processing tools.

Alternatives, such as the NIH’s ImageJ (4), offer a freely available user-friendly

environment for image processing in Java. The advantages in using ImageJ, and other

 5

Java related image processing packages, has been outlined elsewhere (5), and in many

respects offers some of the key advantages of NeatVision. But unlike NeatVision,

which allows for the parallel processing of data, ImageJ offers a sequential menu

driven image-processing environment. This is generally sufficient for basic imaging

tasks. The real strength of this environment is the plug-ins generally developed by

third parties, many of which are medical imaging related. Unlike NeatVision it

requires the user to have a significant level of Java programming ability to put

together a realistic CAD process. NeatVision focus is on simplifying this development

stage.

Java is an interpreted programming language and as such applications written in Java

are not executed directly on the host computer, instead these applications are

interpreted by the Java Virtual Machine. As a results Java programs generally run

slower than native compiled programs written in languages such as C or C++. This

performance issue is constantly being addressed by Sun Microsystems. Just-in-time

compliers significantly improved the performance of Java applications by removing

the need to reinterpret already executed code. Sun further improved the performance

of Java by introducing HotSpot technology. This technology enhances application

performance by optimising garbage collection and improving memory management.

With the recent release of the Java 2 Platform Standard Edition 1.5.0 the performance

of Java is approaching that of native programming languages.

Text based programming languages such as MATLAB (6) can be a powerful

alternative to visual programming. Unfortunately building a CAD application in

MATLAB is non-trivial (especially for novice users) and can approach the complexity

 6

level of writing the CAD application directly in a standard programming language

such as ‘C’. In addition to the disadvantages outlined with respect to the visual

programming languages, text based approaches require the user to have a higher level

of programming skills when compared to visual programming environments. Text

based interactive environments are generally more suitable to experienced users, in

fact experienced users can become frustrated by the visual programming environment

as complex programmes can take longer to develop. Hence our aim is to produce a

suitable environment for those new to the design of CAD techniques while retaining

the flexibility of program design for the more experienced users. Based on our review

of existing text and visual programming based computer vision development

environments, the key criteria necessary are outlined below:

• Multi-platform: The development environment must be able to run on a wide

range of computer platforms.

• Focused on computer vision: The environment should contain a wide range

of image processing and analysis techniques necessary to implement practical

CAD applications.

• Easy to use: It should allow users to concentrate on the design of CAD based

computer vision solutions, as opposed to emphasizing the programming task.

• Upgradeable: The environment must contain a mechanism to allow users to

develop custom CAD modules.

A visual program can be created by defining input data using the input components,

then implementing the desired algorithm using the processing and flow control

components. The data flow is specified by creating interconnections between the

 7

components. The program can be completed by adding output components to view the

data resulting from the algorithm execution. For those who wish to delve further,

details on the design of the NeatVision development environment appear elsewhere

(7).

NeatVisions Graphical User Interface

The NeatVision Graphical User Interface (GUI) (Figure 1) consists primarily of a

workspace where the processing blocks reside. The processing blocks represent the

functionality available to the user. Support is provided for the positioning of blocks

around the workspace, the creation and registration of interconnections between

blocks. The lines connecting each block represent the path of the data through the

system. Some of the blocks can generate child windows, which can be used for

viewing outputs, setting parameters or selecting areas of interest from an image. If

each block is thought of as a function, then the application can be thought of as a

visual programming language. The inputs to each block correspond to the arguments

of a function and the outputs from a block correspond to the return values. The

advantage of this approach is that a block can return more than one value without the

added complexity of using C-style pointers. In addition, the path of data through a

visual program can be dictated using special flow control components. A visual

program can range in complexity from three components upwards and is limited only

by the availability of free memory.

As each block is processed it is highlighted (in green) to illustrate that it is active. This

allows users to see the relevant speeds of parallel data streams within a visual

program. This can help identify potential processing bottlenecks within the workspace

 8

allowing for a more efficient balanced design. The colour coding of the blocks data

connection type and its status also aids in the design process. To aid user operation

each data connection has two colour coded properties, namely the block data type and

connection status. NeatVision currently supports nine data types, i.e. 2D Image (red),

Integer / Array data (green), Double precision Floating point data (blue), Boolean data

(orange), String data (pink), Fourier data (light blue), Coordinate data (purple), 3D

data volume (black) and Undefined data (black). The other connection property

relates to its status. There are three main states for a connection, connected (green),

disconnected (red) and disconnected but using default value (orange).

This approach provides a fast and simple alternative to conventional text based

programming, while still providing much of the power and flexibility. The visual

workspace can be compiled and executed as with a conventional programming

language. Errors and warnings are generated depending on the situation. There is

currently support for 15 input graphics file formats (including DICOM and Analyze)

and 13 output formats (including DICOM and raw volume data). DICOM and

Analyze data is processed via our NeatMed Medical Imaging Application Developers

Interface (API) (8,9), which is also included as part of NeatVision. This allows

NeatVision to have straightforward access to medical image encoded according to

either the DICOM or Analyze formats. System parameters can be adjusted and the

system may be reset and executed again until the desired response is obtained. At any

stage blocks may be added or removed from the system. NeatVision also contains a

built in web browser to allow easy access to online notes and support tools.

 9

Design Details

NeatVision is designed to work at two levels. The user level allows the design of

imaging solutions within the visual programming environment using NeatVision's

core set of functions. NeatVision contains 300 image manipulation, processing and

analysis functions, ranging from pixel manipulation to colour image analysis to data

visualisation. To aid novice users, a full introductory tutorial and some sample

programmes can be found on the NeatVision website (1). A brief description of the

main system2 components is given below (a full users guide is also available (10)):

• Data types: Image, integer, double, string, Boolean, array, medical image

sequences.

• Flow control: Path splitting, feedback, if (else), for loop.

• Utilities: Rotation, pixel manipulation, resize, URL control, additive noise

generators, region of interest, masking operations.

• Arithmetic operators: Add, subtract, multiply, divide, logical operators.

• Histogram: General histogram analysis algorithms, local equalization.

• Image Processing: Look-up tables (LUT), threshold, contrast manipulation.

• Neighbourhood based filtering: Lowpass, median, sharpen, DOLPS,

convolution, adaptive smoothing (or filtering).

• Edge detection: Roberts, Laplacian, Sobel, zero crossing, Canny

• Edge features: Line/arc fitting, edge labelling and linking.

• Analysis: Thinning, binary detection, blob analysis, labelling, shape feature

measures, bounding regions, grey scale corner detectors.

2 Items in italics are only included in the NeatVision advanced edition. This is available on request.

 10

• Clustering: K-means (grey scale and colour), unsupervised colour clustering.

• Image transforms: Hough (line and circle), Medial Axis, DCT,

Cooccurrance, Fourier, distance transforms.

• Morphology: Several 2D morphological operators, including erosion, dilation,

opening, closing, top-hat, hit-and-miss, watershed.

• Colour: Colour space conversion algorithms, RGB, HSI, XYZ, YIQ, Lab.

• 3D Volume: 3D Operators (thinning, Sobel, threshold, labelling), maximum

and average intensity projections, rendering engine (Java and Intel native: wire

frame, flat, Gouraud, Phong), DICOM utilities, XYZ viewer, 3D to 2D

conversion, data scaling, 3D windowing, 3D arithmetic, 3D image processing,

3D labelling, 3D morphological operators, 3D reconstruction, 3D clustering

• Low Level: Pixel level operators; get pixel value, set pixel value and basic

shape generation.

• String: String operators, object addition, to upper case and to lower case.

• Maths: An extensive range of numerical operators and utilities, including

constants and random number generation.

• JAI Colour: Colour algorithms implemented using JAI (Java Advance

Imaging (11)), operators, processing, filters and edge detectors.

• OSMIA functions (12) (Wintel native only): NEMA and AIFF image reader,

ejection fraction measurement, 2D optical flow (Lucas & Kanasde and Horn &

Shcunck courtesy of Barron (13) via the European Union funded OSMIA

project (12)), XY normalization, Aorta tracking (courtesy of Thacker (14) also

via the OSMIA project)

 11

At the more advanced developers level, NeatVision allows experienced CAD

application designers to develop and integrate their own functionality through the

development and integration of new image processing/analysis modules. Refer to the

online NeatVision (15) developers guide for more details on developing and

integrating custom computer vision based CAD applications.

Sample Applications

NeatVision provides an image analysis software development environment that can

work at several levels. For example, at a relatively low level, individual pixels can be

manipulated. Alternatively, NeatVision's built in functionality can be used to generate

solutions to complex computer vision based CAD tasks. This section outlines four

sample CAD applications. Figure 2 outlines a common imaging task, namely the

clustering of similar regions in 2D space. Here an automated (i.e. unsupervised)

clustering methodology is adopted. The input image is a selected region from a CT

DICOM data set of the colon. In this application we require to isolate the pixel

regions immediately surrounding the inflated region of the colon, i.e. the air tissue

boundary. This is achieved by selecting one of the cluster regions produced by the

unsupervised clustering stage by means of the double threshold function (see (7) for

details).

The second application, Figure 3, is more involved. In this case we are interested in

the extraction, measurement and visualisation of a user-defined region of the brain.

The user does not have to fully define the region of interest, but rather select a single

point. The software then isolates connecting regions allowing a computer assisted

segmentation of the region. The user can then make point-to-point measurements on

 12

the isolated region. In this example we also illustrate how a region of interest can be

selected to allow a dynamic 3-dimensional visualisation.

The sample application illustrated in Figure 4 involves working with 3D imaging

techniques. The application requires the isolation of the bilary tree with minimal user

intervention. The input is a 14 slice MRI DICOM data set. After windowing the user

is requested to select a point of interest (similar to the previous example). The key

difference with this application is that we now cluster in 3D space to segment the

region of interest. A fully dynamic surface rendering of the region along with its

associated maximum intensity projection is also illustrated.

The final sample application deals with the complex issue of calculating the hearts

ejection fraction from MR cardio images. This implementation is based on true

segmentation of the left ventricle excluding fat and papillary muscles on the endo-

cardium. A 3D surface rendering of left ventricle volume (end-diastole and end-

systole) is also illustrated.

 13

Developers Environment

NeatVision was originally designed so that it could be easily extended by building on

previously developed algorithms. This feature has been finalised with the release of

version 2.1 of the NeatVision visual programming environment. This allows users to:

• Develop new NeatVision components that can ultimately be reused by other

NeatVision developers

• Reuse the core NeatVision components in new user defined components

• Submit your component or library of components to wider NeatVision

community.

NeatVision development assumes a basic level of familiarity with the Java

programming language from Sun Microsystems and the NeatVision developers plug-

in. Additional details on developing for NeatVision (15) and the design concepts

behind NeatVision along with detailed explanations of many of the its algorithms can

be found are also available (7)

When the developer’s interface and the Java Developers Kit (JDK) are present a

‘user’ tab appears alongside the ‘system’ tab in the component explorer. The

developer can add a new component by right clicking anywhere within the ‘user’ view

of the component explorer. After right clicking, a popup menu will appear. The ‘Add

New Component’ option must be selected from this menu in order to create a new file

(Figure 6). The user is then queried as to whether they would like to create a

NeatVision Component, a Java Class or a Java Interface (Note: a NeatVision

Component is just a special type of Java class). A filename for the class or interface

 14

must be specified at this point. If a Java Interface or standard Java class is specified at

then a text editor window is displayed with the relevant skeleton source code. The

developer may edit and compile this code as desired. If a NeatVision component is

specified then a component development wizard is launched.

The wizard allows the developer to specify the visual appearance of the component

including width and height in pixels, component name and number of inputs and

outputs. The wizard also allows the developer to specify the data type and data

description associated with each of the inputs and outputs. Once all of the required

information has been entered the developer need only press the ‘Create’ button to

generate to skeleton source code for the desired NeatVision component. The

developer can then edit the skeleton source code as required in order to implement the

desired component functionality. At any stage the source code for the component can

be compiled. This is achieved by selecting the relevant compile option from the

‘Project’ menu. Selecting the compile option launches the Java compiler distributed

with the JDK and any errors in the specified file(s) are subsequently listed in the

message window at the bottom of the main NeatVision window. For each error a

description, filename and line number are provided. The user need only click on an

error message to highlight the relevant error in the source code. Once all errors have

been corrected the message ‘compilation succeeded’ is printed in the status bar.

Following successful compilation the block is available for use and can be included in

a workspace like any core NeatVision component.

The NeatVision developers interface extends and complements the visual

programming interface by allowing users to develop custom components that can

 15

encapsulate the functionality of core NeatVision components, thus extending the

already vast NeatVision library of components. Full details relating to the

development of source code for NeatVision component is provided on the NeatVision

website (1).

 16

Summary

NeatVision was designed to allow novice and experienced users to focus on the

computer vision design task for CAD applications rather than concerns about the

subtlety of a given programming language. It allows the designers of image analysis

based computer aided diagnostic techniques to implement their ideas in a dynamic

and straightforward manner. NeatVision standard and developers versions are freely

available via the Internet and are capable of running on a wide range of computer

platforms (e.g. Windows, Solaris, Linux).

Acknowledgments: We would like to acknowledge Dr. Helen Fenlon (Department of

Radiology) and Dr. Padraic Mac Mathuna (Gastrointestinal Unit) of the Mater

Misericordiae Hospital Dublin Ireland for supplying the colon and MRCP data sets

used in this paper. Many thanks to Rob van der Geest, Department of Radiology,

Leiden University whose help was gratefully appreciated. He also generously supplied

gradient-echo DICOM cardiac image sequences shown in this paper courtesy of Cory

Swingen, University of Minnesota, Minneapolis. We would like to acknowledge the

EU for funding the Fifth Framework Programme (IST: Accompanying Measures)

OSMIA (Open Source Medical Image Analysis) project. Finally, we would like to

acknowledge the generous financial support of Science Foundation Ireland

(www.sfi.ie) for our medical imaging research programme.

 17

http://www.sfi.ie/

References

1. NeatVision: Image Analysis and Software Development Environment.

Available at http://www.neatvision.com 2004; Accessed April 28.

2. Khoros: Khoral Research, Inc Available at http://www.khoral.com 2004;

Accessed April 28.

3. WiT: Logical Vision, Available at http://www.logicalvision.com 2004;

Accessed April 28.

4. ImageJ, National Institute of Health (USA). Available at

http://rsb.info.nih.gov/ij/ 2004; Accessed April 28.

5. Sage D and Unser M, Teaching Image Processing Programming in Java. IEEE

Signal Processing Magazine 2003: Nov:43-52

6. MathWorks: Matlab, Available at http://www.mathworks.com 2004; Accessed

April 28.

7. Whelan PF and Molloy D (2000), "Machine Vision Algorithms in Java:

Techniques and Implementation", Springer-Verlag, London

8. Sadleir RJT, Whelan PF, Bruzzi JF, Moss AC, MacMathuna P and Fenlon

HM. A Portable Toolkit for Providing Straightforward Access to Medical

Image Data. Radiographics 2004; July (In-Press)

9. NeatMed Medical Imaging Application Programmers Interface. Available at

http://www.eeng.dcu.ie/~vsl/DICOM/index.html 2004; Accessed April 28.

10. NeatVision: Users Guide, Available at http://neatvision.eeng.dcu.ie/user.html

2004; Accessed April 28.

 18

http://www.neatvision.com/
http://www.khoral.com/
http://www.logicalvision.com/
http://rsb.info.nih.gov/ij/
http://www.mathworks.com/
http://www.eeng.dcu.ie/~vsl/DICOM/index.html
http://neatvision.eeng.dcu.ie/user.html

11. JAI: The Java Advanced Imaging (API), Available at

http://java.sun.com/products/java-media/jai 2004; Accessed April 28.

12. OSMIA - Open Source Medical Image Analysis, EU Fifth Framework

Programme (IST: Accompanying Measures). Available at

http://www.eeng.dcu.ie/~whelanp/osmia/ 2004; Accessed February 12.

13. Barron JL, Fleet DJ and Beauchemin S. Performance of optical flow

techniques. International Journal of Computer Vision 1994; 12(1):43-77.

14. Lacey AJ, Watson NA, Thacker NA and Jackson A. Automatic tracking of the

aortic boundary in blood flow analysis using cardiac MR images. In: Proc.

ECR 2000, volume 9. European Congress of Radiology, Springer, March 2000

15. NeatVision: Developers Guide, Available at

http://neatvision.eeng.dcu.ie/developer.html 2004; Accessed April 28.

 19

http://java.sun.com/products/java-media/jai
http://java.sun.com/products/java-media/jai
http://www.eeng.dcu.ie/~whelanp/osmia/
http://neatvision.eeng.dcu.ie/developer.html

Figures

 20

Figure 1: Key features of the NeatVision environment.

 21

a

b

c

d

Figure 2: 2D data clustering. (a) NeatVision workspace. (b) Original DICOM image [1] (to aid in understanding the workspace each relevant

image block has been labelled numerically and referenced via square brackets within the figure legend). (c) Pseudo colour display of the regions

automatically clusters using an unsupervised approach [2]. (d) A single cluster region is selected and isolated [3].

 22

a

b

c

d

e

f

g

Figure 3: Brain region extraction, measurement and visualisation. (a) NeatVision workspace. (b) User

selects region they which to extract by means of a single mouse click (as indicated by the crosshair in

the image) on the two dimensional image [1]. (c) Automated region removal [2]. (d) User selected

region based on the point marked in (b). The user can then select points on which to make distance

measurements (i.e. the line connecting the two user selected crosshair points). This distance

 23

measurement is displayed in the workspace illustrated in (a) [3]. (e) Edge only information relating to

the isolated region [4]. (f) User selected region of interest to allow 3-dimensional visualisation [5]. (f)

Visualisation of region selected in (f).

 24

a

b

c

d

e

Figure 4: Bilary tree region extraction using 3D imaging. (a) NeatVision workspace.

(b) The user loads the 14 slice bilary tree MRI DICOM volume in to the users

workspace [1]. (c) User selects region to be isolated and processed [2]. (d) 3D surface

 25

rendering of volume using Phong shading techniques. The volume is capable of been

fully manipulated by the user [3]. (e) Maximum intensity projection (MIP) of the

isolated volume [4].

 26

a

b

c

d

e

Figure 5: Calculation of the hearts ejection fraction based on true segmentation of the

left ventricle excluding fat and papillary muscles on the endo-cardium. (a) NeatVision

 27

workspace. (b) The user loads the MRI DICOM volumes for both the systolic and

diastolic phases in to the NeatVision workspace [1]. (c) The user selects the left

ventricle region (by clicking on a single point) in both systolic and diastolic volumes.

These regions are then automatically to be isolated and processed [2]. (d) 3D surface

rendering of left ventricle volume (end-diastole). The volume is capable of been fully

manipulated by the user [3]. (e) 3D surface rendering of left ventricle volume (end-

systole). The actual value for the ejection fraction is indicated in the NeatVision

workspace (a) [4].

 28

a b

 29

c

Figure 6: NeatVision component development wizard. (a) Select Add New Component from the popup menu of the user area of the component

explorer. (b) Select component to be added. (c) Define the component skeleton (i.e. the number and type of inputs and outputs for the associate

block). This generates the necessary component wrapping code. Users can then insert their own custom code to compete the component

generation procedure.

 30

Figure Legends

 31

Figure 1: Key features of the NeatVision environment.

Figure 2: 2D data clustering. (a) NeatVision workspace. (b) Original DICOM image

[1] (to aid in understanding the workspace each relevant image block has been

labelled numerically and referenced via square brackets within the figure legend). (c)

Pseudo colour display of the regions automatically clusters using an unsupervised

approach [2]. (d) A single cluster region is selected and isolated [3].

Figure 3: Brain region extraction, measurement and visualisation. (a) NeatVision

workspace. (b) User selects region they which to extract by means of a single mouse

click (as indicated by the crosshair in the image) on the two dimensional image [1].

(c) Automated region removal [2]. (d) User selected region based on the point marked

in (b). The user can then select points on which to make distance measurements (i.e.

the line connecting the two user selected crosshair points). This distance measurement

is displayed in the workspace illustrated in (a) [3]. (e) Edge only information relating

to the isolated region [4]. (f) User selected region of interest to allow 3-dimensional

visualisation [5]. (f) Visualisation of region selected in (f).

Figure 4: Bilary tree region extraction using 3D imaging. (a) NeatVision workspace.

(b) The user loads the 14 slice bilary tree MRI DICOM volume in to the users

workspace [1]. (c) User selects region to be isolated and processed [2]. (d) 3D surface

rendering of volume using Phong shading techniques. The volume is capable of been

fully manipulated by the user [3]. (e) Maximum intensity projection (MIP) of the

isolated volume [4].

 32

 33

Figure 5: Calculation of the hearts ejection fraction based on true segmentation of the

left ventricle excluding fat and papillary muscles on the endo-cardium. (a) NeatVision

workspace. (b) The user loads the MRI DICOM volumes for both the systolic and

diastolic phases in to the NeatVision workspace [1]. (c) The user selects the left

ventricle region (by clicking on a single point) in both systolic and diastolic volumes.

These regions are then automatically to be isolated and processed [2]. (d) 3D surface

rendering of left ventricle volume (end-diastole). The volume is capable of been fully

manipulated by the user [3]. (e) 3D surface rendering of left ventricle volume (end-

systole). The actual value for the ejection fraction is indicated in the NeatVision

workspace (a) [4].

Figure 6: NeatVision component development wizard. (a) Select Add New

Component from the popup menu of the user area of the component explorer. (b)

Select component to be added. (c) Define the component skeleton (i.e. the number and

type of inputs and outputs for the associate block). This generates the necessary

component wrapping code. Users can then insert their own custom code to compete

the component generation procedure.

	Introduction
	
	
	
	
	
	NeatVisions Graphical User Interface

	Design Details
	Sample Applications
	Developers Environment
	Summary
	References
	
	Figures
	
	Figure Legends

