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Abstract
Purpose – This paper describes the development of a novel automated vision system used to detect the visual defects on painted slates.
Design/methodology/approach – The vision system that has been developed consists of two major components covering the opto-mechanical and
algorithmical aspects of the system. The first component addresses issues including the mechanical implementation and interfacing the inspection
system with the development of a fast image processing procedure able to identify visual defects present on the slate surface.
Findings – The inspection system was developed on 400 slates to determine the threshold settings that give the best trade-off between no false
positive triggers and correct defect identification. The developed system was tested on more than 300 fresh slates and the success rate for correct
identification of acceptable and defective slates was 99.32 per cent for defect free slates based on 148 samples and 96.91 per cent for defective slates
based on 162 samples.
Practical implications – The experimental data indicates that automating the inspection of painted slates can be achieved and installation in a
factory is a realistic target. Testing the devised inspection system in a factory-type environment was an important part of the development process as
this enabled us to develop the mechanical system and the image processing algorithm able to perform slate inspection in an industrial environment. The
overall performance of the system indicates that the proposed solution can be considered as a replacement for the existing manual inspection system.
Originality/value – The development of a real-time automated system for inspecting painted slates proved to be a difficult task since the slate surface
is dark coloured, glossy, has depth profile non-uniformities and is being transported at high speeds on a conveyor. In order to address these issues, the
system described in this paper proposed a number of novel solutions including the illumination set-up and the development of multi-component image-
processing inspection algorithm.
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1. Introduction

The aims of using automated visual inspection are to classify

products for quality so that defective units may be rejected, to

measure some properties of the product with a view to

controlling the production process, and to gather statistics on

the efficiency of the production process. Although slate

manufacturing is a highly automated process, in current

practice the painted slates are manually inspected by an

operator who looks at them as they emerge via a conveyor from

the paint process line. Hence, the aim of this work is to develop

an online sensor capable of measuring and classifying the slates

as having a surface finish of acceptable or not acceptable quality

(see Whelan, 1997; Batchelor and Waltz, 2001 for a review of

the system engineering issues in industrial inspection).
The authors foundnoprior relevantwork on the inspection of

slates. However, there is an abundance of references on the

subject of inspection of ceramic tiles. Although the production
processes for slates (Fernandez et al., 1998) and ceramic tiles are
very different, the visual inspection process for ceramic tiles are
broadly applicable to the inspection of slates as both products
are rectangular in shape, have textured surfaces and arrive at the
inspection point via a conveying system.
One common aspect to emerge from all the work reviewed

in the field of ceramics inspection was the difficulty
experienced in developing a single processing procedure to
detect the wide range of defect types and sizes. The merits of
a multi-component inspection were highlighted where each
component was tailored to identify a specific category of
defects. It is also evident from the literature review that of
equal importance to the image processing procedure is the
selection of an illumination set-up that minimises spatial and
temporal illumination variations. The ceramic inspection
systems examined were based on either diffuse or collimated
lighting methods. Diffuse lighting methods were usually
employed and often in combination with colour cameras.
Various implementations used the diffuse lighting method to
detect cracks or holes in the tile surface (Peñaranda et al.,
1997; Boukouvalas et al., 1997). On the other hand,
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Boukouvalas et al. (1999) employed a collimated lighting

method where fluorescent lamps were used as a light source to

image substrate defects such as lumps and depressions. Their
imaging system captures the specular reflections generated by

the ceramic tiles surface where the camera and light source

angles relative to the normal vector of the surface being
inspected are equal.
The second major component of the inspection system is

the image processing algorithm that is applied to detect the

visual defects. In this regard, Boukouvalas et al. (1997) used
1D convolvers to detect the spot and line defect existence on
the tile surface. The optimal filter coefficients used in the

convolvers can detect features with widths within a factor of

1.5 of the feature for which the filter is optimised. This would
restrict the application of this method to slate inspection due

to the large range of defect sizes identified on the slate’s

surface. More complicated techniques based on Wigner
distributions were employed to inspect coloured and heavily

textured tile surfaces (Boukouvalas et al., 1999). Their

implementation used a co-joint spatial frequency
representation of the Wigner distribution that was employed

to maximise the signature of regular patterns. This method is

more applicable to inspection of multi-coloured and textured
surfaces and this is a limiting factor in the use of this

technique for slate inspection. Peñaranda et al. (1997) and

Boukouvalas et al. (1999) used grey level intensity histograms
to identify whether the unit being inspected is defective.

Although these methods proved to be reliable when applied to
tile inspection, they are less effective in the inspection of slates

as the greyscale mean and the standard deviation vary too

widely from slate to slate and within each slate.
Other related implementations include the application of

the grey level difference method (Tobias et al., 1995),

morphological methods (Müller and Nickolay, 1994), local
binary pattern methods (Ojala et al., 1996; Mäenpää et al.,
2003) and texture analysis (Mandriota et al., 2004; Lu and

Tsai, 2005). The grey level difference methods were
ineffective because of the significant variations in acceptable

grey level mean values between successive slate images. Key to

the successful application of morphological methods is the
selection of structuring elements matched to the size and

shape of the defect features (Patek et al., 1998; Whelan and
Molloy, 2000). However, this was considered unfeasible given

the vast range of defect shapes and sizes.
This paper is organised as follows. Section 2 describes the

typical slate defects. Section 3 details the development of the

prototype inspection system. Section 4 presents the adopted

illumination arrangement. Sections 5 and 6 describe the
image-processing algorithm. Section 7 presents several

challenges introduced to the system by the factory

environment. Section 8 discusses the experimental results
and Section 9 concludes this paper.

2. Description of slate defects

The manufactured slates are painted on a high-speed paint
line and are manually inspected as they emerge from the paint

line via a conveyor system. Visual inspection is carried out

manually where human inspectors make a decision as to
whether each individual slate is defect free and removing the

slates not meeting the inspection criteria.
Slates have a rectangular shape and their top surface is

painted black or grey and has a high gloss finish. The painted

surface is nominally flat. The slate surface defects are broadly

classified into two categories: substrate and paint. Substrate

defects include incomplete slate, lumps, depressions and
template marks. Paint faults include no paint, insufficient

paint, paint droplets, efflorescence, paint debris and orange
peel.
These defects can have arbitrary shapes and their sizes

range from sub-millimetre to hundreds of square millimetres.
A selection of representative defects is shown in Figure 1,

where Figure 1(a) shows a defect free (reference) image
section.

3. Description of the prototype inspection system

The prototype inspection system was built to replicate the

factory environment (Newman and Jain, 1995) and is shown

in Plate 1. The 2m long belt conveyor transports the slates to
the inspection line at speeds in the range 15-50m/min.

The slate is illuminated using a 762mm wide fibre optic line
light where the light is collimated by a cylindrical lens.

The sensing device is a Basler 2k-pixel line-scan camera fitted

with a 28mm lens. The line-scan camera operates at a scan
frequency of 2.5KHz. A micro-positioner was attached to the

camera to facilitate fine adjustment of camera view line.
A Euresys frame grabber is used to interface the camera to the

PC. The slate is aligned by a guide placed on one side of

the conveyor and an optical proximity sensor triggers the
image capture immediately prior to the arrival of the slate at

the inspection line. When the image transfer is complete, the
slate image is processed using the image-processing routines

that will be detailed in Sections 5 and 6.

4. Illumination set-up

The strategy used to image the slate relies on the strong

reflecting properties of the slate’s surface. Light incident on
the slate will be reflected and the angle of reflection is equal to

the angle of incidence if the slate surface is acceptable. The
principle of operation is shown in Figure 2 using the Phong

illumination model described by Davies (1997).
Generally speaking, paint defects have reduced gloss levels,

except for paint droplets that may have a higher gloss level

than the slate areas of acceptable quality. Substrate defects
are associated with uneven slate surfaces that are generated

by an incorrect drying/formation process. The resulting
appearance of these defects translates into a reduction of

light arriving at the sensing device. For this implementation,

a collimated light source was used. One of the challenging
problems we encountered was the variation in depth profile

across the slate due to slight but acceptable slate bowing that
is sometimes present in the inspected slate. This raises and

lowers the absolute position of the band of light relative to

the camera view position. As a mechanical solution to force
the slate into a uniform flat position is not feasible, we

decided to defocus the lens that is used to collimate the light.
This produces a wider band of light and reduces collimation.

The resulting reduction in light intensity was compensated

for by using the spare capacity in the lamp controller. A
simple trigonometric calculation was employed to determine

the width of the band of light required to make the system
sufficiently insensitive to depth profile non-uniformities. To

this end, the lens was defocused such that the resulting width
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of the light band was made equal to 25mm. For this
implementation, the illumination set-up comprises two
Fostec DCR III 150W lamp controllers, a Fostec 30” fiber
optic light line and a cylindrical lens. It is useful to mention
that the developed inspection system uses collimated light,
and this implies that changes in the ambient light have a
negligible influence on the light reflected by the slate back to
the camera. In our experiments, the system was tested under
various ambient lighting conditions and it was found to be
insensitive to changes in the ambient lighting.

5. Segmentation of slate image from background

The first step of the devised image processing procedure
involves the identification of slate boundaries. Slate edge

detection was facilitated by cutting slots in the conveyor base
and ensuring the belt width is less than that of the slate. The
light intensity signal arriving at the sensing device from these
slots is close to the camera black level when no slate is present
and a sharp signal transition is sensed when a slate arrives in
the field of view. Therefore, a simple threshold operation is

sufficient to identify the slate edges. Corners are located by
tracking the horizontal and vertical edge lines to their end
positions.
To verify if the slate is defect free, initially, a straight line

between the detected corner positions was drawn and the
inspection start locations were set relative to this line.
Rotation is accounted for using the equation of a straight line.
After this operation, the slate is segmented from the
background and the four-component algorithm described in

Section 6 can be applied.

6. Image processing algorithm

In order to devise an efficient solution to identify defective
slates, the grey level signals from hand selected reference
slates and defective slates were analysed. Experimental data

Figure 2 Model of reflectance for slate surface

Plate 1 Conveyor and slate inspection system

Figure 1 Representative defects found on the slate surface
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indicated that the mean grey level of successive reference

slates can vary by up to 20 grey levels where the average grey
level was 167. These variations are not generated by
imperfections in the optical or sensing equipment but rather
due to acceptable variation in slate surface colour. As such the
image processing algorithm has to accommodate these
variations. In order to identify the computational
components of the inspection algorithm, the grey level
histograms of slate images containing paint and substrate
defects were investigated. This enabled us to draw a number

of conclusions:
. the grey level mean is different for each reference slate;
. the limit of this variation can be determined by

experimentation; and
. the average grey level value of the defect pixels is generally

lower than the average grey level value of the background
pixels.

Also, it has been observed that the majority of defects are
negligibly small relative to the whole slate image. This
indicated that it would be desirable to inspect the slate image
for defects in small image sub-sections as the relative impact
of a defect on the grey level statistics of the image is increased.
The slate image was divided into smaller segments of size

128 £ 128 pixels and each segment was processed separately.
The devised algorithm is shown in Figure 3 and consists of

four distinct components with each component designed to
detect specific defect types. The components are global mean
threshold method, adaptive signal threshold method, labelling

method and edge detection method. Each component of the
algorithm is applied to each image segment and the results are
compared to experimentally determined thresholds. If any
result exceeds the predefined threshold then the image
segment and hence the slate is considered defective. Each
component of the algorithm is briefly explained in the
following sections.

6.1 Global mean threshold method

This method investigates the grey level mean of an image
section. If the computed mean is lower than the

experimentally determined mean then the image section
belongs to a defective slate. This method is used to detect
gross defects such as missing paint, orange peel, efflorescence,
insufficient paint and shade variation. Although very simple,
this method proved to be the most effective solution to
robustly detect these types of defects.

6.2 Adaptive signal threshold method

Experimental measurements indicated that the slate texture
noise is found in the band (mean 2 30, mean þ 30) and to
avoid the incidence of any false positives, the signal thresholds
were experimentally selected as (mean 2 40, mean þ 60).
This method was designed to detect defects such as missing
paint (where less than 50 per cent of the image section is
defective), debris, droplets and spots. This method is primarily
designed to detect the substrate defects that are generated by
an incorrect slate formation process. Depending on severity,
defects such as efflorescence, shade variation and insufficient
paint are sometimes detected by this method.

6.3 Labelling method

Connected component labelling (Dillencourt et al., 1992) is
an efficient method for detecting the imaged defects that are
immersed in noise. This method consists of several steps that
are shown in Figure 4.
The first step converts the input image into binary by

applying an adaptive thresholding technique. The second step
is applied to reduce the level of noise in the binarised image
by applying a morphological opening operation. The aim of
this operation is to remove the small un-connected features.
The filtered image is labelled and for each connected group of
pixels, the algorithm assigns a unique label. The labels are
ordered in accordance with the size of the detected blobs.
Generally speaking, the small blobs may be associated with
slate texture and the large blobs may be associated with
defects. Thus, in order to eliminate the influence of the
irrelevant small features, the total area of the largest ten blobs
is used as the discriminative feature to classify the image
section as acceptable or defective. This method proved to be
very effective for detection of high contrast defects such as
debris, droplets, spots and no paint.

6.4 Edge detection method

The previous methods detailed before are not effective in
detecting small narrow defects. Hence a fourth image
processing component was added to the algorithm. Initially,
the image is filtered with a median filter and this is followed
by the application of the Sobel edge detector. The edge
structure returned by the Sobel edge detector contains gaps
that are bridged by applying a morphological closing
operation. Sometimes the defects have shallow intensity
profiles and the gaps in the edge data are too large to be
closed by the morphological operator and the resulting data
will consists of a collection of small unconnected edge
segments. To circumvent this problem, the image resulting
after the application of closing operation is labelled and the
total area of the largest ten blobs is used to grade the image
section as acceptable or defective. The sequence of
operations required by this method is shown in Figure 5.

Figure 4 Labelling method

Figure 3 Slate defect detection block diagram

Figure 5 Edge detection method
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7. Challenges introduced by factory conditions

7.1 Effect of depth profile variation and vibration on

edge detection

The devised slate segmentation method described in Section

5 worked very well for flat slates but resulted in false triggers

for slates having significant depth profile variation. If the slate

is affected by depth profile variations, the captured image

follows the curve of the slate and false rejections occur when

there are large differences between the assumed straight edge

and the imaged curved edge (Figure 6). An example of false

defects caused by the edge checking method is shown in

Figure 7.
In order to address this problem, the slate’s edge has been

divided into shorter line lengths of 30mm length and the

location for these short edge segments is verified. The image

sub-sections that will be analysed by the inspection algorithm

are positioned adjacent to these detected short segments. This

will avoid the inclusion of background information in the

image sub-section that may cause false triggers when the

image data is analysed by the inspection algorithm.

7.2 Effect of variation in speed profile

The conveyor speed was set at 38m/min and camera exposure

was set to 400ms giving a scan frequency of 2.5KHz.

The cross direction resolution was 0.221mm and the moving

direction resolution was 0.244mm. The constancy of

conveyor speed was measured by imaging the same slate

several times and by imaging 16 slates in succession. The

timing of image capture is under digital control and is

repeatable. Measurements for the repeatedly imaged slate

ranged from 298.3 to 300.7mm while the measurements for

16 reference slates ranged from 295.9 to 300.1mm. These
variations are generated by the conveyor speed variations and

the change in image resolution in the moving direction is very

small (approx. 0.8 per cent) and does not have any negative

effect on the inspection results.

8. Robustness tests

The inspection system was developed on 400 slates to

determine the threshold settings that give the best trade-off

between no false positive triggers and correct defect

identification. Then the system was tested on more than

300 fresh slates and the success rate for correct identification
of acceptable and defective slates was 99.32 per cent for

defect free slates based on 148 samples and was 96.91 per

cent for defective slates based on 162 samples.
The classification of defective and defect free slates was

performed by an experienced operator based on a visual

examination. A detailed performance characterisation is

depicted in Table I where the detection rate for each

category of defect is presented. The system failed to identify

one defective slate that had a shallow depression that was

Figure 6 False triggers generated by slate’s depth profile variation

Figure 7 False defect generation due to depth profile variation
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positioned parallel to the direction of slate travel. However,

the system was able to identify this defect when the slate was

rotated about 908 (i.e. the slate was imaged with the 300mm

edge facing forward) as the defect was clearly imaged. Also

the system was not able to identify two slates that present

tiny marks (approx. 1mm2) on their surface. These defects

were undetected because the resolution provided by the

present imaging system was not sufficient to image them

accurately.
Typical inspection results are shown in Figure 8 for defect

types efflorescence, lump, damaged edge and template marks.

White lines are drawn around the image sub-sections found to

be defective. Codes highlighting which of the algorithm

components were triggered are shown for edge and lump

defects in Figure 9. The code for global mean threshold is 1,

adaptive signal threshold is 2, label method is 4 and edge

method is 8. A defect can trigger more than one component.

The lump defect generated a code of 14 indicating it had

triggered the mean threshold method (one) and the label

method (four). The image output and defect pixel count for

lump and edge defects of each image-processing component

are shown in Figure 9.
Real-time operation is a realistic target although some

challenges remain to produce an industrial system. The

reduction of the processing time is in progress and currently

the inspection takes 0.8 s for analysing a slate image (the

algorithm was executed on a Pentium II 600MHz PC with

128MB RAM). Also, some processing can be implemented in

hardware and this will assure real-time operation.

9. Conclusions

The experimental data indicates that automating the

inspection of painted slates can be achieved and installation

in a factory is a realistic target. Testing the devised inspection

system in a factory-type environment was an important

part of the development process. It enabled us to verify that

the devised mechanical system and the image-processing

algorithm are feasible to be implemented in an industrial

environment. The overall performance of the slate

inspection system indicates that the proposed solution can

be considered as a replacement for the existing manual

inspection system.

Figure 8 Typical inspection results. From top left, efflorescence, lump and damaged corner, template mark and template mark

Table I Summary of defect detection rates

Type Undetected Detected

Correct result

(per cent)

Missing paint 0 4 100

Insufficient paint 0 9 100

Efflorescence 0 15 100

Shade variation 0 12 100

Nozzle drip 0 14 100

Droplets 0 8 100

Dust 0 4 100

Wax 1 7 87.5

Template marks 2 33 94.28

Template marks II 0 5 100

Lumps 0 13 100

Depressions 1 3 75

Bad edge 0 18 100

Misc. types 1 12 92.30

Total 5 157 96.91
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